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Highlights 

 Pk1a & Pk1b are required for normal polarity and migration of cranial neural crest 

 Pk1-deficient neural crest cells adopt rounded morphologies and cluster dorsally 

 Pk1 regulates the epithelial-to-mesenchymal transition of cranial neural crest 

 Pk1b regulates Cadherin levels in the epithelial-to-mesenchymal transition 

 

Abstract 

The neural crest—a key innovation of the vertebrates—gives rise to diverse cell types including 

melanocytes, neurons and glia of the peripheral nervous system, and chondrocytes of the jaw and skull. 

Proper development of the cephalic region is dependent on the tightly-regulated specification and 

migration of cranial neural crest cells (NCCs). The core PCP proteins Frizzled and Disheveled have 

previously been implicated in NCC migration. Here we investigate the functions of the core PCP proteins 

Prickle1a and Prickle1b in zebrafish cranial NCC development. Using analysis of pk1a and pk1b mutant 

embryos, we uncover similar roles for both genes in facilitating cranial NCC migration. Disruption of 

either gene causes pre-migratory NCCs to cluster together at the dorsal aspect of the neural tube, where 

they adopt aberrant polarity and movement. Critically, in investigating Pk1-deficient cells that fail to 

migrate ventrolaterally, we have also uncovered roles for pk1a and pk1b in the epithelial-to-mesenchymal 

transition (EMT) of pre-migratory NCCs that precedes their collective migration to the periphery. 

Normally, during EMT, pre-migratory NCCs transition from a neuroepithelial to a bleb-based and 

subsequently, mesenchymal morphology capable of directed migration. When either Pk1a or Pk1b is 

disrupted, NCCs continue to perform blebbing behaviors characteristic of pre-migratory cells over 

extended time periods, indicating a block in a key transition during EMT. Although some Pk1-deficient 

NCCs transition successfully to mesenchymal, migratory morphologies, they fail to separate from 

neighboring NCCs. Additionally, Pk1b-deficient NCCs show elevated levels of E-Cadherin and reduced 

levels of N-Cadherin, suggesting that Prickle1 molecules regulate Cadherin levels to ensure the 

completion of EMT and the commencement of cranial NCC migration. We conclude that Pk1 plays 

crucial roles in cranial NCCs both during EMT and migration. These roles are dependent on the 

regulation of E-Cad and N-Cad. 
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Introduction 

 

The neural crest is an embryonic, multipotent cell population that arises from the lateral edges of the 

developing neural plate, at the interface between neural and non-neural ectoderm (reviewed in Hall, 2000; 

Le Douarin and Kalcheim, 1999; Theveneau and Mayor, 2012). It is capable of giving rise to a large array 

of cell types that contribute to the vertebrate body plan (reviewed in Donoghue et al., 2008) including 

melanocytes, the neurons and glia of the entire peripheral nervous system, and in the cranial region only, 

the chondrocytes that form the bony elements of the jaw and skull. As a defining feature of the vertebrate 

phylum, neural crest has been key to the evolution of the complex vertebrate cephalic region (Gans and 

Northcutt, 1983). 

 

Induction, specification, and onset of migration of neural crest cells (NCCs) occur in concert with 

neurulation. In teleosts such as zebrafish, neurulation processes differ markedly from those in other 

vertebrate models. Specifically, the zebrafish neural ectoderm does not form an epithelial neural plate that 

folds to form a central lumen, as in amniotes and amphibians. Rather, the zebrafish neural plate cells 

begin to converge at about 10 hours post fertilization (hpf), to produce a multilayered neural keel and 

subsequently a neural rod, with the first NCCs specified as early as 12 hpf at the lateral edges of the 

neural ectoderm. As neurulation continues, neuroepithelial cells undergo polarized cell divisions to 

establish the midline by 18 hpf, allowing the rod to cavitate and produce the neural tube (reviewed in 

Clarke, 2009). Throughout neurulation NCCs continue to emerge from the dorsal-most neural tissue and 

migrate away (Jimenez et al., 2016; Schilling and Kimmel, 1994). 

 

NCCs travel large distances through the developing embryo and display a migratory potential that has 

been likened to that of metastatic cancer cells (reviewed in Gallik et al., 2017; Maguire et al., 2015). Like 

cancer cells, before NCCs migrate to colonize the embryo, they undergo an epithelial-to-mesenchymal 

transition (EMT) during which they lose their epithelial character (Kaufman et al., 2016). In a variety of 

vertebrate models, including zebrafish, NCCs reduce their previously-high levels of E-Cadherin during 

EMT and up-regulate N-Cadherin to become highly-protrusive, migratory mesenchymal cells (Acloque et 

al., 2009; Hay, 2005; Scarpa et al., 2015; Wheelock et al., 2008). Interestingly, despite the well-

established down-regulation of E-Cadherin in migratory NCCs, Xenopus E-Cadherin is nevertheless 

required for NCC migration (Huang et al., 2016). During EMT, NCCs have been reported to show 

changes in expression levels of other Cadherin molecules as well, including Cadherin-6, Cadherin-7, and 

Cadherin-11 (Acloque et al., 2009; Berndt et al., 2008; Clay and Halloran, 2014; reviewed in Taneyhill 

and Schiffmacher, 2017). In tandem, NCCs alter the expression of polarity molecules that contribute to 

their high directionality: in both Xenopus and zebrafish embryos, presumptive NCCs lose apico-basal 
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polarity, and subsequently activate non-canonical Wnt/PCP signaling molecules (Berndt et al., 2008; 

reviewed in Gallik et al., 2017; Lee et al., 2006; Mayor and Theveneau, 2014; Sauka-Spengler and 

Bronner-Fraser, 2008; Scarpa et al., 2015; Thiery and Sleeman, 2006; Thompson and Williams, 2008). 

These dynamic molecular changes are tightly associated with the changes in cell morphology and 

behavior that accompany the onset of NCC migration. 

 

Recently, the classical understanding of the process of EMT that precedes a variety of cell migration, 

wound healing, and metastasis processes, has come under greater scrutiny. Classical studies have treated 

the EMT transition as a binary state change from a tightly-packed, highly-adhesive epithelial morphology 

to a more dispersed, highly-protrusive, migratory mesenchymal one. By contrast, more recent studies 

from different cell types across multiple model organisms have revealed a range of transient cell states 

that span the ‘spectrum’ or ‘continuum’ from epithelial to mesenchymal morphologies (reviewed in 

Campbell and Casanova, 2016; Nieto et al., 2016). For instance, metastatic carcinoma cells that show 

hybrid characteristics during the process of EMT have been described as occupying an intermediate 

‘metastable’ state, owing to their transitory morphology (reviewed in Lee et al., 2006; Savagner, 2010). 

Similarly, zebrafish cranial NCCs have also been reported to adopt transitional morphologies during EMT 

between the fully-neuroepithelial morphology and the migratory, mesenchymal morphology (Berndt et 

al., 2008; Clay and Halloran, 2014). First, presumptive NCCs in the neuroepithelium detach from their 

apical surfaces. These pre-migratory NCCs at the dorsal aspect of the neural tube change morphologically 

from elongated, tightly-packed cells to loose, rounded cells capable of bleb-based protrusions. 

Subsequently, NCCs adopt highly mesenchymal, filopodial- and lamellipodial-based morphologies 

capable of migration in streams (Berndt et al., 2008; Clay and Halloran, 2014). Since ‘EMT’ has often 

been used interchangeably with the term ‘delamination’, an appreciation for the particular state changes 

that need to occur during the EMT has been lacking, causing difficulty in ascribing particular phenotypes 

to specific phases of neural crest development.  

 

Many collective cell migration processes in vertebrates, including NCC migration, depend on Planar Cell 

Polarity (PCP) molecules (reviewed in Davey and Moens, 2017; Roszko et al., 2009). The non-canonical 

Wnt/PCP pathway influences cranial NCC migration in both Xenopus and zebrafish by mediating contact 

inhibition of locomotion (CIL) (Carmona-Fontaine et al., 2008; De Calisto et al., 2005; Matthews et al., 

2008; Scarpa et al., 2015; Theveneau et al., 2010; Theveneau et al., 2013). Specifically, highly-protrusive 

migratory NCCs contact one another, activate the core PCP proteins Frizzled and Disheveled at the points 

of contact, and reorient their protrusions to migrate away from each other (Carmona-Fontaine et al., 2008; 

Scarpa et al., 2015; Szabo et al., 2016; Theveneau et al., 2013). 
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The role of the core PCP protein Prickle (Pk) in cranial neural crest development has not previously been 

comprehensively investigated. However, several characteristics make it an attractive candidate for study. 

In Drosophila, Pk is required to amplify cellular asymmetries of other core PCP proteins, and differential 

expression of Pk isoforms is critical for the establishment of tissue polarity (Ambegaonkar and Irvine, 

2015; Merkel et al., 2014; Sharp and Axelrod, 2016; Tree et al., 2002; reviewed in Zallen, 2007). 

Additionally, in vertebrates, multiple orthologs of Drosophila Pk control the localization and dynamics of 

other core PCP proteins in morphogenesis and collective cell migration (reviewed in Davey and Moens, 

2017; Jussila and Ciruna, 2017). Like other core PCP proteins, Pk1 molecules play roles in convergent 

extension during gastrulation and neurulation (Ciruna et al., 2006; Sepich et al., 2011; Veeman et al., 

2003; Yin et al., 2008), in organizing the sensory cells of the inner ear (reviewed in May-Simera and 

Kelley, 2012; Rida and Chen, 2009), in the polarization of ciliated epithelia (Butler and Wallingford, 

2015), and in the migration of facial branchiomotor neurons (Carreira-Barbosa et al., 2003; Mapp et al., 

2011; Mapp et al., 2010).  

 

In this study, we present evidence for roles of the zebrafish Prickle1 paralogs, Prickle1b (Pk1b) and 

Prickle1a (Pk1a), in both EMT and NCC migration. Our investigation has utilized both our previously-

described pk1b fh122/ fh122 mutant (Mapp et al., 2011), and a new pk1ach105/ch105 mutant. Time-lapse imaging 

analysis reveals that disruption of either pk1b or pk1a causes pre-migratory NCCs to cluster with 

neighboring NCCs at the dorsal aspect of the neural tube, adopt aberrant cell polarity, and migrate in an 

inappropriate directions along the anteroposterior (AP) axis of the dorsal neural tube. Unlike wild-type 

pre-migratory NCCs that rapidly transition from a neuroepithelial morphology to a transient blebbing 

state to a mesenchymal morphology, we find that dorsal pre-migratory NCCs in Pk1-deficient specimens 

maintain blebbing behaviors over extended periods. Those Pk1-deficient NCCs that do successfully 

transition to the mesenchymal state, fail to separate from neighboring NCCs, consistent with defects in 

CIL. Further, the two pk1 paralogs function redundantly in EMT and migration. Finally, we find that 

Pk1b regulates E-Cadherin both in pre-migratory and migratory NCCs, and N-Cadherin in migratory 

cells. Our findings demonstrate that the core PCP Pk1 molecules are required not only in regulating 

migration, but also in the process of EMT that precedes and is required for the normal migration of the 

cranial neural crest.  
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Materials and methods 

 

Zebrafish husbandry 

 

Zebrafish (Danio rerio) were maintained using standard procedures and used in accord with IACUC-

approved protocols. Embryos were maintained in E3 solution (in mM: 5.0 NaCl, 0.17 KCl, 0.33 CaCl, 

0.33 MgSO4) at 24ºC-28.5ºC and staged as described (Kimmel et al., 1995). Embryos were obtained from 

crosses of adult fish stocks of mutants and/or transgenics. Specimens analyzed at stages later than 24 

hours post-fertilization (hpf) were treated with 0.2 mM 1-phenyl 2-thiourea (PTU; Sigma) from 24 hpf 

onwards to inhibit melanin synthesis. Transgenic zebrafish lines Tg(-4.9sox10:EGFP)ba2 (hereafter 

Tg(sox10:EGFP) (Carney et al., 2006) and Tg(-7.2sox10:mRFP)vu234 (hereafter Tg(sox10:mRFP)) (Kirby 

and Hutson, 2010) and the mutant line pk1bfh122 (Mapp et al., 2011) have been previously described.  

 

In situ hybridization 

Detection of pk1b (Rohrschneider et al., 2007), pk1a (Carreira-Barbosa et al., 2003; Veeman et al., 2003), 

crestin (Solomon et al., 2003), and dlx2 (Akimenko et al., 1994) by in situ hybridization was carried out 

as previously described (Prince et al., 1998) using NBT/BCIP as the enzyme substrate. Embryos were 

cleared in 70% dimethylformamide overnight at 4°C, washed twice with 100% Methanol for 30 minutes 

at room temperature, and then mounted in 80% glycerol in PBS+0.1%Tween-20. Images were acquired 

using a a Leica DFC490 camera on a Zeiss Axioskop microscope. 

 

Generation of the pk1ach105 mutant  

 

The CHOPCHOP website (Montague et al., 2014) was used to select genomic target sites on the zebrafish 

pk1a locus. Two gRNAs targeting exon 2 were designed and one gRNA was selected based on higher 

efficacy as determined using a T7 endonuclease I assay (below). The following sequence containing an 

SP6 promoter (underlined), genomic target site (gRNA sequence in lowercase, with PAM sequence 

italicized) and an optimized single guide (sg) RNA scaffold, modified for efficient transcription with an 

extended stem loop designed to improve interaction with the Cas9 protein (Chen et al., 2013) was 

purchased as a gBlock from Integrated DNA Technologies and used as a template for transcribing 

sgRNA:  

5’-

AAAAATTTAGGTGACACTATAgtgatggagctggagaatcggTTTAAGAGCTATGCTGGAAACAGCATA
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GCAAGTTTAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTT

TTT-3’ 

sgRNA and Cas9 RNA were transcribed, purified and injected as previously described (Dalgin and 

Prince, 2015). The sgRNA (final stock concentration: 100-200 ng/µl) and Cas9 mRNA (final stock 

concentration: 600 ng/µl) were transcribed using the MEGAscript SP6 Kit (Ambion), treated with 

TURBO DNase from the Ambion kit, extracted using an equal volume of phenol/chloroform, and 

precipitated using 3 volumes of 100% ethanol. RNA was resuspended in water, and 70 pg sgRNA and 

500 pg Cas9 RNA were injected into one-cell stage embryos. Genomic DNA was extracted from 10-15 

48 hpf embryos. DNA was resuspended in 10 l TE buffer and stored at 4ºC. A PCR reaction using 2 µl 

of genomic DNA was assembled using primers that amplified a 230 bp genomic region flanking the pk1a 

target site (forward primer 5’-GTAAGTGTGTGGCGGTA-3’, reverse primer 5’-

CCATACCTGCTCTGGTCTGAGT-3’). The T7 Endonuclease Assay I was performed on PCR 

amplicons as a measure of gRNA efficiency as previously described (Dalgin and Prince, 2015). PCR 

products were subcloned into the pGEM-T Easy vector (Promega A1360) according to manufacturer’s 

protocols, and clones were sequenced to identify insertion/deletion mutant alleles. 

 

Injected F0 specimens were raised to adulthood and outcrossed to wild-type AB embryos. Genomic DNA 

was extracted from 10-15 F1 offspring embryos per cross, PCR amplified as described above, and 

subcloned to identify INDELs. Sequence information from F1 offspring identified two founder F0 fish 

with putative germline mutations. F1 offspring from these founders were then raised to adult stages, and 

DNA isolated from fin clips used to genotype putative mutants as described (Jing, 2012). Of these, 

multiple F1 fish were heterozygous for specific individual mutations, with one F1 fish identified as 

heterozygous for a putative null pk1a genomic allele, hereafter designated pk1ach105. The pk1ach105 allele 

has a 19 bp deletion, causing a frame shift and predicted STOP at amino acid 24 (Fig. 1B).  A subsequent 

F2 generation was raised by out-crossing the F1 mutant fish to a Tg(sox10:EGFP) fish. Fin clips from F3 

and F4 progeny of heterozygous adult fish were used to genotype and identify heterozygous pk1ach105/+  

and homozygous pk1ach105/ch105  mutants using PCR with primer sequences 5’-

GTAAGTGTGTGGTGGCGGTA-3’ and 5’-TCAGTCGTTTAAGGCGGGTC-3’. The resulting PCR 

products were then run on a 4% agarose gel. Heterozygous, homozygous and wild-type fish were 

distinguished by the presence of two bands 19 bp apart in the first case, versus different, single bands in 

the latter two cases. 

 

Morpholino design and microinjection 
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Two morpholinos (MOs) designed to block pk1b splicing (Gene Tools, LLC) were used as previously 

described (Rohrschneider et al., 2007) at a standard concentration of 2 ng/nl. The first MO was targeted to 

intron3-exon4, with a sequence of 5'-GGCAGTAGCGAATCTGTGTTGAAGC-3’, and the second MO 

was targeted to exon6-intron6 with a sequence of 5'-TTAATGAAACTCACCAATATTCTCT-3’. MOs 

were solubilized in water (Sigma-Aldrich) for a stock concentration of 20 mg/ml. Tg(sox10:EGFP) and 

Tg(sox10:mRFP) embryos were microinjected with MOs at the one-cell stage. The vangl2-MO (5’-

GTACTGCGACTCGTTATCCATGTC-3’) was used as previously described (Jessen et al., 2002) at a 

concentration of 1 ng/nl. 

 

Image Acquisition 

For assays in fixed specimens, embryos were fixed in 4% paraformaldehyde (PFA, diluted in 1X 

phosphate buffered saline; PBS) overnight. Following overnight fixation, embryos were washed in 1X 

PBS five times for 10 minutes each. For long-term storage of embryos, embryos were washed in 30%, 

60% and 100% methanol (diluted in 1X PBS) and stored in 100% methanol at -20ºC. If stored in 100% 

methanol, embryos were progressively washed in 60%, 30% methanol as well as 1X PBS + 0.1%Tween-

20 before being transferred to 80% glycerol. The embryos were cleared in 80% glycerol, deyolked using 

fine forceps and flat-mounted in glycerol in dorsal view.  For transverse section analysis, embryos in PBS 

were embedded in 3% low-melt agarose (MidSci IB70051 St. Louis, Missouri

using a Vibratome 1000 plus sectioning system, then mounted in glycerol for subsequent imaging. Images 

were collected using an upright Zeiss LSM710 confocal microscope using either a Plan-Apochromat 

20x/0.8 (working distance: 0.55mm) objective or a Plan Apochromat 40x/1.0 water-immersion (working 

distance: 2.5mm) objective. Green fluorescent proteins (GFP) and dyes (Alexa Fluor 488) were excited by 

a 488nm laser. Red fluorescent proteins (mRFP, RFP) and dyes (Alexa Fluor 564) were excited by a 

543nm laser. DAPI dye and cyan fluorescent protein (CFP) were excited using a 405nm laser. For a 

single fluorophore or a combination of fluorophores, spectral unmixing was used to define emission 

fluorescence range. For each sample, transmitted-light images were also collected. Images were acquired 

and saved as .czi files using Zen (Zeiss) software. 

Live imaging was performed at room temperature by mounting 16 hpf embryos in 1% low-melt agarose 

(MidSci IB70051 St. Louis, Missouri) prepared in E3 medium with anesthetic (MS-222, tricaine 

methanesulfonate, Sigma-Aldrich; 0.20mg/mL in E3 solution). Embryos were staged before and after 

experimentation. A Plan-Apochromat 40X/1.0 water-immersion objective (working distance: 0.55mm) on 

a Zeiss LSM710 confocal microscope was used over a period of two hours with images captured at a time 

interval between 1 and 2 mins, with images collected with transmitted light (brightfield) acquired before 
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and after experimentation to provide a reference for drift correction in image processing of migrating cells 

relative to static cells. Longer time-lapses were performed at room temperature by mounting 12 hpf 

embryos in 0.5% low-melt agarose and imaged in the same fashion as above with a time interval of 5 

mins. Transmitted light (brightfield) images were acquired at each time point to allow for drift correction.  

 

mRNA generation and microinjection 

Capped mRNA was generated using the MEGAscript SP6 or T7 Kit (Ambion). mRNAs at concentrations 

of Tol2 Transposase (150 ng/µl) (Kawakami and Shima, 1999), EGFP-XCentrin (150 ng/µl), Cherry-

XCentrin (150 ng/µl) (Sepich et al., 2011), H2B-CFP (300 ng/µl), and mRFP (200 ng/µl) (last two 

generously provided by Gokhan Dalgin, University of Chicago) (Dalgin and Prince, 2015) were kept on 

ice and microinjected into the yolk-cell interphase of one-cell stage embryos. 

NCC aspect ratio measurements 

Measurements of the width and length ratio of NCCs were performed in wild-type embryos and mutant 

embryos in the Tg(sox10:EGFP) background. Embryos were co-injected with RNA encoding mRFP, and 

width and length was measured using the mRFP label in sox10-positive cells. 

Quantification of NCC contacts over time 

To quantify breakage of contacts between NCCs over time intervals of 0-10 min, 10-20 min, 20-30 min 

and 30-40 min, we counted the total number of pairs of NCCs in contact within a cluster at t=0 such that a 

single cell could be in pairs with multiple cells in contact, and then counted the pairs that broke at each 

time interval. Dividing the second measure by the first, we generated a ratiometric measure of ‘pair 

breakage’ within a cluster. To measure the relative proportions of individuals NCCs and NCC clusters of 

varying sizes, we measured the number of cells that persisted in a given configuration (from an individual 

cell to cells in increasing sizes of clusters) over non-overlapping 20-minute time windows.  

Transient transgenesis 

To label cranial NCCs mosaically, a DNA construct encoding I-SceI -4.9sox10:LifeAct-GFP (gift from 

Michael Granato, University of Pennsylvania) was microinjected as described (Banerjee et al., 2011) into 

one-cell stage Tg(sox10:mRFP) embryos at a concentration of 100 ng/µl together with the meganuclease 

I-SceI (NEB) at a concentration of 1U/µl in 1X phosphate-buffered saline. Cells were imaged in live 

embryos, mounted as described above, and imaged at approximately 16 hpf for at least 20 minutes using a 
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Plan-Apochromat 40X/1.0 water-immersion objective (working distance: 0.55mm) on a Zeiss LSM710 

confocal microscope. Transmitted light (brightfield) images were also collected to categorize cells as pre-

migratory or migratory based on their position relative to the apparent edge of the neural tube.  

Alcian labeling  

 

Cartilage was labeled with 0.02% Alcian Green, as previously described (Schilling and Kimmel, 1997). 

The pharyngeal apparatus was dissected and flat mounted. Samples were then imaged with a Leica 

DFC490 camera on a Zeiss Axioskop microscope.  

 

Immunohistochemistry 

Embryos were fixed in 4% paraformaldehyde (PFA; Sigma), and immunohistochemistry was performed 

as previously described (Prince et al., 1998) using the following primary antibodies: rabbit polyclonal 

anti-Cdh1 (E-Cadherin; 1:100; GeneTex GTX100443), rabbit polyclonal Cdh2 (N-Cadherin; 1:200; 

GeneTex GTX125885), rabbit polyclonal anti-Sox10 (1:250; Genetex GTX128374) and rabbit polyclonal 

anti-Caspase-3 (1:100; Millipore #AB3623). The following secondary antibodies were used: goat-anti 

mouse highly cross-adsorbed Alexa Fluor Plus 488 (Molecular Probes A32723), goat anti-rabbit highly 

cross-adsorbed Alexa Fluor 488 (Molecular Probes A11034), goat anti-rabbit cross-adsorbed Alexa Fluor 

546 conjugate (Molecular Probes A11010), and anti-GFP Alexa Fluor 488 conjugate (Molecular Probes 

A21311). Embryos were then cleared in 80% glycerol, deyolked and flat-mounted.  

Subcellular localization measurements 

To quantify subcellular localization of E-Cad, fluorescence intensity in Tg(sox10:mRFP) embryos 

immunolabeled with E-Cad, and counterstained with DAPI was measured at the plasma membrane with 

average ratios calculated and intensities normalized with respect to background levels of E-Cad. To 

determine subcellular localization of N-Cad, Tg(sox10:mRFP) embryos were immunolabeled for N-Cad 

and counterstained with DAPI and fluorescence intensities measured in the same manner as for E-Cad.  

To determine subcellular localization of the intracellular microtubule organizing center (MTOC) in 

NCCs, either Tg(sox10:mRFP) embryos were injected with RNA coding for EGFP-XCentrin as described 

(Sepich et al., 2011) as well as RNA coding for H2B-CFP, or Tg(sox10:EGFP) embryos were injected 

with RNA coding for Cherry-XCentrin (Sepich et al., 2011) as well as RNA coding for H2B-CFP. 

Injected embryos were fixed at 24 hpf. To quantify angles of the MTOC relative to the nucleus and the 
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AP axis, bisecting lines were drawn from the MTOC to the nucleus, the angle relative to the AP axis for 

each cell was determined, and measurement of the angle of the MTOC with respect to the nucleus and the 

AP body axis was performed using Fiji and subsequently analyzed using MATLAB. 

Quantification and statistical analysis 

Fiji (NIH) was used to process and analyze data, and Prism (GraphPad) and Microsoft Excel were used 

for statistical analyses. Cell counts for z-stacks of confocal images with optical sections between 2 and 4 

µm were performed using the Fiji cell counter plugin. Cell aspect ratio and area quantifications were 

performed using the Fiji Cell Magic Wand plugin. Statistical significance was determined using two-way 

ANOVA or the student t-test (* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001, **** 

indicates p<0.0001; non-significance indicates p>0.05).  

Polar plots for directionality trajectories were made by importing Excel-generated measurements of 

displacement vectors into MATLAB to allow for generation of polar plots. Polarity measurements were 

analyzed using Fiji; statistical measurements and polar histograms were generated using MATLAB. 

Statistical significance (p<0.05) for polar plots was determined using the Watson-Williams F-test. 

Manual tracking of migrating cells was performed using the Fiji MTrackJ plugin by following cells 

through multiple stacks. Persistence measurements were made using tracking data imported into Excel 

and using the program DiPer, an open-source set of Excel macros, as previously described (Gorelik and 

Gautreau, 2014). Collected time-lapse data were registered using Fiji and exported as TIF images and 

AVI videos.  

For cluster rearrangement analysis, a MATLAB script (available upon request) was used to threshold and 

segment cells, enabling counts on pair breaks within clusters. The data on pair-breaks within clusters were 

imported into Prism and tabulated. All figures were created in Illustrator and InDesign (Adobe). 
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Results 

 

1. Disruption of pk1b and pk1a function alters cranial NCC disposition 

 

Both zebrafish pk1b and pk1a paralogs are expressed in the developing nervous system (Carreira-Barbosa 

et al., 2003; Rohrschneider et al., 2007; Roszko et al., 2009; Veeman et al., 2003). Our previous in situ 

hybridization analysis has demonstrated that pk1b is expressed in the developing hindbrain by the 16 hpf 

stage, with elevated levels of expression in migrating facial branchiomotor neurons (FBMNs) 

(Rohrschneider et al., 2007). Similarly, pk1a expression has also been reported in the hindbrain (Carreira-

Barbosa et al., 2003; Roszko et al., 2009).  In these reports, expression can additionally be noted in 

domains immediately lateral to the developing hindbrain, suggesting that the pk1 paralogs might also be 

expressed in cranial neural crest cells. To investigate cranial NCC expression, we performed in situ 

hybridization with pk1b and pk1a probes at 24 hpf, and compared the expression patterns with those of 

the pan-neural crest marker crestin (Fig. 1A-C). While the genes are expressed at low levels, expression 

of both pk1b and pk1a is detectable in domains lateral to the anterior hindbrain and midbrain that overlap 

with expression of crestin.  These results indicate that pk1b and pk1a are expressed at an appropriate time 

and place to play a role in the development of cranial neural crest.   

 

To investigate the functions of pk1b and pk1a in developing cranial NCCs, we have utilized zebrafish 

embryos mutant for each gene. We previously described the pk1b fh122/ fh122  mutant, which is characterized 

by a complete block to collective cell migration of FBMNs through the hindbrain (Mapp et al., 2011). 

Importantly, Pk1b-morpholino (MO) knockdown precisely phenocopies the pk1b fh122/ fh122 mutant FBMN 

defect, implying that this C-terminal point mutation (Fig. 1D) is a strong hypomorph (Mapp et al., 2011). 

To allow analysis of Pk1a function, we used the CRISPR/Cas system to generate a novel mutant, 

pk1ach105/ch105. The ch105 allele is a predicted null, with a premature stop codon at amino acid 24, 

truncating the protein close to its N-terminus (Fig. 1D, E). In contrast to previous reports of specimens in 

which pk1a function was disrupted using morpholino knockdown (Carreira-Barbosa et al., 2003; Veeman 

et al., 2003), pk1ach105/ch105 mutant embryos do not show obvious gastrulation defects, except when 

combined with the knockdown of Pk1b. Although homozygous pk1ach105/ch105 mutant embryos do not 

survive at Mendelian ratios, they can nevertheless occasionally be raised to fertile adulthood. 

 

To investigate cranial NCC behaviors in the pk1 mutants, we made use of the Tg(sox10:EGFP) line 

(Carney et al., 2006), which expresses EGFP in all NCCs beginning at approximately 12 hpf. In the 

cranial region, streams of NCCs derive from specific anteroposterior (AP) regions of the developing 
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midbrain and hindbrain and migrate out to populate the pharyngeal arches and frontonasal process (Couly 

et al., 2002; Couly et al., 1993; Lumsden et al., 1991; Schilling and Kimmel, 1994). In wild-type 

Tg(sox10:EGFP) specimens counterstained with the nuclear marker DAPI at 18 hpf, streams of cranial 

NCCs were detected migrating ventrolaterally towards the developing pharyngeal arches (PAs) and the 

fronto-nasal process (Fig. 2A). In both the pk1bfh122/ fh122 and pk1ach105/ch105 single homozygous mutants, 

NCCs were found in groups of closely-apposed cells located at the dorsal-most aspect of the midbrain and 

anterior hindbrain, showing a markedly different organization to the more dispersed, individual NCCs 

found in wild-type specimens (compare Fig. 2B, C with 2A). We next used transverse section analysis to 

investigate the precise localization of the cranial NCCs. Sections of wild type specimens (Fig. 2D, G) 

revealed a few NCCs located just dorsal to the neural tube, with others in the process of migrating 

ventrolaterally around the neural tube, and the majority located lateral to the neural tube within the 

surrounding head mesenchyme (arrows).  By contrast, in pk1bfh122/ fh122 embryos (Fig. 2E, H) and 

pk1ach105/ch105 embryos (Fig. 2F, I) fewer NCCs had migrated out into the lateral head mesenchyme, and 

groups of closely-apposed NCCs or ‘clusters’ of cells, were present immediately adjacent to the dorsal 

neural tube. 

 

To investigate the cell morphology of the NCCs in more detail, we next imaged the cranial region of 

wild-type and pk1 mutant embryos in dorsal view at 24 hpf. In wild-type specimens, although the 

majority of dorsal NCCs were individual, we also observed a few small clusters of cells (Fig. 2J). Both 

individual and clustered wild-type NCCs displayed highly protrusive morphologies with filopodia and 

lamellipodia (Fig. 2J’-J’’). By contrast, pk1b fh122/ fh122  and pk1ach105/ch105 mutants showed both a higher 

frequency of clusters and larger NCC clusters lying dorsally at midbrain and hindbrain levels, consistent 

with our observations at the 18 hpf stage, with the cells displaying rounded, non-protrusive morphologies 

(Fig. 2K’-K’’, L’-L’’). We confirmed that morpholino knockdown of Pk1b, using our previously 

described reagents (Mapp et al., 2011), fully phenocopied the pk1b fh122/ fh122 mutant (Fig. 2M-M’’).  

 

To assay embryos deficient in both Pk1b and Pk1a, we imaged pk1ach105/ch105 embryos injected with 

morpholinos targeted against Pk1b, and found a more severe phenotype, with larger dorsal NCC clusters 

than in the single homozygous mutants alone, as well as gross morphological defects consistent with 

disruptions in convergent extension (Fig. 2N-N’’). These double-deficient embryos also began to die 

shortly after the 24 hpf stage. We then compared the phenotype of embryos deficient in both Pk1b and 

Pk1a to the phenotype caused by knockdown of another core PCP molecule, Vangl2, which is also known 

to be important in convergent extension (Ferrante et al., 2009; Jessen et al., 2002). We found that 

knockdown of Vangl2 also caused a severe dorsal NCC clustering phenotype, with NCCs meeting across 
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the dorsal midline of the neural tube at approximately the level of r3 (Fig. 2O-O’’), as well as gross 

morphological defects. These results are consistent with previous reports that Vangl2 is required for 

proper convergence of neuroepithelial cells towards the midline during neurulation (Ciruna et al., 2006; 

Tawk et al., 2007). As the resultant altered neural keel morphology makes it difficult to ascribe NCC 

phenotypes to deficits in NCCs themselves versus earlier defects in neurulation, we elected not to study 

vangl2 morphants or embryos deficient for both pk1 paralogs in any additional detail. However, the lack 

of convergence defects both in single homozygous pk1b fh122/ fh122 and pk1ach105/ch105  mutants, as well as in 

double-heterozygous embryos lacking one copy each of pk1b and pk1a, provided us a unique opportunity 

to study the roles of the Pk1 paralogs specifically in the developing neural crest. 

 

To investigate the unusual NCC clusters in pk1 mutants in more detail, we mapped their spatial 

localization. For this analysis we defined ‘clusters’ as groups of three or more cells in close apposition. 

We allocated the clusters to three regions, corresponding to different axial positions as indicated in Fig. 

3A: Region I corresponds to anterior midbrain-derived NCCs that contribute to the fronto-nasal process; 

region II corresponds to posterior midbrain and rhombomere 1, 2 and 3 (r1-to-r3)-derived NCCs from the 

anterior hindbrain that contribute to pharyngeal arch (PA)1; region III corresponds to central hindbrain 

(r3-r5)-derived NCCs that migrate anterior of the otic vesicle to contribute to PA2. Interestingly, despite a 

widespread distribution of dorsally-located NCC clusters along the AP axis in both mutant conditions, a 

slight spatial bias was detectable, with clusters most frequently located towards the anterior. Moreover, 

NCC clusters that spanned the space between the origins of two separate streams of migratory NCCs 

occurred more frequently in the pk1 mutants than in wild-type specimens (Fig. 3A).  

 

To query whether there was a mediolateral bias in cluster location, we measured the distances between 

the centroids of clusters and the midline, and expressed the distances as a ratio of the longest possible 

distance between any NCC and the midline at that specific AP position. This analysis confirmed that for 

NCCs migrating towards PA 1 and 2 there is a statistically significant bias for cell clusters to be located 

closer to the midline in both pk1b fh122/ fh122 and pk1ach105/ch105 mutant conditions as compared to wild-type. 

However, no such bias was found for the midbrain-derived cells migrating towards the fronto-nasal 

process (Fig. 3B). The medial bias of Pk1-deficient NCCs in clusters indicates that Pk1-deficient cells do 

not undergo the normal wild-type lateral migration, and suggests that these Pk1-deficient NCCs may 

instead remain pre-migratory. 

 

As we found that many NCCs in Pk1-deficient embryos showed unusual dorsal clustering, we evaluated 

whether the broader dorsoventral distribution of NCCs migrating ventrolaterally towards the pharyngeal 
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region was also disrupted.  To query the dorsoventral localization of NCCs, we again used confocal 

imaging, at two different stages, 16 and 24 hpf.  In each case, we counted the sox10:EGFP-positive NCCs 

located in both the dorsal-most 4 µm and the ventral-most 4 µm of the EGFP-positive domain, across 5 

embryos for each condition, in a region of interest spanning the midbrain and anterior half of the 

hindbrain (regions I, II, III as defined above). As shown in Table 1, in 16 hpf wild-type embryos an 

average of 53% of all EGFP-positive NCCs were present in the dorsal-most domain and only 25.6% in 

the ventral-most domain. However, by 24 hpf wild-type embryos showed 11.8% of NCCs in the dorsal-

most domain and 54.2% in the ventral-most domain, indicating that the majority of wild-type NCCs had 

completed ventrolateral migration to the pharyngeal domain. In contrast, in both pk1bfh122/fh122and 

pk1ach105/ch105 embryos, the majority of NCCs were present in the dorsal-most domain, both at 16 hpf 

(61.2% and 62.2%, respectively) and at 24 hpf (55.6% and 59.4%). Although the percentage of NCCs in 

dorsal-most domains decreased slightly in Pk1-deficient embryos between 16 and 24 hpf, a large 

proportion of NCCs remained dorsally localized, suggesting that unlike wild-type NCCs, most Pk1-

deficient NCCs fail to undergo normal ventrolateral migration by 24 hpf. 

 

We also investigated whether the dorsally located clusters of NCCs might be failing to migrate because 

they were undergoing apoptosis. To address this, we performed immunolabeling for Caspase-3, a member 

of the caspase family of proteins required for apoptosis (Li and Yuan, 2008), in both wild-type and pk1b-

morphant embryos at 24 hpf. We found no significant difference in the proportion of NCCs that expressed 

Caspase-3 in wild-type versus pk1b-morphant conditions (Fig. 3C), indicating that the formation of dorsal 

NCC clusters in Pk1-deficient embryos is not related to NCCs undergoing cell death. 

 

We qualitatively observed that wild-type NCCs were more elongated and protrusive than Pk1-deficient 

NCCs, which were more rounded and less protrusive. To confirm the differences in cell shape, we 

measured the aspect (width:length) ratios of NCCs in wild-type and mutant conditions, with a ratio 

tending to 1 indicating greater roundedness. Wild-type NCCs showed elongated shapes with a mean 

aspect ratio of 0.61. In contrast, pk1b-MO, pk1b fh122/ fh122 , and pk1ach105/ch105 NCCs exhibited significantly 

higher mean aspect ratios of  0.73, 0.73, and 0.74, respectively, (p<0.001 for each). Interestingly, 

pk1bfh122/+ ; pk1ach105/+ double-heterozygous embryos exhibited a higher mean aspect ratio, of 0.86, than 

either wild-type or single homozygous mutant NCCs (p<0.0001) (Fig. 3D). The unusually rounded 

morphology of Pk1-deficient NCCs indicates that Pk1 may play a role in the acquisition of elongated, 

mesenchymal morphology.  
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In summary, we conclude that in the absence of Pk1b or Pk1a function, NCCs cluster at dorsal positions 

in the embryo, adopt aberrant rounded morphologies, and frequently fail to migrate our into the 

pharyngeal region by 24 hpf.  

 

 

2. Cell fates of NCCs contributing to the pharyngeal elements are unchanged in Pk1-deficient 

specimens 

 

In wild-type 24 hpf embryos, the most ventrally-located migrating NCCs are destined to populate the 

pharyngeal arches and ultimately differentiate into cartilage cells that establish the pharyngeal apparatus 

(Schilling and Kimmel, 1994). Our analysis of NCC dorsoventral localization (Table 1) indicates a 

significant reduction in the number of ventrally-localized cells in Pk1-deficient embryos relative to wild-

types at 24 hpf. To evaluate whether this change in cell position is accompanied by an alteration of cell 

fate, we performed in situ hybridization with the pharyngeal NCC marker dlx2. In 24 hpf wild-type 

embryos, dlx2 expression can be distinguished in individual streams of cranial NCC cells (Fig. 4A). We 

found that dlx2 expression was maintained in both pk1b fh122/ fh122 and pk1ach105/ch105 mutants (Fig. 4B, C), 

with a pattern essentially indistinguishable from that of wild-types, despite the aberrant distribution of 

NCCs migrating towards the pharyngeal arches in Pk1-deficient embryos. To investigate potential 

subsequent disruptions to the pharyngeal apparatus, we stained cartilage cells at 6 dpf (days post 

fertilization) with Alcian Green. We found that the size and organization of the cartilage elements that 

comprise the pharyngeal apparatus were indistinguishable between wild-type specimens (Fig. 4D) and 

either pk1b fh122/ fh122 or pk1ach105/ch105  mutants (Fig. 4E, F).   

 

In summary, despite significant early deficits in cranial NCC organization in Pk1-deficient embryos, we 

found no evidence of subsequent changes in NCC fate or in the later morphological organization of NCC 

derived cartilages.  These results suggest that the cranial neural crest cells of pk1b fh122/ fh122 or 

pk1ach105/ch105 mutants have a significant capacity to recover from early defects, consistent with the ability 

of both mutants to survive to viable fertile adulthood. However, as noted in the previous section, embryos 

deficient for both Pk1b and Pk1a die shortly after 24 hpf, precluding analysis of NCC fates. 

 

3. Loss of pk1b or pk1a function disrupts ventrolateral migration of cranial neural crest cells  

 

Based on our observations of abberant dorsoventral localization of NCCs, coupled with clustering of 

NCCs at the dorsal aspect of the cranial neural tube, we hypothesized that in Pk1-deficient embryos, 
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NCCs fail to migrate ventrolaterally into streams. We addressed this using time-lapse confocal imaging of 

Tg(sox10:EGFP) embryos over a two-hour period, from 16 hpf to 18 hpf, of active NCC migration in the 

cranial region. For this analysis, we imaged the region corresponding to the first pharyngeal arch (PA1) 

stream of NCCs, deriving from the midbrain and r1-r2 (indicated by the dashed box in Fig. 5A) in dorsal 

view. At 16 hpf the neural keel has not yet formed a midline, which occurs through alignment of 

neuroepithelial cell end feet by 18 hpf (Jimenez et al., 2016; Tawk et al., 2007). At approximately 16 hpf, 

cranial neural crest cells from the dorsal neural keel complete EMT and actively migrate laterally and 

then ventrally around the neural keel towards the pharyngeal region. As shown for the embryo imaged in 

Supplemental Movie 1 and analyzed in Fig. 5B, wild-type NCCs form dynamic, transient contacts with 

neighboring NCCs and move laterally towards the “edges” of the neuroepithelium as seen from a dorsal 

view (line in Supplemental Movie 1, and dashed line in Fig. 5B) between 16 and 18 hpf. To assay the 

overall movement of these NCCs, we plotted displacement trajectories using the first and last position of 

individual cells after correcting for drift and embryo growth. We found that approximately 89% of wild-

type NCCs (n=59 cells, 3 embryos, representative embryo shown in Supplemental Movie 1 and Fig. 5B) 

showed net lateral movement, as expected, over the two-hour time period.  

 

Because loss of Pk1b or Pk1a function caused aberrant NCC cluster formation, we postulated that it 

would also result in a loss of overall NCC motility. Unexpectedly, we found that pk1b-morphant cells did 

not lose motility. Rather 72% of pk1b-MO NCCs (n=47 cells, 3 embryos) showed net movement in the 

anterior direction, with NCCs typically retaining contacts with neighboring cells as they moved in a 

cluster (Supplemental Movie 2, Fig. 5C). A similar anterior bias of NCC motility was noted in pk1b fh122/ 

fh122 embryos (Fig. 5D), with 77% of NCCs showing net movement in the anterior direction (n=65 cells, 3 

embryos). In both pk1b-MO and pk1b fh122/ fh122 specimens, clusters of NCCs showed less dynamic and 

protrusive behaviors than wild-type NCCs (Supplemental Movies 2, 3, Fig. 5C, D). pk1ach105/ch105  

embryos exhibited a similar phenotype (Supplemental Movie 4, Fig. 5E), with 75% of NCCs showing net 

movement in the anterior direction (n=47 cells, 3 embryos). We also assayed double-heterozygous 

pk1bfh122/+ ; pk1ach105/+ embryos, which do not show gross morphological defects, unlike pk1ach105/ch105 

+pk1b-MO embryos. We found that 86% of pk1bfh122/+ ; pk1ach105/+NCCs (n=38 cells, 3 embryos) also 

moved in net anterior directions (Supplemental Movie 5, Fig. 5F), a higher proportion than in either 

Pk1b-deficient or Pk1a-deficient embryos. We conclude that Pk1-deficient specimens do not demonstrate 

a loss of NCC motility, but instead show an altered direction of NCC movement, with cells moving 

towards the anterior rather than laterally and subsequently ventrally. We further conclude that the Pk1 

paralogs function partially redundantly, such that double-heterozygous embryos show a more severe 

phenotype than either single homozygous mutant despite the same number of alleles being disrupted, 
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likely because of the dosage sensitivity of the combined action of the genes. There is precedent for PCP 

genes acting in a highly dosage-sensitive manner—notably in members of the Vangl family in mouse 

embryos (Torban et al., 2008)—such that a genetic interaction between two homologs manifests as a 

more severe phenotype in a double-heterozygous embryo than a single homozygous mutant for either 

homolog. 

 

To highlight the degree of inter-embryo variation in NCC motility, we plotted the displacement 

trajectories of 10 NCCs from three individual embryos of each of the wild-type, pk1b fh122/ fh122, and 

pk1ach105/ch105  conditions, with NCCs from different embryos allocated a different color (Fig. 3G-I). This 

analysis reaffirmed that wild-type NCCs move in lateral directions. Further, in mutant conditions the 

trend for anterior movement was highly consistent. We conclude that both Pk1b and Pk1a are required for 

lateral NCC migration. When two pk1 alleles are disrupted (i.e. homozygous mutation of one pk1 paralog, 

or disruption of a single copy of both pk1 paralogs), cranial NCCs form clusters that do not migrate 

laterally but instead preferentially move towards the anterior. 

 

In summary, the rounded morphologies of Pk1-deficient NCCs are correlated with the inability of NCCs 

to migrate in the normal ventrolateral direction, moving in anterior directions instead. We conclude that 

although Pk1b and Pk1a are not required for NCCs to be motile, they are required for NCCs to move 

specifically in the ventrolateral direction. 

 

 

4. Loss of Pk1 function disrupts NCC polarity  

 

The finding that Pk1-deficient NCCs preferentially move in an anterior direction led us to postulate that 

the dorsally-located pre-migratory NCCs adopt aberrant polarities, rather than losing polarity entirely as 

might be expected in a PCP-deficient condition. Previously, it has been reported that PCP signals control 

the position of the intracellular microtubule organizing center (MTOC), and that cells polarize MTOCs in 

the direction of motility (Sepich et al., 2011). To assay the polarity of NCCs at the dorsal aspect of the 

neural tube, in both wild-type and Pk1-deficient conditions, we measured the angle of the MTOC relative 

to the primary body axis (Fig. 6A, B).  

 

In accord with previous findings, we found that wild-type NCCs at 24 hpf on either side of the midline 

polarized laterally in the direction of normal migration (Fig. 6C). In contrast, pk1b-morphant (Fig. 6D, 

p<0.001) and pk1ach105/ch105 (Fig. 6E, p<0.001) NCCs on either side of the midline polarized along the AP 
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axis. However, NCCs in double-heterozygous pk1bfh122/+ ; pk1ach105/+ embryos  displayed a randomized 

polarity (Fig. 6F, p>0.05), despite our previous finding that these NCCs moved as clusters in anterior 

directions similar to the single pk1 mutants (Fig. 5F). These findings suggest that whereas Pk1b-deficient, 

and Pk1a-deficient NCCs polarize to correspond to the aberrant direction of migration, in double-

heterozygous NCCs, MTOC position is decoupled from the direction of migration. Interestingly, this 

finding argues against a direct correspondence between cell polarity and the direction of cell migration. 

 

We conclude that while both Pk1b and Pk1a are required to establish normal NCC polarity, the absence of 

either alone is insufficient to cause a complete loss of polarity. However, the double-heterozygous 

condition is sufficient for loss of polarity, indicating that the two Pk1 paralogs function redundantly and 

again likely reflecting the importance of gene dosage. Importantly, the altered polarity of Pk1-deficient 

NCCs occurs in conjunction with aberrant morphologies and increased clustering. 

 

5. Dorsal clusters of pre-migratory NCCs are established and maintained in Pk1-deficient embryos 

 

Having observed dorsally clustered NCCs in embryos lacking either Pk1b or Pk1a function, we 

investigated at what stage of NCC development the clusters formed and probed their characteristics in 

more detail. We hypothesized that the clustering defect arose at stages prior to the migration of cranial 

NCCs in well-defined streams, and that wild-type cells, even early in neural crest development, are able 

to resolve contacts with neighboring NCCs at faster rates than Pk1-deficient cells. To test these 

hypotheses, we performed time-lapse imaging of Tg(sox10:EGFP) embryos beginning at 12 hpf and 

extending for at least 4 hours. We noted that even as early as 12 hpf, some NCCs are present 

ventrolaterally, a finding which is consistent with previous reports of an early population of NCCs 

originating from the non-neural ectoderm adjacent to the neural keel (Jimenez et al., 2016; Schilling and 

Kimmel, 1994), and one that explains why even in conditions causing severe neural crest defects, some 

cells are observed at ventrolateral positions in the presumptive pharyngeal arches (Fig. 2J-M). 

Importantly, we found that in wild-type embryos, NCCs in contact with one another at dorsal-most 

positions tended to move rapidly away from one another, with most cell contacts resolving within 20-30 

mins (Fig. 7A-A’’’’, with NCCs in a given group of cells pseudocolored to indicate pairs in contact). 

However, in both pk1b fh122/ fh122 (Fig. 7B-B’’’’) and pk1ach105/ch105  (Fig. 7C-C’’’’) embryos, NCCs in 

clusters frequently failed to break contacts, despite moving relative to other cells in the cluster.  

 

To quantify the breakage of cell contacts, we measured the total number of pairs of NCCs in contact with 

one another in any given cluster. Here, we defined clusters as two or more cells in contact with one 
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another. We then binned pairs of cells that broke contacts with one another in ten-minute time intervals 

relative to the total number of pairs at the beginning of observation of a given cluster (new contacts 

formed that were not present at time t=0 were not counted in the analysis). We found that in wild-type 

embryos, ~61% of cell pairs broke contacts between 0 and 20 minutes (n=43 pairs, 3 embryos), with 88% 

of cell pairs breaking contact by 30 minutes (Fig. 7D). In contrast, pairs of NCCs in both pk1b fh122/ fh122 

(n=61 pairs, 3 embryos) and pk1ach105/ch105 embryos (n=58 pairs, 3 embryos) typically did not break 

contact over extended periods of time, with only 27% and 21% of cell pairs breaking contact in pk1b fh122/ 

fh122 and pk1ach105/ch105  embryos, respectively, by 30 minutes. Since Pk1-deficient NCC clusters formed 

well before dorsally-located NCCs begin migration, we conclude that the Pk1 paralogs are required as 

early as 12 hpf.  

 

We also hypothesized that NCCs in pk1-mutants were present in larger cell clusters at 12 hpf than NCCs 

in wild-type embryos. To investigate the configuration of NCCs at 12 hpf, we counted the number of cells 

in any given configuration (as single cells, or in clusters of two or more cells). We found that 44% of 

NCCs in wild-type specimens were present as single cells, 28% in pairs, 15% in clusters of three cells, 

10% in clusters of 4 cells, and 3% in clusters of 5 cells (n=37 cells, 3 embryos, Fig. 7E). By contrast, only 

6% of NCCs in pk1b fh122/ fh122 specimens (n=53 cells, 3 embryos) and 9% of NCCs in pk1ach105/ch105 

specimens (n=46 cells, 3 embryos) were present as individual NCCs, with far greater percentages of 

NCCs in clusters of two or more cells, consistent with our hypothesis (Fig. 7E). Notably, in Pk1-deficient 

specimens, clusters consisting of as many as 8 cells were observed. 

 

We further hypothesized that since pk1-mutant NCCs were present in higher-order clusters than wild-type 

NCCs, pk1-mutant clusters were also likely to be maintained for extended time periods relative to wild-

type cells, leading in turn to the defects we observed at later stages. To test this hypothesis, we quantified 

the clusters of NCCs that maintained contact over non-overlapping time intervals of 20 minutes (Fig. 7F; 

see Methods). This analysis showed that in wild-type embryos 54% of NCCs were largely individual 

(n=117 cells, 3 embryos), with transient contacts lasting less than 20 minutes. In contrast, only 5% of 

NCCs in pk1b fh122/ fh122 embryos (n=99 cells, 3 embryos) and 6% of NCCs in pk1ach105/ch105 embryos 

(n=148 cells, 3 embryos) remained as individuals in the same time frame (Fig. 7F). Wild-type embryos 

did include some NCCs that maintained contact with other NCCs for at least 20 minutes. 26% of these 

wild-type cells were pairs of cells, 13% were in clusters of 3 cells and 9% in clusters of 4 cells. In 

contrast, both pk1b fh122/ fh122 and pk1ach105/ch105 embryos maintained appreciable percentages of clusters as 

large as 8 cells, with most clusters comprising 3 cells (21% in pk1b fh122/ fh122 and 28% in pk1ach105/ch105 

embryos) or 4 cells (28% in pk1b fh122/ fh122 and 24% in pk1ach105/ch105 embryos) (Fig. 7F). Together, these 
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data indicate that while NCCs establish contact with other NCCs in clusters as early as 12 hpf in both 

wild-type and Pk1-deficient specimens, Pk1-deficient embryos form and maintain larger NCC clusters 

than wild-type embryos.  

 

Since Pk1-deficient NCCs in clusters tended to exhibit high levels of motility—albeit in the anterior 

direction as opposed to the wild-type lateral direction—we postulated that the persistence (a measure of 

the degree of directional movement calculated as the ratio of the total distance traversed by a cell relative 

to its displacement) of NCC motility would be dependent on the number of cells in the cluster. We found 

that wild-type NCCs, in any configuration, showed a high level of persistence over a 20-minute time 

period. In pk1 mutants, individual NCCs and pairs of NCCs showed lower levels of persistence than their 

corresponding wild-type configurations (Fig. 7G). However, consistent with our hypothesis, in either pk1 

mutant, clusters of three or more NCCs showed high levels of persistence similar to those of wild-type 

NCCs, albeit in an anterior direction (Fig. 7G). We conclude that Pk1-deficient NCCs in clusters of three 

or more cells demonstrate a high level of targeted movement in an aberrant (anterior) direction, whereas 

individual cells or pairs of cells display a low level of targeted movement in any direction. In both cases, 

Pk1-deficient NCCs fail to migrate ventrolaterally. 

 

6. Pk1 regulates the transition from bleb-based to mesenchymal morphologies in EMT, in addition 

to regulating the breakage of cell contacts during migration. 

 

We have shown that Pk1-deficient cranial NCCs cluster aberrantly at the dorsal surface of the 

neuroepithelium as early as 12 hpf, a stage that precedes the vast majority of ventrolateral migration of 

NCCs (Jimenez et al., 2016; Schilling and Kimmel, 1994). These findings led us to hypothesize that NCC 

defects in Pk1-deficient embryos might result from a previously undocumented role for PCP in regulating 

the morphological changes that NCCs must undergo before they migrate: during the epithelial-to-

mesenchymal transition. The process of EMT occurs continuously at early stages of NCC development, 

as waves of pre-migratory NCCs emerge from the dorsal neuroepithelium, and prepare to migrate in a 

lateral and subsequently ventral direction, around the developing neural keel, to reach their final ventral 

positions. To test our hypothesis, we performed a detailed investigation of the morphological states of 

pre-migratory and migratory NCCs, comparing wild-type with Pk1-deficient embryos. 

 

To observe NCC morphological transitions, we used a transient-transgenesis approach to drive expression 

of a LifeAct-GFP transgene from sox10 regulatory sequences, allowing visualization of the actin-rich 

protrusions of both pre-migratory and migratory NCCs in dorsal views at 16 hpf. We defined pre-
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migratory NCCs as sox10-positive cells localized at the dorsal aspect of the neural tube, which in a dorsal 

view do not appear to have traversed the apparent “edges” of the neuroepithelium, and migratory NCCs 

as sox10-positive cells that have moved laterally beyond the edge of the neuroepithelium to actively 

migrate ventrally.  

 

In wild-type specimens, pre-migratory NCCs undergo a series of morphological transitions following the 

detachment of neuroepithelial precursor cells from the apical midline (Supplemental Movies 6-9), 

consistent with previous reports (Berndt et al., 2008; Clay and Halloran, 2014). Following apical 

detachment (Supplemental Movie 6), NCCs adopt rounded morphologies, making short, transient 

protrusions (Fig. 8A, Supplemental Movie 7), and forming blebs (Fig. 8A’, 8A’’, Supplemental Movie 8), 

which have previously been described as rounded, actin-rich extensions created through membrane 

invagination (Goudarzi et al., 2017). Subsequently, wild-type NCCs transition rapidly to the migratory 

state, which involves highly-protrusive, mesenchymal morphologies with multiple, long, dynamic 

protrusions, including filopodia and lamellipodia (Fig. 8A’’’, 8A’’’’, Supplemental Movie 9). 

 

Using the LifeAct-GFP label, we found no defect in apical detachment of NCCs in Pk1-deficient embryos 

as compared to wild-types. By contrast, unlike wild-type NCCs, which transition from a bleb-based 

morphology to mesenchymal morphology over the span of 20 minutes (Fig. 8A-A’’’’), pk1b-morphant 

(Fig. 8B-B’’’’), pk1b
 fh122/ fh122 

(Fig. 8C-C’’’’), and pk1a
ch105/ch105 

(Fig. 8D-D’’’’) NCCs typically 

maintained blebbing behaviors over the entire time span. In fact, quantifications of the cell behaviors 

showed that whereas 89% of wild-type NCCs transitioned from pre-migratory to migratory states over a 

20-minute time interval, only 16% of pk1b-MO, 6% of pk1b fh122/ fh122, and 17% of pk1ach105/ch105 cells 

made the same transition, with the vast majority of cells instead remaining in a persistently-blebbing state 

over a 20-minute time interval (Fig. 8I). These results indicate that the defects observed in pk1-deficient 

specimens reflect a failure of NCCs to fully transition to the mesenchymal state: many NCCs remain 

trapped in the transitional blebbing state. Thus, Pk1 molecules play a central role in the regulation of key 

changes in NCC morphology and behavior during EMT.  

 

Although most Pk1-deficient NCCs fail to complete EMT in 20 minutes, we nevertheless found that some 

NCCs are present migrating ventrolaterally in Pk1-deficient embryos (Table 1). These cells likely include 

the population of NCCs previously reported to lie lateral to the neuroepithelium as early at 12 hpf 

(Jimenez et al., 2016); this subset of NCCs localizes lateral to the basal edge of the neuroepithelium 

without migrating there from the dorsal aspect of the neuroepithelium. While our data are consistent with 

the presence of an early lateral population of Tg(sox10:EGFP) cells, we also find that a subset of Pk1-
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deficient NCCs arising from more dorsal locations (Supplemental Movies 2-4) ‘escape’ the 

neuroepithelium to successfully migrate ventrolaterally into the pharynx.  

 

To observe the behaviors of migratory NCCs, we again imaged NCCs expressing LifeAct-GFP in live 

embryos. Our data showed that while migrating wild-type NCCs made contacts with neighboring labeled 

cells, the contacts were transitory and dynamic: over a 30-minute time frame NCCs broke contacts and 

created new contacts, even with the same cell (Fig. 8E-E’’’’). In contrast, in pk1b-MO (Fig. 8F-F’’’’), 

pk1b fh122/ fh122 (Fig. 8G-G’’’’), and pk1ach105/ch105 (Fig. 8H-H’’’’) embryos, we found that despite ‘escaper’ 

migratory NCCs adopting highly-protrusive mesenchymal morphologies, they were unable to separate 

from neighboring NCCs over extended time periods. This indicated that the clustering phenotype in Pk1-

deficient embryos is not entirely exclusive to dorsal, pre-migratory NCCs. Quantifications of the cell 

behaviors showed that whereas 93% of labeled migratory NCCs in wild-type specimens established and 

severed contacts with neighboring cells over a period of 20 minutes, only 15% of migratory NCCs in 

pk1b-morphant embryos, 9% in pk1b fh122/ fh122 embryos, and 15% in pk1ach105/ch105 embryos severed 

contacts, with the majority of paired NCCs instead retaining their contacts over this time frame and 

beyond (Fig. 8J).  

 

In summary, whereas wild-type NCCs show dynamic, transitory contacts with neighboring NCCs during 

their migration, Pk1-deficient NCCs instead show prolonged contact with neighboring NCCs, even during 

active migration. This role for Pk1 molecules during migration is consistent with the previously-

established role for core PCP molecules in contact inhibition of locomotion of zebrafish NCCs (Carmona-

Fontaine et al., 2008; Matthews et al., 2008). Together, our data show that the core PCP Pk1 molecules 

are required both during EMT, and in the migration of cranial neural crest.  

 

7. Pk1b regulates E-Cad and N-Cad in NCCs 

 

Our results indicate that cranial NCCs require Pk1 proteins for a key transition during EMT and for 

normal ventrolateral migration towards the pharyngeal region. Interestingly, recent work has established 

that a crucial Cadherin switch must occur during EMT in order for CIL to be activated in the zebrafish 

NCCs. Scarpa et al. (2015) showed that zebrafish E-Cad (Cdh1) is highly expressed in epithelial NCC 

progenitors and subsequently downregulated in N-Cad (Cdh2)-expressing mesenchymal NCCs, and that 

over-expression of E-Cad is sufficient to block normal NCC migration. Therefore, we postulated that the 

inability of Pk1-deficient NCCs to transition from a blebbing to a mesenchymal state could be due to 

inappropriate levels of E-Cad and N-Cad. 
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As E-Cad over-expression causes a phenotype that shares properties with our pk1-deficient phenotypes 

we hypothesized that E-Cad levels would be elevated in the absence of Pk1b function. By performing 

immunohistochemistry at 16 hpf, we found that E-Cad puncta are present in both pre-migratory and 

migratory wild-type NCC membranes (Fig. 9A-A’’’, C-C’’’). The presence of E-Cad expression in 

migratory as well as pre-migratory NCCs, albeit at lower levels, is consistent with previous reports that E-

Cad is required in migratory NCCs (Huang et al., 2016). Quantification of normalized fluorescence 

intensity (Fig. 9E) confirmed that E-Cad levels are higher in wild-type pre-migratory NCCs than in wild-

type migratory NCCs (compare Fig. 9A-A’’’ and Fig. 9C-C’’’, p<0.0001), consistent with the previously 

reported down-regulation of E-Cad during EMT. Morpholino knockdown of Pk1b function resulted in 

elevated levels of E-Cad in both pre-migratory and migratory NCCs (Fig. 9B-B’’’, 9D-D’’’). 

Quantification of normalized fluorescence intensity revealed a statistically significant increase in E-Cad 

levels in Pk1b-deficient specimens as compared to wild-type specimens in both pre-migratory and 

migratory NCCs (Fig. 9E, p<0.001 in both cases).  Intriguingly, Pk1b-deficient migratory NCCs also 

show significantly lower levels of E-Cad than Pk1b-deficient pre-migratory NCCs (Fig. 9E, p<0.0001; 

compare Fig 9D with Fig. 9B), suggesting that Pk1b-deficient ‘escaper’ cells require decreased E-Cad 

levels. Thus, the failure of Pk1b-deficient NCCs to complete EMT may be a consequence of inappropriate 

E-Cad levels. 

 

Since up-regulation of N-Cad is normally required in migratory NCCs (Carmona-Fontaine et al., 2008; 

Theveneau et al., 2010; Theveneau et al., 2013), we further hypothesized that N-Cad levels might be 

reduced in the absence of Pk1b function. By performing immunohistochemistry, we found that N-Cad is 

also present on both pre-migratory and migratory NCC membranes in wild-type specimens. Reciprocal to  

E-Cad, N-Cad levels were elevated in wild-type migratory NCCs as compared to wild-type pre-migratory 

NCCs (compare Fig. 9F-F’’’and Fig. 9H-H’’’, p<0.0001), consistent with previous reports. Pk1b-

deficient embryos showed no discernable change in N-Cad levels in pre-migratory NCCs relative to 

unmanipulated controls (Fig. 9G-G’’’, p>0.5). However, Pk1b-deficient migratory NCCs showed reduced 

levels of N-Cad at the membrane relative to wild-type specimens (Fig. 9I-I’’’), consistent with our 

hypothesis. Quantification of normalized fluorescence intensity confirmed a statistically significant 

reduction in N-Cad levels in pk1b-MO specimens, as compared to wild-type specimens, in migratory 

(p<0.01), but not pre-migratory, NCCs (Fig. 9J).  

 

In summary, in Pk1b-deficient specimens, E-Cad levels in both pre-migratory and migratory NCCs are 

elevated relative to unmanipulated wild-type controls. However, the Pk1b-deficient embryos do still show 
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a downregulation of E-Cad in migratory relative to pre-migratory NCCs. Further, in Pk1b-deficient 

embryos, N-Cad levels are unaffected in pre-migratory NCCs, but are reduced in migratory NCCs relative 

to wild-type controls. Thus, Pk1b function is required for appropriate regulation of E-Cad and N-Cad 

levels at multiple stages during zebrafish neural crest development. We conclude that the important role 

played by Pk1 proteins in promoting EMT and subsequent migration of cranial neural crest cells, is at 

least in part mediated though the ability to regulate levels of E-Cad and N-Cad and thus facilitate the 

transition from epithelial to mesenchymal cell behavior. 

 

 

Discussion 

Through analysis of the pk1b fh122/ fh122 and pk1ach105/ch105 mutants, we have uncovered broad roles for 

zebrafish Prickle1 in the developing cranial neural crest. The similar roles for Pk1b and Pk1a suggest that 

the two proteins share very similar functions. Importantly, a central function of vertebrate PCP molecules 

is the regulation of embryonic convergence movements that are necessary for both gastrulation and 

neurulation to proceed normally. Thus, the absence of convergence defects in either of the pk1b fh122/ fh122 

and pk1ach105/ch105 mutants likely reflects functional redundancy between these paralogous genes. 

Consistent with this model we have found that Pk1b-knockdown in pk1ach105/ch105 mutants does indeed 

cause morphological defects similar to those resulting from loss of function of other core PCP molecules, 

such as Vangl2 (Ciruna et al., 2006; Jessen et al., 2002; Veeman et al., 2003). In contrast to the results we 

present here, previous reports (Carreira-Barbosa et al., 2003; Ciruna et al., 2006; Veeman et al., 2003) 

have suggested that Pk1a function is necessary for convergence movements. While it is formally possible 

that our pk1ach105/ch105  mutant does not represent a genetic null, we consider this unlikely given the N-

terminal location of the genetic lesion. Rather, we note that the previous analyses of Pk1a-function relied 

exclusively on morpholino knockdown, and some aspects of the phenotypes could thus reflect off-target 

effects of the reagent. Alternatively, the discrepancy between the morpholino knockdown and the 

pk1ach105/ch105 mutant phenotype may be a consequence of genetic compensation, as recently described for 

other zebrafish mutants (Rossi et al., 2015). Importantly, by generating the pk1ach105/ch105  mutation, we 

have established a useful new tool that enables detailed investigation of the range of functions of 

zebrafish Pk1 proteins. In this study, the functional redundancy of the pk1 paralogs has proven to be a 

significant advantage of the zebrafish model, as it has allowed the nuanced roles of the Pk1 molecules in 

NCC development, including during EMT, to be teased apart from their earlier roles in convergence.  

Functional redundancy also allows both pk1b fh122/ fh122 mutant fish and pk1ach105/ch105 mutant fish to reach 

fertile adulthood, whereas pk1ach105/ch105 mutants injected with morpholinos targeted against Pk1b begin to 
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die shortly after 24 hpf. As also discussed below, we conclude that developing zebrafish embryos are able 

to recover from the early loss of a single pk1 gene, whereas depletion of both pk1 paralogs proves lethal. 

 

By analysing the pk1b fh122/ fh122 and pk1ach105/ch105 mutants using in vivo imaging we have uncovered roles 

for zebrafish Prickle1 both before and during the migration of the developing cranial neural crest. 

Specifically, we have uncovered equivalent roles for the two zebrafish pk1 paralogs during both EMT and 

directional migration of the NCCs. We find that Pk1 function is required for ventrolateral migration of the 

cranial crest, consistent with the previously-established roles for other core PCP molecules in contact 

inhibition of locomotion (CIL) of both Xenopus and zebrafish NCCs (Carmona-Fontaine et al., 2008; De 

Calisto et al., 2005; Matthews et al., 2008; Theveneau et al., 2010; Theveneau et al., 2013). However, by 

investigating the complex morphological transitions that precede migration, we demonstrate a broader 

role for Prickle1 before crest migration commences. We show that NCCs transition from neuroepithelial 

cells to a transient, blebbing, motile state before adopting a mesenchymal morphology capable of 

ventrolateral migration. These findings are consistent with previous descriptions of EMT as a series of 

progressive state changes rather than a binary switch (reviewed in Campbell and Casanova, 2016; Nieto et 

al., 2016), as well as with previous descriptions of NCC behaviors in zebrafish (Berndt et al., 2008). 

Critically, we find that pre-migratory NCCs in embryos deficient in either Pk1b or Pk1a complete apical 

detachment, indicating that they initiate NCC development as normal, but fail to transition from blebbing 

to mesenchymal morphologies. To our knowledge, this is the first report of a function for Prickle1—or 

indeed any PCP molecule—in controlling the key epithelial-to-mesenchymal transition that is necessary 

for neural crest cells to migrate out into the periphery. 

 

We find that the NCC blebbing morphology in particular is critical to the understanding of EMT. 

Previous work in other systems has shown that in some contexts, bleb-based cells are capable of 

migration. For instance, some modes of amoeboid migration (reviewed in Lammermann and Sixt, 2009) 

and zebrafish primordial germ cells (PGCs), which migrate through the developing embryo (Goudarzi et 

al., 2017), use blebs as the predominant type of protrusion. Consistent with these findings, we have shown 

that Pk1-deficient blebbing cranial NCCs are motile, undergoing aberrant migration towards the anterior 

of the embryo, but they are not capable of migration in the appropriate ventrolateral direction unless they 

transition to mesenchymal states. Similarly, Scarpa et al. (2015) have demonstrated that when EMT is 

blocked using ectopic E-Cadherin expression, zebrafish NCCs again remain motile, moving at speeds 

equivalent to those of unmanipulated NCCs, yet they are incapable of normal ventrolateral migration. 

These findings are consistent with recent understanding of EMT in several contexts, particularly in 

metastatic cancer cells, where cells that express attributes of both epithelial and mesenchymal cell types 
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have been denoted as intermediate, ‘metastable’, states (reviewed in Lee et al., 2006). We propose that the 

transient bleb-based morphology of NCCs represents such an intermediate, ‘metastable’ state in EMT, 

and that Prickle1 regulates the transition from the metastable state to the more stable, mesenchymal state. 

Again, this is consistent with recent understanding that EMT is a multi-state process (reviewed in 

Campbell and Casanova, 2016; Nieto et al., 2016). Importantly, our findings also suggest that NCCs may 

use the same planar cell polarity proteins in sequential stages of neural crest development, to control both 

EMT and CIL behaviors.  

 

The most obvious phenotypic consequence of zebrafish Pk1-deficency is the clustering of NCCs at the 

dorsal aspect of the developing neural tube at stages when NCCs should be completing EMT and 

commencing their ventrolateral migration to the periphery. Similar NCC clustering phenotypes have 

previously been reported in embryos deficient for molecules that are required for EMT. For example, as 

discussed above, NCC clustering occurs when EMT is blocked by ectopic expression of E-Cad (Scarpa et 

al., 2015). In Xenopus embryos, the Smad-interacting protein-1 (Sip-1)—known to repress E-Cad 

expression in cancer cells—is required for NCCs to complete EMT, disperse, and migrate out from dorsal 

positions of the neural tube (Rogers et al., 2013). The metalloproteinase MMP14, through control of both 

E-Cad and N-Cad, also regulates both EMT and migration (Garmon et al., 2018), at least in part through a 

change in apicobasal polarity (Andrieu et al., 2018). Transcription factors such as Ets (Theveneau et al., 

2007) and the Wnt signaling effector Axud1 (Simoes-Costa et al., 2015) are also required for the 

successful separation of NCCs from the neuroepithelium, with the latter additionally playing an earlier 

role in NCC specification. Deficiency of transcription factor Ovo1 also leads to NCC clustering 

phenotypes, although in this case only pigment cell progenitors are affected. Notably, Ovo1 is also a Wnt 

target, and functions to regulate intracellular movements of N-Cad (Piloto and Schilling, 2010). 

Completion of EMT also requires the dynamic regulation of canonical Wnt signaling through the secreted 

molecule Draxin (Hutchins and Bronner, 2018); both loss of and ectopic expression of Draxin prevent 

NCCs from adopting mesenchymal morphologies capable of migration. Further, the dynamic regulation 

of Cadherins other than E-Cad and N-Cad is also critical for EMT. The proteolytic cleavage of Cadherin-

6B, for instance, is required for cranial NCCs to undergo EMT (Schiffmacher et al., 2014); one of these 

fragments is critical to up-regulate EMT effectors, such as Snail1 and Snail2 (Schiffmacher et al., 2016). 

In summary, a range of molecules and pathways play important roles in NCC EMT, and a common theme 

in the NCC clustering phenotypes associated with blocks in EMT is misregulation of Cadherin molecules.  

 

Our findings suggest that Cadherin regulation similarly underlies the roles of the core PCP Pk1 molecules 

in the zebrafish NCC. Specifically, we suggest that the link between Pk1 and EMT behavior lies at the 
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level of E-Cad and N-Cad, possibly in the form of a feedback loop. Scarpa et al. (2015) showed that the 

Xenopus E-Cad/N-Cad switch is required for CIL; cell contacts subsequently trigger non-canonical 

Wnt/PCP signaling (Carmona-Fontaine et al., 2008; Theveneau et al., 2013). Although down-regulation 

of E-Cad has long been considered a hallmark of the end of EMT and the beginning of NCC migration, E-

Cad is nevertheless not only present, but also required, in migrating cranial NCCs of Xenopus, chick, and 

mouse (reviewed in Cousin, 2017). Consistent with findings in other species, we find that in 

unmanipulated zebrafish embryos E-Cad is indeed detectable in migrating NCCs at low levels. Notably, 

we find that E-Cad levels are elevated in Pk1b-deficient specimens, both in pre-migratory and migratory 

NCCs, and that N-Cad levels are reduced in migratory NCCs. We suggest that the previously-proposed 

activation of PCP signaling in response to decreased levels of E-cad and increased levels of N-Cad may 

be part of a broader feedback loop, such that Pk1 (a core PCP molecule) is in turn necessary to regulate 

both E-Cad levels and N-Cad. Consistent with this model, our analysis has shown that disruption of pk1b 

is sufficient to disrupt the typical reduction of E-Cad levels, likely leading to NCCs becoming trapped in 

the transitional blebbing morphology rather than completing EMT. According to this model, once EMT is 

completed, Pk1 is necessary for increase of N-Cad levels, and the continued reduction of E-Cad, such that 

cells make only transient contacts with neighbors, and migrate in streams, consistent with CIL behavior 

(Carmona-Fontaine et al., 2008; Theveneau et al., 2010; Theveneau et al., 2013). 

 

One of our more striking findings is that even when ventrolateral migration is impaired in Pk1-deficient 

specimens, NCCs maintain the ability to move in a directed fashion, albeit in an aberrant anterior 

direction. This finding implies that when core PCP function is disrupted, and NCCs do not complete 

EMT, they nevertheless remain able to respond to directional cue(s) that exist in the embryo. Szabo et al. 

(2016) have shown that the collective migration of Xenopus NCCs depends upon their initial confinement 

by the extracellular matrix molecule Versican, which also functions as a guidance cue, allowing NCCs to 

migrate collectively in streams and respect exclusionary boundaries between streams. Several other 

guidance cues, including VEGF (McLennan et al., 2015; McLennan et al., 2010) and Sdf1 (Kasemeier-

Kulesa et al., 2010; Olesnicky Killian et al., 2009; Saito et al., 2012; Theveneau et al., 2013), are also 

important for cranial NCC migration (reviewed in Kulesa et al., 2010). Although we find that clustered 

NCCs can move collectively in Pk1b or Pk1a-deficient embryos—perhaps in response to local 

environmental signals—these NCCs largely retain a location immediately dorsal to the neural tube, failing 

to migrate away laterally and instead moving towards the anterior and crossing the exclusionary 

boundaries that would typically exist between normal cranial crest streams. Interestingly, despite the 

aberrant cranial NCC migration we have documented early in the NCC development process, we have not 

found evidence of altered cranial crest cell fates, nor do we find any obvious defects in later cranial 
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morphology in Pk1b or Pk1a-deficient zebrafish larvae. Rather, the normal organization of pharyngeal 

cartilages in 6 dpf larvae mutant for a single pk1 gene, coupled with the viability of each mutant, 

demonstrates a remarkable ability of single pk1 mutant cranial NCC derivatives to recover from their 

early deficits. Consistent with the hypothesis that this recovery reflects functional redundancy of the two 

zebrafish Pk1 paralogs, it has recently been reported that the single mouse Prickle1 gene is required for 

the migration and differentiation of NCCs into osteoblasts of the skull frontal bone (Wan et al., 2018). 

 

We also find that pre-migratory NCCs deficient in either Pk1b or Pk1a display defects in polarity such 

that they orient along the AP axis. A recent study found that in both in vivo mouse mammary gland 

epithelia and in vitro 3D mammary gland cultured cells, EMT was accompanied by a change in polarity, 

and that polarity reversal promoted the scattering of mesenchymal cells (Burute et al., 2017). Moreover, 

previous work has shown that in zebrafish, PCP proteins polarize neuroepithelial cells along the AP axis 

during neurulation, with GFP-tagged Drosophila Prickle protein localizing specifically on the anterior 

side of these cells (Ciruna et al., 2006). Considering our data in light of these previous studies, it may be 

tempting to speculate that when key transitions during EMT are blocked, NCCs move in aberrant 

directions because of a failure to switch from a neuroepithelial-like apicobasal polarity to a mesenchymal 

“front-back” polarity. However, our findings in double-heterozygous specimens, where NCCs lack clear 

polarity yet continue to show anteriorly-directed migrations, argue that anterior movement can be de-

coupled from polarity in NCCs. Future investigation of how the dynamics of Pk1b and Pk1a localization 

correlate with polarization of NCCs and their progenitors will be important to dissect the dynamic role(s) 

of Prickle1.  

 

While previous work has implicated Frizzled and Disheveled in NCC migration, our work implicates Pk1 

in the process of NCC EMT as well as in subsequent NCC migration. This suggests that the entire core 

PCP suite may be required during EMT. It is probable that the core PCP factors act in concert at the same 

developmental stages when we have established Pk1 functions, especially given the previously-elucidated 

role of PCP-signaling in CIL. However, it is also formally possible that Pk1 functions at an earlier stage, 

to set up the asymmetries of other core PCP proteins, similar to how the Drosophila Prickle and Spiny 

legs isoforms differentially amplify the asymmetries of core PCP proteins (Gubb et al., 1999; Merkel et 

al., 2014; Sharp and Axelrod, 2016; reviewed in Strutt and Strutt, 2009), as well as establish the polarity 

of a microtubule network that determines the direction of tissue polarity in Drosophila (Olofsson et al., 

2014). Approaches to visualize endogenous levels of zebrafish Pk1 proteins, as well as the other core PCP 

proteins and previously-implicated downstream molecules, coupled with detailed temporal analysis 
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during EMT processes, would help to clarify regulatory interactions in the core PCP module during 

different stages of NCC development. 

 

Overall, our study has revealed that zebrafish Pk1 is required during cranial neural crest EMT and 

migration. Together with previously-published work, our findings reveal broad functions for the core PCP 

molecule Prickle1 in neural crest development. We conclude that PCP molecules act as a key source of 

regulation and feedback for the complex cellular dynamics, including EMT processes, that function to 

allow proper development of the cranial neural crest. 
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Figure Legends 

 

Figure 1: Zebrafish pk1b and pk1a are expressed in domains that partially overlap with expression 

of the pan-neural crest marker crestin 

 (A-C) In situ hybridizations for the pan-neural crest marker crestin (A), prickle1b (B) and prickle1a (C), 

dorsal views at 24 hpf, show that both pk1b and pk1a are expressed in tissue lateral to the neural tube. 

Low levels of expression are also seen in the neuroepithelium. Solid black arrows indicate gene 

expression in the cranial NCC stream leading to pharyngeal arch 1 (PA1), solid white arrow indicates 

pk1b expression in the FBMNs, r4 is indicated. (D) Schematic of protein domain structure for both 

Prickle1b and Prickle1a. Arrows indicate lesions in pk1ach105 and pk1bfh122 mutants. The first codon, and 

the C-terminal CAAX domain are also indicated. (E) Amino-acid sequence of Pk1a N-terminus; the 

pk1ach105 mutant encodes a truncated protein with a premature STOP codon. 

 

Figure 2: Disruption of pk1b or pk1a function disrupts cranial NCC disposition 

(A-C) Maximal projections of confocal images in dorsolateral view of fixed Tg(sox10:EGFP) 18 hpf 

embryos (EGFP indicated in magenta), counterstained with DAPI (yellow), show the 3D formation of 

NCC streams migrating ventrolaterally. The pk1b fh122/ fh122 (B) and pk1ach105/ch105 (C) mutant embryos 

exhibit dorsal clusters of NCCs along the AP axis, as indicated by solid white arrowheads; ov = otic 

vesicle, e = eye, scale bar = 100µm. (D-I) Single confocal z-slices of transverse sections through the 

anterior hindbrain of wild-type (D, G), pk1b fh122/ fh122 (E, H) and pk1ach105/ch105 (F, I) Tg(sox10:EGFP) 18 

hpf embryos counterstained with DAPI (yellow; D-F) or together with bright-field views (G-I). Open 

arrowheads indicate nuclei of dorsally located NCCs (EGFP signal in magenta), closed arrowheads 

indicate NCCs in process of ventrolateral migration around the neural keel, arrows indicate NCCs that 

have migrated out into the surrounding head mesenchyme, scale bar = 25µm. (J-O) Maximal projections 

of confocal images in dorsal view from fixed, deyolked, flat-mounted Tg(sox10:EGFP) embryos at 24 

hpf. The scale (bar = 100µm) is identical for all specimens shown except for pk1ach105/ch105 + pk1b-

morphant, and vangl2-morphant embryos, which showed a shortened AP body axis and a wider 

mediolateral body axis due to convergence defects. As compared to WT embryos (n=13 embryos) (J), 

pk1b fh122/ fh122 (n=12 embryos) (K) and pk1ach105/ch105 (n=9 embryos) (L) mutant embryos exhibit the 

maintenance of distinct dorsally-localized NCC clusters. pk1b-morphant (n=18 embryos) (M) embryos 

phenocopy the pk1b fh122/ fh122 mutant embryos (K). The pk1ach105/ch105 + pk1b-morphant (n=8 embryos) (N), 

and vangl2-morphant (n=7 embryos) (O) show a more severe phenotype of dorsal NCC clustering across 

the midline. (J’-O’’) High magnification insets from associated micrographs (boxed) show that in 

contrast to WT specimens (J’, J’’) where NCCs exhibit bipolar, protrusive morphologies, pk1b fh122/ fh122 
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(K’, K’’) pk1ach105/ch105 (L’, L’’), pk1b-morphant (M’, M’’), pk1ach105/ch105 + pk1b-morphant (N’, N’’), and 

vangl2-morphant (O’, O’’) NCCs show less protrusive, more rounded morphologies that exhibit close 

contacts with neighboring NCCs. The scale (bar = 10µm) is identical for each inset. PA1=pharyngeal arch 

1, PA2=pharyngeal arch 2, PA3=pharyngeal arch 3, ov=otic vesicle.  

 

Figure 3: Additional analysis of cranial neural crest cell clusters in wild-type and pk1 mutant 

embryos 

(A-B) The spatial distribution of NCC clusters across multiple 24 hpf embryos shows that both pk1b fh122/ 

fh122  and pk1ach105/ch105 clusters show anterior and medial biases. (A) The centroids of cell clusters, defined 

as two or more cells in contact with one another, across multiple pk1b fh122/ fh122 specimens (n=5 embryos) 

are plotted above the midline and those of pk1ach105/ch105 specimens (n=5 embryos) are plotted below the 

midline, with WT clusters on both sides for comparison (green filled circles, n=5 embryos). There is a 

bias for both pk1b fh122/ fh122 and pk1ach105/ch105 clusters in region 1 (R1), as well as a tendency to misalign 

such that the cluster cannot be ascribed to distinct streams for either PA1 or PA2. (B) Normalized 

distances of centroids of clusters from the midline show that in both RII and RIII there is a tendency for 

pk1b fh122/ fh122 and pk1ach105/ch105 NCCs to be located medially as compared to WT NCCs. The bias was 

found to be statistically significant for regions II and III using a two-way ANOVA test (*, p<0.05, **, 

p<0.01) for either mutant conditions as compared to WT. There was no statistically significant difference 

between either mutant condition and WT in Region I (p>0.05). (C) Comparison of the fraction of NCCs 

in a given z-slice that expresses Caspase-3 in 24 hpf WT (n=78 cells, 3 embryos) versus 24 hpf pk1b-

morphant (n=172 cells, 5 embryos) specimens. No statistically-significant difference was found between 

WT and pk1b-morphant NCCs (p>0.05). (D) Measurements of aspect ratio (the ratio of width/length of 

NCCs) for WT (n=34 cells), pk1b-morphant (n=48 cells), pk1b fh122/ fh122 (n=40 cells), pk1ach105/ch105 (n=30 

cells), and double-heterozygous pk1ach105/+; pk1bfh122/+ (n=94 cells) 24 hpf specimens were performed by 

measuring the width versus length ratio of NCCs either in Tg(sox10:mRFP) embryos, which label the 

membranes of all NCCs, or in Tg(sox10:EGFP) embryos co-injected with RNA encoding mRFP. WT 

NCCs had lower aspect ratios in comparison to each Pk1-deficient condition. Statistical significance was 

calculated in each pairwise case using unpaired t-tests (***, p<0.001; ****, p<0.0001). Double-

heterozygous pk1ach105/+; pk1bfh122/+ embryos showed a significantly higher aspect ratio than either pk1b 

fh122/ fh122 or pk1ach105/ch105 alone (p<0.0001 in both cases).  

 

Figure. 4: pk1b and pk1a mutants do not show alterations in pharyngeal cartilage fates  

(A-C) In situ hybridizations for the pharyngeal neural crest marker dlx2 in WT (A), pk1b fh122/ fh122 (B) and 

pk1ach105/ch105 (C) 24 hpf embryos in lateral view show no significant differences between conditions. 
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Solid arrowheads indicate streams of NCCs. (D-F) Alcian Green labeling of cartilage elements of the 

pharyngeal apparatus in WT (D), pk1b fh122/ fh122 (E) and pk1ach105/ch105 (F) 6 dpf larvae, show no significant 

changes in size and organization of elements between conditions. m=Meckel’s cartilage; 

pq=palatoquadrate; ch=ceratohyal; cb=ceratobranchial; cb(i) indicates first branchial arch, cb(iv) 

indicates fourth branchial arch, with solid arrows indicating the corresponding ceratobranchial cartilage 

elements. 

 

Figure 5: Loss of function of either pk1b or pk1a causes aberrant movement of cranial neural crest 

cells  

(A) Schematic dorsal view of a 16 hpf embryo with optic cup, pharyngeal arches (PA), and otic vesicle 

(ov) indicated; dashed box indicates region that was time-lapse imaged. (B-F) Displacement tracks of 

motile NCCs in dorsal view, anterior to left, from 16-18 hpf. The x and y components of the displacement 

tracks were drift-corrected relative to bright-field images of the embryos to account for growth and 

movement of the embryo. In contrast to WT embryos (B) where the net displacement of NCCs is lateral, 

the net displacement of NCCs in pk1b-morphant (C), pk1b fh122/ fh122 (D) and pk1ach105/ch105 (E) mutant 

embryos is in the anterior direction. NCCs in double-heterozygous pk1ach105/+; pk1bfh122/+ specimens (F) 

also move in net anterior directions. Scale bar = 25 µm for all conditions. (G-I) To show inter-embryo 

variation, 10 individual NCC displacement trajectories, for each of 3 embryos, were plotted at the origin, 

with both left and right sides of the embryo in the case of WT (G) embryos transposed on to one side for 

clarity. Trajectories from different embryos are colored in red, blue and green. (G) WT NCCs move in the 

lateral direction as is expected for the first stage of normal ventrolateral NCC migration, (H, I) pk1b fh122/ 

fh122 and pk1ach105/ch105 mutant NCCs display a bias for anterior directionalities. 

 

Figure 6: Disruption of pk1b or pk1a causes NCCs to adopt aberrant polarity 

To assay the polarity of NCCs, MTOCs in NCCs were labeled by injecting either XCentrin-EGFP RNA 

in one-cell stage Tg(sox10:mRFP) or Cherry-XCentrin RNA in one-cell stage Tg(sox10:EGFP) embryos 

that were also injected with H2B-CFP to label nuclei. Fixed, deyolked, flat-mounted 24 hpf embryos were 

imaged in dorsal view (A). Scale bar = 10 µm. The angle θ of the MTOC relative to the nucleus and the 

AP body axis (B) was measured for each cell and quantified using Fiji. (C-F) Polar histograms generated 

using MATLAB show the polarity of assayed NCCs. In all cases, the Watson-Williams F-test was used to 

measure statistical significance between conditions as well as with a randomly-distributed polar 

histogram. In WT embryos, NCCs (n=48 cells, 5 embryos) were polarized along the mediolateral axis 

(C), with WT cells showing a significant difference from a random distribution (***, p<0.001). However, 

in pk1b-morphant specimens (n=42 cells, 3 embryos) (D) and pk1ach105/ch105 specimens (n=40 cells, 3 
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embryos) (E) NCCs were polarized along the AP axis. As compared to WT NCCs, the distributions of 

both pk1b-morphant and pk1ach105/ch105 NCCs were significantly altered, and also showed a significant 

difference from random distributions (***, p<0.001 for each case). However, double-heterozygous 

pk1ach105/+; pk1bfh122/+ NCCs (n=71 cells, 4 embryos) (F) showed no statistically significant difference as 

compared to a random distribution (p>0.05), indicating that disrupting one copy each of the pk1a and 

pk1b genes is sufficient to randomize NCC polarity. 

 

Figure 7: Loss of Pk1 function causes dorsal NCC clusters to form and be maintained in early 

stages of neural crest development 

Confocal time-lapse imaging of dorsally-mounted Tg(sox10:EGFP) embryos was started at 12 hpf when 

the neural keel is still developing, with both EGFP and DIC (brightfield) images collected every 5 

minutes. (A-C) Reorganization of EGFP+ NCCs (pseudocolored) in clusters of NCCs at t=0 to t=40 mins; 

dotted line indicates border of the neuroepithelium. The neuroepithelium (NE) is located at top right, and 

the periphery (P) is located at bottom left, in all panels. Scale bar=10 µm. (A) In WT embryos, many of 

the NCCs in contact at t=0 break contact by 20 minutes, with almost all contacts breaking by 30 mins and 

40 mins. (B, C) In pk1b
 fh122/ fh122 

and pk1a
ch105/ch105  

specimens NCC clusters largely remained in contact 

for 40 mins. (D) To quantify breakage of contacts between NCCs over the time intervals 0-10 min, 10-20 

min, 20-30 min and 30-40 min, a ratiometric measure of ‘pair breakage’ within a cluster was used 

(Methods). In WT embryos, ~61% of pairs of cells broke contacts between 0 and 20 minutes (n=43 pairs, 

3 embryos), with a large majority of pairs losing contact by 20-30 minutes. In contrast, pairs of NCCs in 

both pk1b
 fh122/ fh122 

(n=61 pairs, 3 embryos) and pk1a
ch105/ch105 

embryos (n=58 pairs, 3 embryos) did not 

break over extended periods of time, with only ~27% of pairs in pk1b
 fh122/ fh122 

clusters breaking contact 

and ~21% of pairs in pk1a
ch105/ch105  

clusters breaking contact by 30-40 minutes. (E) To measure the 

relative proportions of individual cells and cell clusters of varying sizes, the organization of cells at 12 hpf 

in Tg(sox10:EGFP) embryos was quantified. In WT embryos (n=37 cells, 3 embryos), 43.9% of NCCs 

were found as individuals, 27.6% were in pairs, 15.3% in clusters of 3 cells, 10.2% in clusters of 4 cells, 

and 3.1% in clusters of 5 cells. In pk1b
 fh122/ fh122 

specimens (n=53 cells, 3 embryos), 5.9% of NCCs were 

found as individuals, and 17.0% as pairs. Most NCCs were found in cluster sizes of 3 (24.2%) or 4 

(22.9%), with clusters consisting of as many as 8 cells. In pk1a
ch105/ch105 

specimens (n=46 cells, 3 

embryos), 8.6% of NCCs were found as individuals, and 21.1% as pairs. Most NCCs were found as pairs 

or in cluster sizes of 3 cells (26.6%), with appreciable percentages of cluster sizes of 4 (11.7%) and 5 

(10.9%) and with clusters consisting of as many as 8 cells. (F) As another measure of the relative 

proportions of individual cells and clusters of varying sizes, the number of cells that persisted in a given 

configuration (from an individual cell to cells in increasing sizes of clusters) was measured over non-
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overlapping 20-minute time windows. In WT embryos (n=117 cells, 3 embryos), 53.8% of NCCs remain 

individual over 20 minutes, whereas 26.5% were in pairs, 11.1% in clusters of 3 cells, and 8.5% in 

clusters of 4 cells. In pk1b
 fh122/ fh122 

embryos (n=99 cells, 3 embryos), 5.05% of NCCs were found as 

individual cells over the 20-minute time window. Most NCCs were found in cluster sizes of 3 (21.2%) or 

4 (28.3%), with NCCs found in clusters consisting of as many as 8 cells. In pk1a
ch105/ch105 

embryos (n=148 

cells, 3 embryos), 6.1% of NCCs were individual, with most NCCs found in cluster sizes of 3 (27.7%) or 

4 (23.6%) and clusters consisting of as many as 8 cells. (G) To assay how persistence—a measure of the 

total length of a trajectory of a cell as a ratio of the displacement of the cell with a value of 1.0 indicating 

a targeted route from starting point to end point—varied as a function of cluster size, the persistence of 

individual cells and clusters of sizes 2 or more was measured for each condition. Persistence is agnostic to 

the ‘correct’ direction of the cells, and is a measure of the targeted directionality of NCCs, independent of 

their trajectories. In WT embryos (n=42 cells, 3 embryos), the persistence of individual NCCs or clusters 

of 2, 3 or 4 was similar. In both pk1b
 fh122/ fh122 

(n=49 cells, 3 embryos) and pk1a
ch105/ch105 

embryos (n=64 

cells, 3 embryos), the persistence of individual cells and cells in pairs was lower than the persistence of 

clusters consisting of 3 or more NCCs, or of WT NCCs. Clusters of 3 or more NCCs in both pk1-mutants 

showed high levels of persistence, with statistically insignificant (p>0.5) differences in persistence as 

compared to WT cells. Both pk1-mutants showed small increases in persistence as the size of the cluster 

increased, with no statistically significant difference between clusters of 5 or more cells.  

 

Figure 8: Loss of Pk1 function causes defects in both pre-migratory NCCs in the transitional states 

of EMT, as well as in migratory ‘escaper’ NCCs 

To query the role of Pk1 molecules in the morphological transitions of EMT, as well as during active 

migration, NCCs were labeled in a mosaic fashion by injecting DNA encoding LifeAct-GFP under the 

control of a sox10 promoter into one-cell stage embryos. (A-H) Confocal time-lapse imaging of LifeAct-

GFP positive cells for at least 20 minutes in 16 hpf embryos revealed F-actin rich protrusions and distinct 

morphologies of NCCs. Scale bar=10 µm. (A-D’’’’) Frames from confocal time-lapses of pre-migratory 

NCCs. (A-A’’’’) WT NCCs display short protrusions even before displaying rounded bleb-based 

protrusions. WT NCCs adopt the bleb-based morphology before transitioning to morphologies with 

longer filopodial protrusions, with NCCs moving through these transitional morphologies in EMT over 

the time-span of approximately 20 minutes. (B-B’’’’, C-C’’’’, D-D’’’’) Over the same time frame as WT 

NCCs, pk1b-morphant, pk1b fh122/ fh122, and pk1ach105/ch105 NCCs show bleb-based protrusions that are 

actively maintained, on occasion changing the location of the bleb along the edges of a NCC. (B’-B’’’) 

White arrowheads indicate bleb-based protrusions. (E-H) Confocal time-lapse images of NCCs in the 

mandibular stream actively migrating towards the first pharyngeal arch. (E-E’’’’) Actively-migrating WT 
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cells that are highly filopodial make transient contacts with neighboring cells, often making, breaking and 

re-establishing a contact in the form of a thick actin-rich protrusion with the same neighboring cell over a 

time span of at least 20 minutes. White arrowheads indicate a protrusion contacting a neighboring NCC. 

(F-F’’’’, G-G’’’’, H-H’’’’) pk1b-morphant, pk1b fh122/ fh122, and pk1ach105/ch105 migratory NCCs are highly 

protrusive but display an inability to separate from neighboring NCCs and maintain contact, often over 

extended time periods. (I) Bar graph showing the percentage of pre-migratory NCCs that successfully 

transitioned from a bleb-based to a highly-protrusive mesenchymal-like morphology relative to those that 

remained in the persistently-blebbing state over the time span of 20 minutes. 89% of WT NCCs (n=18 

cells, 8 embryos), 16% of pk1b-morphant NCCs (n=17 cells, 8 embryos), 6% of pk1b fh122/ fh122 NCCs 

(n=32, 8 embryos), and 17% of pk1ach105/ch105 NCCs (n=12 cells, 5 embryos) transitioned successfully. (J) 

Bar graph showing the percentage of migratory NCCs that established and severed contact with a 

neighboring NCC relative to NCCs that failed to sever contact with a neighboring NCC over the time 

span of 20 minutes. 93% of WT NCCs (n=28, 6 embryos) NCCs, 15% of pk1b-morphant NCCs (n=41 

cells, 10 embryos), 9% of pk1b fh122/ fh122 NCCs (n=22 cells, 7 embryos), and 15% of pk1ach105/ch105 NCCs 

(n=13 cells, 4 embryos) severed contact with neighboring NCCs. 

 

Figure 9: Pk1b regulates E-Cad levels in pre-migratory and migratory NCCs and N-Cad levels in 

migratory NCCs.  

To investigate the effect of Pk1b-knockdown on the levels of E-Cad (Cdh1) and N-Cad (Cdh2), 

immunolabeling at 16 hpf embryos was used to assay both pre-migratory and migratory NCCs, which 

were defined based on their z-position relative to the most dorsally located NCCs. Pre-migratory NCCs 

were defined as those located within 7 µm of the most dorsal position; the migratory cells imaged were 

located between 16 and 37 µm of the most dorsal position. (A-D) Tg(sox10:mRFP) embryos were 

immunolabeled for E-Cad (Cdh1) (A’-D’), and counterstained with DAPI to mark nuclei (A’’’-D’’’). 

Scale bar=10 µm. White arrowheads indicate levels of E-Cad in NCCs with labeled membranes and 

nuclei. Merged channels are also shown (A’’-D’’’). (A-A’’’) In pre-migratory NCCs, E-Cad is present at 

high levels in WT specimens (A’), with puncta localizing largely on the membrane (A’’). (B-B’’’) In 

pk1b-morphant specimens, E-Cad levels are elevated (B’) with more puncta localizing on the membrane 

(B’’) as compared to WT (compare A’’ and B’’). (C-C’’’) In migratory NCCs, E-Cad is present at 

reduced levels (C’, C’’) as compared to pre-migratory NCCs (compare C’’ and A’’). (D-D’’’). In pk1b-

morphant specimens, E-Cad levels are elevated (D’) with more puncta localizing on the membrane (D’’) 

as compared to WT (compare C’’ and D’’). (E) To quantify the levels of E-Cad in different conditions, 

fluorescence pixel intensity was measured. Each cell was normalized by subtracting background pixel 

intensity and dividing the remainder by the area of the cell. High levels of E-Cad were found in pre-
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migratory WT cells (n=92 cells, 4 embryos). E-Cad levels in pk1b-deficient NCCs (n=73 cells, 4 

embryos) were significantly elevated as compared to WT NCCs (***, p=0.0002). E-Cad levels in 

migratory WT cells (n=100 cells, 4 embryos), were significantly reduced as compared to levels in pre-

migratory WT cells (****, p<0.0001), however pk1b-morphant migratory NCCs (n=65, 4 embryos) 

showed significantly higher levels of E-Cad as compared to WT migratory NCCs (***, p=0.0006). 

Similarly, (F-I) Tg(sox10:mRFP) embryos were immunolabeled for N-Cad (Cdh2) and counterstained 

with DAPI to mark nuclei (F’’-I’’’). White arrowheads indicate levels of N-Cad in NCCs with labeled 

membranes and nuclei. Merged channels are also shown (F’’-I’’). (F-F’’’) In pre-migratory NCCs, N-Cad 

(F’) is highly localized at the membrane in WT specimens (F’’). (G-G’’’) In pk1b-morphant specimens, 

N-Cad levels (G’) showed no discernable difference in localization on the membrane (G’’) as compared 

to WT (compare G’’ and F’’). (H-H’’’) In migratory NCCs, N-Cad is present at increased levels as 

compared to pre-migratory NCCs (compare H’’ and F’’). (I-I’’’) However, in pk1b-morphant specimens, 

N-Cad levels in migratory NCCs are decreased (I’) with less N-Cad localization on the membrane (I’’) as 

compared to WT (compare I’’ and H’’). (J) To quantify the levels of N-Cad in different conditions, 

fluorescence pixel intensity was measured and normalized in the same manner as with E-Cad. N-Cad was 

present on the membrane in pre-migratory WT NCCs (n=164 cells, 5 embryos). N-Cad levels in pk1b-

morphant NCCs (n=204 cells, 4 embryos) showed no difference to WT NCCs (p>0.05). N-Cad levels in 

migratory WT cells (n=192 cells, 5 embryos), were significantly elevated as compared to levels in pre-

migratory WT NCCs (****, p<0.0001), however pk1b-morphant migratory NCCs (n=189, 4 embryos) 

showed significantly lower levels of N-Cad as compared to WT migratory NCCs (**, p=0.0027). N-Cad 

levels in WT pre-migratory, pk1b-morphant pre-migratory, and pk1b-morphant NCCs showed no 

significant difference from each other (p>0.05 for each combination). 

 

Tables 

 

Table 1: Aberrant dorsoventral distribution of cranial neural crest cells in Pk1-deficient specimens. 

The dorsoventral locations of NCCs were established using confocal z-stacks of Tg(sox10:EGFP) 

specimens in dorsal view (Fig. 2). EGFP-positive cells, on both left and right sides of the midline, were 

counted within a region of interest spanning the midbrain and anterior hindbrain (regions I, II, III, see Fig. 

3A). The percentage of the total number of EGFP-positive cells in the entire dorsoventral range at 

16 hpf and 24 hpf was calculated for the most dorsal and most ventral domains across wild-

type, pk1bfh122/fh122, and pk1ach105/ch105 conditions (5 embryos in each condition and at each stage, with mean 

percentages and standard error of the mean shown). At 16 hpf, the dorsoventral range is ~40µm, with the 

dorsal-most domain in the range defined as 0-4 µm, and the ventral-most domain in the range defined as 
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36-40 µm (the first z-slice showing EGFP-positive cells is denoted by 0µm). At 24 hpf, the dorsoventral 

range is ~64 µm, with the dorsal-most domain in the range defined as 0-4 µm, and the ventral-most 

domain in the range defined as 60-64 µm. The total number of cells counted, across 5 embryos for each 

condition, is indicated. 

 

Supplemental Movie Legends 

 

Movie 1: Migration behavior of wild-type cranial NCCs 

Time-lapse maximum projection confocal movie of wild-type Tg(sox10:EGFP) embryo from ~16 hpf to 

18 hpf. Z-stacks were taken at 4 min 30 sec intervals. Anterior to left, solid line indicates left-side edge of 

the neuroepithelium as assayed by DIC imaging. NCCs move from the dorsal aspect of the 

neuroepithelium (above the line), laterally towards the periphery (below the line). Time stamp at top left 

follows hh:mm format. 

 

Movie 2: Migration behavior of pk1b-morphant cranial NCCs 

Time-lapse maximum projection confocal movie of pk1b-MO Tg(sox10:EGFP) embryo from ~16 hpf to 

18 hpf. Z-stacks were taken at 5 min intervals. Anterior to left, solid lines indicate lateral edges of the 

neuroepithelium as assayed by DIC imaging. NCCs remain dorsal to the neuroepithelium, at center above 

solid line. Time stamp at top left follows hh:mm format. 

 

Movie 3: Migration behavior of pk1b-mutant cranial NCCs 

Time-lapse maximum projection confocal movie of pk1bfh122/fh122 Tg(sox10:EGFP) embryo from ~16 hpf 

to 18 hpf. Z-stacks were taken at 3 min 30 sec intervals. Anterior to left, solid lines indicate lateral edges 

of the neuroepithelium as assayed by DIC imaging. NCCs remain dorsal to the neuroepithelium, at center 

between solid lines. Time stamp at top left follows hh:mm format. 

 

Movie 4: Migration behavior of pk1a-mutant cranial NCCs 

Time-lapse maximum projection confocal movie of pk1ach105/ch105 Tg(sox10:EGFP) embryo from ~16 hpf 

to 18 hpf. Z-stacks were taken at 2 min intervals. Anterior to left, solid lines indicate lateral edges of the 

neuroepithelium as assayed by DIC imaging. NCCs remain dorsal to neuroepithelium, at center between 

solid lines. Time stamp at top left follows hh:mm format. 

 

Movie 5: Migration behavior of double-heterozygous pk1b/pk1a-mutant cranial NCCs 
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Time-lapse maximum projection confocal movie of double-heterozygous pk1bfh122/+;pk1ach105/+ 

Tg(sox10:EGFP) embryo from ~16 hpf to 18 hpf. Z-stacks were taken at 2 min 30 sec intervals. Anterior 

to left, solid lines indicate lateral edges of the neuroepithelium as assayed by DIC imaging. NCCs remain 

dorsal to neuroepithelium, at center between solid lines. Time stamp at top left follows hh:mm format. 

 

Movie 6: NCC undergoing apical detachment 

Time-lapse maximum projection confocal movie of 16 hpf wild-type embryo injected with 

sox10:LifeAct-GFP. Z-stacks were taken at 1 min 8 sec intervals. An apically-delaminating NCC rounds 

up within the neuroepithelium; the midline is to the left and the edge of the neuroepithelium to the right. 

Time stamp at top left in minutes, with two decimal places. Scale bar=10 µm 

 

Movie 7: NCC transitioning to blebbing behavior 

Time-lapse maximum projection confocal movie of 16 hpf wild-type embryo injected with 

sox10:LifeAct-GFP. Z-stacks were taken at 33 sec intervals. A dorsally located NCC transitions from a 

rounded morphology, to a one with small protrusions, edge of neuroepithelium to the right. Time stamp at 

top left in minutes, with two decimal places. Scale bar=10 µm. 

 

Movie 8: NCC in the blebbing state 

Time-lapse maximum projection confocal movie of 16 hpf wild-type embryo injected with 

sox10:LifeAct-GFP. Z-stacks were taken at 1 min 18 sec intervals. A dorsally located NCC shows 

blebbing behaviors, edge of neuroepithelium to right. Time stamp at top left in minutes, with two decimal 

places. Scale bar=10 µm. 

 

Movie 9: NCC transitioning from blebbing to mesenchymal state  

Time-lapse maximum projection confocal movie of 16 hpf wild-type embryo injected with 

sox10:LifeAct-GFP. Z-stacks were taken at 1 min 9 sec intervals. A NCC with small protrusions 

transitions to a highly-protrusive mesenchymal cell, which is crossing the edge of the neuroepithelium. 

Time stamp at top left in minutes with two decimal places. Scale bar=10 µm. 
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16 hpf 24 hpf 
% of total no. of cells  

(Mean  SEM) Total no. of cells  

% of total no. of cells 

(Mean  SEM) Total no. of cells 

Dorsal-most Ventral-most Dorsal-most Ventral-most 

WT 53.0  3.2 25.6  1.9 960 11.8  2.4 54.2  3.7 1430 

pk1b
-/- 

61.2  3.4 9.6  2.0 973 55.6  2.3 20.8  3.7 1392 

pk1a
-/-

 64.2  3.1 12.8  1.5 1063 59.4  4.3 18.6  4.6 1470 

 

Table 1: Aberrant dorsoventral distribution of NCCs in Pk1-deficient specimens. 
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