
A NEW PROOF OF A NORDGREN, ROSENTHAL AND

WINTROBE THEOREM ON UNIVERSAL OPERATORS

CARL C. COWEN AND EVA A. GALLARDO-GUTIÉRREZ

Abstract. A striking result by Nordgren, Rosenthal and Wintrobe states that the Invariant Sub-

space Problem is equivalent to the fact that any minimal invariant subspace for a composition

operator Cϕ induced by a hyperbolic automorphism ϕ of the unit disc D acting on the classical

Hardy space H2 is one dimensional. We provide a completely different proof of Nordgren, Rosenthal

and Wintrobe’s Theorem based on analytic Toeplitz operators.

1. Introduction

In the eighties, Nordgren, Rosenthal and Wintrobe [7] gave an equivalent formulation of the long-

standing open question known as the Invariant Subspace Problem stated in terms of composition

operators acting on the classical Hardy space H2. In particular, they showed that if ϕ is a hyperbolic

automorphism of the complex unit disc D, then every bounded operator on a complex Hilbert space

of dimension greater than one has a nontrivial invariant subspace if and only if the minimal nontrivial

invariant subspaces for the composition operator induced by ϕ in H2

Cϕf = f ◦ ϕ, (f ∈ H2)

are one dimensional.

Indeed, Nordgren, Rosenthal and Wintrobe proved that Cϕ−λI acting on the Hardy space H2 is a

universal operator (in the sense of Rota) for any λ in the interior of the spectrum of Cϕ. Recall that

U is universal in the sense of Rota acting on Hilbert space H if for each non-zero bounded operator

A, there is an invariant subspace M for U and a non-zero number µ such that µA is similar to U |M ,

that is, there is a linear isomorphism X of H onto M such that UX = µXA (see [9]).

Universal operators in the sense of Rota have attracted the interest of many operator theorists. The

main reason for that is clear: the lattice of its invariant subspaces has such a rich structure that they

model every operator on a separable infinite dimensional Hilbert space. There are several well-known

examples of universal operators in the literature: the adjoint of the shift of infinity multiplicity, adjoints

of analytic Toeplitz operators, or operators that have a reducing subspace on which the operator is

universal and unitarily equivalent to the adjoint of an analytic Toeplitz operator. For more about the

subject, we refer to Chapter 8 of the recent monograph by Chalendar and Partington [2].
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Needless to say, proving that a given operator with a rich lattice of invariant subspaces is universal

is not an easy task. In 1969, Caradus proved a sufficient condition to provide universal operators

on Hilbert spaces (see [1, p. 527]). The best known examples of universal operators, including the

operator Rota used to introduce the concept, satisfy the hypotheses of Caradus’ Theorem.

Caradus Theorem. If H is a separable Hilbert space and U is a bounded, linear operator on H such

that:

(i) The null space of U is infinite dimensional.

(ii) The range of U is H.

Then U is universal for H.

In this respect, what it was shown by Nordgren, Rosenthal and Wintrobe in [7] is that Cϕ − λI
acting on H2 satisfies Caradus Theorem for any λ in the interior of the spectrum of Cϕ. The heart of

the proof deals with the ontoness of Cϕ−λI on H2, and it relies on a key description of an orthogonal

decomposition of H2. The orthogonal decomposition is based on the fact that Blaschke products

induce isometric multiplication operators in H2 (Wold’s Theorem), and considering those whose zero

sequence is {ϕn(z0)}n∈Z for z0 ∈ D, it is possible to describe precisely the subspaces in the orthogonal

decomposition.

In this note, we present a different proof of Nordgren, Rosenthal and Wintrobe’s Theorem by means

of analytic Toeplitz operators, avoiding the orthogonal decomposition of H2 and the fact that Blaschke

products induce isometric multiplication operator in H2. Let us point out that other simplifications

in the literature of the proof of Nordgren, Rosenthal and Wintrobe’s Theorem in the Hardy space

seem to be unsuccessful, as Professor Jonathan R. Partington informed us (see [8]).

For the sake of self-completeness, in what follows we recall some preliminaries and prove Nordgren,

Rosenthal and Wintrobe’s Theorem in Section 2.

1.1. Preliminaries. In [4], the authors showed that the composition operators on H2 whose symbols

are hyperbolic automorphisms of the unit disk fixing ±1 comprise a one-parameter group which is

similar to the adjoint of the analytic Toeplitz operators coming from covering maps of annuli centered

at the origin whose radii are reciprocals. More precisely, consider the set (for −∞ < t < ∞) of

composition operators with symbols Cϕt where

ϕt(z) =
(1 + e−t)z + (1− e−t)
(1− e−t)z + (1 + e−t)

which has fixed points at 1 and −1 and derivatives at these fixed points e−t and et. Thus, for t > 0,

the Denjoy-Wolff point of ϕt is 1. Easy computations show that this is a one-parameter group of

operators, CϕtCϕs = Cϕs+t , and it is not too difficult to see that this group is strongly continuous.

Moreover, the infinitesimal generator H is given by

Hf(z) = f ′(z)
1− z2

2
,
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which is a closed operator with domain {f ∈ H2 : f ′(z)(1− z2) ∈ H2}. In addition, a straightforward

computation shows that the function wλ

wλ(z) =

(
1 + z

1− z

)λ
=

(
1− z
1 + z

)−λ
, (z ∈ D),

is an eigenvector of the infinitesimal generator corresponding to λ and it is in H2 for −1/2 < Reλ <

1/2. Note that the eigenspaces of the infinitesimal generator are one-dimensional. Use of the theory

of semigroups or a direct computation from the expressions for ϕt and wλ shows that Cϕtwλ = eλtwλ.

In particular, for t > 0, the point spectrum of Cϕt is

σp(Cϕt) = {λ : e−t/2 < |λ| < et/2}.

On the other hand, the analytic Toeplitz operators whose symbols are maps of the disk onto annuli

centered at the origin with radii that are reciprocals of each other, that is, the same family of annuli

as occur above as the spectra of the composition operators, are given by

ψt(z) = e(
ti
π log( 1−z

1+z )) =

(
1− z
1 + z

) ti
π

,

where we choose a normalization so that t = 1 corresponds to the annulus {ζ : e−1/2 < |ζ| < e1/2}.
These Toeplitz operators also form a strongly continuous group, TψtTψs = Tψs+t , and the infinites-

imal generator is given by

(Gh)(z) =
i

π
log

(
1− z
1 + z

)
h(z)

for h in H2. That is, the infinitesimal generator, G, of the group is an (unbounded) analytic Toeplitz

operator. As is well known, the kernel functions for evaluation at α in the disk, Kα(z) = (1− αz)−1,

are eigenvectors for adjoints of analytic Toeplitz operators

G∗Kα = − i
π

log

(
1− α
1 + α

)
Kα

and we see, also in this case, that the eigenspaces are one dimensional. We also have

T∗ψtKα = ψt(α)Kα =

(
1− α
1 + α

)− tiπ
Kα.

For −1/2 < Reλ < 1/2, a computation shows that

(1) wλ =

(
1− z
1 + z

)−λ
and vλ =

(
1−
−i sin

(
λπ2
)

cos
(
λπ2
) z

)−1

are eigenvectors that correspond to the eigenvalue λ for the infinitesimal generators H and G, respec-

tively (see [4]). By matching up such eigenvectors, the authors prove the following theorem which will

be the main tool in Section 2.

Theorem ([4, Theorem 5]). Let the vectors wλ and vλ be as described in Equation (1) for −1/2 <

λ < 1/2. Then the following are true:

(i) The sets {wλ : −1/2 < λ < 1/2} and {vλ : −1/2 < λ < 1/2} are each linearly independent

and have dense span in H2.
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(ii) If S is the operator obtained from

(?) S(vλ) =
1√
2
wλ

defining it to be linear from the span of {vλ : −1/2 < λ < 1/2} to the span of {wλ : −1/2 <

λ < 1/2}, then S can be extended to be a bounded operator of H2 onto itself with bounded

inverse.

(iii) The operator S of Equation (?) gives a similarity of the one-parameter groups {Cϕt}t∈R and

{T∗ψt}t∈R. In particular, for each real number t,

CϕtS = ST∗ψt

With this theorem at hand, we are in position to show a Toeplitz operator based on proof of

Nordgren, Rosenthal and Wintrobe’s Theorem on universality of Cϕ − λI.

2. A Toeplitz operator proof of a Nordgren, Rosenthal and Wintrobe’s Theorem

In this section, we show a proof of the following theorem

Theorem ([7, Theorem 6.2]). If ϕ is a hyperbolic disc automorphism and λ is in the interior of the

spectrum of Cϕ, then Cϕ − λI is universal.

Proof. Since every operator similar to a universal operator is universal, it suffices to consider a hy-

perbolic disc automorphism with fixed points ±1. In particular, for t0 > 0 we may consider

ϕt0(z) =
(1 + e−t0)z + (1− e−t0)

(1− e−t0)z + (1 + e−t0)

which has fixed points at 1 and −1 and derivatives at these fixed points e−t0 and et0 .

Let λ in the interior of the spectrum. Then λ ∈ σp(Cϕt0 ) (see [3], for instance), and therefore

e−t0/2 < |λ| < et0/2. By (iii) in [4, Theorem 5] stated above, Cϕt0−λI is similar to T∗ψt0−λI = T∗
ψt0−λ̄

.

So, we are reduced to show that T∗
ψt0−λ̄

satisfies Caradus Theorem.

Observe that the kernel of T∗
ψt0−λ̄

is infinite dimensional since e−t0/2 < |λ| < et0/2, the map ψt0
takes any point in the annulus infinitely many times and the corresponding reproducing kernels are

linearly independent. So, hypotheses (i) in Caradus Theorem is automatically satisfied.

In order to show that condition (ii) in Caradus Theorem is satisfied, observe that ψt0 − λ̄ is a

bounded analytic function in D and there exists ` > 0 so that

|ψt0(eiθ)− λ̄| ≥ `

almost everywhere on the unit circle ∂D. Indeed, one may take ` the distance from λ to the boundary

of the spectrum of T∗ψt0 , i. e. , ∂σ(Tψt0 ) = {|z| = e−t0/2} ∪ {|z| = et0/2}. Obviously, such a distance

is strictly positive because λ belongs to the interior of the spectrum.

Then 1/(ψt0 − λ̄) is a bounded function in ∂D; and therefore the (non-analytic) Toeplitz operator

T1/(ψt0−λ̄) is a left inverse for the analytic Toeplitz operator Tψt0−λ̄. Hence, T∗
ψt0−λ̄

has a right

inverse, and therefore is onto. So, T∗
ψt0−λ̄

is universal because of Caradus Theorem; which concludes

the proof. �
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Remark 2.1. Let us point out that the argument addressed to prove condition (ii) in Caradus

Theorem is a particular instance of a more general result: If f is a bounded analytic function in D
and there is ` > 0 so that |f(eiθ)| ≥ ` almost everywhere on the unit circle, then 1/f is in L∞(∂D)

and the (non-analytic) Toeplitz operator T1/f is a left inverse for the analytic Toeplitz operator Tf .

(See [5, Lemma 3], for instance).

Finally, let us remark that the proof presented here of [7, Theorem 6.2], avoiding to make use of

the fact that Blaschke products induce isometric multiplication operators in H2, might be extended

to other spaces of analytic functions to exhibit concrete examples of universal operators.
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