
Introduction

Chemotaxis is the process by which bacteria 
swim toward chemoattractant (CA) or away from 
chemorepellant (CR) [1, 2]. Modeling bacterial 
dynamics near CA sources is relevant in describing 
how bacteria accumulate around and track CA sources 
[3–6] especially in active and turbulent flow [7]. While 
chemoattraction may be less important in helping 
predatory bacteria, such as Bdellovibrio bacteriovorus 
(Bb), locate individual prey [8], even Bb is attracted to 
larger prey patches that serve as CA sources [8].

Here we revisit the idea of chemoattraction toward 
point sources in an effort to reconcile two disparate 
bacterial behaviors near sources, banding and the vol-
cano effect, described below. The general model we 
propose captures the broad range of bacterial dynam-
ics, both (1) predicted and (2) observed, around point 
CA sources: (1) The predicted behavior we are inter-

ested in includes the volcano effect where bacteria form 
a shell of higher density around a point CA source as a 
result of individual bacteria consistently overshooting 
the peak in the CA concentration due to a delay in their 
chemotactic response [11]. (2) The observed behavior 
includes the formation of bands (of width, say, 20 µ

m and an average distance of order 40 µm away from 
bead surfaces [3]) by marine bacteria with run-reverse 
motility around CA loaded beads. An illustration 
of both effects, ‘volcano’ and ‘banding’, is given in
figure 1.

Our goal here is to develop a minimal model of 
banding, directly motivated from more basic features 
of bacterial dynamics (such as bacterial saturation to 
signal, i.e. bacterial adaptation). By contrast to run-
and-tumble bacterial motility which our model sug-
gests cannot exhibit banding, we show that both the 
volcano effect and banding emerge from a single run-
reverse bacterial motility model under different CA 
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Abstract
Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic 
behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting 
run-reverse motility are known to form distinct bands around patches (large sources) of 
chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted 
to exhibit a ‘volcano effect’ (spherical shell-shaped density) around a small (point) source of food. 
Here we provide the first minimal model of banding for run-reverse bacteria and show that, while 
banding and the volcano effect may appear superficially similar, they are different physical effects 
manifested under different source emission rate (and thus effective source size). More specifically, 
while the volcano effect is known to arise around point sources from a bacterium’s temporal 
differentiation of signal (and corresponding finite integration time), this effect alone is insufficient 
to account for banding around larger patches as bacteria would otherwise cluster around the patch 
without forming bands at some fixed radial distance. In particular, our model demonstrates that 
banding emerges from the interplay of run-reverse motility and saturation of the bacterium’s
chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria 
susceptible to banding behavior should also exhibit a volcano effect around sources with smaller 
emission rates.
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point source emission rates where different model fea-
tures are at play; see figure 1. For instance, we find that 
the volcano effect arises in run-reverse bacteria from 
temporal differentiation of signal and, as the emission 
rate of the source rises, an interplay between this and 
saturation of chemoreceptors gives rise to banding in 
run-reverse bacteria.

As a consequence of our model, we argue that 
while the volcano effect has so far not been observed, 
run-reverse bacteria exhibiting banding may provide a 
means to experimentally realize the volcano effect for 
the first time.

Materials and methods

Chemotaxis model
We consider bacterial motion as a general two-state 
process, consisting of a ‘run’ state—where a bacterium 
maintains its current direction—and a re-orientation
characterized by an angle, φ, defining the change 
in direction between runs (i.e. the angular change 
from the direction of the current run to the direction 
of the next). Run-reverse and run-and-tumble are 
fundamentally distinguished from their angular re-
orientation distributions as we discuss shortly.

We model our process in discrete time and, at every 
time step, the bacterium is assigned a probability, p, 
of continuing its run. Given the bacterium’s current
position, rk , its subsequent position, rk+1, is given by

rk+1 = B(rk + vrun∆t) + (1 − B)(rk + vchange∆t)

(1)
where B is a Bernoulli random variable with parameter 
p, B|p ∼ Bern( p), and vi, with i ∈ {run, change}, is the 
bacterium’s velocity. The direction of vrun is along a
straight line from the previous to the current position 
and the direction of vchange is randomly sampled 
from the re-orientation anglular distribution (φ) as 
we discuss shortly. The run duration is the total time, 
sum over consecutive ∆t’s, for which the Bernoulli

random variable is sampled as 1. We parametrize our 
chemotaxis model presented in equation (1) based on 
the following observations:

(1)  Bacteria are typically too small (as compared to 
eukaryotic cells) to measure spatial gradients
directly across their body length. Instead they
compare CA concentration changes in time as 
they move in space [12].

As a result, p—the probability of continuing
a run from the bacterium’s current position,
rk, to its subsequent position, rk+1 which we
call the p-function—depends on the CA
concentration at the bacterium’s current
and previous positions (rk and rk−1). The
p-function is defined as follows

p(rk+1; rk, rk−1) =

α

(
c(rk)

K + c(rk)
− c(rk−1)

K + c(rk−1)

)
+ β. (2)

Our minimal parameters capture: the 
proportionality between gradient and 
probability of run (α); the basal run 
probability in uniform CA concentrations 
(β); and saturation effects at high CA 
concentrations (K). In particular, we note that

lim
c→0

p = β.

Thus, in the absence of gradients, the 
bacterium reverts to a default probability 
p = β of maintaining a run. An important 
note is in order: memory can often span 
multiple seconds in bacteria and we have 
investigated the effects of memory in previous 
work [5, 6]. The purpose of equation (2) is only 
to take the simplest of all models and show that 
it is sufficient to reproduce banding and the 
volcano effect as we will see shortly. Longer, 
and more experimentally realistic, memory 

Figure 1. A cartoon illustration of typical bacterial trajectories (dashed lines) responsible for ‘volcano’ and ‘banding’ behaviors. 
(A) In this illustration of the volcano effect, typical bacterial trajectories overshoot the point CA source and spend most of their time 
re-orienting around the source. This occurs because CA gradients vary more sharply near the source than the time it takes for the 
bacterium to respond to this change [5, 11]. (B) In this illustration of banding, observed at high source emission rates, the dotted line 
shows a cartoon of a run-reverse trajectory where, as the bacterium approaches the point source, saturation effects render a change 
in direction more probable. Our model will show how both the volcano effect and banding are recovered in bacteria exhibiting run-
reverse motility.
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extending beyond that already incorporated 
in equation (2) would further exaggerate 
the features already exhibited by our model. 
What is more, a realistic memory would be 
parametrized from individual bacterial tracks 
using standard maximum likelihood tools that 
we have detailed in [5].

(2)  Bacterial chemoreceptors saturate in regions
of high CA. This is captured in our model at
high CA concentration regions as follows

lim
c→∞

p = β.

This feature is a hallmark of bacterial 
adaptation [13, 14]. Furthermore, when 
p = β, the probability of maintaining a 
run is at a minimum (and, equivalently, the 
probability of re-orienting is at a maximum) 
which occurs in the absence of a gradient or in 
the presence of saturation.

(3)  Bacteria spend longer in a ‘run’ state than a
‘re-orientation’ state [15]. Coming back to the
free parameters in our model, the α parameter
rescales the values of the p-function to make
sure its extrema are contained within [0, 1]. The
p-function achieves its maximum near the point 
r along a given radial trajectory such that c(r) =
K. Therefore, the K parameter offers a handle
on how far from the source the p-function
can achieve its maximum. While our model
provides a general framework, we mention
that, in general, the parameter β is a probability 
that can be established experimentally
from bacterial trajectories in uniform CA
concentration profiles as we discussed in point
1 [5]. However, here we use a value for it from
known tumbling probabilities.

 (4)  We consider the re-orientation angles 
to be normally distributed. That is 
φ|µ,σ ∼ N(µ,σ), with mean μ and standard
deviation σ. For example, run-and-tumble
bacteria show a tumbling angle distribution 
with a mean of less than 90◦ in the presence of a 
CA gradient (i.e. a mean of 62◦ and a standard 
deviation of 26◦, figure 3 in [10], for E. coli). 
However, angle re-orientation distributions 
for run-reverse motility exhibit a sharp peak 
at 180◦ associated with sharp reversals in 
addition to smaller peaks either at 0◦ associated 
with ‘pauses’ [9] (i.e. figure 1 in [16] for
Pseudomonas aeruginosa) or alternatively at 
90◦ associated with ‘flicks’ [17] (i.e. figure 2 in
[18] for Vibrio alginolyticus).

 (5)  Finally, in order to parametrize the
concentration dependence of the p-function
to chemical stimuli, we consider a point food
source, located at r0, from which CA particles
are emitted with rate R. CA particles then
diffuse away from the source according to the
following diffusion equation [5]

∂c(r, t)

∂t
= D∇2c(r, t)− 1

τ
c(r, t) +Rδ(r − r0) (3)

where D is the particle’s diffusion coefficient,
τ is the particle decay time constant, ∇2 is the
Laplacian and δ(...) the Dirac delta source 
term.

For a stationary CA source located at the origin, 
r = (0, 0, 0), the solution for the CA concentration is

c(r, t) =
R

4πD | r |
e−

|r|√
Dτ . (4)

Implementing the chemotaxis model
To simulate bacterial trajectories near point sources, we 
first compute local concentrations at the bacterium’s
location based on the position of the point source. 
We then evaluate the corresponding p-function and, 
from this, probabilistically compute the bacterium’s
subsequent position. Typical simulated single bacterial 
trajectories are over 3000 time steps ∆t with ∆t = 0.1 
s. We collect 1000 such trajectories to obtain statistics
valid at the population level on all plots. The bacterial
density in different regions of space around a CA
source is computed by uniformly partitioning the
domain into spherical shells centered at the source and 
counting the number of time steps (∆t) a bacterium
falls on each shell (and normalizing by dividing each
shell’s density count by its volume).

Finally, we adjust the source’s emission rate by
simulating small point sources versus larger bead-like 
sources of CA. The diffusion constant (D) and the 
decay rate (τ)— fixed throughout this discussion—
which characterize the size and stability of the CA mol-
ecules are, of course, independent of the source’s emis-
sion rate (and thus effective size) of the source. To create 
bead-like sources reminiscent of experiments where 
marine bacteria exhibit banding near CA-soaked beads 
[3], we increase the emission rate such that the concen-
tration near the source exceeds the saturation level of 
the bacterium and keep all other parameters fixed.

While our goal is to show that our model conclu-
sions are robust over a broad and reasonable param eter 
range, we highlight, once again, that realistic models 
and model parameters (β, α, and K) may be inferred 
using maximum likelihood estimation (MLE) from cell 
tracking data in the presence of a simple linear CA gra-
dient as has been demonstrated for a similar model in 
recent work [5]. In particular, uniform CA concentra-
tions (i.e. no CA gradients) are sufficient to determine 
vrun, μ, and σ from MLEs on experimental trajectories.

Results

Here we show that the experimentally motivated 
minimal model above captures banding, for the first 
time, and also predicts under what circumstances the 
volcano effect (theoretically predicted thus far and not 
observed) may be realized experimentally. While both 
volcano effect and banding might appear superficially 
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similar (with bacteria concentrating at some distance 
from the source rather than on the source itself), we 
show that banding and the volcano effect arise as 
different limits of a simple chemotactic model.

First, to recapitulate the volcano effect, we choose 
a low emission rate (R) such that the CA concentra-
tion in space lies mostly below the foraging bacteri-
um’s saturation level. The results are shown in figure 2.  
Figure 2(A) shows a contour plot of the p-function—
the probability of continuing a run—in the xy-plane
as bacteria proceed toward the point source in a radial 
direction for values of parameters specified in the cap-
tion. Values of p-function are plotted against the radial 
distance from the point source in figure 2(B). The 
p-function peaks close to the point source (within a run 
length from the source). Provided the point of satur-
ation (where the CA concentration exceeds K) is not
far away from the point source, the bacterium experi-
ences the sharp gradient near the source and therefore 
overshoots the point source through longer runs (as
compared to those further away from the source). This 
probability drops to β (the default value) at radial dis-
tances far from the point CA source where the bacte-
rium re-orients more often. As a result, bacteria spend 
most of their time in a shell-shaped region around,
rather than on, the point source; see figure 2(C).

Having established that the minimal model pre-
sented reproduces the volcano effect, we now show 
that the very same model reproduces banding for dif-
ferent source emission rates (relevant to experiments 
with about 50.0 µm beads soaked with CA [3]). To 
mimic a large bead or food patch to which bacteria are 
attracted, we consider a point source of CA with very 
high emission rate such that the CA concentration in 
a much larger (compared to figure 2) spherical region 

around the point source exceeds the saturation level; 
see figure 3.

Figure 3(A) shows a contour plot of the p-function 
over xy-plane as the bacterium swims toward the bead-
like source. The p-function is plotted against the radial 
distance from the center of the bead-like source in fig-
ure 3(B). The p-function’s peak is further away from
the center of the source here as compared to figure 2. 
Similar to figure 2, the probability of continuing a run 
drops to the value assigned to β further away from 
the source. However, the p-function value also drops 
to the default value at smaller radial distances where 
the concentration of CA is higher than the saturation 
level. As a result, here we see banding behavior [3] for 
bacteria further away from the center of the bead-like 
source as compared to the case of a low emission point 
source where we observe a volcano effect (figure 2).  
Figure 3(C) shows a contour plot of population den-
sity of such bacteria around the source. In the region 
where the concentration of CA exceeds K, bacteria 
approaching the source acquire the (default) prob-
ability of running of β therefore tumbling more often 
and forming a band (figure 3(C)). This behavior is 
different than what was observed in figure 2 since the 
banding does not arise from overshooting the source 
as bacteria rarely venture into the region neighboring 
the source to begin with.

For figure 3, we looked at different emission 
rates in the range R = 1.0 × 109−1.0 × 1012

molecules s−1 (figure 3(D)). As expected by interpolat-
ing between both low and high emission regimes, the 
radial distance of the location with maximum bac-
terial density depends linearly on the maximum of 
the p-function (figure 3(E)). In addition, it is worth  
mentioning that for all results presented in this paper 

Figure 2. Bacteria exhibit the volcano effect around a point source of CA attributed to bacterial trajectories overshooting the 
point CA source. (A) A contour plot of the p-function produced by interpolating the value of the p-function at 100 000 uniformly 
distributed bacterial positions on the (200.0 µm)2 xy-plane. (B) A combined plot of the p-function along a radial trajectory (left 
vertical axis) and the CA concentration (right vertical axis) versus radial distance from the point source. As we discuss in the main 
body, the p-function achieves its maximum near a point r such that c(r) = K, here r = 25.0 µm. Away from that point, the p-
function defaults to the β value. (C) A contour plot of the bacterial density—projected onto xy-plane—around the point CA source. 
This is plotted from a histogram of the normalized density of a population of 1000 bacteria over 3000 ∆t  time steps near the point 
source. The bins are comprised of 100 spherical shells of uniform thickness ∆r = 1.0 µm. For all subplots here, we used β = 0.4, 
α = 2.9, K = 5.2 × 10−5, and | vrun |= 100.0 µm s−1 (typical swimming speeds in marine bacteria), and | vchange |= 0.14 µm s−1

(=
√

D ×∆t, where ∆t = 0.1 s and D is a stationary bacterium’s diffusion coefficient). Also, we used an emission rate of R = 200.0 
molecules s−1 for the point source and [φ|µ,σ ∼ N(µ,σ) = N(165.0◦, 5.0◦)] for the angle change distribution. β = 0.4 is the 
default probability of tumbling in the absence of CA gradient. Most bacteria run for longer than they tumble [15], thereby justifying 
values of β below 0.5. A constraint on selecting α is to keep the p-function within [0, 1] for a predetermined β and K while K 
determines the bacterium’s saturation level. We use K = 5.2 × 10−5 in our simulation, based on an estimate for the concentration 
of amino acids in the location of a band [3].
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we used [φ|µ,σ ∼ N(µ,σ) = N(165.0◦, 5.0◦)] for
angle re-orientation distributions meaning we employ 
a run-reverse swimming strategy. Our results are 
robust over turn angle distributions with mean 
range µ = 115.0−180.0◦ and constant σ = 5.0◦ 
(figure 3(E)). We also performed analysis of our model 
for run-and-tumble motility (µ = 65.0−90.0◦ and
σ = 5.0◦) (data not shown). In summary, for low
emission rates, we observe overshooting of bacteria
and volcano effect for both run-reverse and run-and-
tumble motilities. However, we only observe banding
for run-reverse motility, not for the run-and-tumble
motility. This is because random re-orientations
(in run-and-tumble) as opposed to sharp reversals
(in run-reverse) do not sufficiently re-direct bacte-
ria away from the source. This may be the reason why
banding is observed in marine bacteria with run-
reverse motility but does not arise with E. coli that
employs a run-and-tumble swimming strategy [3].

Discussion

Our model predicts the accumulation of bacteria 
around (rather than on) CA sources for small and large 

CA sources for different physical reasons. Our model 
relies on effects such as temporal differentiation and 
saturation in bacterial response to CA sensing and does 
not contain signaling-level details. More specifically, 
our model predicts that the volcano effect and banding 
may both arise from the same model (and thus same 
bacterial species) but for different source emissions 
and that the, yet to be observed, volcano effect may be 
observed in bacteria that are already known to exhibit 
banding.

Beyond, signaling-level details there are other fea-
tures that we have not incorporated into our model: 
(1) We assume constant run velocities. Yet run-reverse
bacteria may employ ‘flicks’ as well which depend on
the bacterium’s swimming speed thereby enhancing
chemotaxis by giving rise to faster climbing up CA gra-
dients [17, 19]. Such effects, due to the compression of
the hook at the flagellum’s base, may contribute (and, 
in fact, enhance) banding. In principle, we can incor-
porate this effects by modifying equation (1). (2) We 
assume stationary sources. However, we may generalize 
our model to treat both moving point sources of food 
and turbulence in the medium in which the bacterium is 
foraging for food. The case of a moving source would be 
particularly relevant to marine bacteria such as Pseudo-

Figure 3. Bacteria exhibit banding around a bead-like CA sources due to an interplay between saturation effects and temporal 
differentiation. (A) A contour plot of the p-function produced by interpolating the value of the p-function at 100 000 uniformly 
distributed bacterial positions on the (1800.0 µm)2 xy-plane. (B) A combined plot of the p-function (left vertical axis) and the CA 
concentration (right vertical axis) against radial distance from the center of the source. (C) A contour plot of the bacterial density—
projected onto xy-plane—around the bead-like CA source showing banding. We use a histogram of the normalized density of a 
population of 1000 bacteria over 3000 ∆t  time steps. The bins are spherical shells of uniform thickness with ∆r = 10.0 µm. For all 
subplots here, parameters are the same as those for figure 2 except that we used R = 1.0 × 1012 molecules s−1 for the emission rate of
the source. Note that bacterial density values are much smaller here (as compared to figure 2(C)) because we use the same number of 
trajectories but the spherical shells volumes are much larger. (D) Here we show normalized density histograms versus radial distance 
for the source for each of 4 distinct emission rates. φ|µ,σ ∼ N(µ,σ) = N(165.0◦, 5.0◦). As the emission rate increases, the entire 
histogram of the population’s normalized density shifts further away from the source. (E) For each of 4 distinct emission rates, we 
plot the radial distance of the peak in the population’s normalized density against the distance from the source of the peak in the 
p-function. The results show a linear relationship between the two. To ensure the robustness of the model over different angle means, 
we repeat the plot for different angle distributions of [φ|µ,σ ∼ N(µ,σ) = N(115.0◦−180.0◦, 5.0◦)] as specified.
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alteromonas haloplanktis and Shewanella putrefaciens 
known to sense and track individual free-swimming 
algae using run-reverse dynamics [4]. To make a source 
move, we may include a time dependent source r0(t) in 
equation (3) based on the observable trajectory of the 
dynamical source. Furthermore, incorporating turbu-
lence—by adding an advective term u(t) · ∇c(r, t) to
equation (3) where u(t) = (u1(t), u2(t), u3(t)) is the 
advective velocity—would be relevant to understand-
ing the robustness of banding around CA sources in 
more complex environ ments [7].

Incorporating such effects would provide a 
quanti tative, rather than qualitative, step forward 
toward understanding more species-specific band 
structures of marine bacteria such as P. haloplanktis, 
S. putrefaciens, and Deleya marina and the degree of
interaction between individual bacteria and copep-
ods (figure 4 in [17]), lysed ciliates [20] or even bacte-

rial clusters [21].
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