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Boğaziçi University
Istanbul, Turkey

akarun, alp.kindiroglu@boun.edu.tr

Abstract

Supervised Descent Method (SDM) has proven success-
ful in many computer vision applications such as face align-
ment, tracking and camera calibration. Recent studies
which used SDM, achieved state of the-art performance on
facial landmark localization in depth images [4]. In this
study, we propose to use ridge regression instead of least
squares regression for learning the SDM, and to change fea-
ture sizes in each iteration, effectively turning the landmark
search into a coarse to fine process. We apply the proposed
method to facial landmark localization on the Bosphorus
3D Face Database; using frontal depth images with no oc-
clusion. Experimental results confirm that both ridge re-
gression and using adaptive feature sizes improve the local-
ization accuracy considerably.

1. Introduction

Landmark localization is a crucial initial step for face
processing applications. Such applications include but are
not limited to biometrics [1], facial expression recogni-
tion [15], age estimation [8] and sign language recogni-
tion [3]. In biometrics applications, the localized landmarks
are used to align faces before matching or to extract local
features. On the other hand, in facial expression analysis
and sign language recognition, the landmarks are tracked
through time to extract features in the spatio-temporal do-
main. For all these different applications a better landmark
localization results in a better performance of the overall
system. Most of the systems use 2D images since 2D im-
ages are easy to acquire using commonly available 2D cam-

eras. However, 2D face images are vulnerable to illumina-
tion and pose changes. The availability of inexpensive depth
cameras has led to the widespread use of 3D face images,
which overcome these difficulties. Therefore, the develop-
ment of a reliable 3D facial landmark localization method
has become essential.

Facial landmark localization methods generally utilize
heuristic approaches as well as statistical methods. Heuris-
tics rely on unique properties of the facial landmarks on the
face: For example, the nose tip resides on the symmetry axis
of the face and can be localized using the shape properties.
Similarly, the corners of the eye and mouth can easily and
successfully be localized by heuristics using shape prop-
erties. Such an example to these methods is [1] in which
Alyüz et al. propose a heuristic method which uses curva-
ture information, symmetry axis and shape index to locate
the nose tip, nose and eye corners in 3D faces.

Statistical 3D landmark localization methods also exploit
the features of facial landmarks such as local texture and
shape. Unlike heuristic-based approaches which require a
unique rule for each landmark, feature statistics are utilized
in a uniform approach for all landmarks. Most recent sta-
tistical methods also use the shape information represented
by the facial landmarks. Creusot et al. [5] propose a sta-
tistical facial landmark localization method utilizing shape
information in addition to the local features of landmarks.
Several candidates are identified on a local 3D mesh and the
most probable candidate is identified through shape anal-
ysis. Another statistically motivated method using shape
information proposed by Sukno et al. [14] localizes facial
landmarks under occlusion and expression changes. In [14],
the shape context of facial landmarks is used together with
local feature analysis. Different subsets of candidate points



are evaluated, resulting in robustness against missing land-
marks due to occlusions. A similar concept for estimating
occluded 3D landmarks is also proposed in [2] where par-
tial Gappy Principal Component Analysis is used to restore
missing landmark coordinates. In another study Farrelli et
al. [9] proposed a random forest based framework in which
patches extracted from depth images cast votes to localize
facial landmarks.

The Supervised Descent Method (SDM) [16] was pro-
posed to solve nonlinear optimization problems by turning
the problem into a least squares form and applying regres-
sion. In 2D domain, SDM has been proven to be successful
for facial landmark localization. Recently Camgoz et al. [4]
achieved state of the art performance on facial landmark
localization in 3D depth images using SDM. They experi-
mented with Scale-Invariant Feature Transform (SIFT) [11]
and Histogram of Oriented Gradients (HOG) [6] features
for localization and showed that both methods yield accu-
rate localization results. Taking [4] as a baseline, we pro-
pose to use ridge regression for Supervised Descent Method
(which we call Supervised Ridge Descent) instead of least
squares regression for facial landmark localization in depth
images. Additionally we propose to change feature sizes in
each iteration in a coarse to fine fashion. In this way, we
aim to capture more details in later iterations by focusing
on smaller regions.

In Section 2, we briefly explain the Supervised Descent
Method and give the details of ridge regression extension.
In Section 3 we report the experimental results conducted
on the Bosphorus 3D face database and compare the per-
formance of the proposed method with the state of the art
approaches. Finally, we evaluate the findings of this study
and discuss future work in Section 4.

2. Proposed Method

2.1. Supervised Descent Method (SDM)

The Supervised Descent Method has achieved state of
the art performances in several computer vision applica-
tions which previously relied heavily on nonlinear opti-
mization methods [16, 17]. Xiong et al. [16] proposed to
approach the non-linear optimization by learning the de-
scent directions from a training set and then use these pre-
viously learned descent directions on new unseen test sam-
ples. SDM’s best known application is facial landmark lo-
calization, also known as the IntraFace [7]. It has been used
to achieve state of the art performances in face tracking and
alignment.

Facial landmark localization using SDM starts with cre-
ating an average face shape which provides initial land-
mark locations for the facial images. At the beginning of
the training, landmarks are placed in these initial locations
(x0). Then the shape increment (∆x) required to displace

the landmarks from their current location (xk) to its ground
truth location (x∗) is calculated. This is written as a func-
tion of the features extracted from the current shape esti-
mate (φk) as:

∆xk = x∗ − xk = Rkφk + bk (1)

To estimate the parameters of this function, Rk and bk,
the problem is written in least squares format as in Equation
2, where i and k represent the sample and iteration indices,
respectively.

argmin
Rk,bk

∑
xi
k

∥∥∆xik −Rkφik − bk
∥∥2 (2)

By using the closed form solution of least squares regres-
sion, both Rk and bk parameters are estimated. Then Rk
and bk are used to update the location of the landmark as:

xk+1 = xk +Rkφk + bk (3)

The training procedure continues until the landmarks
converge to the actual positions. When a test sample comes,
landmarks are placed in their initial positions (x0) and their
positions are updated using Equation 3.

2.2. Supervised Ridge Descent (SRD)

SDM was originally designed to use least square regres-
sion (LSR) to estimate its predictor parameters. While using
LSR, one needs to take the inverse of the XTX matrix, X
being the observations of predictors. However, the XTX
matrix becomes singular when the observation size is large
and/or the predictors are strongly correlated. To overcome
the singularity issue Xiong et al. [16] proposed to use PCA
to regularize their matrix before taking the inverse of it.

In this study we propose to use ridge regression (RR) in-
stead of LSR, in which the matrix singularity issue is dealt
by adding a ΓTΓ matrix to the XTX matrix, Γ being the
regularization term which is proportional to the identity ma-
trix. Although we lose precision by taking the inverse of
ΓTΓ + XTX instead of XTX , we avoid over-fitting and
large variances in the estimators.

Our formalization of ridge regression can be seen in
Equation 4, in which βk, λk, bk represent the estimator, reg-
ularization term and offset parameter of the kth iteration,
respectively. The rest of the parameters ∆xik and φik rep-
resent the landmarks’ distance from the ground truth and
their features in these positions of the ith sample, respec-
tively. As in [4] and [17] we used HOG features as facial
landmark descriptors. However, in each iteration, the size
of the HOG features and the regularization term’s value has
been decreased to be able to descend more precisely to the
ground truth.



argmin
βk,bk

∑
xi
k

∥∥∆xik − φikβk − bk
∥∥2 + ‖λkβk‖2 (4)

To calculate the ridge regression estimator, βk, for each
iteration, we use Equation 5 in which I and λk represent
the identity matrix with the same size as the observation
matrix and the regularization term of the kth iteration. Φk
and ∆Xk are constructed by concatenating each training
samples’ HOG features and distances from the ground truth
into two matrices, respectively. Note that both the feature
matrix Φk and shape increment ∆Xk are normalized to zero
mean before regression.

βk = ((Φk)TΦk + λkI)−1(Φk)T∆Xk (5)

After learning the ridge regression estimator, βk, and cal-
culating the offset bk for each iteration, we use Equation 6
to localize facial landmarks starting from the initial points
which are defined by the average landmark positions of the
training samples.

xik+1 = xik + φikβk + bk (6)

In Equation 6 φik, xik+1 and xik represent the ith sample’s
HOG features of the kth iteration and the same sample’s fa-
cial landmarks’ locations of the k + 1th and kth iterations,
respectively.

3. Experimental Results
To evaluate the proposed method, we experimented on

the commonly used Bosphorus 3D Face Database [12]. The
Bosphorus database contains 4666 face samples belonging
to 105 users. Each sample’s 2D color image, 3D point cloud
and manually annotated 24 facial landmark positions are
provided by the database. The Bosphorus database contains
a variety of pose and facial expression variations as well as
occluded faces, making it a challenging database.

In our experiments, we worked on samples with frontal
poses which had no occluding objects covering the face.
22 of the 24 facial landmarks were selected to be localized
since the other two are ear dimples and are not visible in
frontal images. Selected landmarks are eye, mouth, nose
and eyebrow corners, middle points of lips, eyebrows, nose,
chin, and the nose saddles, all of which can bee seen in Fig-
ure 1.

We compared our method with the state of the art 3D
facial landmark localization methods methods working on
depth images. A summary of these methods are given in Ta-
ble 1. To be able to compare our method with the most suc-
cessful Sukno et al. [14] and Camgoz et al. [4], whom are
both using statistical facial landmark localization methods,
we used the same experimental setup as theirs and reported

Figure 1: 22 landmarks used in our experiments

our results on 10 landmarks, which are common to all meth-
ods. We selected the frontal non-occluded face samples and
divided them into two folds in which the users were exclu-
sive to their groups. All the experiments have been done
using two-fold cross validation and we iterated Supervised
Ridge Descent (SRD) six times since it usually converges
after the fourth iteration.

In our first experiments, our aim is to find
the optimum λk values and HOG feature sizes.
Our experiments yield optimum λk values to be
[300.00, 110.40, 40.60, 14.94, 5.49, 2.02, 0.74] and HOG
feature sizes to be [0.20, 0.17, 0.14, 0.12, 0.09, 0.06] ×
ImageSize for the iterations from one to six, respectively.

The SRD method has two main novelties when com-
pared to the SDM: 1) the use of ridge regression and 2)
the use of adaptive feature sizes from coarse to fine reso-
lution. In order to evaluate the independent contributions
of these novelties, we performed several experiments by in-
crementally adding ridge regression and adaptive features to
the classical SDM. As shown in Table 2, using ridge regres-
sion instead of least squares regression improves the perfor-
mance drastically (See columns SDM and SRD with Fixed
Feature Size). Similarly, using adaptive features instead of
fixed features increases the performance for both SDM and
SRD approaches (See SDM vs. SDM with Adaptive Fea-
ture Size columns and SRD vs. SRD with Fixed Feature
Size columns). By incorporating both ridge regression and
adaptive features, our SRD approach attains the best overall
results (See column SRD).

As observed from Table 2, our best performing land-
marks are eye and mouth corners, which have strong ge-



#LM # Training Size # Test Size Features Method Used
Alyüz et al. [1] 5 − 2902 Shape Index Heuristics
Creusot et al. [5] 14 99 2803 Surface Descriptors LDA and Adaboost
Sukno et al. [14] 14 1402 x 2 1402 x 2 ASPC [13] Statistical Shape Models
Camgoz et al. [4] 10 1446 x 2 1446 x 2 SIFT [11] - HOG [6] SDM [16]
SRD (Our method) 22 1420 x 2 1420 x 2 HOG [6] SDM [16] - Ridge Regression [10]

Table 1: Summary of the proposed method and the state of the art methods (LM = Landmarks)

ometric characteristics. However, our method struggled to
localize chins and nose saddles which are difficult to locate
accurately even by manual annotation. These findings were
also backed up as we visualized the best and worst perform-
ing facial samples which can be seen in Figure 3. It can be
seen from Figure 3 that ground truth locations of nose sad-
dles differ for each subject which is probably due to the
subjective preferences of the manual annotators.

To see if these results are consistent with all the samples
we created the cumulative error distribution, which can be
seen in Figure 2. By analyzing the curves of chin and nose
saddles, we can confirm that both of these landmarks are
problematic landmarks and their error is distributed over the
whole database. This may be caused by false annotation of
the data, as previously mentioned these landmarks are more
ambiguous than the others.

To compare our method with the the state of the art meth-
ods, we used a subset of 10 points that most methods re-
ported results on. As it can be seen in Table 3 the pro-
posed method achieves the state of the art performance on
all landmarks except the nose tip. Considering the manual
annotation error for the nose tip (2.96mm, see Table 3), our
average automatic localization error (2.65mm) can still be
considered as not too high.

4. Conclusion

Many applications rely on the analysis of facial data to
analyze, recognize and understand humans and their behav-
iors. Many of these applications start with facial landmark
localization to be able to either align faces or track these
landmarks. Thus a successful facial landmark localization
is essential to the success of various facial processing tasks.

In this study, we use ridge regression to train Supervised
Descent Method instead of the least squares method. We
also use decreasing feature sizes in each iteration, which be-
come smaller as the system iterates, turning the localization
into a coarse to fine approach. Our experiments show that
both improvements increase the performance significantly.

SRD was trained using HOG features in a similar man-
ner to SDM. We experimented on the Bosphorus 3D Face
Database and compared our method with the state of the
art methods, which work on 10 common facial landmarks
of the Bosphorus database, namely, eye corners, nose tip,

nose corners, mouth corners and chin. Except for the nose
tip, our approach achieved the best performance on all land-
marks. However, our nose tip error is close to human anno-
tation done by [1], which may indicate that the annotation
variance may be the reason of this behaviour.

To improve our system, we plan to use 3D descriptors
instead of 2D descriptors. To generalize our system, cross
database experiments should also be conducted. Further-
more, feature learning methods can be used to learn features
instead of using descriptors such as HOG, or structured it-
eration strategies may be implemented.
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[3] İ. Ari, A. Uyar, and L. Akarun. Facial feature tracking and
expression recognition for sign language. In Computer and
Information Sciences, 2008. ISCIS’08. 23rd International
Symposium on, pages 1–6. IEEE, 2008.

[4] N. Camgoz, B. Gokberk, and L. Akarun. Facial landmark lo-
calization in depth images using supervised descent method.
In 23th IEEE Signal Processing and Communications Ap-
plications Conference (SIU), 2015, pages 1997–2000, May
2015.

[5] C. Creusot, N. Pears, and J. Austin. A machine-learning ap-
proach to keypoint detection and landmarking on 3d meshes.
International Journal of Computer Vision, 102(1-3):146–
179, 2013.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, volume 1, pages 886–893 vol. 1, June 2005.

[7] F. De la Torre, W.-S. Chu, X. Xiong, F. Vicente, X. Ding, and
J. Cohn. Intraface. In Automatic Face and Gesture Recog-



Landmarks SDM SDM with AFS SRD with FFS SRD (Our Method)
Outer left eyebrow 5.01± 2.97 4.16± 2.41 4.39± 2.58 4.13± 2.36
Middle left eyebrow 5.17± 3.07 4.69± 2.67 4.68± 2.81 4.37± 2.56
Inner left eyebrow 4.02± 2.45 3.52± 1.92 3.48± 2.08 3.13± 1.74
Inner right eyebrow 3.86± 2.23 3.28± 1.75 3.34± 1.97 2.99± 1.66
Middle right eyebrow 4.68± 2.86 4.19± 2.39 4.11± 2.49 3.88± 2.25
Outer right eyebrow 5.02± 4.10 4.19± 3.43 4.23± 3.53 4.02± 3.33
Outer left eye corner 3.16± 2.00 2.81± 1.57 2.63± 1.68 2.56± 1.45
Inner left eye corner 2.28± 1.55 2.12± 1.23 1.93± 1.39 1.90± 1.14
Inner right eye corner 2.10± 1.46 2.03± 1.21 1.84± 1.34 1.84± 1.15
Outer right eye corner 3.04± 2.00 2.89± 1.81 2.57± 1.84 2.51± 1.63
Nose saddle left 7.61± 3.96 7.08± 3.77 7.16± 3.73 6.78± 3.59
Nose saddle right 7.77± 4.03 7.29± 3.81 7.32± 3.82 6.92± 3.66
Left nose peak 2.51± 1.99 2.21± 1.31 2.18± 1.81 1.96± 1.20
Nose tip 3.34± 2.41 2.96± 1.90 3.01± 2.27 2.65± 1.76
Right nose peak 2.56± 2.04 2.18± 1.23 2.18± 1.96 1.99± 1.26
Left mouth corner 4.37± 3.82 3.09± 1.97 3.41± 3.39 2.92± 2.13
Upper lip outer middle 3.66± 3.52 2.71± 1.95 2.99± 3.25 2.46± 2.04
Right mouth corner 4.50± 3.85 3.05± 1.92 3.54± 3.33 2.91± 2.07
Upper lip inner middle 3.62± 3.47 2.64± 1.90 2.84± 3.25 2.39± 1.96
Lower lip inner middle 4.65± 5.01 2.60± 2.09 3.56± 4.44 2.39± 2.28
Lower lip outer middle 5.49± 5.59 3.14± 2.35 4.30± 5.07 2.90± 2.65
Chin middle 6.45± 5.60 5.32± 3.60 5.65± 4.87 5.08± 3.45

Mean Error 4.31± 3.18 3.55± 2.19 3.70± 2.86 3.30± 2.15

Table 2: Landmarks’ mean and standard deviation of errors. SDM = Supervised Descent Method, SRD = Supervised Ridge
Descent, FFS = Fixed Feature Size, AFS = Adaptive Feature Size

Inner Eye Outer Eye Nose Tip Nose Mouth Chin
Corners Corners Corners Corners

Manual Annotation [1] 2.51 − 2.96 1.75 − −
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