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Abstract 

The bile salt export pump (BSEP) is expressed at the canalicular domain of hepatocytes, where 

it mediates the elimination of monovalent bile salts into the bile.  Inhibition of BSEP is 

considered a susceptibility factor for drug-induced liver injury (DILI) that often goes undetected 

during non-clinical testing.    Although in vitro assays exist for screening BSEP inhibition, a 

reliable and specific method for confirming Bsep inhibition in vivo would be a valuable follow-up 

to a BSEP screening strategy, helping to put a translatable context around in vitro inhibition 

data, incorporating processes such as metabolism, protein binding, and other exposure 

properties that are lacking in most in vitro BSEP models.  Here, we describe studies in which 

methods of quantitative intravital microscopy were used to identify dose-dependent effects of 

two known BSEP/Bsep inhibitors, AMG 009 and bosentan, on hepatocellular transport of the 

fluorescent bile salts, cholylglycyl amidofluorescein (CGamF) and cholyl-lysyl-fluorescein (CLF) 

in rats.  Results of these studies demonstrate that the intravital microscopy approach is capable 

of detecting Bsep inhibition at drug doses well below those found to increase serum bile acid 

levels, and also indicate that basolateral efflux transporters play a significant role in preventing 

cytosolic accumulation of bile acids under conditions of Bsep inhibition in rats.  Studies of this 

kind can both improve our understanding of exposures needed to inhibit Bsep in vivo, but also 

provide unique insights into drug effects in ways that can improve our ability interpret animal 

studies for the prediction of human drug hepatotoxicity. 
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Introduction 

Drug-induced liver injury (DILI) is a leading cause of clinical trial failures and post-

marketing drug withdrawals.  The fact that DILI often goes undetected during non-clinical testing 

(Olson et al., 2000; Chen et al., 2015) suggests that the mechanisms of drug hepatotoxicity 

differ between humans and laboratory animals.  For example, human hepatotoxicity is strongly 

associated with drugs that inhibit the bile salt export pump (BSEP), a transporter expressed at 

the canalicular domain of hepatocytes, with its primary function being the secretion of bile acids 

into the bile canaliculus (Stieger et al., 2007).  In contrast, BSEP inhibitors generally show little 

or no evidence of liver injury in rodent studies (Fattinger et al., 2001; Funk et al., 2001a; Funk et 

al., 2001b; Kostrubsky et al., 2003; Kostrubsky et al., 2006; Feng et al., 2009; Morgan et al., 

2010; Morgan et al., 2013).  Examples of BSEP inhibitors associated with human hepatotoxicity 

that showed little or no evidence of liver injury during non-clinical testing include:  bosentan , 

AMG 009 and troglitazone (Fattinger et al., 2001; Funk et al., 2001b; Morgan et al., 2013).    

There is genetic validation of BSEP as a target for toxicity in humans where mutations in 

the gene that encodes BSEP (ATP-binding cassette transporter, B11 or ABCB11) result in a 

complete loss of function, and lead to a severe disease phenotype requiring liver transplantation 

during adolescence (Davit-Spraul et al., 2009).   Bsep knockout mice, on the other hand, live a 

relatively normal life span, with only mild evidence of cholestasis (Wang et al., 2009).  Some 

hypotheses as to the reasons that rodents appear less sensitive to hepatotoxicity due to Bsep 

inhibition include differences in the bile salt pool, bile salt metabolism, bile salt transporter 

expression, and others (Wang et al., 2009; Woodhead et al., 2014).  

Given the strong association of human hepatotoxicity with drugs that inhibit BSEP and 

the fact that the liver injury seen in humans often goes undetected during non-clinical testing, a 

BSEP screening strategy is advised for the early detection of this putative liability.  The 

challenge with such a screening strategy is in translating in vitro measures of BSEP inhibition 
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into predictions of in vivo effects.  The practice of relating in vitro potencies to exposure values, 

such as concentration at steady state (Css) has been shown to improve the correlation with 

hepatotoxicity outcome (Dawson et al., 2012; Morgan et al., 2013).  However, the typical high-

throughput BSEP transport assay utilizes membrane vesicles that over express the transporter, 

a simplistic system that lacks important components of in vivo exposure, such as metabolic 

capacity, uptake/efflux and protein binding (van Staden et al., 2012).  In the absence of a 

toxicologically relevant in vivo model that can recapitulate the BSEP-mediated liver injury seen 

in humans, an in vivo assay of Bsep function could aid in the translation of in vitro potencies to 

an in vivo response.   

Although rats are not a toxicologically relevant model for Bsep-mediated hepatotoxicity, 

they can be used to confirm Bsep inhibition in vivo.  Development of an assay of Bsep function 

in rats would provide a valuable follow-up to a BSEP screening strategy, helping to put a 

translatable context around in vitro inhibition data, including in vivo exposure properties that are 

lacking in most in vitro BSEP models.  Such an assay could be used to confirm the exposures 

needed to achieve in vivo BSEP inhibition, and provide a better understanding of the 

relationship between in vitro data and in vivo outcome.  Knowledge of the exposures needed to 

achieve in vivo Bsep inhibition would improve liver liability assessments by clarifying a margin of 

safety as compounds are advanced to human testing.  Total plasma or serum bile acids have 

been used to confirm Bsep inhibition in rodents, but this method appears to lack sensitivity as 

will be shown in this work with AMG 009 and bosentan. 

 In previous studies, we have demonstrated that quantitative multiphoton microscopy 

can be used to quantify organic anion and bile acid transport in the liver of living rats at 

subcellular resolution  (Babbey et al., 2012; Ryan et al., 2014; Dunn and Ryan, 2017).  Here we 

extend this approach to assay transporter inhibition in rats, using CGamF and CLF as 

fluorescent bile salt probes (de Waart et al., 2010; Kruglov et al., 2011).   Quantitative intravital 

microscopy of fluorescent bile salt transport in the liver of living rats was used to identify acute, 
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dose-dependent effects of AMG 009 and bosentan, two human and rat BSEP/Bsep inhibitors 

that have been associated with drug-induced liver injury in humans. 

 

Materials and methods 

Reagents 

Bosentan was purchased from Sequoia Research Products Limited (Pangbourne, UK).  

AMG 009 was synthesized at Amgen Incorporated (Thousand Oaks, CA).  CGamF was 

purchased from WuXi AppTec (Tianjin, China), and CLF was purchased from Syncom 

(Groningen, Netherlands).  All other reagents were of the highest grade possible, and acquired 

from readily available commercial vendors.   

 

Dosing solution preparations 

Bosentan and AMG 009 dosing solutions suitable for intravenous (IV) administration 

were prepared.  Solutions of bosentan were prepared at 0.6, 2, and 6 mg/mL in 12.5% captisol 

in distilled water, adjusted to pH 9 using NaOH, for dose levels of 3, 10 and 30 mg/kg, 

respectively.  Solutions of AMG 009 were prepared at 0.6, 2 and 6 mg/mL in distilled water, 

adjusted to pH 9 using NaOH for dose levels of 3, 10, and 30 mg/kg, respectively.  

CGamF powder was dissolved in DMSO (4 mg/50 µL), added to a solution of 0.5 N 

NaOH, which was then titrated to pH 7 using concentrated HCl to a final concentration of 4 

mg/mL.  CLF was dissolved in 0.9% saline to a concentration of 10 mg/mL.  All experiments 

conducted for a particular test article were performed using the same batch of CGamF or CLF, 

with the dose adjusted to accommodate differences in fluorescence between batches so as to 

ensure hepatocyte labeling in the linear range of the microscope fluorescence detectors.  

 

Animals for intravital microscopy studies 
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Male Wistar rats (300-400 grams) were purchased from Harlan Laboratories and housed 

in pairs in the Indiana University School of Medicine Laboratory Animal Resource Center.  The 

rats were maintained on a diet of Teklad 4% mouse/rat diet and water ad libitum. An 

acclimatization interval of at least 4 days was allowed prior to the performance of any 

experiments.  All animal experiments were approved and conducted according to the 

Institutional Animal Care and Use Committee guidelines of Indiana University, and adhered to 

the guide for the care and use of animals (National Research Council (U.S.). Committee for the 

Update of the Guide for the Care and Use of Laboratory Animals. et al., 2011).   

 

Intravital microscopy studies of fluorescent bile salt transport 

Fluorescent bile salt transport was characterized using intravital multiphoton microscopy, 

using an approach similar to that previously applied (Babbey et al., 2012; Ryan et al., 2014), 

and described in detail (Dunn and Ryan, 2017).  Multiphoton microscopy was conducted with an 

Olympus Fluoview 1000 MPE confocal/multiphoton microscope system mounted on an 

Olympus IX-81 inverted stand, using an Olympus 25X, NA1.05 water immersion objective, with 

830 nm excitation provided by a Spectraphysics MaiTai DeepSee laser.  Fluorescence 

emissions were collected in three non-descanned photomultiplier detectors: blue channel (380-

480 nm), green channel (500-550 nm) and red channel (560-650 nm).  

Rats were sedated with 5% Isoflurane, weighed and 130 mg/kg Inactin (Sigma Aldrich) 

was administered intraperitoneally (IP) for anesthesia.  During surgery, rats were placed on a 

heating pad to maintain body temperature, which was monitored using a rectal thermometer.  

Once anesthetized, a 3 cm x 1.5 cm L-shaped incision was made 1 cm right of ventral midline in 

the neck.  A jugular cannula was then placed using PE 50 tubing, filled with sterile 0.9% saline 

and attached to a Luer stub adapter and 1 mL syringe, and the neck was sutured with 3-0 black 

silk sterile suture.  At this time, a bolus of Hoechst 33342 (Invitrogen, 2 mg/kg) diluted in 0.9% 

sterile saline to a total 0.4 mL was injected into the jugular line to label cell nuclei.  To expose 
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the liver for imaging, a ventral 4 cm incision was made across the torso 1 to 2 cm below the 

middle of the rib cage. A wet (0.9% saline) 2x2 gauze sponge was gently placed below the left 

lateral liver lobe.  The liver was secured to the bottom of a Willco coverslip-bottomed dish 

(GWST-5040, Warner Instruments, Hamden, Ct) via cyanoacrylate gluing of the gauze below 

the liver to the plate or by gluing the liver itself to the plate.  Sterile 0.9% saline was then placed 

in the coverslip-bottomed dish to keep the liver moist throughout the imaging session.  A small 

dose of CGamF or CLF was administered IV in order to identify a field of hepatocytes for 

analysis.  Rats were then injected IV with AMG 009, bosentan or vehicle in a volume of 5 mL/kg.  

The rats were placed ventral side down on the stage of an inverted microscope, with heating 

pads placed below the rats to warm the stage.  A heater was used to warm the objective lens, 

and another heating pad was placed over each rat prior to imaging.  To prevent movement 

during imaging, the rats’ hind legs and the glass-bottom plate were taped securely to the stage.  

An appropriate field of the liver was identified, and at a time point 20 minutes after 

administration of test article, a series of image volumes (6 focal planes, spaced at 1 micron 

apart) were then collected continuously just before and for twelve minutes following IV injection 

of CGamF or CLF (0.4 – 4.0  mg/kg and 0.5  mg/kg, respectively).   A high-resolution mosaic, 

consisting of 9 contiguous volumes (each consisting of 15 planes, spaced 1 micron apart) was 

then collected.   

 

Quantitative digital image analysis 

Quantitative image analysis was conducted using Metamorph image processing software 

(Molecular Devices, Downington, PA).  To ensure sequential capture of images of the canaliculi 

despite residual vertical motion of the liver, 3D image volumes were collected at each time-

point.  Each of these volumes were then projected into a single, maximum-projection image 

(Babbey et al., 2012; Ryan et al., 2014), which was used for quantitative analysis.  This 
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procedure had the effect of ensuring collection of images of the same set of canaliculi 

throughout the time series. 

Canalicular fluorescence was quantified as follows.  In order to eliminate crosstalk of the 

nuclear Hoechst fluorescence into the CGamF/CLF fluorescence channel, projections of images 

collected with the blue channel (380-480 nm) were subtracted from the corresponding projected 

images of the green channel (500-550 nm).  A series of binary masks of the canalicular regions 

were generated by applying a high-pass filter to each time-point projection (subtracting a large-

neighborhood (24 pixel square) median filter from each (Maxfield and Dunn, 1990), from which 

single pixels were then eliminated.  The effectiveness of this approach is demonstrated in 

supplementary data (Supplemental Figure 1).  Canalicular fluorescence for each time point was 

quantified as the integrated green channel signal occurring in the corresponding masked region.  

Fluorescence measurements were corrected for background by subtracting the mean signal 

during the 5 time points preceding the appearance of CGamF/CLF in the sinusoids.  Net 

canalicular secretion rates were quantified as the linear slope of the background-corrected 

measurements obtained from the regions under the canalicular mask during the initial interval of 

canalicular uptake (typically 1 minute after infusion, ~2 minutes after injection).  

In order to quantify mean cytosolic fluorescence, a series of masks of nuclear regions 

were created by binarizing projections of the images collected in the blue channel (380-480 nm) 

for each time point.  Cytosolic regions were then identified as regions surrounding the nuclear 

masks, located in two-pixel-wide lines 6 pixels away from the nucleus boundary, after 

subtraction of the corresponding canalicular mask.  Mean cytosolic fluorescence for each time 

point was quantified as the mean green channel signal occurring in the cytosolic regions.  

Plotted values were corrected for background by subtracting the mean signal measured in the 

regions during the 5 time points preceding the appearance of CGamF/CLF in the sinusoids.  

Cytosolic uptake rates were quantified as the linear slope over the initial interval of cytosolic 

uptake (starting immediately upon infusion, typically 1 minutes after injection). 
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Mosaics were assembled from individual volumes by projecting each volume into a 

single projection image, and then aligning and assembling the projections into a single image 

using Adobe Photoshop® (Adobe, Mountain View, CA).  Canalicular and cytosolic fluorescence 

in the mosaics were quantified as described above, and standardized to a common field size to 

compensate for small differences in the size of the resulting mosaics. 

 

Measurement of serum total bile acids from rats exposed to AMG 009 or bosentan 

Biochemical analyses of the effects of drugs on serum bile acid levels were conducted 

using male Sprague-Dawley rats which, like the Wistar rats used in the microscopy studies, 

have been extensively used in Bsep inhibitor studies (Fattinger et al., 2001; Kostrubsky et al., 

2003; Leslie et al., 2007; Morgan et al., 2013) and have been found to show a similar sensitivity 

to bosentan (Fouassier et al., 2002).  Rats approximately 10 weeks of age were purchased from 

Charles River Laboratories (Wilmington, Massachusetts) and allowed at least one week to 

acclimate.  All animals were group housed (2 or 3 per cage) at an AAALAC, Intl-accredited 

facility in nonsterile, ventilated microisolator housing.  The research protocols were approved by 

the Institutional Animal Care and Use Committee.  Animals were given ad libitum access to 

pelleted feed and purified, municipal water.  The light:dark cycle was 12:12 hr with controlled 

temperature and humidity.  Animals were given access to enrichment opportunities.  Animals 

were fasted 2 – 3 hrs prior to the administration of a single IV dose of either AMG 009 (Amgen 

study 111327) or bosentan (Amgen study 118507), and food returned following the final bleed 

prior to the 24 hr time point (2 – 6 hr post dose).  Animals were again fasted 2 – 3 hrs prior to 

the terminal 24 hr bleed. 

The formulations and dosing volumes were as described under the dosing solution 

preparations section.  For the Amgen serum total bile acid studies, 0, 10, 30 and 100 mg/kg 

dose levels were evaluated for AMG 009 or bosentan.  For the AMG 009 study, 6 animals were 

assigned to each dose group where the first 3 animals in each group were bled at 5, 30, 60, and 
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360 min post dose (terminal bleed at 360 min post dose), and the second 3 animals in each 

group were bled at 15, 45, 120, and 1440 min post dose.  Plasma was collected for exposure 

analysis at each time point, and serum collected for total bile acid analysis.  Total bile acids 

were measured using an enzymatic, colorimetric assay for total bile acids from BioQuant (San 

Diego, CA, catalog number BQ092A-EALD) and a Tecan Safire plate reader (540 nm 

wavelength).  In the bosentan studies, there were 10 animals per dose group.  The first 5 

animals in each group were bled at 5, 30, 120 and 1440 min post dose, and the second 5 

animals per dose group were bled at 15, 60, 360, and 1440 min post dose.  Plasma was 

collected for exposure analysis at each time point, and serum collected for total bile acid 

analysis.  Total bile acids were measured using the BioQuant assay described above; however, 

the analysis was performed on a Beckman Coulter AU400 chemistry analyzer. 

 

Analysis of rat plasma samples 

In the intravital imaging studies conducted at Indiana University Medical Center, plasma 

samples were collected in lithium heparin tubes 50 min post IV dose of AMG 009 or bosentan, 

stored at approximately 70˚C, and shipped on dry ice to Amgen for exposure analysis.  Briefly, 

plasma was analyzed by liquid chromatography mass spectrometry using multiple reaction 

monitoring (MRM) in positive ionization mode.  The lower limit of quantitation (LLOQ) for both 

AMG 009 and bosentan in the assay was 100 µg/L.  Verapamil was used as an internal 

standard.  The bioanalytical and toxicokinetic analyses were performed in Watson LIMS. 

To estimate the maximum concentration (Cmax) achieved following a single, bolus IV 

dose of AMG 009 or bosentan in male rats from the 50 min post dose samples collected during 

the intravital studies, exposure data from previously conducted IV studies (Amgen studies 

111327 and 118507) were compared to the intravital exposure values.  For the previous AMG 

009 study (111327), the plasma concentrations for individual animals at the 45 min time point 

were plotted against Cmax.  In this study, three animals per dose group were bled at 15, 45, 120 
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and 1440 min post dose or at 5, 30, 30, and 360 min post dose.  Linear regression of the 

plasma concentration at 45 min post dose versus Cmax was performed, resulting in the equation 

y = 0.571x, where “y” is the plasma concentration and x is the estimated Cmax.  The intravital 

plasma concentrations at 50 min post dose were then substituted for “y” to generate an 

estimated Cmax.  Similarly, for the previous bosentan study (118507), 5 animals per dose group 

were bled at 5, 30, 120 and 1440 min post dose, or at 15, 60, 360 and 1440 min post dose.  

Linear regression of the plasma concentrations at the 30 and 60 min time points versus Cmax 

was performed, resulting in the equation y = 0.710x, where “y” is the plasma concentration and 

x is the estimated Cmax. The intravital plasma concentrations at 50 min post dose for the 

bosentan-treated animals were then substituted for “y” to establish an estimated Cmax. 

 

In vitro functional transport assessments in membrane vesicles over-expressing rat Bsep or 

Mrp2 

Inverted membrane vesicles created from Sf9 insect cells over-expressing rat Bsep or 

Mrp2 (catalog numbers GM0006 and GM0002, respectively) were purchased from Life 

Technologies (Grand Island, NY).  Radioactive substrates for the membrane vesicle assays, 3H-

taurocholate (3H-T) for Bsep and 3H-estradiol-17β-D-glucuronide (3H-E217βG) for Mrp2, were 

purchased from Perkin Elmer (Waltham, MA).  All other reagents and buffers for the membrane 

vesicle assays were of the highest grade possible and were exactly as described in van Staden 

et al (van Staden et al., 2012).  The transporter methods and data analyses performed in the 

present work were also exactly as described in van Staden et al, 2012, however the membrane 

vesicles were for the rat versions of Bsep and Mrp2.  Briefly, rat Bsep (25 µg membrane vesicle 

protein per reaction) or Mrp2 (50 µg membrane vesicle protein per reaction) membrane vesicles 

were incubated with a radiolabeled substrate in the presence or absence of 4 mM ATP.  The 

absence of ATP served as the negative control, and resulting radioactivity when exposed to 

vehicle alone (1.3% DMSO) was considered background or noise.  The with-ATP controls and 
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1.3% DMSO represented true signal.  For the rat Mrp2 assay, 2 mM GSH was added to the 

reaction. The Bsep assay was performed at room temperature, with an incubation time of 15 – 

20 min.  The Mrp2 assay was performed at 37°C, with an incubation time of 20 min.  AMG 009 

or bosentan were evaluated at 10 concentrations, diluted in 1/3 increments, spanning 0 – 133 

µM.  Non-linear regression analysis was performed, and IC50 values generated as an estimate 

of potency as described previously (Morgan et al., 2010; van Staden et al., 2012). 

Additional experiments were conducted to evaluate the in vitro transport of CGamF or 

CLF in rat Bsep or Mrp2 membrane vesicles.  These experiments were conducted exactly as 

described above, however no radioactive substrates were added to the reactions.  The transport 

of CGamF or CLF were tested at 0 – 133 µM, 10 concentrations per fluorescent probe, diluted in 

1/3 increments, and in the presence of 4 mM ATP.  As performed in the radioactivity-based 

assays described above, with or without ATP controls represented maximum signal or 

background fluorescence, respectively. After the filter plates were washed four times with cold 

washing buffer and air dried, 100 µL of 0.1 N NaOH was used to lyse the membrane vesicles.  

The lysates were collected via vacuum filtration into collection plates, and the fluorescence 

measured at an excitation of 490 nm, and an emission of 525 nm using a Tecan Infinite plate 

reader. 

 

Figure preparation 

Quantitative analysis was conducted on raw image data, but micrograph images were 

both contrast enhanced (resetting minimum and maximal values, and adjusting gamma to 1.2) 

and smoothed, using a Gaussian filter.  In color images, the visibility of Hoechst-labeled nuclei 

was enhanced by selectively adjusting the hue, saturation and lightness of the blue channel.  In 

all cases, images to be compared were processed identically to one another and in such a way 

that the processing preserved the visibility of both the dim and bright structures of the original 
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image.  Images were processed, assembled into figures and annotated using Adobe 

Photoshop®).  Graphics were produced and summary statistics obtained using Kaleidagraph 

(Synergy Software, Reading, PA). 

 

Preparation of videos 

Mpg videos were prepared using the TMPGEnc 2.5 video encoder 

(http://www.tmpgenc.net/), from uncompressed AVI files prepared in Metamorph. 

 

Results 

 

Intravital microscopy of CGamF hepatocellular transport in rats 

The metabolism and transport of CGamF have been previously shown to be similar to 

that of native bile salts in rats  (Holzinger et al., 1997) and in perfused rat livers (Holzinger et al., 

1998).  Studies of transfected cells demonstrate that CGamF is a substrate for human NTCP 

and BSEP (Mita et al., 2006) and for rat Ntcp (Boyer et al., 1994).  Studies of cultured rat 

hepatocytes have demonstrated that Bsep expression is required for CGamF secretion (Kruglov 

et al., 2011).  Our studies of inverted membrane vesicles created from Sf9 insect cells over-

expressing rat Bsep or Mrp2 demonstrate that CGamF is transported by both Bsep and, to a 

lesser extent, Mrp2 in an ATP-dependent manner (Supplemental Figure 2).   

Figure 1 shows a time series of multiphoton fluorescence excitation images collected 

from a 364x364 micron region of the liver of a living rat following intravenous injection of 

CGamF.   Nuclei were labeled (blue) by IV injection of Hoechst 33342 30 minutes prior to 

imaging.  These images demonstrate that CGamF (green fluorescence) is rapidly transported 

from sinusoids to bile canaliculi, with detectible fluorescence appearing in canaliculi within a 

minute of infusion, and subsequently increasing in intensity over the next 3 minutes. 
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Intravital microscopy of the effects of AMG 009 on CGamF hepatocellular transport in rats 

In order to evaluate the effect of AMG 009 on hepatic bile salt transport, the same 

approach was used to characterize CGamF transport in rats 20 minutes after IV administration 

of 3, 10 or 30 mg/kg AMG 009 or vehicle.  Figure 2A shows that detectible amounts of CGamF 

are found in canaliculi within 90 seconds of infusion in a vehicle-treated rat, subsequently 

increasing in brightness over the next 3.5 minutes.  In contrast, transport of CGamF into 

canaliculi is slowed or blocked completely in rats treated with either 10 or 30 mg/kg AMG 009, 

respectively.  The inhibitory effect of AMG 009 on CGamF transport is also demonstrated in the 

complete 8 minute series of images shown in an accompanying video (Supplemental Video1), 

which shows that the rapid canalicular transport observed in a vehicle-treated rat is completely 

absent in a rat treated with 30 mg/kg AMG 009.   

These studies were repeated for 3 rats per treatment, and digital image analysis was 

used to quantify canalicular fluorescence over time (Figures 3A-D).  The results of these studies 

show that; canalicular transport of CGamF was essentially blocked in rats treated with 10 or 30 

mg/kg, and in two of three rats treated with 3 mg/kg AMG 009.  It is uncertain why one animal in 

the 3 mg/kg group did not respond as the AMG 009 exposure for this animal was similar to that 

achieved in the other two.  Rates of net secretion, measured as the linear rate of change in 

canalicular fluorescence during the initial secretion period, demonstrate that the rate of 

canalicular transport of CGamF is significantly reduced 20 minutes after treatment with 10 or 30 

mg/kg AMG 009 (Figure 3E).  

In order to evaluate the effects of AMG 009 on CGamF hepatocellular uptake, we 

measured the change in mean cytosolic fluorescence over time for each animal.  These 

quantifications showed similar initial rates of increase for all treatment conditions, although the 

peak cytosolic fluorescence varied between and within each treatment (Figures 4A-D).  

Quantification of uptake rates (measured as the linear rate of change in mean cytosolic 
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fluorescence during the initial uptake period) showed that AMG 009 had no significant effect on 

the CGamF uptake rate (Figure 4E).  These results support the conclusion that AMG 009 

inhibits CGamF transport into the bile by blocking canalicular secretion. 

In the presence of unimpeded uptake (i.e. Ntcp inhibition), one would expect that AMG 

009 doses that block secretion would induce significant cytosolic accumulation of CGamF.  

Surprisingly, the measurements of cytosolic fluorescence shown in Figures 4A-D indicate no 

such effect.   Quantifications of cytosolic CGamF exposure, (measured as cumulative cytosolic 

fluorescence over the period from 6-11 minutes after injection), likewise indicate that inhibition 

of canalicular CGamF secretion by AMG 009 was not accompanied by a corresponding 

increase in cytosolic CGamF levels (Figure 4F).  

Although it was not possible to characterize the kinetics in more than one field for each 

animal, the behaviors of the single fields were essentially reproduced in 9-field mosaics that 

were collected from the surrounding regions 12-15 minutes after probe administration (Figure 

2B).  These mosaics, representing ~1 mm by 1 mm regions encompassing several lobules, 

consistently demonstrated that the behaviors of the single fields used for kinetic analysis were 

representative of larger regions, and also demonstrated that their function was not significantly 

impacted by repeated imaging.  Quantifications of total canalicular fluorescence in these 

mosaics supported the kinetic analyses, demonstrating that AMG 009 significantly reduced the 

total amount of canalicular CGamF at doses of 10 and 30 mg/kg, but had no effect on mean 

levels of CGamF fluorescence in hepatocyte cytosols (Table 1). 

 

Intravital microscopy of the effects of AMG 009 on CLF hepatocellular transport in rats 

The effects of AMG 009 on hepatic transport were also evaluated using the fluorescent 

probe cholyl-lysyl-fluorescein (CLF), a fluorescent probe that is frequently used to assay 

hepatocellular transport (Swift et al., 2010; Letzsch et al., 2015).  While studies of transfected 

cells suggest that biliary secretion of CLF is mediated by MRP2 in humans (de Waart et al., 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 21, 2018 as DOI: 10.1124/dmd.117.079277

 at A
SPE

T
 Journals on February 13, 2019

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


  DMD #79277 
 

17 
 

2010), studies of wild-type and Mrp2-deficient TR- rats indicate that CLF secretion is mediated 

by Bsep in rats (Mills et al., 1997; Mills et al., 1999).  Our studies of inverted membrane vesicles 

created from Sf9 insect cells over-expressing rat Bsep or Mrp2 demonstrate that CLF is 

transported by both Bsep and Mrp2 in an ATP-dependent manner in vitro (Supplemental Figure 

2).   

Similar to results obtained with CGamF, treatment of rats with 30 mg/kg AMG 009 

blocked secretion of CLF into bile canaliculi (Figures 5, 6A), significantly reducing the rate of net 

secretion (Figure 6B, Table 1).  The effect of AMG 009 was demonstrated in the complete 8 

minute series of images shown in an accompanying video (Supplemental Video2), which shows 

that, like CGamF, the rapid canalicular transport of CLF observed in a vehicle-treated rat is 

completely absent in a rat treated with 30  mg/kg AMG 009.  Whereas AMG 009 had no effect 

on CGamF uptake, treatment of rats with 30 mg/kg AMG 009 significantly inhibited CLF uptake, 

reducing the initial rate of uptake by more than 50% in (Figures 6C and 6D).  Although the 

kinetics of cytosolic CLF fluorescence suggest that AMG 009 increases cytosolic exposure to 

CLF, differences in cumulative cytosolic fluorescence, measured from 6-11 minutes after 

infusion, were not statistically significant (Table 1). 

 

Effects of AMG 009 on plasma bile acid levels 

 Serum samples were collected from rats over a 24 hr period following IV injection of 

vehicle, 10, 30 or 100 mg/kg AMG 009 and analyzed for total bile acids.  As shown in Figure 7, 

treatment of animals with 10 and 30 mg/kg had no detectible effect on serum bile acid levels, 

whereas a dose of 100 mg/kg resulted in a statistically significant elevation of total serum bile 

acids from 5 to 120 min post dose.  Bile acids then returned to vehicle control values by 360 and 

1440 min post dose. 

 

Intravital microscopy of the effects of bosentan on CGamF hepatocellular transport in rats 
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Similar studies were conducted in rats treated with 3, 10 or 30 mg/kg bosentan, another 

Bsep inhibitor that has been associated with liver injury in humans (Fattinger et al., 2001).  The 

effects of bosentan on CGamF canalicular secretion were similar to those observed in the 

studies with AMG 009 (Figures 8A and 9), with significant decreases in the rates of net 

secretion apparent at both 10 and 30 mg/kg doses (Figure 9 E).  This inhibitory effect is also 

demonstrated in the complete 8 minute series of images shown in an accompanying video 

(Supplemental Video3), which shows that the rapid canalicular transport observed in a vehicle-

treated rat is significantly inhibited in a rat treated with 30 mg/kg bosentan.  Evaluations of the 9-

field mosaics (Figure 8B) indicated that the results obtained in the kinetic studies of individual 

fields were generally representative; total canalicular fluorescence in these large regions was 

reduced approximately two fold in rats treated with 10 or 30 mg/kg bosentan, although the 

differences were not statistically significant (Table 1). 

Previous studies have demonstrated that bosentan inhibits Na-dependent taurocholate 

uptake by suspended rat hepatocytes (Leslie et al., 2007).  Consistent with these studies, our 

data indicated a dose-dependent inhibition of CGamF uptake by bosentan (Figures 10A-E), 

although the differences in rates were statistically significant only at a dose of 30 mg/kg.  As 

with AMG 009, bosentan had no effect on cytosolic levels of CGamF, quantified either as 

cytosolic exposure from 6-11 minutes after injection (Figure 10F), or as mean cytosolic 

fluorescence in the 9-field mosaics (Table 1).   

 

Intravital microscopy of the effects of bosentan on hepatocyte transport of CLF in rats 

 The effects of bosentan on CLF transport essentially reproduce the effects observed on 

CGamF transport.  As with CGamF, CLF secretion was significantly reduced in rats treated with 

30 mg/kg bosentan; the rate of net secretion was reduced more than 3-fold (Figures 11, 12A 

and 12B, Table 1).  The effect of bosentan on CLF secretion is also demonstrated in the 8 

minute series of images shown in an accompanying video (Supplemental Video4).  The effect of 
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bosentan on hepatocyte uptake of CLF likewise reproduces the results obtained with CGamF; 

although the effect was somewhat larger (3-fold, Figures 12C and D).  Quantifications of 

cumulative cytosolic fluorescence indicate that bosentan induced a small, statistically 

insignificant increase in cytosolic exposure to CLF (Table 1), consistent with results obtained 

with CGamF. 

 

Effects of bosentan on plasma bile acid levels 

Similar to AMG 009, 100 mg/kg IV administration of bosentan to rats resulted in a 

statistically significant elevation of total serum bile acids from 5 to 120 min post dose, and bile 

acid levels returned to vehicle control values by 360 min post dose (Figure 13).   Animals 

receiving an IV dose of 30 mg/kg bosentan had elevated levels of serum bile acids that were 

statistically significant at 5, 15, and 60 min post dose, returning to control levels by 360 min.  

The dose level of 10 mg/kg bosentan had no effect on serum bile acid levels relative to vehicle 

controls throughout the time course. 

 

Relative sensitivity of the intravital microscopy assay relative to measurement of serum bile acid 

levels 

 The studies described above demonstrate that whereas the intravital microscopy assay 

was capable of detecting inhibitory effects of AMG 009 on CGamF secretion at doses as low as 

10 mg/kg, serum bile acids were not increased at doses below 100 mg/kg.  Likewise, bosentan 

was found to significantly inhibit CGamF secretion at doses as low as 10 mg/kg, whereas 

increases in serum bile acids were not apparent at doses below 30 mg/kg. 

In order to express these differences in terms of estimated Cmax/IC50 ratios for Bsep and 

Mrp2, transport studies were conducted to measure IC50 concentrations in inverted membrane 

vesicles expressing either Bsep or Mrp2.  These studies (described in Methods) determined that 

AMG 009 inhibited Bsep with an IC50 of 23 µM and inhibited Mrp2 with an IC50 of 41 µM.  In 
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contrast, bosentan inhibited Bsep (IC50 = 41 µM) but not Mrp2 (IC50 > 133 µM, the highest 

concentration tested).  Since it was not possible to perform serial plasma sampling during the 

imaging procedures, Cmax values for the intravital microscopy studies were estimated based 

upon plasma drug levels measured 50 minute after drug administration.  Using relationships 

between Cmax and plasma concentrations obtained previously (Supplemental Figure 3), plasma 

concentrations obtained for each intravital microscopy study were converted to Cmax values by 

linear regression.  These results are presented in Table 2, which also lists the measured plasma 

drug exposures for each animal. 

 When evaluated in terms of the estimated Cmax/IC50 ratios for Bsep and Mrp2, the 

intravital microscopy assay showed approximately 14-fold greater sensitivity to the effects of 

AMG 009 as compared with measurements of serum total bile acids (Table 3).  Whereas 

significant effects of AMG 009 on serum bile acid levels were not observed at estimated 

Cmax/IC50 ratios below 44 and 25 (for Bsep and Mrp2, respectively), the intravital microscopy 

assay detected significant effects on CGamF secretion at estimated Cmax/IC50 ratios of 3.2 and 

1.8, respectively.  Intravital CLF transport studies were likewise more sensitive than 

measurements of serum bile acids, detecting significant effects at an estimated Cmax/IC50 ratio of 

20 (the only dose tested).  The intravital microscopy assay was also more sensitive for detecting 

the effects of bosentan.  Whereas significant effects of bosentan on serum bile acid levels were 

not observed at Cmax/ Bsep IC50 ratios below 4.6, the intravital microscopy assay detected 

significant effects on CGamF secretion at a Cmax/IC50 ratio of 0.9.   

 

Discussion 

Here we describe studies in which quantitative intravital microscopy was used to 

characterize hepatic transport of fluorescent bile salts CGamF and CLF, identifying dose-

dependent effects of AMG 009 and bosentan on Bsep activity, two compounds associated with 
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liver injury in humans.  While these fluorescent probes cannot represent the full spectrum of bile 

acids, both have been thoroughly characterized as probes of hepatic transport in rats (Boyer et 

al., 1994; Holzinger et al., 1997; Mills et al., 1997; Holzinger et al., 1998; Mills et al., 1999; 

Kruglov et al., 2011), whose transport is mediated by Bsep (Boyer et al., 1994; Mills et al., 1997; 

Mills et al., 1999; Kruglov et al., 2011)(Supplementary Figure 2), indicating their appropriateness 

for studies of Bsep function.  Although CGamF has been extensively used to characterize bile 

salt transport in vitro (Maglova et al., 1995; Cantz et al., 2000; Ye et al., 2008; Kruglov et al., 

2011), the studies described here represent the first use of CGamF for intravital microscopic 

studies of bile acid transport, and the first demonstrations of dose-dependent effects of drugs on 

the individual steps of hepatocyte bile salt transport in vivo. 

 Quantitative analyses of images collected from living rats over time after injection of 

CGamF demonstrated that intravital microscopy was capable of detecting profound effects on 

canalicular secretion at drug dosages well below those that alter levels of serum bile acids.  

Whereas significant elevations of serum bile acids were not observed at doses of AMG 009 

below 100 mg/kg, intravital microscopy studies demonstrated that canalicular secretion of 

CGamF was essentially blocked in rats treated with either 10 or 30 mg/kg, and in two out of 

three rats treated with 3 mg/kg.  Whereas serum bile acid elevations were not observed at 

bosentan doses below 30 mg/kg, intravital microscopy studies detected significant decreases in 

canalicular secretion of CGamF at doses of 10 mg/kg.   

The effects of AMG 009 and bosentan on CGamF secretion were essentially reproduced 

using CLF, suggesting that CLF is another useful fluorescent bile acid probe, despite its lower 

activity as a Bsep substrate relative to CGamF (Supplemental Figure 2).  Consistent with 

previous studies of Mrp2-deficient TR- rats (Mills et al., 1997; Mills et al., 1999), our intravital 

studies, which show that bosentan, an inhibitor of Bsep but not Mrp2, reduces CLF transport 

nearly 3-fold, suggest that in vivo transport of CLF is largely mediated by Bsep in rats.   
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The capability to resolve the hepatocyte cytosol and bile canaliculi gives intravital 

microscopy the unique capability to dissect hepatic transport into the component processes of 

hepatocyte uptake and canalicular secretion, and thus distinguish transport disruptions that 

could have profoundly different consequences.  These studies demonstrated that AMG 009 had 

no effect on the rate of CGamF uptake at any dose, but reduced the rate of uptake at a dose of 

30 mg/kg.  In contrast, that bosentan significantly reduced the rate of uptake of both CGamF 

and CLF at a dose of 30 mg/kg. The basis of these different results is unclear, but may reflect 

differences in the uptake mechanisms of CGamF and CLF.      

The most striking result of these studies is that dosages of AMG009 and bosentan 

sufficient to essentially block canalicular secretion did not increase cytosolic levels of CGamF 

and induced only modest, statistically insignificant increases in cytosolic levels of CLF.  Insofar 

as the hepatotoxicity of Bsep inhibitors is believed to be mediated by the cytosolic accumulation 

of bile acids (Kostrubsky et al., 2003; Morgan et al., 2010; Dawson et al., 2012), the lack of 

accumulation observed in our studies may explain the absence of liver injury in rats treated with 

AMG009 or bosentan.  More significant to the issue of drug development, our measurements of 

the effects of these drugs on uptake and secretion suggest potential mechanisms preventing 

bile acid accumulation in rats. As described below, differences in the role of these mechanisms 

in humans and rats may explain why these drugs cause liver injury in humans but not in rats. 

The lack of cytosolic accumulation in bosentan-treated rats may reflect the fact that 

bosentan not only inhibited canalicular secretion, but also inhibited uptake of CGamF and CLF.  

The effect on uptake is consistent with in vitro studies showing that bosentan inhibits rat Ntcp 

(Leslie et al., 2007).  These same studies demonstrated that rat Ntcp is inhibited by bosentan at 

doses >30-fold lower than human NTCP, a difference that the authors suggest may underlie the 

observation that bosentan hepatotoxicity is observed in humans, but not in rats.  According to 

this model, the accumulation of toxic bile acids that might occur upon Bsep inhibition in humans 

may be prevented in rats by a concomitant inhibition of bile acid uptake.  The intravital 
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microscopy studies presented here provide crucial support for this model, establishing that 

bosentan inhibits both canalicular uptake and secretion in vivo, while failing to increase cytosolic 

levels of fluorescent bile acids even in the absence of canalicular secretion. 

 The absence of cytosolic accumulation of CGamF in rats treated with doses of AMG009 

sufficient to block canalicular secretion cannot be explained by effects on uptake, which we 

found to be completely unaffected.  The lack of accumulation despite unimpeded uptake 

strongly suggests that the cytosolic accumulation of CGamF may be modulated by the activities 

of basolateral efflux transporters, such as Mrp3 or Mrp4.  This interpretation is consistent with 

the results of studies demonstrating that taurocholate is secreted predominantly from the 

basolateral side of cultured rat hepatocytes (Jemnitz et al., 2010).  The authors of this study 

suggest that basolateral secretion protects rat hepatocytes from the accumulation of Bsep 

substrates under conditions of Bsep inhibition.  Based upon the observation that Bsep inhibition 

increased cytosolic taurocholate levels in human hepatocytes 25 fold beyond those observed in 

rat hepatocytes, they also speculated that the enhanced hepatotoxicity of Bsep inhibitors in 

humans may be based upon the relative weakness of this pathway in human hepatocytes.   

The importance of this pathway in human hepatotoxicity of BSEP inhibitors was demonstrated in 

an analysis of more than 600 drugs, which showed that the ability to predict human liver injury 

could be increased by considering effects on both BSEP and MRP proteins (Morgan et al., 

2013).  The unique window into hepatocellular transport provided by the intravital studies 

presented here provide critical support for this model, demonstrating that AMG009 blocks 

canalicular secretion without increasing cytosolic levels of CGamF, despite ongoing uptake, 

strongly suggesting the importance of the basolateral secretory pathway in mediating the effects 

of Bsep inhibitors. 

 A fundamental problem in pharmaceutical development is that many drugs identified as 

safe in studies of laboratory animals are subsequently found to induce liver injury in humans.  

The studies of Leslie and Jemnitz described above provide a template for how a thorough 

This article has not been copyedited and formatted. The final version may differ from this version.
DMD Fast Forward. Published on February 21, 2018 as DOI: 10.1124/dmd.117.079277

 at A
SPE

T
 Journals on February 13, 2019

dm
d.aspetjournals.org

D
ow

nloaded from
 

http://dmd.aspetjournals.org/


  DMD #79277 
 

24 
 

understanding of the effects of Bsep inhibitors on all uptake and secretory pathways may be 

critical to using interpreting animal studies with respect to human safety.  To the degree that the 

human hepatotoxicity of a BSEP inhibitor is mediated by the cytosolic accumulation of bile 

acids, determining the differential effects on the drug on human and rat NTCP will be crucial to 

identifying drugs whose human hepatotoxicity will not be predicted in studies of rats.  The 

hepatotoxicity of BSEP inhibitors may be generally modulated in rats by a basolateral secretory 

pathway whose reduced activity in humans may lead to unanticipated human hepatotoxicity.  

Predictions of human hepatotoxicity will thus depend upon evaluation of the effects of Bsep 

inhibitors on the activity of both human and rat MRP transporters.  The studies presented here 

demonstrate how quantitative intravital microscopy can be used to provide crucial in vivo 

validation of these models, establishing whether in the complex in vivo setting of protein binding, 

metabolism and clearance the candidate drug has the expected effects on uptake, canalicular 

secretion and, crucially, cytosolic accumulation of bile acids. 
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Figure legends 

 

Figure 1 –Intravital microscopy of CGamF transport in the liver of a living rat – Intravital 

multiphoton microscopy was used to collect a series of fluorescence image volumes from the 

liver of a living rat following intravenous injection of 4 mg/kg CGamF.  These image volumes 

were converted into a series of maximum projection (MIP) images for each timepoint, which are 

shown here.   CGamF, initially appearing in the sinusoids was rapidly transported, detectible in 

canaliculi as early as 1 minute after infusion, and subsequently increased in concentration over 

the next 3 minutes.  The rat was injected with Hoechst 33342 (2 mg/kg) 30 min prior to imaging 

to label nuclei (blue).  Scale bar is 50 microns in length. 

 

 

Figure 2 – Effects of AMG 009 on CGamF transport in rat liver – (A) – Time course of 

CGamF transport in the livers of living rats 20 minutes after IV injection with vehicle (left) 10 

mg/kg AMG 009 (middle) or 30 mg/kg AMG 009 (right).  Top row – projected images collected 

90 seconds after infusion of CGamF.  Bottom row – projected images collected 5 minutes after 

infusion of CGamF.  The time-series of MIP images collected over 5 minutes following IV 

injection in rats treated with vehicle or 30 mg/kg AMG 009 is shown in an accompanying video 

(Supplemental Video1) (at ~100x speed).  (B) – Mosaics assembled from 9 adjacent volumes 

collected 12-15 minutes after IV injection of CGamF for a rat treated with vehicle (left) or 30 

mg/kg AMG 009 (right).  Scale bars are 50 microns (A) or 100 microns (B) in length. 

 

Figure 3 –In vivo dose-dependent inhibition of canalicular secretion by AMG 009 in rats  - 

Kinetics of canalicular secretion of CGamF for individual rats treated with vehicle (A), 3 mg/kg 

AMG 009 (B), 10 mg/kg AMG 009 (C) or 30 mg/kg AMG 009 (D). In each graph measurements 
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are shown for each of three replicate rats.  (The small spike in fluorescence at 1 min is an 

artifact of the segmentation procedure, which detects a small fraction of the sinusoid 

fluorescence during infusion.)  (E) – Summary of effects on CGamF net secretion rate (linear 

rate of initial secretion).  (Means ± standard error of the mean). * - P < .05, Dunnett’s multiple 

comparison procedure. N = 3 for all conditions. 

 

Figure 4 – Quantification of the in vivo effects of AMG 009 on hepatocellular CGamF 

uptake - Kinetics of CGamF cytosolic uptake for individual rats treated with vehicle (A), 3 mg/kg 

AMG 009 (B), 10 mg/kg AMG 009 (C) or 30 mg/kg AMG 009 (D). In each graph measurements 

are shown for each of three replicate rats.  (E) – Summary of effects on CGamF net uptake 

(linear rate during initial uptake).  (F)  - Cumulative cytosolic CGamF fluorescence, measured 

from 6-11 minutes after CGamF injection.  (Means ± standard error of the mean). N = 3 for all 

conditions. 

 

Figure 5 – Effects of AMG 009 on CLF transport in rat liver – Time course of CLF transport 

in the livers of living rats 20 minutes after IV injection with vehicle (left) or 30 mg/kg AMG 009 

(right).  The time-series of MIP images collected over 5 minutes following IV injection in rats 

treated with vehicle or 30 mg/kg AMG 009 is shown in an accompanying video (Supplemental 

Video2) (at ~100x speed).  Scale bar is 50 microns in length. 

 

Figure 6 – Quantification of the effects of AMG 009 on CLF transport in vivo – (A) Kinetics 

of CLF canalicular secretion for individual rats treated with vehicle (black symbols) or 30 mg/kg 

AMG 009 (red symbols).  Measurements are shown for each of three replicate rats for each 

condition. (B) Summary of effects on rates of CLF net secretion (linear rate of initial secretion).  

(Means ± standard error of the mean).  (C) Kinetics of cytosolic CLF uptake for individual rats 

treated with vehicle (black symbols) or 30 mg/kg AMG 009 (red symbols).  Measurements are 
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shown for each of three replicate rats for each condition.  (D) – Summary of effects on net CLF 

uptake (linear rate during initial uptake).  (Means ± standard error of the mean). * - P < .05, 

Students t-test.  N = 3 for all conditions. 

 

Figure 7 – Serum total bile acids in rats following a single IV dose of AMG 009.  Serum 

total bile acid levels in rats treated IV with vehicle, 10, 30, or 100 mg/kg AMG 009 over a 24 hr 

time course.  Three rats per time point, per dose group.  Symbols represent mean values at 

each time point, and bars are SEM.  *Dunnett’s post hoc comparison, p < 0.05 (performed in 

GraphPad Prism 7). 

 

Figure 8 –Effects of bosentan on CGamF transport in rat liver – (A) – Time course of 

CGamF transport in the liver of living rats 20 minutes after IV injection with vehicle (left) 10 

mg/kg bosentan (middle) or 30 mg/kg bosentan (right).  Top row – projected images collected 

90 seconds after CGamF infusion.  Bottom row – projected images collected 5 minutes after 

CGamF infusion.  The time-series of MIP images collected over 5 minutes following IV injection 

in rats treated with vehicle or 30 mg/kg bosentan is shown in an accompanying video 

(Supplemental Video3) (at ~100x speed). (B) – Mosaics assembled from 9 adjacent volumes 

collected 12-15 minutes after IV injection of CGamF for a rat treated with vehicle (left) or 30 

mg/kg bosentan (right).  Scale bars are 50 microns (A) or 100 microns (B) in length. 

 

Figure 9 –In vivo dose-dependent inhibition of canalicular secretion by bosentan in rats  - 

Kinetics of canalicular CGamF secretion for individual rats treated with vehicle (A), 3 mg/kg 

bosentan (B), 10 mg/kg bosentan (C) or 30 mg/kg bosentan (D).  In each graph measurements 

are shown for each of three replicate rats, except the 3 mg/kg treatment group for which one 

animal was omitted due to lack of detectible bosentan in plasma.  (E) – Summary of effects on 

the rate of net CGamF secretion (linear rate during initial secretion).  (Means ± standard error of 
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the mean). * - P < .05, ** - P < .01, Dunnett’s multiple comparison procedure. N = 3 for all 

conditions, except the 3 mg/kg treatment group for which one animal was omitted due to lack of 

detectible bosentan in plasma. 

 

Figure 10 –Quantification of the in vivo effects of bosentan on CGamF hepatocellular 

uptake - Kinetics of cytosolic CGamF uptake for individual rats treated with vehicle (A), 3 mg/kg 

bosentan(B), 10 mg/kg bosentan (C) or 30 mg/kg bosentan (D).  In each graph measurements 

are shown for each of three replicate rats, except the 3 mg/kg treatment group for which one 

animal was omitted due to lack of detectible bosentan in plasma.  (E) – Summary of effects on 

net CGamF uptake (linear rate during initial uptake).  (F)  - Cumulative cytosolic CGamF 

fluorescence, measured from 6-11 minutes after injection of CGamF.  (Means ± standard error 

of the mean). * - P < .05, Dunnett’s multiple comparison procedure. N = 3 for all conditions, 

except the 3 mg/kg treatment group for which one animal was omitted due to lack of detectible 

bosentan in plasma. 

 

Figure 11 –Effects of bosentan on CLF transport in rat liver – Time course of CLF transport 

in the livers of living rats 20 minutes after IV injection with vehicle (left) or 30 mg/kg bosentan 

(right).  The time-series of MIP images collected over 5 minutes following IV injection in rats 

treated with vehicle or 30 mg/kg bosentan is shown in an accompanying video (Supplemental 

Video4) (at ~100x speed).  Scale bar is 50 microns in length. 

 

Figure 12 – Quantification of the effects of bosentan on CLF transport in vivo – (A) 

Kinetics of canalicular CLF secretion for individual rats treated with vehicle (black symbols) or 

30 mg/kg bosentan (red symbols).  Measurements are shown for each of three replicate rats for 

each condition.  (B) Summary of effects on rates of net CLF secretion (linear rate of initial 

secretion).  (Means ± standard error of the mean).  (C) Kinetics of cytosolic CLF uptake for 
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individual rats treated with vehicle (black symbols) or 30 mg/kg bosentan (red symbols).  

Measurements are shown for each of three replicate rats for each condition.  (D) – Summary of 

effects on net CLF uptake (linear rate during initial uptake).  (Means ± standard error of the 

mean). ** - P < .01, Students t-test.  N = 3 for all conditions. 

 

Figure 13 – Serum total bile acids in rats following a single IV dose of bosentan.  Serum 

total bile acid levels in rats treated IV with vehicle, 10, 30, or 100 mg/kg bosentan over a 24 hr 

time course.  Three rats per time point, per dose group.  Symbols represent mean values at 

each time point, and bars are SEM.  *Dunnett’s post hoc comparison, p < 0.05 (performed in 

GraphPad Prism 7). 
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Tables 

 
Table 1  - Summary of intravital microscopy measurements 

  

Net  

canalicular secretion rate 

(AUs/min) 

9-field 

canalicular 

fluorescence (AUs) 

Cytosolic uptake rate 

(AUs/min) 

Cumulative cytosolic 

exposure 

(AUs) 

9-field cytosolic 

fluorescence 

(AUs) 

  CGamF CLF CGamF CGamF CLF CGamF CLF CGamF 

AMG 009 Vehicle 
5.426e+06  

± 1.301e+06 

2.104e+07  

± 6.176e+06 

1.1870e+08  

± 5.321e+07 

180.7  

± 29.17 

135.9  

± 7.217 

4765  

± 550.3 

2787.8  

± 505.4 
587.5 ± 21.50 

 3 mg/kg 
2.057e+06  

± 1.701e+06 
ND 

4.455e+07  

± 1.457e+07 

154.0  

± 17.42 
ND 

4143  

± 623.2 
ND 598.3 ± 24.29 

 10 mg/kg 
3.273e+05  

± 52250 * 
ND 

2.873e+07  

± 7.516e+06 * 

180.6  

± 7.160 
ND 

5663  

± 469.5 
ND 662.0 ± 18.58 

 30 mg/kg 
-1.1612e+05  

± 82430 * 

27870  

± 25380 * 

2.733e+06  

± 7.694e+05 * 

140.5  

± 10.86 

68.90  

± 14.95* 

4283  

± 1000. 

3450  

± 897.6 
568.7 ± 13.67 

          

Bosentan Vehicle 
1.238e+07  

± 1.816e+06 

1.622e+07  

± 1.189e+06 

1.839e+08  

± 3.380e+07 

248.80  

± 22.96 

143.40  

± 7.538 

5007  

± 450.7 

2809  

± 164.9 
512.0 ± 12.70 

 3 mg/kg 
9.950e+06  

± 1.453e+06 
ND 

1.687e+08  

± 4.719e+07 

148.90 

± 58.61 
ND 

2882  

± 412.9 
ND 470.0 ± 3.000 

 10 mg/kg 
6.854e+06  

± 6.057e+05 * 
ND 

1.120e+08   

± 2.719e+06 

137.6  

± 31.12 
ND 

3878  

± 993.2 
ND 

474.0  

± 5.292 

 30 mg/kg 
2.555e+06  

± 9.804e+05 ** 

4.681e+06  

± 2.182e+06 ** 

1.039e+08  

± 1.180e+07 

128.5  

± 7.611 * 

57.62  

±10.75** 

5110  

± 623.4 

3683  

± 489.7 
503.7 ± 14.35 

ND – not determined 

* - P < .05, ** - P < .01, Dunnett’s multiple comparison, Students t-test for single 

comparisons.  N = 3 for all conditions, except the 3 mg/kg bosentan treatment group (CGamF 

studies) for which one animal was omitted due to lack of detectible bosentan in plasma and the 

9-field integrated CGamF measures in vehicle treated rats in the AMG009 studies, for which 

mosaics were collected for only 2 rats. 
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Table 2 – Estimated drug exposure for the intravital imaging studies 

Compound Dose 
(mg/kg) 

Fluorescent 
Probe Subject Plasma 

(µg/L) 

Estimated 
Cmax 

(µg/L) 

Estimated 
Cmax (µM) 

Mean Estimated           
Cmax (µM)                     

AMG 009 

3 CGamF 
8 1970 3500 6 

11 9 3240 5700 10 

10 5280 9200 16 

10 CGamF 
11 28600 50000 86 

74 12 25000 44000 76 

13 20200 35000 60 

30 CGamF 
14 120000 210000 360 

510 15 191000 330000 570 

16 195000 340000 590 

30 CLF 
17 177000 310000 530 

430 18 135000 240000 410 

19 115000 200000 350 

Bosentan 

3 CGamF 
1 BQL - - 

6.3 2 1340 1900 3.4 

3 3650 5100 9.2 

10* CGamF 
4 15700 22000 40 

37 
5 13800 19000 34 

30* CGamF 
6 41100 58000 110 

170 
7 86700 120000 220 

30 CLF 
20 59800 84000 150 

210 21 101000 140000 250 

22 88400 120000 220 
Exposure of AMG 009 or bosentan during the intravital imaging studies, and an 

estimated Cmax based on previously conducted IV studies with these compounds.  As shown in 

this table, subject number 1 in the 3 mg/kg bosentan dose group had no measurable exposure 

(limit of quantitation was 100 µg/L).  Given that the other two animals in this dose group had 

plasma concentrations 13 – 36x the limit of quantitation, it was concluded that subject number 1 

was not properly dosed and imaging data for this animal was removed from the dataset.  

Formula weight for AMG 009 is 581.47, and for bosentan is 551.62. BQL = below the 

quantitation limit.  *Blood was not collected for exposure analysis for one animal in each of the 

10 and 30 mg/kg bosentan groups. 
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Table 3 - Estimated Cmax/transporter IC50 ratios relative to effects on total serum bile acid 

levels versus intravital imaging. 

     
Significant effect on: 

Compound 
Dose 
level 

(mg/kg) 

Cmax                  
(µM, total 

drug) 

Cmax/Bsep 
IC50 ratio 

Cmax/Mrp2 
IC50 ratio 

Serum 
total bile 

acids 

Net rate of 
CGamF 

canalicular 
secretion 

Net rate of 
CLF 

canalicular 
secretion 

AMG 009 

3 11 0.48 0.27 NT No NT 

10 74 3.2 1.8 No Yes NT 

30* 470 20 11 No Yes Yes 

100** 1010 44 25 Yes NT NT 

Bosentan 

3 6.3 0.15 NC NT No NT 

10 37 0.90 NC No Yes NT 

30* 190 4.6 NC Yes Yes Yes 

100** 390 9.50 NC Yes NT NT 

Plasma was collected 50 minutes post IV dose of AMG 009 or bosentan during the 

intravital imaging studies.  Cmax values were estimated for the intravital studies by comparing the 

50 minute plasma concentrations to comparable time points from previously conducted 

pharmacokinetic studies in rats with AMG 009 or bosentan.  *Estimated Cmax is the mean value 

for the CGamF and CLF experiments.  **Actual mean Cmax values from the previous studies 

conducted by Amgen.  BQL = below the quantitation limit, NC = not calculated, NT = not tested. 
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Figures 
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Figure 2 
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Figure 3 
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