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Av. Rovisco Pais
1049-001 Lisboa

Portugal
e-mail: picken@math.ist.utl.pt

July 17, 2001

Abstract

In this paper we establish a one-to-one correspondence between
U(1)-gerbes with connections, on the one hand, and their holonomies,
for simply-connected manifolds, or their parallel transports, in the
general case, on the other hand. This result is a higher-order analogue
of the familiar equivalence between bundles with connections and their
holonomies for connected manifolds. The holonomy of a gerbe with
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group U(1) on a simply-connected manifold M is a group morphism
from the thin second homotopy group to U(1), satisfying a smoothness
condition, where a homotopy between maps from [0, 1]2 to M is thin
when its derivative is of rank ≤ 2. For the non-simply connected
case, holonomy is replaced by a parallel transport functor between two
special Lie groupoids, which we call Lie 2-groups. The reconstruction
of the gerbe and connection from its holonomy is carried out in detail
for the simply-connected case.

1 Introduction

In [3] Barrett studied the holonomy of connections in principal bundles and
proved a reconstruction theorem which showed that in a very precise sense
all information about the connections and the bundles is contained in their
holonomy. In this paper we obtain analogous results for Abelian gerbes with
connections and their holonomy.

We review the background of our work. Caetano and the second au-
thor [10] used a slightly different approach to obtain Barrett’s results, which
has some technical advantages. Let us sketch these results. It is well known
that the holonomy of a connection in a principal G-bundle, P , defined over
a connected smooth manifold M , assigns an element of G to each smooth
(based) loop in M . The holonomy of the composite of two based loops is
exactly the product of the two holonomies. Unless the connection is flat,
two homotopic loops have different holonomies in general. However, when
there is a homotopy between the loops whose differential has rank at most
1 everywhere, the holonomies around the two loops are the same. We call
these homotopies thin homotopies. One glance at any introductory book
on algebraic topology shows that the homotopies used in the proof that the
fundamental group obeys the group axioms are all thin (after smoothing at
a finite number of non-differentiable points). Therefore the holonomy map
descends to a group homomorphism from the thin fundamental group of M ,
π1
1(M), to G. We should remark here that we are using the equivalence rela-

tion on loops from [10], while we are borrowing Barrett’s terminology, which
he used, strictly speaking, for a slightly different equivalence relation. In [10]
the term intimacy relation was used for what we call a thin homotopy. In
the present paper this terminological twist should not lead to any confusion,
since the paper is intended to be self-contained. Barrett’s main result, also
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obtained in the setup of [10], shows that it is possible to reconstruct the bun-
dle and the connection, up to equivalence, from the holonomy. This result is
a nice strengthening of the well-known Ambrose-Singer theorem [1].

Caetano and the second author [11] also defined the higher order thin ho-
motopy groups of a manifold. The definition of the nth-order thin homotopy
group, πnn(M), is quite simple: one takes the definition of the ordinary πn(M),
but, instead of dividing by all homotopies, one only divides by homotopies
whose differentials have rank at most n. Just like the ordinary homotopy
groups, all thin homotopy groups of order at least 2 are Abelian. Once we
understand that a G-bundle with connection is equivalent to a smooth group
homomorphism π1

1(M) → G, we can ask for a geometrical interpretation of a
smooth group homomorphism from the second thin homotopy group, π2

2(M),
to an Abelian group, for example the circle group, U(1). As a matter of fact
this was the main question left open in [11]. As we show in this paper the
answer is that, for a 1-connected manifoldM , smooth group homomorphisms
π2
2(M) → U(1) correspond bijectively to equivalence classes of U(1)-gerbes

with connections.
Gerbes were first introduced by Giraud [16] in an attempt to understand

non-Abelian cohomology. Ironically only Abelian gerbes have developed into
a nice geometric theory so far. Several people [9, 12, 14, 19] have studied
Abelian gerbes. In this paper when we say gerbe we always mean a U(1)-
gerbe. Just as a line-bundle on M can be defined by a set of transition
functions on double intersections of open sets in a covering of M , a gerbe
can be defined by a set of “transition line-bundles” on double intersections.
This point of view was worked out by Chatterjee [12] (see also [19]). The
interest of gerbes resides in the possibility of doing differential geometry
with them. One can define gerbe-connections and gerbe-curvatures, just as
for bundles. Gerbe-connections and line-bundle connections have a lot in
common: for example, the Kostant-Weil integrality theorem has a gerbe
analogue [9, 12]. The main difference is a shift in dimension: equivalence
classes of line-bundles on M are classified by H2(M,Z), whereas equivalence
classes of gerbes on M are classified by H3(M,Z). The curvature of an
ordinary connection is a 2-form, the curvature of a gerbe is given by a 3-
form. The holonomy of an ordinary connection associates a group element
to each loop, the holonomy of a gerbe-connection associates a group element
to each 2-loop, i.e. a smooth map from S2 to the manifold. Analogously
one can define n-gerbes for any n ∈ N, which are classified by the elements
of Hn+2(M,Z). Note that in this convention an ordinary gerbe is a 1-gerbe.
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The main thing to notice is the existence of a “geometrical ladder” [12, 19]:
a line-bundle is given by a set of transition functions, a gerbe is given by a
set of transition line-bundles, a 2-gerbe is given by a set of transition gerbes,
etc. Whereas two functions are either equal or not, two different line-bundles
can also be isomorphic. In the definition of a gerbe it is this extra degree
of freedom that is of most interest. On a triple intersection of open sets
one requires the product of the transition bundles to be isomorphic to the
trivial bundle by a given isomorphism and requires these isomorphisms to
satisfy a cocycle condition on every four-fold intersection. The higher one
gets up the ladder, the more intricate the notion of isomorphism becomes.
One gets isomorphisms between isomorphisms, etc, up to the highest level
where one requires a cocycle condition to hold. This feature is known as
categorification, and we recommend the reader to read [4, 5] on the general
concept of categorification. Finally we note that there is also a notion of
n-gerbe connection, and the parallel transport of an n-gerbe connection is
defined along n+1-dimensional paths. Some details of these notions remain
to be worked out completely, but Gajer [14, 15] has worked out a considerable
part already.

The truly categorical nature of gerbe-connections comes to light when we
study the general setting of their parallel transport. To understand the need
for this categorical language, one ought to think first about the right way of
formulating parallel transport for a connection on a principal bundle over a
manifold which is not necessarily connected. Since the concept of holonomy
involves the choice of a base-point, one cannot expect to recover all infor-
mation about the connection by looking only at its holonomy around based
closed loops. One has to give up working with closed loops only and start
working with arbitrary paths with arbitrary endpoints. This way one finds
that the right language is that of Lie groupoids and groupoid morphisms, i.e.
functors, instead of Lie groups and group homomorphisms. A thorough ac-
count of Lie groupoids and their history can be found in [23]. We note that a
Lie groupoid with only one object is precisely a Lie group. We will show how
to translate Barrett’s [3] results to this more general framework. As pointed
out by Brylinski [9], a gerbe with gerbe-connection on M gives rise to a line-
bundle with connection on Ω(M), the free loop space of M . Now the point
is that, if M is not 1-connected, then Ω(M) is not connected, so we cannot
expect to recover the gerbe-connection just from its holonomy around based
2-loops. Our result about the parallel transport of gerbe-connections is that,
if M is connected at least, their proper setting is that of Lie groupoids with
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a monoidal structure satisfying the group laws, which we therefore propose
to call Lie 2-groups, and functors between them. As we show, the notion of
thin homotopy is central in this whole story.

We should remark that, when finishing this paper, we found an article
by Gajer [15] in which he already obtains the characterization of Abelian
n-gerbes with n-gerbe connections in terms of holonomy maps. However,
Gajer’s approach is very different from ours. Let us briefly explain where
they differ. The main motivation for our approach is that we are trying to
understand the differential geometry behind the four-dimensional state-sum
models defined by the first author of the present paper [22, 21]. For the
understanding of these state-sums it would be helpful to find a categorical
way of perceiving the relation between homotopy theory and differential ge-
ometry. Concretely the motivation was to understand what the homotopy
2-type of a manifold has to do with differential geometry. We believe that
the setup in this paper provides such a link, because in the most general case
the parallel transport of a gerbe with gerbe-connection onM yields a functor
whose domain is the thin homotopy 2-type of M . Gajer defines everything in
terms of groups and group homomorphisms and therefore his approach does
not make this link with homotopy theory. For more information about our
motivation see the beginning of Sect. 6.

We work out the simply-connected case “by hand”, i.e. without relying on
abstract cohomological arguments as Gajer does. Given the gerbe-holonomy
we compute explicitly the gerbe and the gerbe-connection that correspond
to it. We also remark that Gajer does not use some type of higher thin
homotopy groups, which conceptually are easy to understand, but he uses
the rather more complicated iterated construction, G(n−1) (Gab(M)), where G
is a certain variant of the thin fundamental group and Gab its Abelianization.
We hope that our approach makes the subject accessible to a broader group
of mathematicians and physicists.

Finally, our setup provides a link with the theory of double Lie groupoids
which is not necessarily restricted to the Abelian case [24, 25]. We are only
aware of one type of concrete examples of non-Abelian gerbes, which define
the obstruction to lifting a principal G-bundle to a Ĝ-bundle, where Ĝ is
a non-abelian extension of G. To our knowledge no way has been found
to even start a theory of connections on non-Abelian gerbes, and in the
aforementioned concrete examples one can easily see that a straightforward
attempt to generalize the Abelian approach to connections fails. Maybe
our link with double Lie groupoids can shed some new light on non-Abelian
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gerbes and the possibility of defining connections on them. We should remark
that Thompson [27] has worked out in detail the definition of quaternionic
gerbes and some of their properties. Unfortunately his only examples, related
to conformal 4-manifolds, are actually just Čech 1-coboundaries with values
in SU(2) and therefore trivial as gerbes. For an introduction to the general
theory of non-Abelian gerbes and its history one can read [8]. However, the
only concrete example in the book is the one we mentioned above.

We now give a short table of contents:

1) Introduction.

2) Line-bundles and gerbes with connections. In this section we recall
some basic definitions and facts about the objects mentioned in the
title. We claim no originality, but we hope that this section helps the
non-specialist to understand the paper. In the same spirit we have tried
to make the paper as self-contained as possible.

3) Ordinary holonomy. We show in detail the equivalence between line-
bundles with connections, given in terms of transition functions and
local 1-forms, and their holonomies, as a preparation for the discussion
of gerbe-holonomy and parallel transport.

4) Thin higher homotopy groups. We recall the definition of the thin
higher homotopy groups.

5) Gerbe-holonomy. We show how the holonomy of a gerbe-connection
on a gerbe onM gives rise to a smooth group homomorphism π2

2(M) →
U(1). We also give a local formula for the holonomy in terms of the
connection 0- and 1-forms, which constitute the gerbe-connection.

6) Parallel transport in gerbes. In this section we explain the key idea
of the whole paper. We first show how parallel transport in ordinary
bundles can be formulated in terms of Lie groupoids and smooth func-
tors. Then we show how a gerbe with connection on M gives rise to
a Lie 2-group (a Lie 2-groupoid with only one object) on M and how
the parallel transport yields a smooth functor between Lie 2-groups.
Specialists can jump to this section right after the introduction.

7)Barrett’s lemma for 2-loops. This is just a technical intermezzo which
is necessary for the sequel. On a first reading one can jump over this
section without loss of comprehension.
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8) The 1-connected case. Here we reconstruct explicitly the Čech 2-
cocycle of a gerbe and the 0- and 1-connections from a given holonomy
map π2

2(M) → U(1) for a 1-connected manifold M . In this case the
reconstruction statement is much easier to formulate and understand
than in the general case, because the language of groups and group
homomorphisms is more familiar than the language of Lie 2-groups
and functors between those to most mathematicians. We have therefore
decided to prove this case in great detail and only indicate in Sect. 6
what changes have to be made to obtain the proof for the general case
(which are only small when the change in language is well understood).
On a first reading one might try to read this section before Sect. 6.

2 Line bundles and gerbes with connections

This section is just meant to recall some of the basic facts about line-bundles
and gerbes. We claim no originality in this section. As a matter of fact we
follow Hitchin [19] and Chatterjee [12] closely. However, we feel that a section
like this is necessary, because gerbes are still rather unfamiliar mathematical
objects to most mathematicians, and therefore the lack of an introductory
section might scare off people who would like to read this paper. Of course we
assume some familiarity with the differential geometry of principal bundles
and connections.

Throughout this paper let M be a smooth connected finite-dimensional
manifold and U = {Ui | i ∈ J} an open cover of M such that every non-
empty p-fold intersection Ui1...ip = Ui1 ∩ · · · ∩ Uip is contractible. We also
assume the existence of a partition of unity (ρi : Ui → R) subordinate to
U . In this paper a complex line-bundle L on M can come in essentially
two different but equivalent forms: as a complex vector bundle of rank 1
or as a set of transition functions gij : Uij → U(1). Note that we take the
values of our transition functions to be in U(1) rather than C∗, thinking
of them as transition functions of a principal bundle rather than a vector
bundle. Recall that the gij have to satisfy gji = g−1ij and the Čech cocycle
condition δgijk = gijgjkgki = 1 on Uijk. Two sets of transition functions
gij and g

′
ij define equivalent line-bundles if and only if there exist functions

hi : Ui → U(1) such that g′ijg
−1
ij = h−1i hj. In this case we say that gij and g

′
ij

are cohomologous and δhij = h−1i hj is the coboundary by which they differ.
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Thus equivalence classes of line-bundles correspond bijectively to cohomology
classes in the first Čech cohomology group Ȟ1(M,U(1)

M
). Following the

usual notation in the literature on gerbes, we write GM for the sheaf of
smooth G-valued functions on (open sets of) M , where G is any Lie group.
Following the same convention, the sheaf of constant G-valued functions is
denoted by GM . The bijection above defines a group homomorphism, where
the group operation for cochains is defined by pointwise multiplication and
for line-bundles by their tensor product. Similarly we use two different but
equivalent ways to write down a connection in L: as a covariant derivative
∇ : Γ(M,L) → Ω1(M,C) or as a set of of local 1-forms Ai ∈ Ω1(Ui). For each
i the 1-form Ai is of course the pull-back of the connection 1-form associated
to ∇ via a local section σi : Ui → p−1(Ui) ⊂ L. We will not say more about
covariant derivatives, but we recall that the Ai have to satisfy the rule

i(Aj − Ai) = d log gij.

Two line-bundles, gij and g
′
ij, with connections, Ai and A

′
i respectively, are

equivalent exactly when gij and g′ij define equivalent bundles as above and
iA′i = iAi + d loghi. Given a line-bundle, gij, with connection, Ai, we can
define its curvature 2-form F ∈ Ω2(M) by F |Ui

= dAi. Using the partition
of unity (ρi) we can easily define a connection for a given line-bundle, gij ,
by Ai = −i

∑

α ραd log gαi. An immediate consequence of the definitions is
that the cohomology class of F is independent of the chosen connection. The
invariant [F ]/2π is called the Chern class of the line-bundle. A well known
fact about line-bundles is the Kostant-Weil integrality theorem (see [9] and
references therein), which says that any closed 2-form F onM is the curvature
2-form of a connection in a line-bundle if and only if [F ]/2π is the image of
an integer singular cohomology class in H2(M,Z). Basically this theorem is
the statement that the cohomology groups Ȟ1(M,U(1)

M
) and H2(M,Z) are

isomorphic, which follows from the exact sequence of sheaves

0 −→ ZM
×2πi
−→ CM

exp
−→ C

∗
M −→ 1

and from the isomorphism

Ȟ2(M,ZM) ∼= H2(M,Z).

Finally we should remark that Deligne (see references in [9]) found a nice
way to encode line-bundles with connections in a cohomological terminology.
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Equivalence classes of line-bundles with connections correspond bijectively
to cohomology classes in the first (smooth) Deligne hypercohomology group

H1(M,C∗
d log
→ A1

M,C). This means little more than that a line-bundle with
connection can be defined by a pair of local data (gij , Ai) with respect to the
covering U such that

D (gij , Ai) = (δgijk, i(δAij − d log gij)) = (1, 0)

and that two such pairs (gij, Ai) ,
(

g′ij, A
′
i

)

represent equivalent line-bundles
with equivalent connections precisely if there is a set of functions hi such
that

(

g′ijg
−1
ij , i(A

′
i − Ai)

)

= (δhij, d log hi) = D(hi).

The difference between this remark and the precise definition of Deligne
cohomology lies in the fact that the local data are not just a family of sets
but a sheaf. This distinction is important for a rigorous treatment because
one wants all definitions to be independent of the choice of open cover in
the end. However, this is not the right place to define the whole machinery
of sheaves and sheaf cohomology. For a rigorous introduction to Deligne
hypercohomology see Brylinski’s book [9].

Just as in the case of line-bundles we can define a gerbe by two different
but equivalent kinds of data. The first alternative is to say that a gerbe is
given by a set of transition line-bundles Λij on Uij together with a nowhere
zero section (also called trivialization) θijk ∈ Γ(Uijk,Λijk) of the tensor prod-
uct line-bundle Λijk = ΛijΛjkΛki. The transition line-bundles have to satisfy
Λji ∼= Λ−1ij , where the latter is the inverse of Λij with respect to the tensor
product, and the cocycle condition which says that

Λijk = ΛijΛjkΛki ∼= 1,

where the last line-bundle is the trivial line-bundle over Uijk. The trivializa-

tions have to satisfy θs(i)s(j)s(k) = θ
ǫ(s)
ijk , for any permutation s ∈ S3, where

ǫ(s) is the sign of s, and the cocycle condition

δθijkl = θjklθ
−1
ikl θijlθ

−1
ijk = 1.

To understand the last equation one has to note that on Uijkl the tensor
product of all the line-bundles involved is identical to the trivial line-bundle,
of course up to the fixed isomorphisms Λji ∼= Λ−1ij and ΛijΛ

−1
ij

∼= 1, and the
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canonical isomorphism which reorders the factors in the tensor product. This
holds because every line-bundle appears twice in the product with opposite
signs. The last equation means that the product of the sections has to be
equal, forgetting about the uninteresting isomorphisms above, to the canon-
ical section in the trivial line-bundle over Uijkl (i.e. the one which associates
to each x ∈ Uijkl the point (x, 1) ∈ Uijkl × U(1)).

Two gerbes are said to be equivalent if for each i ∈ J there exists a line-
bundle Li on Ui, such that for each i, j ∈ J we have bundle isomorphisms

mij : Lj
∼=
→ Λ′ijΛ

−1
ij ⊗ Li

such that
mij ◦mjk ◦mki = θ′ijkθ

−1
ijk ⊗ id

on Uijk. The data defining an equivalence are called an object by Chatter-
jee [12].

In order to relate the definition above to Čech cohomology we only have to
remember that all our p-fold intersections are contractible so all line-bundles
above are necessarily equivalent to the trivial line-bundle. This means that
we can choose a nowhere zero section σij in Λij for each i, j ∈ J . With respect
to these sections we now get θijk = gijkσijk, where we take σijk = σijσjkσki in
the tensor product line-bundle. By the definition above we see that g defines
a Čech 2-cocycle, i.e., for all i, j, k, l ∈ J we have

δgijkl = gjklg
−1
iklgijlg

−1
ijk = 1

on Uijkl. Given two equivalent gerbes (Λ′ij, θ
′
ijk), (Λij, θ

′
ijk) and an object

(Li, mij) for Λ′ijΛ
−1
ij , we can also choose nowhere zero sections σi in Li for

each i ∈ J . This gives us two nowhere zero sections in Λ′ijΛ
−1
ij ⊗Lj : σ

′
ijσ
−1
ij σj

and mij ◦ σi. For each i, j ∈ J we can take the quotient of these sections
which defines a function hij : Uij → U(1) such that for each i, j, k ∈ J we
have

g′ijkg
−1
ijk = δhijk = hjkh

−1
ik hij

on Uijk. Thus every equivalence class of gerbes induces a Čech cohomology
class in Ȟ2(M,U(1)

M
). Hitchin [19] shows that the converse is true as well,

which leads to the conclusion that equivalence classes of gerbes correspond
bijectively to the elements in Ȟ2(M,U(1)

M
).

Gerbe-connections are defined by two sets of data: the 0-connections and
the 1-connections (Chatterjee’s terminology). Let G be a gerbe given by a set
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of line-bundles Λij and trivializations θijk. A 0-connection in G consists of a
covariant derivative ∇ij in Λij for each i, j ∈ J such that for each i, j, k ∈ J

∇ijkθijk = 0

on Uijk. Here ∇ijk is the covariant derivative in the tensor product of the
corresponding line-bundles induced by the covariant derivatives in these line-
bundles. Given two line-bundles , L and L′, with connections, ∇ and ∇′

respectively, Brylinski [9] denotes the induced connection in L⊗L′ by ∇+∇′,
which is defined by

(∇+∇′)σ ⊗ σ′ = ∇σ ⊗ σ′ + σ ⊗∇′σ′,

for any sections σ ∈ L and σ′ ∈ L′. We also require that ∇ij + ∇ji = 0
for all i, j ∈ J . The alternative definition of a 0-connection is obtained in
a straightforward manner by taking the pull-back of the connection 1-form
associated to ∇ij via σij for each i, j ∈ J . Let G correspond to the 2-cocycle
gijk, and choose a logarithm of gijk. A 0-connection can then be defined by
a set of 1-forms Aij ∈ Ω1(Uij) such that

i(Aij + Ajk + Aki) = −d log gijk.

Of course we assume that Aji = −Aij . A 1-connection in G is defined by a
set of local 2-forms Fi ∈ Ω2(Ui) such that

Fj − Fi = σ∗ijK(∇ij),

where K(∇ij) denotes the curvature of ∇ij. Alternatively we get

Fj − Fi = dAij.

In the sequel we sometimes denote dAij by Fij . A 0-connection and a 1-
connection on G together form what we call a gerbe-connection. Our typical
notation for a gerbe-connection is A. In a natural way a gerbe-connection, A,
leads to the notion of a gerbe-curvature 3-form, G ∈ Ω3(M), which is defined
by G|Ui

= dFi. Again using the partition of unity we see that, for a given
gerbe gijk, it is easy to define a 0-connection by Aij = −i

∑

α ραd log gαij and
a 1-connection by Fi =

∑

β ρβdAβi. Just as for line-bundles one can show
that the cohomology class of the gerbe-curvature, [G], does not depend on
the chosen 0- and 1-connection (the proof is a bit harder though), and that
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any closed 3-form G on M is a gerbe-curvature 3-form if and only if [G]/2π
is the image of a class in H3(M,Z). The cohomology class [G]/2π is called
the Dixmier-Douady class of the gerbe.

To complete the picture we have to define when two gerbes, G and G ′, with
gerbe-connections, A and A′ respectively, are equivalent. First of all, such an
equivalence requires G and G ′ to be equivalent as gerbes. Let (Li, mij) define
an object for this equivalence and let hij be the Čech cochain corresponding
to this object. A and A′ are now equivalent if for every i ∈ J there exists a
connection ∇i in Li such that mij maps

∇j 7→ ∇′ij −∇ij +∇i (1)

and such that

F ′i = Fi + σ∗iK(∇i). (2)

Equivalently this means that for every i ∈ J there exists a 1-formAi ∈ Ω1(Ui)
such that

iA′ij = i(Aij + Aj −Ai)− d log hij (3)

on Uij and

F ′i = Fi + dAi (4)

on Ui. Now there is a subtlety in Chatterjee’s [12] terminology. Suppose a
gerbe G can be trivialized by an object (Li, mij) (or, equivalently, by hij).
He calls local data ∇i (or, equivalently, Ai) which satisfy (1) (resp. (3)) an
object 0-connection. In general such an object 0-connection need not satisfy
(2) (resp. (4)). That would only be possible if the object-connection were
trivializable. As Chatterjee proves, on a 2-dimensional surface any gerbe with
any gerbe-connection admits an object with an object 0-connection, but in
general the latter does not satisfy (2). This is of course analogous to the fact
that any line-bundle on the circle admits a trivialization, but an arbitrary
connection in such a line-bundle need not be trivializable. In this article we
call an object 0-connection simply an object connection. It is important to
keep these remarks in mind for Sect. 5.

Finally we should remark that there is a bijective correspondence between
equivalence classes of gerbes with gerbe-connections and cohomology classes

in H2(M,C∗
d log
→ A1

M,C

d
→ A2

M,C), the next order Deligne hypercohomology
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group. Again this amounts to little more than saying that a gerbe with
gerbe-connection is defined by a triple of local data (gijk, Aij , Fi) satisfying
the conditions we have explained above.

Example 2.1 Let G be a Lie group and 1 → U(1)
i
→ Ĝ

π
→ G → 1 a

central extension. It is well known that any central extension is locally split.
This means that Ĝ

π
→ G is a locally trivial principal U(1)-bundle. Given

a principal G-bundle over M , denoted by P , in the form of its transition
functions gij : Uij → G, we can locally lift these transition functions to obtain

ĝij : Uij → Ĝ (by assuming that the image of gij is sufficiently small so
that the central extension can be trivialized over it). In general the ĝij
do not define a cocycle, but π(δĝijk) = δgijk = 1 of course, so we have
δĝijk : Uijk → ker π ∼= U(1). As a matter of fact δĝijk defines a gerbe, because

δ2 = 1 always. Thus the obstruction to lifting P to a principal Ĝ-bundle
defines a gerbe.

Example 2.2 Let S3 ⊂ R4 be the three-dimensional sphere and take N =
S3−{(0, 0, 0, 1)} and S = S3−{(0, 0, 0,−1)}. The intersection N∩S is homo-
topy equivalent to S2. For example, (x, y, w, z) 7→ (x, y, w)/

√

x2 + y2 + w2

defines a homotopy equivalence. Therefore equivalence classes of line-bundles
on N ∩ S are determined by cohomology classes in H2(S2,Z) = Z. Since
there are no 3-fold intersections, any line-bundle on S2 defines a gerbe on
S3. Let ΛNS be such a line-bundle. Any connection ANS in ΛNS defines a
0-connection in the gerbe. A 1-connection is also easy to obtain, because the
curvature 2-form of ANS, which we denote by FNS, can always be extended
to S, since S is contractible, and therefore we can define FS to be this ex-
tension of FNS and define FN to be zero. Chatterjee [12] and Hitchin [19]
show how to obtain a gerbe for any codimension-3 submanifold and how to
define a gerbe-connection for such a gerbe. There is a little subtlety that
we should explain: in this example UN ∩ US is not contractible. However
our definition of a gerbe in terms of line-bundles does not use that condition
at all. Only when one wants to pass to the corresponding Čech-cocycle and
the local forms which define the gerbe-connection one has to assume that all
intersections are contractible. If one feels happier with contractible intersec-
tions one can subdivide N and S, but of course this makes the definition of
the gerbe a little bit more complicated. For a detailed treatment see [12].
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3 Ordinary holonomy

It is well-known that a principal G-bundle with connection over M allows
one to define the notion of holonomy around any smooth closed curve on M
(Kobayashi and Nomizu [20]). In particular, given a fixed basepoint ∗ in M ,
and a point in the fibre over ∗, this data induces an assignment of an element
of G to each loop in M , based at ∗. Such an assignment is called a holonomy
map, or simply a holonomy. In Barrett [3], and in a slightly different fashion
in Caetano-Picken [10], it was shown that suitably defined holonomy maps
are in one-to-one correspondence with G-bundles plus connection plus the
choice of a point in the fibre over ∗, up to isomorphism. This result should
be seen as a geometric version of the well-known equivalence between flat G-
bundles modulo gauge transformations over M and Hom(π1(M), G)/G, the
group homomorphisms from π1(M) to G, modulo conjugation by elements
of G.

The reconstruction of the bundle and connection from a holonomy map
in Barrett [3] and Caetano-Picken [10] was carried out in the total space of
the bundle, using Ehresmann connections. The main result of this section is
to prove the same equivalence using instead the local data defining a bundle
and connection from section 2. Since the aim is to prepare the ground for
the gerbe discussion in sections 5 and 8, we will only show the result for the
case G = U(1).

We start by recalling briefly the definition of holonomy map from [10].
Let Ω∞(M) be the space of smooth loops ℓ : [0, 1] → M based at ∗ such
that ℓ(t) = ∗ for 0 ≤ t < ǫ and 1 − ǫ < t ≤ 1 for some 0 < ǫ < 1/2. We
say that the loop sits, or has a sitting instant, at t = 0 and t = 1. In [10]
it is shown how to reparametrize any path to sit at its endpoints using a
smoothly increasing function β : [0, 1] → [0, 1] with β(t) = 0, for t ∈ [0, 1

3
],

and β(t) = 1, for t ∈ [2
3
, 1]. As usual we may define the product and inverse

of loops, and the sitting property means that the product closes in Ω∞(M).
We will denote the product of loops by ⋆. An equivalence relation between
loops appropriate for parallel transport purposes is the following:

Definition 3.1 Two loops ℓ and ℓ′ belonging to Ω∞(M) are said to be rank-

1 homotopic, or thin homotopic, written ℓ
1
∼ ℓ′, if there exists a map H :

[0, 1]× [0, 1] →M such that:

1. H is smooth throughout [0, 1]× [0, 1]

14



2. rank(DH(s,t)) ≤ 1 ∀(s, t) ∈ [0, 1]× [0, 1]

3. there exists 0 < ǫ < 1/2 such that

0 ≤ s ≤ ǫ ⇒ H(s, t) = ℓ(t)

1− ǫ ≤ s ≤ 1 ⇒ H(s, t) = ℓ′(t)

0 ≤ t ≤ ǫ ⇒ H(s, t) = ∗

1− ǫ ≤ t ≤ 1 ⇒ H(s, t) = ∗

Now the space of equivalence classes π1
1(M, ∗) = Ω∞(M)/

1
∼ acquires the

structure of a group in exactly the same way as π1(M) does, but using rank-
1 homotopy instead of ordinary homotopy, since all homotopies used in the
construction of π1(M, ∗) are in fact rank-1. Again the function β is used
to give the usual homotopies sitting endpoints. In the rest of this paper all
paths and homotopies are understood to have sitting endpoints, which can
always be achieved by reparametrization with β, as shown in [10]. We remark
that in [10] the terms intimate and the group of loops, GL∞(M), were used
instead of rank-1 homotopic and π1

1(M, ∗) respectively. When the basepoint
∗ is understood we will frequently write π1

1(M) instead of π1
1(M, ∗).

In an analogous fashion we may introduce the smooth path groupoid
P 1
1 (M), consisting of smooth paths p : I → M which are constant in a

neighbourhood of t = 0 and t = 1, identified up to rank-1 homotopy, defined
as in Def. 3.1 with the obvious modification 0 ≤ t ≤ ǫ ⇒ H(s, t) = p(0),
1 − ǫ ≤ t ≤ 1 ⇒ H(s, t) = p(1). Multiplication in P 1

1 (M), when possible,
will also be denoted by ⋆. The set of paths without dividing by the thin
homotopy relation we denote by P∞(M).

We define a smooth family of loops to be a map ψ : U ⊆ Rk → Ω∞(M)
defined on an open set U ⊆ Rk such that the function ψ(x, t) = ψ(x)(t) is
smooth on U × I.

Definition 3.2 A holonomy is a group morphism H : π1
1(M) → U(1), which

is smooth in the following sense: for every smooth family of loops ψ : U ⊆
Rk → Ω∞(M), the composite

U
ψ
→ Ω∞(M)

proj
→ π1

1(M)
H
→ U(1),

where proj is the natural projection, is smooth throughout U .
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For later it will be useful to have the following result.

Lemma 3.3 (Recentering a holonomy) Let H : π1
1(M, ∗) → U(1) be a holon-

omy, m ∈ M and p ∈ P∞(M) a path from ∗ to m. Then H̃ : π1
1(M,m) →

U(1) defined by H̃(ℓ) = H(p ⋆ ℓ ⋆ p−1) is a holonomy.

Proof: Since the smoothness property is clear, we only have to show that H̃
is a group morphism, which follows from the fact that products p−1 ⋆ p may
be cancelled up to rank-1 homotopy.

Suppose now that a U(1) bundle L with connection A is given in terms
of local data, gij and Ai, as in section 2. Define their holonomy map H from
Ω∞(M) to U(1) as follows:

H(ℓ) = exp i

∫

I

Aℓ

where Aℓ is a 1-form on I defined on each open set of the pullback cover via
ℓ of the interval, V = {Vi, i ∈ J}, by

iAℓ = iℓ∗(Ai)− d log ki

where ki : Vi → U(1) is an arbitrary trivialization of ℓ∗L, i.e. ℓ∗(gij) = kjk
−1
i

on Vij . The 1-form Aℓ is globally defined on I since

iℓ∗(Aj − Ai) = ℓ∗(g−1ij dgij)

= (kjk
−1
i )−1d(kjk

−1
i )

= d log kj − d log ki.

Furthermore H(ℓ) doesn’t depend on the choice of trivialization ki, since, if
A′ℓ = iℓ∗(Ai)− k′i

−1dk′i, then ki/k
′
i = kj/k

′
j on Vij, so that f , defined locally

by f = ki/k
′
i, is a function on I. Therefore

exp i

∫

I

(Aℓ −A′
ℓ
) = exp

∫

I

f−1df = f(1)f(0)−1 = 1.

Lemma 3.4 H descends to π1
1(M) and defines a holonomy, which is inde-

pendent of the choice of data L,A up to equivalence.
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Proof: Suppose that ℓ
1
∼ ℓ′, and that H : I2 → M is a rank-1 homotopy

between ℓ and ℓ′, as in Def. 3.1. Let ki be a trivialization of H∗(L) over I2,
and AH be the 1-form on I2 defined locally on H−1(Ui) by iA

H = iH∗(Ai)−
d log ki. Now,

exp i

∫

I

(Aℓ − Aℓ
′

) = exp i

∫

I2
dAH

= exp i

∫

I2
H∗(F )

= 1,

using Stokes’ theorem in the first equality and the fact that H is of rank ≤ 1,
whereas F is a 2-form, in the final equality. Thus H descends to π1

1(M).
Also H is a group homomorphism from π1

1(M) to U(1) since

∫

I

Aℓ⋆ℓ
′

=

∫

I

Aℓ +

∫

I

Aℓ
′

.

Suppose ψ : U ⊂ Rk → Ω(M) is a smooth family of loops in the sense of
Def. 3.2. Without loss of generality we suppose that U is contractible, and
let ki be a trivialization of the pull-back bundle ψ∗(L). Once again we define
a 1-form on U×I by iAψ = iψ∗(Ai)−d log ki on each open set of the pullback
cover under ψ. Now

H(ψ(s1, . . . , sk)) = (exp i

∫

I

Aψ)(s1, . . . , sk)

is a smooth function of s1, . . . , sk, since all functions are smooth and inte-
gration is a smooth operation. Thus H defines a holonomy.

Finally H does not depend on the choice of L,A up to equivalence, which
follows immediately from Stokes’ theorem and the local formula for holonomy
which we give below.

For later purposes it is convenient to have a local expression for the holon-
omy H, defined directly in terms of gij and Ai. Let ℓ : I → M be a smooth
loop, based at ∗. Fix an element of the open cover, U0, such that ∗ ∈ U0.
Consider again the pull-back cover V of the interval I. Since I is a compact
metric space it has a Lebesgue number λ > 0 such that ∀t ∈ I we have
]t−λ, t+λ[⊆ Vi for some i. Thus, given a decomposition of the unit interval
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Figure 1: local formula for holonomy

0 = x0 < x1 < · · · < xN = 1 such that xα − xα−1 < λ, ∀α = 1, . . . , N , each
subinterval Iα = [xα−1, xα] is contained in Vα for some α, and furthermore,
by choosing a smaller λ if necessary, or adjusting the decomposition, we can
ensure V1 = VN = V0. Since

exp

∫

Iα

(iℓ∗(Aα)− d log kα) = kα(xα−1)

(

exp

∫

Iα

iℓ∗(Aα)

)

k−1α (xα)

and k−1α kα+1 = ℓ∗gα,α+1 on Vα,α+1, we arrive at the following local formula

H(ℓ) =

N
∏

α=1

exp i

∫

Iα

ℓ∗(Aα) · gα,α+1(ℓ(xα)), (5)

where we set UN+1 = U1, and thus gN,N+1(ℓ(xN)) = 1. Fig. 1 sketches this
local formula. We may also extend this formula by an identical procedure to
smooth paths p : I → M . However, for a path that is not closed we can not
in general choose the initial and final open sets to be equal and the formula
depends on the specific choice (but not on the intermediate open sets in the
covering of the path). Thus we define

H1,N(p) =

(

N−1
∏

α=1

exp i

∫

Iα

p∗(Aα) · gα,α+1(p(xα))

)

· exp i

∫

IN

p∗(AN),
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and we have the multiplicative formula:

Hij(p ⋆ q) = Hik(p) · gkl(p(1)) · H
lj(q). (6)

Now we turn to the reconstruction of a bundle with connection from a
given holonomy H. Assume that the cover U is such that for each i we have
a diffeomorphism φi : Ui → B(0, 1), where B(0, 1) is the open unit ball in
Rn. Since M is path-connected we may choose a smooth path pi ∈ P∞(M)
from ∗ to xi = φ−1(0), the centre of Ui. For U0 we set p0 to be the constant
path at ∗. Given x ∈ Ui there is a natural path γi,x ∈ P∞(M) from xi to x,
namely the pullback under φi of the radial path from the origin to φi(x) in
Rn, reparametrized to be constant in a neighbourhood of t = 0, 1. For future
use it is practical to define

pi,x = pi ⋆ γi,x.

Now we define the transition functions, gij, of the bundle L corresponding
to H by setting (see Fig. 2)

ℓij(x) = pi,x ⋆ p
−1
j,x

and defining

gij(x) = H(ℓij(x)) (7)

Lemma 3.5 The transition functions gij satisfy the cocycle condition.

Proof: For x in a triple overlap Uijk, we have gijgjkgki(x) = 1, since the
product of the corresponding three loops is rank-1 homotopic to the trivial
constant loop, using the fact that we may cancel products of the form p⋆p−1

up to rank-1 homotopy. Note that we have gji = g−1ij by definition as well.

To define the 1-forms Ai corresponding to H, let x ∈ Ui, v ∈ TxUi, and
let q :] − ǫ, ǫ[→ Ui be a smooth path, such that q(0) = x, q̇(0) = v. Let
qk denote a path following q from x to q(k), reparametrized at t = 0, 1 so
as to belong to P∞(M). Concretely we define qk(t) = q(β(t)k), where β is
the previously mentioned smoothly increasing function which is equal to 0
on [0, 1

3
] and equal to 1 on [2

3
, 1]. Note that d/dk (qk(1)) |k=0 = v. Define the

loop (see Fig. 3)
ℓi,q(k) = pi,x ⋆ qk ⋆ p

−1
i,q(k)
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and set
fi,q(k) = H(ℓi,q(k)).

Now we define:

Ai(v) = −i
d

dk
log fi,q(k) |k=0 .

Lemma 3.6 The 1-forms Ai are well-defined and they satisfy

i (Aj − Ai) = d log gij

on double overlaps Uij.

Proof: From Fig. 4 we have the equality

gij(q(k)) = fi,q(k)
−1gij(x)fj,q(k). (8)

Taking the derivative of the logarithm at k = 0 we derive

g−1ij d gij(v) = i(Aj(v)− Ai(v)).

Now we introduce a new open set Uj in the atlas and corresponding φj :
Uj → B(0, 1), such that Uj is centred around xj = x and contained in Ui.
Such a pair Uj , φj may easily be constructed from φi. Take the path from ∗
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to the center of Uj to be pj = pi,x. Now let r be a second path in Ui satisfying
r(0) = x, ṙ(0) = v. Set

A
(q)
i (v) = −i

d

dk
log fi,q(k) |k=0

A
(r)
i (v) = −i

d

dk
log fi,r(k) |k=0 .

Now
A

(q)
j (v)− A

(q)
i (v) = A

(r)
j (v)−A

(r)
i (v),

since g−1ij d gij(v) is the evaluation of a 1-form on a vector and does not depend

on which path is used. Let H̃ : π1
1(M,x) → U(1) be the recentered holonomy

at x using the path pj, i.e. H̃(ℓ) = H(pj ⋆ ℓ ⋆ p
−1
j ) for any loop based at x.

Set f̃j,q(k) = qk ⋆ γ
−1
j,q(k). Then

A
(q)
j (v) = −i

d

dk
log H̃(f̃j,q(k)) |k=0 = 0

where the last equality follows from Barrett’s lemma to be proved in Sect. 7,
since f̃j,q(k) becomes the trivial loop at x when k goes to zero. Of course,

by the same argument, A
(r)
j (v) = 0, and thus A

(q)
i (v) = A

(r)
i (v).

The reconstruction described above involved choices of paths.

21



UjUi

p pi j

x

Figure 4: Proof of Eq. 8
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Lemma 3.7 The reconstructed bundle and connection are independent of
the paths pi up to equivalence.

Proof: Let g′ij and A′i be the reconstructed data using paths p′i instead of
pi. Define hi ∈ U(1) by hi = H(pi ⋆ (p

′
i)
−1), for each i. Then

g′ij(x) = h−1i gij(x)hj

and

A′i(v) = −i
d

dk
log h−1i ⋆ fi(k) ⋆ hi |k=0 = Ai(v).

Thus the data g′ij and A
′
i are equivalent to the original data gij and Ai.

The following result concerning the reconstructed connection will be used
below.

Lemma 3.8 Suppose [a, b] ⊂ I is contained in Vi. Set

ℓa,b = pi,ℓ(a) ⋆ ℓ |[a,b] ⋆ p
−1
i,ℓ(b).

Then

i

∫ b

a

ℓ∗(Ai) = logH(ℓa,b).

Proof: Set χ(k) = H(ℓa,k). Now

d

dk
logχ(k) = lim

ǫ→0
logH(ℓk,k+ǫ)/ǫ

= iAi(ℓ̇(k)).

Thus, integrating from a to b, the result follows.

It remains to show that the above assignments from bundle and connec-
tion data L,A to holonomies H and vice-versa are mutual inverses up to
equivalence. Let H be the holonomy obtained from (L,A) = (gij , Ai). The
data reconstructed from this holonomy are given by:

g̃ij(x) = H(ℓij(x)) (9)

iÃi(v) =
d

dk
logH(ℓi,q(k)) |k=0 (10)
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Now using the local formula for H in (5) and the multiplicative property in
(6), and setting hi(x) = H0i(pi,x), we have

g̃ij(x) = H0i(pi,x)gij(x)H
j0(p−1j,x)

= hi(x)gij(x)h
−1
j (x)

and

iÃi(v) =
d

dk
logH0i(pi,x)H

ii(qk)H
i0(p−1

i,q(k)) |k=0

=
d

dk
i

∫

I

q∗k(Ai) |k=0 +
d

dk
logHi0(p−1

i,q(k)) |k=0

= iAi(v) + d log hi(v).

The final equality follows from

d

dk

∫ 1

0

q∗k(Ai) |k=0 =
d

dk

∫ k

0

q∗(Ai) |k=0

= Ai(v).

Thus (g̃ij, Ãi) is equivalent to the original data (gij , Ai).
Conversely, let (L,A) = (gij, Ai) be the line bundle and connection ob-

tained from the holonomy H. Let H̃ be the holonomy obtained from these
data. To show H̃ = H we start with the local formula for H̃:

H̃(ℓ) =
N
∏

α=1

exp i

∫

Iα

ℓ∗(Aα) · gα,α+1(ℓ(xα)). (11)

Now using the definition of the transition functions (9) and Lem. 3.8 all paths
cancel except for the subpaths of ℓ between xα−1 and xα (see Fig. 5), and
therefore H̃(ℓ) = H(ℓ), ∀ℓ.

In conclusion we have the following

Theorem 3.9 The above assignments define a bijection between bundles and
connections, modulo equivalence, on the one hand, and holonomies on the
other.
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4 Thin higher homotopy groups

Caetano and the second author [11] also defined higher (relative) smooth
homotopy groups with homotopies of restricted rank, generalizing the rank-1
homotopy group π1

1(M) of the previous section. In the present article we
will only need to consider the special case of homotopy groups relative to the
base point, which simplifies the definition.

Let M be a smooth manifold. Let In denote the unit n-cube, with coor-
dinates ti ∈ [0, 1], i = 1, . . . , n.

Definition 4.1 An n-loop is a smooth map γ : In →M such that, for some
0 < ǫ < 1/2,

∀i = 1, . . . , n, ti ∈ [0, ǫ[∪ ]1− ǫ, 1] ⇒ γ(t1, . . . , tn) = ∗.

We denote the set of all n-loops by Ω∞n (M).

Remark 4.2 The above condition generalizes the “sitting” condition γ(t) =
∗, ∀t ∈ [0, ǫ[∪]1− ǫ, 1] for loops in Sect. 3. In [11] the weaker requirement

(t1 ∈ [0, ǫ[∪]1−ǫ, 1])∨ (ti ∈ {0, 1} for some i = 2, . . . , n) ⇒ γ(t1, . . . , tn) = ∗

was used. Definition 4.1 has the advantage that the n-loops can be multiplied
smoothly (see below) along any of the ti directions, and not just along t1.
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Definition 4.3 The product, γ1 ⋆ γ2, of two n-loops γ1 and γ2 is given by:

γ1 ⋆ γ2(t1, . . . , tn) =

{

γ1(2t1, t2, . . . , tn), t1 ∈ [0, 1/2],
γ2(2t1 − 1, t2, . . . , tn), t1 ∈]1/2, 1].

The inverse, γ−1, of an n-loop γ is given by:

γ−1(t1, . . . , tn) = γ(1− t1, t2, . . . , tn)

Remark 4.4 γ1 ⋆ γ2 is smooth because of the sitting condition in Def. 4.1,
which implies that γ1 ⋆ γ2 is constant in a neighbourhood of t1 = 1/2.

We now define the thin homotopy relation, which was called intimacy relation
by Caetano and Picken [11].

Definition 4.5 Two n-loops γ1 and γ2 are said to be rank-n homotopic or
thin homotopic, denoted γ1

n
∼ γ2, if there exists ǫ > 0 and a homotopy

H : [0, 1]× In → M , such that:

1. ti ∈ [0, ǫ[∪]1− ǫ, 1] ⇒ H(s, t1, . . . , tn) = ∗, i = 1, . . . , n

2. s ∈ [0, ǫ[ ⇒ H(s, t1, . . . , tn) = γ1(t1, . . . , tn)

3. s ∈]1 − ǫ, 1] ⇒ H(s, t1, . . . , tn) = γ2(t1, . . . , tn)

4. H is smooth throughout its domain

5. rankDH(s,t1,... ,tn) ≤ n throughout its domain.

It is straightforward to show that
n
∼ is an equivalence relation. Let us denote

the set of equivalence classes of n-loops in M by πnn(M, ∗), or just πnn(M)
when ∗ is understood.

Theorem 4.6 πnn(M, ∗) is an abelian group for n ≥ 2.

Proof: The product and inverse operations defined on n-loops descend to
πnn(M, ∗). The identity is the constant n-loop, which sends In to ∗. The group
properties are shown in the same way as for πn(M), with the modifications
introduced by Caetano and Picken in [10, 11] to accommodate smooth n-loops
and homotopies. The group πnn(M, ∗) is abelian by the standard geometric
argument, since all homotopies involved are thin.
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Remark 4.7 For dimM ≤ n, πnn(M) = πn(M) and there is nothing new.
For dimM > n however, πnn(M) is infinite-dimensional.

In the remainder of this paper we shall mainly be concerned with π2
2(M),

the group of 2-loops, or surfaces, modulo rank-2 homotopy.

5 Gerbe-holonomy

Let G be a gerbe on M given by a set of transition line-bundles Λij and
trivializations θijk , and let A be a gerbe-connection on G given by a set of
connections, ∇ij, on Λij and local 2-forms Fi (see Sect. 2). We first define
the gerbe-holonomy of (G,A), following Chatterjee [12]. Let s : I2 → M be
a 2-loop, then the pull-back of G, s∗(G), defines a gerbe on I2. Since I2 is
two dimensional, the gerbe s∗(G) is trivial and we can choose an arbitrary
trivialization, i.e., an object O, with object connection. Let O be given by
the line-bundles Li, trivialized by the sections σi over Vi = s−1(Ui), and let
the object connection be given by ∇i. We can now define a global 2-form on
I2 by the formula

ǫ|Vi = s∗(Fi)− σ∗i (K(∇i)).

Chatterjee [12] calls ǫ an error 2-form of the object connection.

Definition 5.1 The holonomy of (G,A) around s, which we denote by H(s),
is defined by

exp i

∫

I2
ǫ.

Chatterjee proves that H(s) is independent of all the choices we made.

Lemma 5.2 ([12] Thm. 7.1.2) The value of H(s) is independent of the
choice of connection on the object, and of the choice of object.

We now show that H is constant within each thin homotopy class.

Lemma 5.3 Let s, s′ : I2 → M be two 2-loops. If s and s′ are thin homo-
topic, then H(s) = H(s′).

Proof: Let H : I3 → M be a thin homotopy between s and s′. Note that
only the two faces corresponding to s and s′ of ∂H are mapped non-trivially
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toM , all other faces are mapped to the base-point. By the observation above
and Stokes’ theorem we get

H(s)H(s′)−1 = exp i

∫

∂I3
ǫ = exp i

∫

I3
H∗(G).

Here ǫ is an error 2-form for an object of H∗(G) defined on I3 and G is the
gerbe-curvature 3-form. Note that we can apply Stokes’ theorem, to obtain
the second equality, because dǫ = H∗(G) (see [12]). The last expression is
equal to 1 because the rank of the differential of H is at most 2 and G is a
3-form.

Since it is also clear from the definition that the holonomy of the product of
two 2-loops equals the product of the holonomies around each one of them,
we arrive at the following Lemma.

Lemma 5.4 The gerbe-holonomy defines a group homomorphism

H : π2
2(M) → U(1),

which only depends on G,A up to equivalence.

Proof: The first part of the claim is a corollary to the previous lemma. The
second part follows directly from the definition of equivalence between gerbes
with gerbe-connections by applying Stokes’ theorem repeatedly.

As we showed in Sect. 3 the holonomy of a line-bundle with connection is
smooth in a precise sense. The same is true for gerbe-holonomies. We define
a smooth family of 2-loops to be a map ψ : U ⊆ Rn → Ω∞2 (M) defined on an
open subset U ⊆ Rn such that ψ(x; t1, t2) = ψ(x)(t1, t2) is smooth on U × I2.

Definition 5.5 A 2-holonomy is a group homomorphism H : π2
2(M) → U(1)

such that for every smooth family of 2-loops ψ : U ⊆ R
n → Ω∞2 (M) the

composite

U ⊆ R
n ψ
→ Ω∞2 (M)

proj
→ π2

2(M)
H
→ U(1)

is smooth throughout U ⊆ R
n.

Lemma 5.6 The gerbe-holonomy, H, defines a 2-holonomy.
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Proof: This is an immediate consequence of the fact that H is defined by
integration of a smooth 2-form.

Lemma 5.7 (Recentering a 2-holonomy)

a) Let ℓ ∈ Ω∞(M, ∗) be a loop which is homotopic to the constant loop in
∗ via a homotopy G : ℓ → ∗. We define P 2

2 (M, ℓ) as the group of all
homotopies starting and ending at ℓ with fixed endpoints ∗ modulo thin
homotopy. Given a group homomorphism H̃ : P 2

2 (M, ℓ) → U(1) we
can recenter H̃ to obtain a 2-holonomy H : π2

2(M) → U(1) by defining
H(s) = H̃(G ⋆ s ⋆ G−1). We also say that we have recentered s by G.

b) Choose m ∈ M and let p ∈ P∞(M) be a path from ∗ to m. Given
a 2-holonomy H : π2

2(M, ∗) → U(1) we can recenter H to obtain a
2-holonomy H̃ : π2

2(M,m) → U(1) in the following way: choose s ∈
Ω∞2 (M,m) and let s′ be the 2-path Idp ⋆ s ⋆ Idp−1. Now recenter s′

by the thin homotopy between the constant loop at ∗ and p ⋆ Idm ⋆ p
−1,

denoted by Gp. Note that for this recentering we have to use composition
of 2-paths via the second coordinate. Thus we have obtained a 2-loop
s̃ ∈ Ω∞2 (M, ∗) and therefore we can define H̃(s) = H(s̃). We also say
that we have recentered s by p.

Proof: Both in a) and b) one only has to check that recentering is well
defined modulo thin homotopy, which is straightforward.

Before going on to the next section it is worthwhile to have a look at a
more concrete formula for H. Analogously to what we did for line-bundles
with connections in Sect. 3, we can define H completely in terms of the Čech
cocycle gijk, the 0-connection Aij and the 1-connection Fi. Let s : I

2 →M be
a 2-loop in M as before. Let V = {Vi | i ∈ J} be the covering of I2 obtained
by taking the inverse image via s of all open sets in the cover U . We define
a grid on I2 to be a rectangular subdivision of I2. A rectangle in the grid
is denoted by Ri, an edge by Eij and a vertex by Vijkl. The edges are all
oriented from left to right and from bottom to top, the rectangles have the
counter-clockwise orientation. Now take the grid sufficiently fine so that each
rectangle Fi lies in at least one open set Vi. Note that this is possible because
each covering of a compact metric space has a Lebesgue number. Note also
that in general a small rectangle can be contained in more than one open set.
A particular choice of open set for each rectangle we call a labelling of the
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grid. We always assume that the labels of the rectangles at the boundary
are equal to 0, and we fix a choice of V0 = s−1(U0), such that U0 contains
the base point of M . Let ǫ ∈ Ω2(I2) be the error 2-form of an object for
s∗(G,A), given by a family of line-bundles Li, with 0-connection given by a
family of 1-forms Ai ∈ Ω1(Vi). We write ǫ|Vi = s∗Fi − dAi. We recall the
identities

i(Aj −Ai) = is∗Aij + d log λij ,

where λij : Vij → U(1) satisfies

λijλjkλki = s∗gijk.

Now pick a labelling of the grid. According to Def. 5.1 we have

H(s) = exp i
∫

I2
ǫ

=
∏

α

exp i
∫

Rα
(s∗Fα − dAα)

=
∏

α

exp i
∫

Rα
s∗Fα ·

∏

α,β

exp i
∫

Eαβ
s∗Aαβ

×
∏

α,β,γ,δ

gαβγ(s(Vαβγδ))g
−1
αδγ(s(Vαβγδ)).

(12)

The last two products are to be taken over the labels of contiguous faces
in the grid only and in such a way that each face, edge and vertex appears
only once. The convention for the order of the labels is indicated in Fig. 6.
Formula (12) follows from applying Stokes’ theorem repeatedly. Note that
Chatterjee’s results for the global definition of the gerbe-holonomy [12] and
the equalities above show that the value of H(s) is independent of the choice
of grid and its labelling.

We have written down the explicit formula for gerbe-holonomy using a
grid. Of course it is possible to obtain an analogous formula using other
subdivisions of the unit square, for example, triangulations of I2. The idea
is exactly the same, but one has to take into account the different valencies
of the vertices.

In Sect. 8 we show that every 2-holonomy is the gerbe-holonomy of some
gerbe with gerbe-connection.
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Figure 6: concrete formula for gerbe-holonomy
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6 Parallel transport in gerbes

Let us now explain parallel transport for Abelian gerbe-connections in general
along arbitrary homotopies between arbitrary loops. For this discussion we
assume some basic knowledge about groupoids and 2-groupoids, which can
be obtained by reading [2, 4, 23] for example. We should warn the reader
that this section is different in flavour from the rest of the paper. Whereas
we have followed a down-to-earth approach in the rest of the paper, here
some readers might feel that we are trying to make up for that by being
unnecessarily sophisticated. We have two arguments in our defense. First
of all we do not know any simpler way of formulating the parallel trans-
port of gerbes satisfactorily. Secondly, we believe that category theory is
already at the heart of gerbes, since the original definition of gerbes is in
terms of sheaves of categories [9]. Being at the heart of gerbes, we ought
to understand the category theory that is involved a little better. Our for-
mulation of the parallel transport of a gerbe on M shows the relation with
what can be called the thin homotopy 2-type ofM . Following ideas expressed
by Grothendieck, homotopy theorists and category theorists have been en-
deavouring to define weak n-categories, of which a special sub-class, the weak
n-groupoids, should model homotopy n-types of topological spaces. For an
overview of n-category theory see [2, 4]. In [4] Baez and Dolan sketch the
possible relevance of n-categories for the formulation of Topological Quan-
tum Field Theories (TQFT’s). Following these ideas the first author of this
article investigated the possibility of defining four-dimensional TQFT’s us-
ing monoidal 2-categories [22, 21]. Our formulation of parallel transport of
gerbes in this section is also a first attempt to see if there is any link between
n-categories and TQFT’s on the one hand and differential geometry on the
other hand. If only for this reason, we already feel that the effort of penetrat-
ing the relatively unfamiliar language of monoidal categories and 2-categories
is not wasted. Due to this higher level of sophistication we cite results from
the literature without giving direct proofs here, so that the full emphasis is
placed on the change of language and not on mathematical detail. For math-
ematical detail we refer to Sect. 8, where we work out the simply-connected
case in the more familiar language of groups and group homomorphisms. At
the end of this section we indicate how an explicit proof in the general case
can be deduced from the results in Sect. 8.

It is enlightening to go back to the case of principal bundles with con-
nections first. Let P

p
→ M be a principal G-bundle on a not-necessarily-
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connected manifold M and let ω be a connection in P . Suppose in that case
that we are trying to describe the parallel transport of ω. It is well known
in homotopy theory that for general manifolds it is best to work with the
path groupoid rather than the fundamental group, because the latter requires
the choice of a basepoint in a certain connected component. Therefore it is
natural to employ the thin path groupoid, P 1

1 (M) (see Sect. 3) to describe
parallel transport. To formulate parallel transport along paths in terms of
Lie groupoids and functors we also have to associate a groupoid to the bundle
P . This is a well known construction which goes back to Ehresmann’s work,
and details can be found in Mackenzie’s book [23], for example.

Let us sketch the construction of this groupoid, which we denote by
G(P,M).

Definition 6.1 The objects of G(P,M) are simply the points in M . The set
of all morphisms is given by the manifold P×P/G, where G acts by (x, y)s =
(xs, ys). We denote the equivalence classes by [x, y], where we consider this to
be a morphism from p(x) to p(y), the opposite of Mackenzie’s [23] convention.
The composite [x, y][w, z] is defined by [xs, z], where w = ys in the fibre over
p(y) = p(w). The identity morphism for m ∈ M is of course [x, x], where
x ∈ p−1(m) is arbitrary. Finally the inverse of [x, y] is given by [y, x].

It is easy to check that this defines a groupoid, and it can be shown [23]
that it is a locally trivial Lie groupoid. This last statement means that the
operations just defined are smooth and that for every point in M there is an
open neighborhood, say U , such that the restriction of this groupoid to U is
isomorphic to U × G × U , with the trivial groupoid structure. Conversely
one can construct a principal bundle from a locally trivial Lie groupoid by
taking as the total space all morphisms with a fixed, but arbitrary, source,
and as the projection the target map. These constructions are each other’s
inverses up to isomorphism.

The connection ω now gives rise to a functor P : P 1
1 (M) → G(P,M)

which is the identity on objects, i.e. points of M , and is smooth in the sense
of Sect. 3.

Definition 6.2 The P(arallel) T(ransport) functor, denoted P, of ω is de-
fined on objects by P(m) = m, for all m ∈ M . For a given path q in M , we
define P(q) = [x, y], where x ∈ p−1(q(0)) is arbitrary and y ∈ p−1(q(1)) is
obtained from x by parallel transport along the path q. Since parallel transport
only depends on the thin homotopy class of q, the functor P is well-defined.
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Conversely, any such functor yields a path-connection in G(P,M) in the sense
of Def. 7.1 in [23], and is therefore equivalent to a connection in P . The
path-connection for a given PT-functor, P, is easy to describe: for any path
q in M , the path-connection yields the path in G(P,M) that is given by
k 7→ P(qk), where qk is as in Sect. 3. The definition of P and the observations
above cannot be found in the literature on Lie groupoids, but they are an
immediate consequence of Barrett’s construction [3], so we will not spell them
out here. It is easy to see that two connections in P are gauge-equivalent
precisely if the corresponding PT -functors are naturally isomorphic. Note
that the reconstruction result is less powerful than Barrett’s original theorem,
because the bundle is already part of the PT-functor in the form of its target.
However, the upshot is that we can deal with the non-connected case directly
by not fixing the choice of a base-point.

Back to gerbes again. Brylinski [9] (see Hitchin [19] too), explains how
a gerbe on M with a gerbe-connection gives rise to a line-bundle on Ω(M)
with an ordinary connection. This line-bundle has the special property that
it is “multiplicative” with respect to the composition of loops (Prop. 6.2.5
in [9]). The connection in this line-bundle has the special property that it
yields a parallel transport over “cylinders” which does not depend on the
way the cylinder is made up out of a path of loops but only on the surface
itself. This leads to the idea that a gerbe, G, with gerbe-connection, A, onM
yields a groupoid on the thin loop groupoid, L1

1(M), which is the subgroupoid
of P 1

1 (M) with only loops. If M is path-connected (something which we will
assume for the rest of this section), one can fix a basepoint, ∗ ∈ M , and work
over π1

1(M, ∗). Before explaining the parallel transport functor for gerbes,
let us first have a closer look at the construction of this line-bundle with
connection over π1

1(M, ∗).
We follow Ch. 6 in Brylinski’s book [9] mostly, but we consider Ω(M, ∗)

to be smooth using smooth families of loops rather than trying to define
an infinite-dimensional manifold structure on it. Let G be a gerbe on M
and A a gerbe-connection. We first construct the line-bundle on Ω(M, ∗), as
Brylinski does, and then show that it projects to a line-bundle on π1

1(M, ∗).
Both bundles we denote by LG .

Definition 6.3 The total space of LG is given by the set of equivalence
classes of quadruples (γ, F,∇, z), where γ ∈ Ω(M, ∗), F is an object for
γ∗G on the circle S1 with ∇ an object connection in F , and finally z ∈ C∗.
Note that we use the word “object” as defined in Sect. 2, so it really is given
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by a set of data, as is ∇. The equivalence relation is generated by

1. (γ, F,∇, z) ∼ (γ, F ′,∇′, z) if (F,∇) and (F ′,∇′) are isomorphic pairs
of objects with object-connections.

2. (γ, F,∇+ α, z) ∼
(

γ, F,∇, z exp
(

−
∫ 1

0
α
))

for any complex valued 1-

form α on S1.

The action of C∗ on LG is given by (γ, F,∇, z)w = (γ, F,∇, zw). Brylinski
(Prop.6.2.1. in [9]) proves that there is a unique smooth structure on LG

such that

1. The projection (γ, F,∇, z) 7→ γ defines a smooth principal C∗-bundle.

2. For any γ ∈ Ω(M, ∗), any open contractible neighborhood of the origin
U ⊂ Rn, and any smooth family of loops Γ: U → Ω(M, ∗) such that
Γ(0) = γ, let (F,∇) be an object with object-connection on Γ(U) ⊂M .
The map

σ(Γ(x)) = (Γ(x),Γ(x)∗F,Γ(x)∗∇, 1)

defines a smooth local section of LG .

Recall that two objects with, in this case necessarily flat, object-connections
of γ∗G on S1 always differ by a line-bundle with a flat connection on S1. The
two objects with connections are isomorphic if and only if the flat connec-
tion in the line-bundle has trivial holonomy (in which case the line-bundle is
necessarily trivializable as well). The fibre over a loop is now acted upon by
line-bundles on S1 with flat connections, whose isomorphism classes are the
elements of Hom (π1(S

1) = Z, U(1)) ∼= U(1). This is Hitchin’s [19] descrip-
tion of LG . As remarked by Brylinski (Prop. 6.2.5. [9]) the fibres of LG have
a multiplicative property. Given the points (γ, γ∗F, γ∗∇, 1) in p−1(γ) and
(µ, µ∗F, µ∗∇, 1) in p−1(µ), the product becomes (γ ⋆µ, (γ ⋆µ)∗F, (γ ⋆µ)∗∇, 1)
in p−1(γ ⋆ µ). Here we have taken an object F and an object-connection ∇
which are defined on the image of γ ⋆ µ.

The connection on LG can now be defined. Let v be any tangent vector
to Ω(M, ∗) at γ. Let σ be the section defined above and let ǫ be the error
2-form (see Sect. 5) of (γ∗F, γ∗∇) with the same notation as above.

Definition 6.4 The covariant derivative in LG is defined by

Dvσ

σ
= i

∫ 1

0

ǫγ(t) (γ̇(t), v(γ(t))) dt.
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The curvature of this connection is equal to

Kγ(D)(u, v) =

∫ 1

0

Ωγ(t) (γ̇(t), u(γ(t)), v(γ(t))) dt,

where Ω is the gerbe-curvature 3-form on M . It is also easy to describe the
parallel transport of the connection D along a “cylinder”. Let H : I2 → M
be a homotopy between two loops γ and µ. Choose an object F and an
object connection ∇ for H∗(G) on I2 (or S1 × I). Let ǫ be the error 2-form
for this object-connection.

Definition 6.5 The parallel transport along H is given by

P(H) (γ, γ∗F, γ∗∇, 1) = (µ, µ∗F, µ∗∇, 1) exp

(
∫

I2
ǫ

)

.

Two observations show that
(

LG , D
)

projects to a bundle on π1
1(M, ∗). Firstly

the formula for parallel transport clearly shows that it is compatible with the
multiplication. Secondly, as ǫ is a 2-form, the parallel transport along a thin
homotopy is trivial, so there is a unique way to identify the fibres of LG

which lie over loops that are thin homotopic. By abuse of notation we de-
note this line-bundle over π1

1(M, ∗) with connection also by (LG , D). Further-
more, Brylinski ([9], Thm. 6.2.4.(3)) shows that whenever two homotopies
G,H : I2 → M between a given pair of paths are homotopic themselves by a
homotopy J : I3 →M , then the parallel transport around GH−1 is given by

∫

I3
J∗Ω.

Thus we see that the parallel transport along G equals the parallel transport
along H if they are thin homotopic, because in that case J can be chosen to
have rank ≤ 2 everywhere.

One can now define the groupoid LG × LG/U(1) over π1
1(M, ∗) as we

showed above, and this groupoid is equipped with a monoidal structure in
the following sense. The equivalence classes of the loops can be multiplied,
or tensored, [γ] ⋆ [µ] = [γ ⋆ µ]. Given α, β, γ, µ ∈ Ω(M, ∗), and given two
morphisms in LG × LG/U(1), say [a, b] : [α] → [β] and [c, d] : [γ] → [µ], then
one can tensor the morphisms to get [a, b] ⋆ [c, d] = [ac, bd] : [α ⋆ γ] → [β ⋆ µ],
where ac is defined by the product of the fibres as described above. This
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multiplication of the morphisms is compatible with the composition of mor-
phisms in the following sense: for any quadruple of morphisms we have the
equality

([a, b] ⋆ [c, d])([e, f ] ⋆ [g, h]) = ([a, b][e, f ]) ⋆ ([c, d][g, h]),

whenever both sides of the equation are defined. This equation, which is an
example of the interchange law for monoidal categories, is easily checked and
only holds because U(1) is Abelian. With respect to this monoidal structure
the objects and the morphisms have inverses and there is a unit object, [c∗],
where c∗ is the constant loop at ∗, and a unit morphism, [a, a] for any a such
that p(a) = [c∗]. Altogether we propose to call this structure a Lie 2-group,
which is justified by the fact that all operations involved are smooth in the
appropriate sense and that it can be seen as a Lie 2-groupoid with only one
object. (This is analogous to the statement that a Lie groupoid with one
object is nothing but a Lie group. For this kind of general remark about n-
categories see [2, 4, 5] for example.) Without the smoothness condition this
kind of groupoid goes under a variety of names in the homotopy literature.
Yetter [28] calls them categorical groups, for example.

Definition 6.6 Let G(G,A,M) be the Lie 2-group given by LG × LG/U(1)
over π1

1(M), as defined above.

Let us now define the thin Lie 2-group of cylinders, denoted by C2
2(M, ∗). We

define C2
2(M, ∗) as the quotient of a non-strict monoidal groupoid C(M, ∗)

by a normal monoidal subgroupoid N(M, ∗).

Definition 6.7 The objects of C(M, ∗) are the elements of Ω(M, ∗). The
morphisms are thin homotopy classes of homotopies between loops, through
based loops. It is clear that this forms a groupoid under the obvious compo-
sition of homotopies. There is also a monoidal structure on C(M, ∗) defined
by the composition of loops and the corresponding composition of homotopies.
For clarity, we refer to the monoidal composition of homotopies as horizon-
tal composition, and write ⋆, and the other we call vertical and indicate by
simple concatenation. We denote the vertical inverse of a homotopy H by
H−1 and the horizontal inverse by H←.

Recall that for homotopies of the trivial loop to itself both compositions are
the same up to thin homotopy, which is why π2

2(M) is abelian. Concretely
this follows from the interchange law which states that (G1 ⋆ H1)(G2 ⋆ H2)
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is thin homotopic to (G1G2) ⋆ (H1H2), whenever both composites can be
defined. This way the groupoid C(M, ∗) is a weak monoidal groupoid, with
weak inverses for the objects because loops only form a group up to thin
homotopy. Instead of using the abstract strictification theorem [26], which is
not very practical for the concrete application to gerbe-holonomy, we “stric-
tify” C(M, ∗) by hand by dividing out by the monoidal subgroupoid of only
the thin homotopies, N(M, ∗). Dividing out by a monoidal subgroupoid is
only well-defined if the following conditions are satisfied, in which case we
call it normal:

1. For any γ ∈ Ω(M, ∗) : 1γ ∈ N(M, ∗).

2. For any γ, µ ∈ Ω(M, ∗), any homotopy G : γ → µ and any thin homo-
topy H : µ → µ, the thin homotopy class of GHG−1 : γ → γ belongs
to N(M, ∗).

3. For any γ, µ ∈ Ω(M, ∗), any homotopy G : γ → γ and any thin homo-
topy H : µ→ µ, the thin homotopy class of G⋆H ⋆G← : γ ⋆ µ ⋆ γ−1 →
γ ⋆ µ ⋆ γ−1 belongs to N(M, ∗).

It is easy to check that the conditions above are the right ones for our con-
struction of the quotient monoidal groupoid, which we explain below, to be
well-defined. The only reference for the definition of a normal monoidal sub-
groupoid that we know of is [6] (who give the more general definition of a
normal monoidal subcategory), but it might be that it can be found in ear-
lier papers on monoidal categories and 2-categories. We suspect that this
definition goes back to the time when monoidal categories were defined for
the first time [7], but we have been unable to find a precise written reference
in the older literature.

Lemma 6.8 The monoidal subgroupoid N(M, ∗) is normal in C(M, ∗).

Proof The first condition is obviously satisfied.
We prove that the second condition holds. Denote the group of ho-

motopies γ → γ in C(M, ∗) by C(M, ∗)(γ). This group is isomorphic to
C(M, ∗)(γ⋆µ), for any µ ∈ Ω(M, ∗) (this is well known, see for example [18]).
The isomorphism, which clearly preserves thinness, is given by

φ : G 7→ G ⋆ 1µ.
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Under φ the homotopy GHG−1 : γ → γ is mapped to (G⋆ 1µ)(H ⋆ 1µ)(G
−1 ⋆

1µ) : γ⋆µ→ γ⋆µ. Clearly this is thin homotopic to (G⋆1µ)(1µ⋆H)(G−1⋆1µ).
By the interchange law the latter is thin homotopic to 1γ ⋆H : γ ⋆ µ→ γ ⋆ µ
which is clearly a thin homotopy whenever H is thin.

The third condition can be proved by a similar argument.

We can now define the quotient groupoid C2
2 (M, ∗) = C(M, ∗)/N(M, ∗).

Definition 6.9 The objects of C2
2(M, ∗) are the elements of π1

1(M, ∗), which
we temporarily denote by [γ].

For any α, β, γ, µ ∈ Ω(M, ∗) and for any G ∈ C(M, ∗)(α, β) and H ∈
C(M, ∗)(γ, µ), we say that G and H are equivalent if there exist thin homo-

topies A ∈ N(M, ∗)(α, γ) and B ∈ N(M, ∗)(β, µ) such that AHB−1
2
∼ G.

The morphisms between [γ] and [µ] are the equivalence classes of

⋃

α,β

{C(M, ∗)(α, β) | [α] = [γ], [β] = [µ]}

modulo this equivalence relation.
The composition and the monoidal structure descend to the quotient pre-

cisely because N(M, ∗) is normal. The smooth structure is defined by smooth
families of loops and smooth families of homotopies.

In this way we have obtained a second example of a Lie 2-group.
Before going on we should explain a small technical gap that we have not

been able to bridge yet. Although Lem. 6.8 is strong enough to conclude that
C2

2(M, ∗) is well-defined, it is too weak to prove that C(M, ∗) and C2
2(M, ∗)

are equivalent as Lie 2-groups. To establish that equivalence one would have
to prove that, for any γ ∈ Ω(M, ∗), the group N(M, ∗)(γ) is trivial. We
conjecture that this true, but have not been able to prove it for any manifold
other than Rn, where it is almost immediate. As it stands we cannot prove
that C2

2(M, ∗) is a true strictification of C(M, ∗), but it is clear that C2
2(M, ∗)

suits our purpose in this paper very well indeed. In [17] the reader can find
a more restricted notion of thin homotopy for which the conjecture can be
shown. However, this notion of thin homotopy does not seem to be suited
to the smooth context of parallel transport. Besides being right for the
formulation of parallel transport, our notion of thinness has the extra benefit
that it can be generalized immediately to homotopies of any dimension, which
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is necessary if one wants to formulate and prove the analogues of our results
for n-gerbes in general.

From everything above it now follows that the following theorem holds:

Theorem 6.10 The pair (G,A) gives rise to a smooth PT-functor of Lie
2-groups

P : C2
2(M, ∗) → G(G,A,M),

over the identity on π1
1(M, ∗).

Conversely, given any line-bundle L on π1
1(M, ∗) with the multiplicative

property as described above, we obtain a Lie 2-group, G(L,M). Any smooth
functor P : C2

2(M, ∗) → G(L,M) over the identity on π1
1(M, ∗) gives rise to

a gerbe-connection, unique up to gauge-equivalence, in the gerbe associated
to G(L,M), such that P is the PT-functor for that connection.

One can wonder about the meaning of the second part of this theorem. Where
would one get such line-bundles on the loop space? Our construction of the
line-bundle on π1

1(M, ∗) only depends on the gerbe and the 0-connection.
Thus in this formulation the 1-connection is really the new information con-
tained in the PT-functor. It is interesting to compare this to the case of
line-bundles described in the beginning of this section, where the line-bundle
is already given in the form of a Lie groupoid but the connection is deter-
mined by the PT-functor.

An explicit proof of the second part of Thm. 6.10 in which one recovers
the Čech 2-cocycle of the gerbe and the local 1- and 2-forms of the gerbe-
connection from the parallel transport is easily deduced from our results in
Sect. 8, where we work out the simply-connected case explicitly and in great
detail. There we close up all 2-paths to obtain 2-loops based at ∗ using
certain auxiliary homotopies called Pij , which exist when M is 1-connected.
However, one can leave them out in general to obtain a direct proof of the
second part of Thm. 6.10. Note that the proof for the general case is really
the same as the one we give in Sect. 8, because G(G,A,M)(γ) ∼= U(1) for
any loop γ. For completeness, we should remark that we have not proved
that C2

2(M, ∗)(c∗) ∼= π2
2(M, ∗), because of the little technical gap that we ex-

plained above. Hypothetically C2
2(M, ∗)(c∗) might only be a “thin quotient”

of π2
2(M, ∗). However, this technicality is of no importance for our approach

and we can work with π2
2(M, ∗) in Sect. 8 without any difficulty.
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7 Barrett’s lemma for 2-loops

This section is a short intermezzo with two technical lemmas. The first one
we needed in Sect. 3 for the reconstruction of the connection in a line-bundle
from its holonomy, and the second lemma we will need for our reconstruc-
tion of the 1-connection in the gerbe obtained from a 2-holonomy in Sect 8.
In [3] Barrett proved the following lemma, which henceforth we call Barrett’s
lemma (strictly speaking this is Caetano and Picken’s [10] version, but the
proofs are the same). We state and prove the theorem for the case G = U(1),
which we need here, but it is true for any Lie group G.

Lemma 7.1 The trivial loop extremizes every holonomy H : π1
1(M) → U(1),

i.e., given any smooth family of loops ψ : [0, 1] → Ω∞(M) such that ψ(0) is
the trivial loop, we have

dH ◦ ψ

ds
(0) = 0,

for any holonomy H. Here we denote by ψ also the composite of ψ with the
natural projection Ω∞(M) → π1

1(M).

Proof: In a neighborhood of s = 0 all loops in the family are contained
in one coordinate chart, so it suffices to consider the case M = R

n with
basepoint 0 ∈ Rn. Using the canonical coordinates in Rn we can write

ψ(s)(t) = (ψ1(s, t), ψ2(s, t), . . . , ψn(s, t)).

This leads to the smooth function φ : [0, 1]n × [0, 1] → Rn defined by

φ(s1, s2, . . . , sn, t) = (ψ1(s
1, t), ψ2(s

2, t), . . . , ψn(s
n, t)).

Note that φ defines a smooth family of loops. We can now write ψ = φ ◦∆,
where ∆: [0, 1] → [0, 1]n is the diagonal map ∆(s) = (s, s, . . . , s). A short
calculation gives

dH ◦ ψ

ds
(0) =

dH ◦ φ ◦∆

ds
(0) =

n
∑

i=1

∂H ◦ φ

∂si
(0, 0, . . . , 0) = 0.

The last equality is a consequence of the fact that all partial derivatives are
equal to zero. Let us show this for the first partial derivative. The value of
∂H ◦ φ/∂s1(0, 0, . . . , 0) only depends on the behaviour of H ◦ φ on the first
axis. On this axis we have φ(s1, 0, . . . , 0)(t) = (ψ1(s

1, t), 0 . . . , 0). It is not
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hard to see that this is thin homotopic to the trivial loop: for example, a
thin homotopy is given by H(s, t) = (β(s)ψ1(s

1, t), 0, . . . , 0), where β is the
function defined in Sect. 3. Therefore, H◦φ is constant on the first axis and
its first partial derivative is zero.

There is a subtlety to be noted here: Lemma 7.1 is only true when ψ(0) is
equal to the trivial loop and not when it is thin homotopic to it. This is rather
important to note, because otherwise one might get the wrong impression
that the connection constructed in [3, 10] and the gerbe-connection in Sect. 8
of this paper vanish identically always.

In this paper we need the following analogue of Lem. 7.1 for 2-loops and
2-holonomies (see Def. 5.5).

Lemma 7.2 Let ψ : [0, 1]2 → Ω∞2 (M) be any smooth 2-parameter family of
2-loops such that ψ(0, 0) is the trivial 2-loop. Then we have

∂2 H ◦ ψ

∂r∂s
(0, 0) = 0,

for any 2-holonomy H : π2
2(M) → U(1).

Proof: The proof follows the line of reasoning in Barrett’s lemma. Again it
suffices to consider the case M = R

n with basepoint 0 ∈ R
n. With respect

to the standard coordinates in Rn we can write

ψ(r, s)(t1, t2) = (ψ1(r, s, t
1, t2), ψ2(r, s, t

1, t2), . . . , ψn(r, s, t
1, t2))

and
φ(r1, s1; r2, s2; . . . , rn, sn; t1, t2) =

(ψ1(r
1, s1; t1, t2), ψ2(r

2, s2; t1, t2), . . . , ψn(r
n, sn; t1, t2)).

The latter defines a smooth function from [0, 1]2n× [0, 1]2 to Rn. Note that φ
defines a smooth family of 2-loops. Using the diagonal function ∆: [0, 1]2 →
[0, 1]2n, defined by ∆(r, s) = (r, s; r, s; . . . ; r, s), we can write ψ = φ ◦ ∆.
Again a short calculation gives

∂2 H ◦ ψ

∂r∂s
(0, 0) =

∂2 H ◦ φ ◦∆

∂r∂s
(0, 0) =

n
∑

i,j=1

∂2 H ◦ φ

∂ri∂sj
(0, 0; . . . ; 0, 0) = 0.

The last equation is a consequence of the fact that all second order partial
derivatives are equal to zero. Let us show this for the case i = 1, j = 2.
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In this case the value of ∂2 H ◦ φ/∂r1∂s2(0, 0; . . . ; 0, 0) only depends on the
behaviour of H◦φ on the plane spanned by the axes corresponding to r1 and
s2. In this plane we have

φ(r1, 0; 0, s2; 0, 0; . . . ; 0, 0; t1, t2) = (ψ1(r
1, 0; t1, t2), ψ2(0, s

2; t1, t2), 0, . . . , 0).

Now H(s, t1, t2) = (β(s)ψ1(r
1, 0; t1, t2), β(s)ψ2(0, s

2; t1, t2), 0, . . . , 0) defines a
thin homotopy between the latter and the trivial 2-loop, so H◦φ is constant
on our plane, whence ∂2 H ◦ φ/∂r1∂s2(0, 0) = 0.

Again let us note that ψ(0, 0) in the previous lemma has to be equal to the
trivial 2-loop and not just thin homotopic to it.

8 The 1-connected case

Let M be 1-connected.

Theorem 8.1 Given an arbitrary 2-holonomy H : π2
2(M) → U(1), there ex-

ists a gerbe G with gerbe-connection A onM such that the holonomy of (G,A)
is equal to H. This construction establishes a bijective correspondence be-
tween equivalence classes of gerbes with gerbe-connections and 2-holonomies.

Proof: We prove this theorem in several parts. First we show how to con-
struct G and the 0-connection, i.e., the transition line-bundles with connec-
tions on double intersections and the covariantly constant sections on triple
intersections. After that we show how to construct the 1-connection, A1, in
(G,A0). In the final part we prove the last claim in Thm. 8.1.
Part 1: Let H : π2

2(M) → U(1) be an arbitrary 2-holonomy. We assume
that the covering {Ui, i ∈ J} of M is such that for every i ∈ J there is a
diffeomorphism φi : Ui → B(0, 1) ⊂ R

n, where B(0, 1) is the unit ball in R
n,

and that for every pair i, j ∈ J there is a diffeomorphism φij : Uij → B(0, 1) ⊂
Rn as well. We denote by xi and xij the centers of Ui and Uij respectively, i.e.,
xi = φ−1i (0) and xij = φ−1ij (0). We also assume that every point x ∈M is the
center of some open set in the covering, which we denote by Ux when needed.
Finally we assume that all n-fold intersections are contractible. Since M is
1-connected, we can choose a path from ∗, the base point in M , to xi for
every i ∈ J , and a path from ∗ to xij for every pair i, j ∈ J such that Uij 6= ∅.
For every i ∈ J we can define a canonical path, from xi to any other point
x ∈ Ui by φ−1i (rx), where rx is the straight line, the segment of a ray, in
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B(0, 1) from φi(xi) = 0 to φi(x). In particular there is a canonical path from
xi to xij , for every i, j ∈ J . Similarly we define the canonical path from xij
to any point y ∈ Uij . Having chosen all these paths we now have to choose
some homotopies. Note that the path, denoting the chosen paths from above
by arrows,

∗ → xi → xij → ∗

is homotopic to ∗, the trivial loop, becauseM is simply-connected, so we can
choose a homotopy, Pij, between them (starting at ∗). By convention Pji is
the analogous homotopy for the loop

∗ → xj → xij → ∗.

We are now ready to start our construction.
Choose any pair i, j ∈ J . Let ℓ be a loop in Uij based at xij . Consider

the loop φi ◦ ℓ in B(0, 1). We can now define the cone on φi ◦ ℓ in B(0, 1)
with top vertex 0 ∈ B(0, 1). This is just the homotopy between 0 ∈ B(0, 1)
and φi ◦ ℓ obtained by taking all rays from 0 to any point on φi ◦ ℓ together.
Now take the image of this cone in Ui. We obtain an analogous cone in
Uj . Next we glue one cone onto the other, which corresponds to composing
one homotopy with the inverse of the other, to obtain a double cone Cij(ℓ).
Finally we recenter Cij(ℓ) by using Pij and Pji to obtain a 2-loop based at
∗, which we denote by sij(ℓ). See Fig. 7 for a graphical explanation of our
construction. Two things are immediately clear from this construction: if ℓ
and ℓ′ are thin homotopic, then sij(ℓ) and sij(ℓ

′) are thin homotopic as well.
This holds true, because rkD(CH), the rank of the differential of the cone
on a homotopy H , is at most rkDH+1. Another obvious observation is that

sij(ℓ ⋆ ℓ
′)

2
∼ sij(ℓ) ⋆ sij(ℓ

′) for any two loops ℓ and ℓ′. Thus we can define a
holonomy Hij : π

1
1(Uij) → U(1) by

Hij(ℓ) = H(sij(ℓ)).

By the results explained in Sect. 3 we obtain a line-bundle Λij with connection
∇ij and curvature K(∇ij) on Uij . By construction Λji ∼= (Λij)

−1. Note also
that our assumption that intersections are contractible implies that Λij is
equivalent to the trivial line-bundle. Choose a nowhere zero section σij in
Λij. On a triple intersection Uijk the tensor product Λijk = Λij ⊗ Λjk ⊗ Λki
is trivial as well and σijk = σij ⊗ σjk ⊗ σki defines a nowhere zero section.
Let ∇ijk denote the connection on Λijk induced by ∇ij,∇jk,∇ki (note that
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Figure 7: sij(ℓ)

∇ji = −∇ij). By the results in Sect. 3 we know that the holonomy of Λij,∇ij

is exactly equal to Hij , so we conclude that the holonomy of (Λijk,∇ijk)
around any loop in Uijk is trivial, because in the construction above we go
around each cone twice in opposite directions. This means that ∇ijk is flat.

Let us now define the desired horizontal section θijk in Γ(Uijk,Λijk). For a
given point y ∈ Uijk we define in Fig. 8 a 2-loop sijk(y). For example, the part
of sijk(y) relating to the patches Ui and Uj is defined by the composite of the
homotopies Pij , Γij(y), and the inverses of Γji(y) and Pji, where Γij(y) is one
of the homotopies drawn in Fig. 8. We now define the function gijk : Uijk →
U(1) by

gijk(y) = H(sijk(y)). (13)

By construction we have gp(i)p(j)p(k) = g
ǫ(p)
ijk for any permutation p ∈ S3, where

ǫ(p) is the sign of p. It is also easy to see that the collection of functions
g = {gijk | i, j, k ∈ J} defines a Čech cocycle, i.e., δg ≡ 1. We define θijk =
gijkσijk. The cocycle condition satisfied by g implies that δθ ≡ 1, because δσ
is isomorphic to the canonical section in the trivial line bundle by definition.

45



Γij(y) ik(y)Γ

Γki(y)

Γkj(y)Γjk(y)

Γji(y) y

Ui

UkjU

Figure 8: sijk(y)

We also claim that for each triple i, j, k ∈ J the section gijkσijk ∈ Γ(Uijk,Λijk)
is covariantly constant with respect to ∇ijk. In order to see why this holds
true we first have to know what 1-form Aij ∈ Ω1(Uij) corresponds to ∇ij

(remember that we have chosen a section σij ∈ Γ(Uij ,Λij) which we can use
to pull back the connection 1-form on the bundle to a 1-form on Uij). The
results in Sect. 3 and our construction of (Λij,∇ij) show that we can define
Aij in the following way: let v be any vector in Ty(Uij), where y ∈ Uij is an
arbitrary point. Represent v by a curve q : I → Uij , such that q(0) = y and
q̇(0) = v. Let qk be defined as in Sect. 3. We can now form the loop ℓ(k)

xij → y
qk→ qk(1) = q(k) → xij .

Just as in the beginning of this section we can take the cones on ℓ(k) in Ui
and Uj respectively and glue them together to form the 2-loop sij(k) (see
Fig. 9). The results in Sect. 3 now show that we have

Aij(v) = −i
d

dk
logH(sij(k)|k=0.

In order to show that ∇ijk(gijkσijk) = 0 we now have to prove the equation

i(Aij − Aik + Ajk) = −d log gijk = −g−1ijkdgijk. (14)
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Figure 10: Proof of Eq. 14

Choose a point y ∈ Uijk, a vector v ∈ Ty(Uijk), and a curve q : I → Uijk
representing v. Fig. 10 shows that the 2-loops defined by sij(k) ⋆ sik(k)

−1 ⋆
sjk(k) and sijk(y)⋆sijk(q(k))

−1 are thin homotopic, so the holonomy H maps
them to the same number. This proves the desired equation after taking
derivatives of the logarithms.
Part 2: In this part we are going to define the 2-forms Fi ∈ Ui which
constitute the 1-connection on G. Let y ∈ Ui be an arbitrary point, and v, w ∈
Ty(Ui) two (linearly independent) vectors. In a small neighborhood W ⊂ Ui
of y, we can choose two commuting flows q, r : I × W → Ui, representing
v and w respectively, i.e., q(0, y) = r(0, y) = y, q̇(0, y) = v, ṙ(0, y) = w,
where q̇ means the time derivative (first coordinate) of q. We say that q
and r commute when q(t1, r(t2, x)) = r(t2, q(t1, x)) for all t1, t2 ∈ I and all
x ∈ W (this corresponds exactly to saying that the two vector fields induced
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by q and r commute). Locally we can always choose such flows, because it
is possible in Rn. In particular, for any k, l ∈ I, we can define the 2-path,
starting in y, by

r (β (t2) l, q (β (t1) k, y)) .

See Sect. 3 for the definition of β. Now take the cone on the boundary of this
2-path with vertex in xi and glue this cone on top of the 2-path in order to
get a 2-loop, centered at y. As before we have to recenter this 2-loop. One
of our assumptions was that every point x is the center of some open Ux, so
we recenter using Piy to obtain a 2-loop based at ∗ (see Fig. 11), which we
denote by si(k, l). Now define Fi ∈ Ω2(Ui) by

Fi(v, w) = −i
∂2

∂k∂l
logH(si(k, l))|(k,l)=(0,0). (15)

We have to show that Fi(v, w) is well defined, i.e. independent of the
choice of flows, and that the set {Fi | i ∈ J} defines a 1-connection. Both
facts are consequences of the same observations, which we explain now. Let
y, v, w, q, r be as above. First of all we claim that Fy(v, w) = 0 for any q, r
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representing v, w. Here Fy is defined using the open set Uy whose center
is y. This follows from our next order version of Barrett’s lemma, which
is Lem. 7.2. Note that, in the notation from above, if we recenter our 2-
loops so that they become based at y, the smooth 2-parameter family of
2-loops sy(k, l), depending on the parameters k, l ∈ I, satisfies the condition
of Lem. 7.2 because sy(0, 0) = y, the constant 2-loop at y. Clearly this is
true for any flows representing v and w. Next, let us have a look at Fig. 12.
In this figure we show that the 2-loops sy(k, l) ⋆ si(k, l)

−1 and siy(k, l) are
thin homotopic. Here siy(k, l) is defined analogously to siy(k) (see Fig. 9)
using the loop ℓ(k, l) around the boundary of the 2-path which we used in
the definition of Fi. Therefore we have

H(sy(k, l))H(si(k, l))
−1 = H(siy(k, l)). (16)

Now, the right-hand side of this equation is exactly the holonomy of ∇iy

around the loop ℓ(k, l). Applying Stokes’ theorem to the pull-back, Fiy =
dAiy ∈ Ω2(Uiy), of the curvature 2-form K(∇iy) via the section σiy, and
taking the second order partial derivative on the right-hand side gives

−i
∂2

∂k∂l
logH(siy(k, l))|(k,l)=(0,0) = Fiy(v, w).

Taking also the corresponding second order partial derivative on the left-hand
side of eq. 16 gives us

Fy(v, w)− Fi(v, w) = Fiy(v, w). (17)

This equation shows two things at once. In the first place we conclude that
Fi is well defined, because we have

Fi(v, w) = Fi(v, w)− Fy(v, w),

since the last term is zero, and Fiy(v, w) does not depend on the choice of
flows, because Fiy is an honest 2-form. Secondly eq. 17 implies that the Fi
define a 1-connection in G, because for any j ∈ J we now get

Fj(v, w)− Fi(v, w) = Fj(v, w)− Fy(v, w) + Fy(v, w)− Fi(v, w)
= Fyj(v, w) + Fiy(v, w)
= Fij(v, w).

The last equality follows from the fact that the Fij are curvature 2-forms of
the connections Aij which define a 0-connection on G, i.e., δA = −id log g.
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Part 3: In this final part of the proof of Thm. 8.1 we show that the con-
struction above defines a bijection between equivalence classes of gerbes with
gerbe-connections on the one hand and 2-holonomies on the other. Let G be
a gerbe on M and A a gerbe-connection in G, and let H : π2

2(M) → U(1)
be the gerbe-holonomy of G,A. Using the construction above we obtain a
new gerbe G ′ with a gerbe-connection A′ from H. Let us show that G,A and
G ′,A′ are equivalent. Our proof is local, so we assume that G (resp. G ′) is
given by a cocycle gijk (resp. g′ijk) and that A (resp. A′) is given by Aij , Fi
(resp. A′ij , F

′
i ). Let y ∈ Uijk be an arbitrary point. Recall (eq. 13) how we

defined g′ijk(y) ∈ U(1):
g′ijk(y) = H(sijk(y)).

At the end of Sect. 5 we obtained a concrete formula for H(s), for any
s ∈ π2

2(M). We define the function hij : Uij → U(1) by

hij(y) = exp

(

i

∫

I2ij

ǫs

)

· λ−1ij (y), (18)

where I2ij is the part of I2 which is mapped onto the part of sijk(y) which
goes from ∗ to Ui and Uj (see Fig. 13) and λij is defined in Sect. 5. Likewise
we define hik and hjk. From formula (18) it is immediately clear that we
have hji = h−1ij and

g′ijk(y) = gijk(y)hij(y)hjk(y)hki(y).

This shows that G and G ′ are equivalent as gerbes. In order to establish the
full equivalence between A and A′ we also define the 1-forms Bi ∈ Ω1(Ui) by

Bi(v) = −
d

dk

(
∫

Ci(k)

Fi

)

|k=0,

where q(t) is a curve in Ui representing v ∈ Ty(Ui) and Ci(k) is the 2-path in
Ui defined by the cone on qk with vertex xi (see Fig.14). A small and simple
calculation in Rn, which we omit, shows that the definition of Bi(v) does
not depend on the choice of q(t). From our construction of A′ij from H, as
explained in part 1 of this proof (see Fig. 9), we get the following equality:

H(s) = exp

(

i

(

∫

qk

Aij +

∫

Ci(k)

Fi −

∫

Cj(k)

Fj

))

hij(q(0))h
−1
ij (q(k)).
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Here we take s = sij(k), which we defined in Fig. 9. Taking the derivatives
at k = 0 on both sides gives

i(A′)ij(v) = iAij(v) + iBj(v)− iBi(v)− (d log hij(v)) (v).

Finally we have to prove that F ′i = Fi + dBi for all i. Let v, w ∈ Ty(Ui) be
two arbitary vectors. Then

F ′i (v, w) = F ′i (v, w)− F ′y(v, w)

= (F ′)yi(v, w)

= d(A′)yi(v, w)

= d (Ayi +Bi −By + id log hyi) (v, w)

= (Fyi(v, w) + dBi − dBy) (v, w)

= (Fi + dBi) (v, w)− (Fy + dBy) (v, w)

= (Fi + dBi) (v, w).

The last equality follows from Barrett’s lemma for 2-loops (Lem. 7.2), because
(Fy + dBy) (v, w), according to our formula for H at the end of Sect. 5, is
equal to

−i
∂2

∂k∂l
logH(sy(k, l))|(k,l)=(0,0) = 0,

following the notation in (15). The smooth 2-parameter family of 2-loops
sy(k, l) starts at the trivial 2-loop at y after recentering, so we can indeed
apply Lem. 7.2.

Conversely, let H be a 2-holonomy, reconstruct G,A as above, and let
HG,A be the gerbe-holonomy of (G,A). We show that HG,A = H. The
analogous proof for line-bundles, which we gave in Sect. 3, relied on the fact
that the holonomy around a loop, ℓ, can be written as the holonomies around
many loops each of which only shares a part with ℓ, such that in the end
all parts of the loops that do not belong to ℓ cancel out. The same idea
underlies our proof for gerbe-holonomies. Let s : I2 → M be a 2-loop. In
Fig. 15 we have drawn a part of the image of s which is covered by four open
sets, Ui, Uj, Uk, Ul, and which we denote by sijkl. The formula for HG,A(s)
at the end of Sect. 5 shows that the part of HG,A(s) which corresponds to
Ui, Uj , Uk, Ul is given by integration of the 2-forms Fi, Fj, Fk, Fl over that
part of the image of s which intersects Ui ∪ Uj ∪ Uk ∪ Ul, by integration
of the 1-forms Aij , Ajk, Akl, Ali over the edges Eij, Ejk, Ekl, Eli in the image

54



+-

=

Figure 15: HG,A(s)

55



of s, and finally by evaluating gijkg
−1
ilk at y, a point in the image of s and

in the intersection Ui ∩ Uj ∩ Uk ∩ Ul. The key observation, just as in the
case for line-bundles, is that Fi, Aij , gijk are all defined in terms of H. By
close inspection of the definition in part 1 and 2 of this proof we find that
the images of the 2-loops which define Fi, Fj, Fk, Fl contain all of sijkl but
they contain more. This extra bit of 2-loop gets cancelled by the 2-loops
defining Aij , Ajk, Akl, Ali and gijkg

−1
ilk . In Fig. 15 the 2-loop in the first picture

corresponds to sijkl. In the second picture we see the 2-loops corresponding
to Fi, Fj , Fk, Fl. After composing with the inverse of the 2-loop in the third
picture, which corresponds to Aij , Ajk, Akl, Ali, we are left with the 2-loop in
the fourth picture which corresponds to gijkg

−1
ilk (y). We see that all parts of

the 2-loops above which are not part of sijkl cancel out and so we are left
with sijkl only. This shows that we have HG,H(s) = H(s).

Remark 8.2 In Sect. 6 we recalled that a gerbe with gerbe-connection onM
induces a line-bundle with connection on Ω(M,x), which actually quotients
to a line-bundle on π1

1(M,x). We remark that in the simply-connected case
there exists a different construction of that line-bundle which follows from
the results in this section.

In [3, 10] the authors reconstructed a principal bundle with connection
from a holonomy by a global method, i.e., they reconstructed the total space
of the bundle first and showed that there is a natural lifting of paths built in
which defines a connection. In the case of gerbes one could do the same for
a given 2-holonomy, as we sketch in the following. Let H : π2

2(M) → U(1)
be a 2-holonomy (M continues to be 1-connected). One can define the total
space

P∞2 (M, ∗)× U(1)/ ∼ .

Here P∞2 (M, ∗) is the set of all 2-paths s : I2 → M such that s(r, 0) =
s(r, 1) = ∗ ∀r ∈ I and s(0, t) = ∗, ∀t ∈ I. The equivalence relation is defined
by

(s1, l1) ∼ (s2, l2) ⇔ ∀t ∈ I s1(1, t) = s2(1, t) ∧ l2 = H(s2 ⋆ s
−1
1 )l1.

It is easy to check that this relation indeed defines an equivalence relation.
The set of equivalence classes is a line-bundle on Ω∞(M, ∗), where the pro-
jection π : P∞2 (M, ∗)× U(1)/ ∼ → Ω∞(M, ∗) is defined by

π([(s, l)])(t) = s(1, t).
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One can of course quotient this line-bundle to obtain one over π1
1(M,x), fol-

lowing the observations in Sect. 6. It looks likely that the whole construction
carried out in [3, 10] works in this setting as well. For example, the connection
would now come in the form of a lifting function of paths of loops. However,
everything becomes infinite-dimensional in such an approach. To avoid that
we have opted to do everything locally inM , which is very concrete although
less elegant maybe.

Remark 8.3 In this remark we want to point out a relation between thin
homotopy groups and hypercohomology groups that is a consequence of our
results. In ordinary homotopy theory it is well known that for an (n − 1)-
connected manifold M , the Hurewicz map πn(M)ab → Hn(M) defines an
isomorphism of groups. The results in [3, 10] show that for a connected
manifold M there exists an isomorphism of groups between the group of
holonomies {π1

1(M) → U(1)} and the hypercohomology group H1(M,C∗M →
A1
M,C). This isomorphism exists because both groups classify line-bundles

with connections up to equivalence. In our case we see that for a 1-connected
manifold M , there exists an isomorphism of groups between the group of 2-
holonomies {π2

2(M) → U(1)} and the hypercohomology group H2(M,C∗M →
A1
M,C → A2

M,C) (both groups classify gerbes with gerbe-connections up to
equivalence). It is likely that, in general, for an (n − 1)-connected manifold
M , the groups {πnn(M) → U(1)} and Hn(M,C∗M → A1

M,C → A2
M,C → · · · →

AnM,C) are isomorphic.
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