
REGION-BASED CONVOLUTIONAL NEURAL NETWORK AND

IMPLEMENTATION OF THE NETWORK THROUGH ZEDBOARD ZYNQ

A Thesis

Submitted to the Faculty

of

Purdue University

by

Md Mahmudul Islam

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2019

Purdue University

Indianapolis, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Lauren Christopher, Chair

Department of Electrical and Computer Engineering

Dr. Maher Rizkalla

Department of Electrical and Computer Engineering

Dr. Paul Salama

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program



iii

To my parents, Mahmuda Khatun and Md Rezaul Islam



iv

ACKNOWLEDGMENTS

I want to express my sincerest gratitude to my thesis advisor, Dr. Lauren Christo-

pher, for allowing me to work on the topic and providing me the guidance required at

every step. I am grateful to Dr. Maher Rizkalla and Dr. Paul Salama for serving on

the thesis committee. I also want to thank all my lab-mates and especially to David

Emerson for his collaboration.

Finally, I would like to express my earnest gratitude to my parents, my family

and friends for all of the motivation and support throughout this Journey.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Neural Network and FPGA . . . . . . . . . . . . . . . . . . . . 2

1.1.2 RCNN AND Matlab . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Vivado Design Suite . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Petalinux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 DEFINE RCNN AND IMPLEMENTATION IN MATLAB . . . . . . . . . . 5

2.1 Layers and Training Image Set . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Network Code and Parameter Setup . . . . . . . . . . . . . . . . . . . . 14

3 VALIDATION, DESIGN AND BITSTREAM GENERATION . . . . . . . . 17

3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Designing Block Diagram and Bitstream Generation . . . . . . . . . . . 26

4 SOFTWARE AND HARDWARE IMPLEMENTATION IN PETALINUX . . 30

4.1 Choosing Platform and Data Modification . . . . . . . . . . . . . . . . 30

4.2 Classification Result in Hardware . . . . . . . . . . . . . . . . . . . . . 33

5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vi

LIST OF FIGURES

Figure Page

2.1 RCNN layers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 RCNN layers graph in MATLAB . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Training parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Labelled stop sign co-ordinates in the training images . . . . . . . . . . . . 8

2.5 3 steps of training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 First 6 test images output with boxes . . . . . . . . . . . . . . . . . . . . . 9

2.7 Last 4 test images output with boxes . . . . . . . . . . . . . . . . . . . . . 10

2.8 Alternate RCNN layers description . . . . . . . . . . . . . . . . . . . . . . 10

2.9 First 6 test images output with alternate network . . . . . . . . . . . . . . 11

2.10 Last 4 test images output with alternate network . . . . . . . . . . . . . . 12

2.11 MATLAB layer orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.12 MATLAB detection with already trained network . . . . . . . . . . . . . . 13

2.13 Code for formatting matrices . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.14 Loading biases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.15 Loading weights and calculating with biases . . . . . . . . . . . . . . . . . 15

2.16 Applying ReLU (MAX(0,x) operation) . . . . . . . . . . . . . . . . . . . . 16

2.17 Pooling max values from the 3 by 3 square . . . . . . . . . . . . . . . . . . 16

3.1 Proposed 15 layers Convolutional Neural Network [28] . . . . . . . . . . . 18

3.2 Zynq-7000 SoC Data Sheet: Overview [29] . . . . . . . . . . . . . . . . . . 19

3.3 Basic C synthesis result of the proposed network . . . . . . . . . . . . . . 20

3.4 C synthesis result using all loops pipelining and no pipelining with possible
resource reusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 C synthesis result after array partitioning . . . . . . . . . . . . . . . . . . 21

3.6 C synthesis result after array partitioning and BRAMs sharing . . . . . . . 21



vii

Figure Page

3.7 C synthesis result after network redesign and profiles . . . . . . . . . . . . 22

3.8 C synthesis memory allocation analysis . . . . . . . . . . . . . . . . . . . . 22

3.9 C synthesis performance profile . . . . . . . . . . . . . . . . . . . . . . . . 23

3.10 C synthesis resource profile . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.11 C synthesis result after network redesign with DATAFLOW pragma . . . . 23

3.12 Pipelining three inner loops of conv layers . . . . . . . . . . . . . . . . . . 24

3.13 CNN RTL generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.14 RTL simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.15 Finishing message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.16 RTL IP block of our CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.17 Block Diagram with cnn 0, DMA, ARM processor . . . . . . . . . . . . . . 26

3.18 Post-synthesis summary graph . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.19 Post-implementation summary graph . . . . . . . . . . . . . . . . . . . . . 28

3.20 Power summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.21 Timing report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.22 Device, showing used blocks on chip. . . . . . . . . . . . . . . . . . . . . . 29

4.1 Prerequisite tools for the desired environment [31] . . . . . . . . . . . . . . 31

4.2 Commands for generating bootfile from our hardware bitstream . . . . . . 32

4.3 Commands in MATLAB to manipulate images into binary files . . . . . . 32

4.4 Demonstration of FPGA setup . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Run process into the petalinux and classified screenshot . . . . . . . . . . . 34

4.6 MATLAB time for executing first 8 test images . . . . . . . . . . . . . . . 34

4.7 MATLAB time for executing last 2 test images . . . . . . . . . . . . . . . 35

4.8 MATLAB time for execution at enhanced CPU and at GPU . . . . . . . . 35

4.9 Power consumption at enhanced CPU . . . . . . . . . . . . . . . . . . . . 36

4.10 Increased power consumption at GPU . . . . . . . . . . . . . . . . . . . . 36

4.11 Comaprison among our network, ZynqNet [4] and CNN2ECST [5] . . . . . 36

4.12 Comaprison among our network and CMSIS-NN [34] . . . . . . . . . . . . 37



viii

ABBREVIATIONS

NN Neural Network

CNN Convolutional Neural Network

RCNN Region-based Convolutional Neural Network

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HLS High-Level Synthesis

GPU Graphics Processing Unit

CPU Central Processing Unit

ReLU Rectified Linear Unit

ARM Advanced RISC Machines

ASIC Application Specific Integrated Circuits

HDL Hardware Description Language

DSP Digital Signal Processing

BRAM Block Random Access Memory

LUT Look-up Table

BSP Board Support Package

FSBL First Stage Boot Loader

SDK Software Development Kit

GPU Graphics Processing Unit

IP Intellectual Property

SGDM Stochastic Gradient Descent with Momentum



ix

ABSTRACT

Islam, Md Mahmudul. M.S.E.C.E., Purdue University, May 2019. Region-based Con-
volutional Neural Network and Implementation of the Network Through Zedboard
Zynq. Major Professor: Lauren Christopher.

In autonomous driving, medical diagnosis, unmanned vehicles and many other

new technologies, the neural network and computer vision has become extremely

popular and influential. In particular, for classifying objects, convolutional neural

networks (CNN) is very efficient and accurate. One version is the Region-based CNN

(RCNN). This is our selected network design for a new implementation in an FPGA.

This network identifies stop signs in an image.

We successfully designed and trained an RCNN network in MATLAB and im-

plemented it in the hardware to use in an embedded real-world application. The

hardware implementation has been achieved with maximum FPGA utilization of 220

18k BRAMS, 92 DSP48Es, 8156 FFS, 11010 LUTs with an on-chip power consump-

tion of 2.235 Watts. The execution speed in FPGA is 0.31 ms vs. the MATLAB

execution of 153 ms (on computer) and 46 ms (on GPU).



1

1. INTRODUCTION

The most robust visual processing system in the mammal is its’ visual cortex [1].

This visual system was the initial inspiration for the creation of the current day

Neural Network. In the coming age, autonomous systems (i.e., autonomous vehicles,

animal robots or cooking assistant robots [2]) have an increased demand for machine

vision. There are many variations of machine vision Neural Networks now available.

One of the most common is the Convolutional Neural Network which provides more

flexibility and improved accuracy for classification using the convolutional layer’s

parameter learning through this network’s hierarchy [3]. For the automotive industry,

it is becoming essential to implement these facilities within the embedded hardware

for speed and cost.

1.1 Literature Review

In recent years, the demand for Computer Vision (CV) processes in Autonomous

Vehicles (AV), Medical Diagnostics and Unmanned Aerial Vehicles (UAVs) have cre-

ated much interest among researchers and scientists. This work is not an entirely new

horizon for this type of task. Researchers have developed CNN for either the software

level [4] or the FPGA hardware level, but only with one-channel grey scale images [5].

In this case, our new FPGA hardware implementation of the CNN needed the RGB

images.

Before starting this thesis, we searched the web for papers or projects with hard-

ware acceleration to understand the state of the art. The most relevant papers were

CNN2ECST- a Xilinx Open Hardware Contest 2016 project [5] and ZynqNet Em-

bedded CNN - a masters thesis report by David Gschwend [4]. ZynqNet was a

highly efficient FPGA-based CNN acceleration exploration with 84.5 percent top-5-



2

accuracy [6]. The ZynqNet FPGA accelerator had been synthesized using high-level

synthesis for the Xilinx Zynq XC-7Z045, reached 200 MHz clock frequency with a

device utilization of 80 to 90 percent. However, this chip had many more resources

needed compared to us. CNN2ECST, was designed by an Italian group, and similar

to our goal. CNN2ECST is an CNN, used the same FPGA chip. However, It takes

grey scale images and hand-drawn digits into ten classes 0,...,9. They used an USPS

dataset [7] for training and testing their classification work. USPS dataset consists

of 1100 images of each of the ten digits, with 1000 training images and 100 test im-

ages [8]. This project gave us an initial starting point for our work. Although it

inspired us, our network design was different from them.

1.1.1 Neural Network and FPGA

Artificial Neural Network (ANN) implies a network that is based on the con-

nections of the mammal’s brain neurons implemented as a computer network [9].

Axons and Dendrites are two significant components of a neuron cell. These neu-

rons get excited electrically. Axons perform the Neural coding depending upon the

receiving signal through the Dendrites [10] and are connected to the next Neuron’s

Dendrites, repeating the procedure forms the Neural Network. Modern computer sci-

ence invented a connection based system modeling the biological neurons as nodes [11]

and performs various interactions in between network components [12]. It is done by

proper usage of weights, biases and activation functions. Neural networks can perform

tasks without being programmed precisely, and they improve performance through

data learning. A neural network consists of several layers of nodes, like the neurons

of the brain, and these are interconnected in layers. Input layers, output layers, and

hidden layers are the main three layers. Nodes are determined by individual weights

and biases and have a unique output. A defined activation function activates these

outputs.



3

Field Programmable Gate Array (FPGA), on the other hand, are electrically pro-

grammable and re-programmable integrated circuits. The FPGA is composed of

arrays of programmable logic blocks and four kinds of resource sharing elements.

Its reconfigurability property makes it different from Application Specific Integrated

Circuits (ASICs) which are not re-configurable. Previously only VHDL/Verilog was

used to program and model FPGAs. However, now we can do operations in stan-

dard C/C++ language. Once programmed, a file to configure the function into the

hardware, known as a bit-stream, is created and contains the resource and wiring

information for the FPGA components. We created such a file for our CNN, and

then we downloaded it into the FPGA board. Once we power on, our board gets

configured and initiated to run according to the designed CNN function.

1.1.2 RCNN AND Matlab

RCNN stands for region-based Convolutional Neural Network. What the regular

CNN does is that it captures little information through predefined sub-regions called

the receptive fields within a fixed dimension image or region. Then in a later stage,

this locally captured data is analyzed, and CNN Neurons perform classification. The

RCNN adds a pre-processing step to identify regions of interest to pass to CNN.

So RCNN is a special version of CNN. It was Krizhevsky [13] who first initiated this

thought of RCNN in 2012 and eventually in 2014, Girshick [13] designed a new method

of image detection (RCNN), In 2015, he also designed the model Fast RCNN. [13]

In Matlab, there are options to create a CNN network and train it with labeled

image sets. We designed our network using the MATLAB dataset provided with the

Faster-RCNN example. In this case, we designed a new network to fit into a specific

FPGA.



4

1.1.3 Vivado Design Suite

The software-hardware acceleration in this research will use Vivado Design Suite

as the interface to validate, design the software section and to create bitstream for the

hardware. Vivado Design Suite consists of Vivado HLS, Vivado, and SDK. Vivado

HLS synthesize and implement the high-level C code into IP block. Vivado and SDK

will be used to draw the network’s block diagram, and generate the bitstream. We

have used Vivado Design Suite 15.3.

1.1.4 Petalinux

The hardware implementation requires an embedded software design. A commer-

cial Linux distribution developed by Petalogix, operating system Petalinux, was our

chosen embedded system software. It is used for microprocessors in Xilinx FPGAs

as it supports ARM microprocessor. It is considered that Petalinux is useful for this

CNN network implementation [14].

1.2 Organization

• Chapter 2 describes our RCNN definition in MATLAB and its output modifi-

cation.

• Chapter 3 explains how the verification of the network was done.

• Chapter 4 describes the hardware implementation details.

• Chapter 5 is the summary.



5

2. DEFINE RCNN AND IMPLEMENTATION IN

MATLAB

The first step of this thesis was to train an RCNN network with a labeled dataset

and using the weights and biases for the next step in FPGA hardware. For training

the already labelled dataset of ”rcnnStopSigns.mat” [15] from MATLAB 2018B was

used. Then we defined, designed and trained our RCNN in MATLAB.

2.1 Layers and Training Image Set

Initially, we choose to select a CNN network with three convolutional layers with

filter numbers, 32,32,64 respectively. However, later we revised the filter numbers to

be 32,32,16 respectively. The reason why we did not validate the earlier estimation of

the design is described in detail in Chapter 3’s validation section. So, our final layers

for the RCNN detection and classification is as following Figure 2.1 and Figure 2.2.

Fig. 2.1.: RCNN layers description



6

Fig. 2.2.: RCNN layers graph in MATLAB

Here we can see that we choose a network with RGB images of 32 by 32 by 3 as

its image input layer. In a Network, layers start with an input layer. So, we started

with the image input layer which will take the first step to take the sample into the

network. After feeding the network, we started the first convolutional operation using

the first convolutional layer. It takes regions from the image and convolves it with the

parameter values. After the operation, to provide the non-linearity, we use the ReLU

layer. ReLU stands for Rectified Linear Units [16]. It provides the network with

non-linearities to better model the real world using ”max” function. After ReLU, we

get new features from convolved images.

We used a max pooling layer to extract the max values from each pooling square

with stride 2. We repeat the process two more times to get the final features for the

fully connected layer. The goal of these layers was to create unique features which

will detect a particular object when it goes through the fully connected layers. After

all nine layers (3 times convolution, ReLU, and max-pooling) we obtain the essential

features. Now, we need fully connected layers to classify from these features. We



7

take two fully connected layers and a ReLU layer in between. We did this to provide

non-linearity after the first fully connected layers. The second fully connected layer

is defined by the number of objects to be determined. In our case, it had to be either

’stop sign’ or ’background.’

Softmax layer is the next one. Softmax layer is normally used at the final fully

connected layer because it emphasizes the most likely feature match by regression.

So finally, we receive our class through the classification layer. Among the three

convolutional layers, the first two convolution layers have 32 5 by 5 filters, whereas

third one has 16 5 by 5 filters. All of them were with padding and bias learn rate factor

of 2. The first fully connected layer uses 16 nodes to learn non-linear combinations of

the features, and the last fully connected layer is used to produce the two class scores

[17]. Parameters during the training are shown in the Figure 2.3 using MATLAB [18].

Fig. 2.3.: Training parameters

The training had three steps.

• First, extracting region proposal from the labeled Data set. This phase reads

the image input and identifies the feature to learn. Before any network training,

there must be ground truth dataset. We had 27 sign images where stop signs

were labeled with a rectangle box of four co-ordinates as the following Figure

2.4.

• Second, training our defined network to classify objects in our data. In this

phase, the network gets trained according to described parameters such as the

number of epochs, mini-batch size and initial learning rate.



8

Fig. 2.4.: Labelled stop sign co-ordinates in the training images

Fig. 2.5.: 3 steps of training

• Third, training bounding box regression models for each object class. This

phase detects the region inside an image where the detected object is placed

and place a box around that before we get the output. We can see this box in

all the images of Figure 2.6, 2.7, 2.9 and 2.10.



9

In our case, We display the sigle stop sign with the best match, but multiple

objects can be shown and there is also the background (no stop sign). The three

steps were successfully done in MATLAB as can be seen from the images.

Now it was time for testing the network with test images. We choose 8 random

images from Google search [19] [20] [21] [22] [23] [24] [25] [26] and two data from

the training set to feed into the network and observe the performance. The detected

images in Figure 2.6 and 2.7 showed good result, using MATLAB.

Fig. 2.6.: First 6 test images output with boxes



10

Fig. 2.7.: Last 4 test images output with boxes

It has to be noted that before this network we tried another network. This network

had similar parameters but had 64 filters in the third convolutional layer, and 64 filters

in the first fully connected layer as shown in the following layer settings figure 2.8.

Fig. 2.8.: Alternate RCNN layers description



11

Fig. 2.9.: First 6 test images output with alternate network

The output performance was almost the same performance of the alternate RCNN

as seen in Figure 2.9 and 2.10. We will describe why we chose the smaller RCNN in

the next chapter.

We also ran the test images with basic MATLAB layer architecture. The layer

description are shown in Figure 2.11 and detected images is shown in Figure 2.12.

Confidences are higher with this trained network.



12

Fig. 2.10.: Last 4 test images output with alternate network

Fig. 2.11.: MATLAB layer orientation



13

Fig. 2.12.: MATLAB detection with already trained network

So, after successful classification, we moved on to the network detail where we

found each CNN layer’s weights and biases which will make our parameter file for the

hardware. At this point, our challenge was to extract the CNN weights and biases



14

data. It was a challenge mainly because it was a data that cannot be extracted

manually. It is a 4-dimensional matrix. We wanted row reading first, so the simple

solution was to make a data modification by a simple code in MATLAB. This code

reforms our data according to our requirements seen in Figure 2.13. This step marks

the end of our MATLAB part by exporting weights and biases for our network’s

hardware.

Fig. 2.13.: Code for formatting matrices

2.2 Network Code and Parameter Setup

After the successful creation of the weights and biases from the trained network,

we need to create the parameter file where the weights and biases will be presented as

matrices to the hardware. We again formatted the file according to our requirement

for input to the hardware. It creates the parameter file which will work alongside

the CNN C code. This file has three big matrices of weights of the convolutional



15

layers and seven other small matrices which will include biases of the convolutional

layers and weights and biases of fully connected layers. We also had to calculate

the output after each operation of convolution and pooling layers. We calculate the

output dimensions depending on input dimensions, pooling dimensions, and stride

squares [17]. The second part to be prepared was the C code which represents the

CNN architecture. We had to represent each layer in C language to validate the

network in Vivado HLS. We wrote each layer according to layer.

Fig. 2.14.: Loading biases

Fig. 2.15.: Loading weights and calculating with biases

Figure 2.13, 2.14, 2.15 and 2.16 shows four major operations through each con-

volutional, ReLU and max pooling. We can see from Figure 2.14 coding that a

parameter file loads the bias values of the each layer in the convolution operation.



16

Then in Figure 2.15, it is shown how we have calculated operation between weights

and biases, and the pragma PIPELINE is used. This pragma allows concurrent execu-

tions of operation by reducing the interval during initiation [27].We also used pragma

HLS INTERFACE inside vivado HLS tool(validation operation) which specifies RTL

genertation from the definition of the function [27].

Fig. 2.16.: Applying ReLU (MAX(0,x) operation)

Fig. 2.17.: Pooling max values from the 3 by 3 square

In Figure 2.16, we can see the ReLU layer performing the MAX operation which

will provide the network with the non-linearity. The max pooling layer is pooling the

max out of the three by three square. This operation is shown in Figure 2.17. When

the generation of the C code for network and parameter file is done, we are ready for

the validation and design Phase.



17

3. VALIDATION, DESIGN AND BITSTREAM

GENERATION

This section deals with the validation of the network with chosen FPGA. We can

choose any network or circuit for given hardware, but we always have to remember

that hardware has limited resources. So, even if we design a perfect network, it actu-

ally might not work within particular hardware. That is why validation is required.

Once a design is validated then we move on to its block diagram design. Here we

use the module created by our design along with other supporting parts and wires.

If the block diagram is also validated correctly, then we move on to the bitstream

generation phase. This whole process was performed using Vivado Design Suite 15.3

using HLS scripting language, as shown in section 2.2. When we complete synthesis

and implementation, the tool creates a script file inside Vivado HLS that maps to

hardware.

3.1 Validation

The biggest initial challenge of this whole thesis was resource optimization. This

thesis work was initially a continuation of a previous student’s work to improve the

accuracy of a given network [28]. There was a given RCNN/CNN network of 15

layers in the previous design. It also used three convolutional layers, similar to ours.

However, it had some differences regarding the third convolutional layer and first

fully connected layer. It was a conventional RCNN/CNN layer configuration, and it

was classifying ten classes. It is the alternate network that we have described and

showed stop sign classification performance in Chapter 2. Figure 3.1 shows the layer

configuration of that network.



18

Fig. 3.1.: Proposed 15 layers Convolutional Neural Network [28]

We choose the Zedboard development kit as our hardware platform. The resource

requirements for this previous network was too high for the Zedboard. The board has

a Xilinx Z-7020 FPGA chip, and its specifications are shown in Figure 3.2. We can

see that it has 85k programmable logic cells, 53,200 LUTs, 106.400 Flip-Flops, 4.9

Mb BRAM, and 220 DSP slices. This 4.9 Mb BRAM is consist of 140 36Kb blocks

or 280 18Kb blocks. The usable RAM is 4.9 Mb.

BRAM stands for Block Random Access Memory, and it stores data. The DSP

slice is used to implement algorithmic operations (Digital Signal Processing). The

DSP slice performs multiply-accumulate operation. Within the signal processing



19

industry, utilization DSP operations in FPGA is a common practice. LUT stands

for LookUp Table. It is a table that determines how our combinational logic output

behaves. FFs and LUTs can be used for creating registers.

Fig. 3.2.: Zynq-7000 SoC Data Sheet: Overview [29]

The previous student’s network could not be implemented with our chip resources.

The number of parameters it would need to save was too high for the Zedboard’s

memory. The resources were mainly absorbed by the values of weights and biases

and their products. So after the synthesis, we found that it was not a fit for our

hardware. The report of the synthesis for this network is shown in Figure 3.3.

We can see that it has exceeded the BRAM utilization by 59 percent more than

maximum usage. This view is just the summary, but we investigated in detail and

saw that some resources could be reused but it will hamper the overall latency. The

first two vertical images in Figure 3.4 shows that it improved the resource usage by 11

percent from 159 to 148 but it is still too high. Then remaining within this usage, we

tried to increase the latency using pipelining. It improved the latency but exceeded

the estimated clock. Next, we used another option to increase memory. We created



20

Fig. 3.3.: Basic C synthesis result of the proposed network

Fig. 3.4.: C synthesis result using all loops pipelining and no pipelining with possible

resource reusing

registers using available FFs and LUTs. This only increased a few 100s even using

all the available FFs and LUTs. This also was limited to 14k BRAM and exceeded

the clock constraint as shown in Figure 3.5.



21

Fig. 3.5.: C synthesis result after array partitioning

Next, we combined these two processes and reused BRAMs and partitioned an

array (making new register) to maximize the usage. However, even after that, it could

only reach 138 percent from 148 percent.

Fig. 3.6.: C synthesis result after array partitioning and BRAMs sharing

This analysis was the reason why the previous student’s network, described in

Chapter 2, was not selected. Finally, we were forced to modify our network, although

a new board with Xilinx Z-7045 could be a future improvement [29]. At this point,

we redesigned the network which made a reduction in the final convolutional layer

and fully connected layer. This design fits inside the available resources as shown

in Figure 3.7. The memory allocation, performance and resource profiles were also

validated as shown in Figures 3.8, 3.9 and 3.10.



22

Fig. 3.7.: C synthesis result after network redesign and profiles

Fig. 3.8.: C synthesis memory allocation analysis

It is noticeable that most of the BRAMs are getting absorbed for saving first

convolution layer output values (01 U) and weights values of the second convolutional

layer (w2 U). As a result, the first pooling layer also absorbs many BRAMs. It is

shown in Figure 3.8.



23

Fig. 3.9.: C synthesis performance profile

Fig. 3.10.: C synthesis resource profile

Figure 3.9 shows us that, because of those two high values, trip count at the second

convolution inner loop is the highest. When we tried to use a Dataflow architecture,

we noticed a decrease in latency from 13644866 to 8216258, but it then exceeded the

resources again as shown in figure 3.11.

Fig. 3.11.: C synthesis result after network redesign with DATAFLOW pragma



24

After a successful C synthesis, we created the script to run the C simulation and

run C/RTL co-simulation in Vivado HLS, this produces a hardware module named

cnn 0. A few snippets of the operation such as pipelining the convolutional layers,

successfully finishing and exporting RTL to the Vivado and log messages are given

below.

Fig. 3.12.: Pipelining three inner loops of conv layers

We can notice in Figure 3.12, that three inner loops of the convolution operation

are successfully applied with pipelining with the labels cnn label0, cnn label1 and

cnn label2 respectively. Now, with a quick look at Figure 2.12 we see our second con-

volutional layer inner loop was declared as cnn label1. Figure 3.13 is the confirmation

of that loop getting pipelined.

Fig. 3.13.: CNN RTL generation

Next, we see the successful messages during the finishing of RTL generation at

Vivado HLS, generating hardware language of these RTLs for Vivado and exporting

it as an IP block for use with an embedded microprocessor.

During the simulation, Vivado HLS generates core modules, implements BRAMs,

synthesizes and simulates. Figure 3.14 describes the generation of synthesis and

simulation targets for various DSPs.



25

Fig. 3.14.: RTL simulation

Fig. 3.15.: Finishing message

It is also noticeable from Figure 3.14 that memory usage increased to 230 MB

during this phase. This last Figure 3.15 shows that, after successful compilation,

Vivado HLS uploads this IP block in the Vivado IP repository. So, later Vivado will

use it for designing the block diagram of the system. The total time taken for creating

hardware block for our device was 188.341 seconds, and the peak memory usage was

145 MB on desktop computer.



26

3.2 Designing Block Diagram and Bitstream Generation

After the successful creation of an IP block from Vivado HLS, we move on to the

Vivado tool to create the block diagram within the actual FPGA.

Fig. 3.16.: RTL IP block of our CNN

Fig. 3.17.: Block Diagram with cnn 0, DMA, ARM processor

The module cnn 0 was added to the hardware library. Upon importing it to the

block diagram, we can see it in figure 3.16. ARM core processing system7 0 is the

processing system related to Zedboard zynq 700. We started our Vivado part by

creating a Vivado project at the same directory of the completed Vivado HLS direc-



27

tory and importing the library path. Then we started designing a block diagram by

importing this Zynq processing system. Next, we apply the block diagram automa-

tion command with the board preset. Then, we required an interfacing block, and to

connect our block to the microprocessor AXI-bus was the standard choice. we added

an AXI DMA cell to make the interface in between the processing system AXI-bus

and our module. Then we select and connect the MASTER and SLAVE using the

peripheral system and the AXI DMA. After all the interfaces are ready, we import

our module cnn 0 and connect the streamIN and streamOUT ports with the DMA.

Once our total connection is complete, the block diagram looks like as above in Figure

3.17. When the diagram is complete we launch the implementation run. When the

implementation is done, we get all the details regarding the successful design.

Fig. 3.18.: Post-synthesis summary graph

Now we can see the post-synthesis and post-implementation utilization estima-

tion’s graphical views as in Figures 3.18 and 3.19. We can see a 2 percent drop in

LUTs usage after the implementation. Total power summary is provided in Figure

3.20 where we can see total on-chip power consumption will be 2.235W where 92

percent (2.050W) will be used for dynamic power and 8 percent for static power.

The last analysis on this phase was the timing analysis of setup, hold and pulse

width timing where none of them have falling endpoint or negative slack as shown in

Figure 3.21.



28

Fig. 3.19.: Post-implementation summary graph

Fig. 3.20.: Power summary

Fig. 3.21.: Timing report

So, we click on the device to see the final implemented design of the device and it

is shown in Figure 3.22. It provides a graphical representation of how the blocks of

FPGA are used in real-life.



29

Fig. 3.22.: Device, showing used blocks on chip.

The most important thing that we obtained from this phase was the hardware

bitstream programs the FPGA hardware. We exported the bitstream to the Vivado

SDK, where it will have two ways to go into the hardware as described in the next

chapter.



30

4. SOFTWARE AND HARDWARE IMPLEMENTATION

IN PETALINUX

4.1 Choosing Platform and Data Modification

Now that we have obtained the bitstream from Vivado design suite we can move

on the next stage which is to implement the network into the hardware. We could

achieve that in two ways. One is to do it from Vivado design toolset SDK on the

ARM micro processor, but it would constrain us to limited set of operations [30].

The second option is to use an actual operating system(OS) platform that has the

driver availability for the hardware and can be implemented in Zedboard. Although

we have used this first option (BOOTGEN utility) previously in our course, we chose

the second way for more flexibility. We chose an embedded Petalinux as it looked

like to be the most convenient way to get into the Zedboard hardware. It provides

the Board Support Packages (BSP) for various embedded hardware (FPGA). First,

we created the environment to run the hardware operation successfully. We made

Linux 16.04.3 as our OS to start the operations. The next step was to install and run

Petalinux successfully from a Linux platform on our desktop computer.

Minimum desktop workstation requirement for any computer [31] to install PetaL-

inux Tool are:

• 8 GB RAM (recommended minimum for Xilinx tools).

• 2 GHz CPU clock or equivalent (minimum of 8 cores).

• 100 GB free HDD space.

• compatible OS (for us - Ubuntu Linux 16.04.3 (64-bit)).



31

We installed Petalinux [32] [31] and ran successfully only after installing all the

tools below in Figure 4.1 with the Ubuntu platform. After installing all the tools, our

desired Petalinux is entirely ready for the next phase.

Fig. 4.1.: Prerequisite tools for the desired environment [31]

Now the next thing we require is a Board Support Package (BSP) for the specific

hardware. The good news was that the BSP for Zedboard is already available at

Petalinux for various FPGA boards. We just had to use it with our bitstream with

minor changes. Next step was to create and compile our program at Petalinux OS.

Due to the scarcity of open source instruction and explanation, it was hard to find

the commands. But we eventually found [33] it and applied it to the application to

run on board. Few of the frequently used commands are seen below:



32

• petalinux-create -t apps –template install –name mylib –enable

• petalinux-create -t apps –template c++ –name myapp –enable

• petalinux-build

• petalinux-build -c rootfs

• petalinux-build -c myapp -x do-install

After creating the application each time we had to compile and build it. The Device

tree of the network is imported from the Vivado generated HW folder. The infor-

mation about how the FPGA resources will be used, and how the hardware will be

designed is passed to the Petalinux BSP from Vivado using this folder and accord-

ingly creates the FSBL, Devicetree in BSP. After building this, we also had to build a

BOOT file for the SD card that will go into the FPGA with the command in Figure

4.2.

Fig. 4.2.: Commands for generating bootfile from our hardware bitstream

Fig. 4.3.: Commands in MATLAB to manipulate images into binary files



33

Once it is done, we mount the SD card and format it to pass the files to the

FPGA’s ARM microprocessor and Boot file. This files will go inside the FPGA and

into the hardware. The RCNN uses a Region of Interest (ROI) preprocessing step

which selects potential candidates for CNN classifier. Our CNN in hardware takes

the ROI candidates as the input. We selected these candidates from the region pre-

processed in MATLAB. To feed the images into the hardware, we need binary arrays.

Again, we used MATLAB to manipulate the image data to form binary files, and in

our case, we used little-endian (64 bit) format. Figure 4.3 is a snippet of the final few

commands of the image creation.Once we have the binary image files to feed it into

the CNN network, we are ready for the final step. We run the hardware CNN with

the test images.

4.2 Classification Result in Hardware

So, at this final stage, we used an SD card containing Petalinux OS root file

system, boot file, and the test images. We connect it with our FPGA through the

SD card port with pin settings for SD card boot shown in Figure 4.4.

Fig. 4.4.: Demonstration of FPGA setup



34

We log in the Petalinux using root user and run the Petalinux using our hard-

ware. We connect to the interface from a desktop computer using connecting software

terminals such as Tera term or Putty.

Fig. 4.5.: Run process into the petalinux and classified screenshot

Once we log in using the terminal, we run our compiled application which would

uses the hardware to classify objects. It successfully classified all the selected images.

Then we put 8 new test images and two arbitrary images to the network. All were

correctly classified. Notice that, in Figure 4.5, ”0” stands for detecting road sign and

”1” stands for the background.

Fig. 4.6.: MATLAB time for executing first 8 test images



35

So, this matches our expectation as our network should classify the test images

just like the results in MATLAB software and the goal is obtained. Let’s look at the

timing comparison between the hardware and MATLAB. We run each test image five

times in MATLAB to get its detection time shown in Figures 4.6 and 4.7. Elapsed

times for all ten test images in MATLAB are 0.522, 0.144, 0.176, 0.226, 0.175, 0.130,

0.192, 0.178, 0.122 and 0.292. One images took around 300-400 ms extra time due to

image complexity.

Fig. 4.7.: MATLAB time for executing last 2 test images

Average time in MATLAB was 0.216 seconds or 216 ms. Additionally, we tested

on a computer with better specifications and with an installed GPU(NVIDIA TITAN

XP). Average timing for this is 153 ms for the CPU and 46ms when GPU is used.

Following Figure 4.8 shows the timing calculation.

Fig. 4.8.: MATLAB time for execution at enhanced CPU and at GPU



36

Note that although usage of GPU has increased the speed, at the same time, the

power consumption has also increased, as shown in Figure 4.9 and Figure 4.10. In

the FPGA it took 3100334 ns or 3.1 ms for all ten images. For a single image, it took

0.31 ms. The power consumption was only 2.235 watts.

Fig. 4.9.: Power consumption at enhanced CPU

Fig. 4.10.: Increased power consumption at GPU

Fig. 4.11.: Comaprison among our network, ZynqNet [4] and CNN2ECST [5]

In Figure 4.11, we compare our result to the closest research. First, the FPGA

chip, Zynq XC-7Z045 has a higher number of resources, and ZynqNet has absorbed

almost all resources. Also, it consumed 7.80 watts while FPGA accelerator is running.

The second one, CNN2ECST was a small network consisting of only one convolutional

layer. The resource allocation for this network is also shown in Figure 4.11. It

consumed 2.009 watts as on-chip power. In Figure 4.12, we also compare our network



37

Fig. 4.12.: Comaprison among our network and CMSIS-NN [34]

to an NN which ran in ARM Cortex-M7 [34]. These two tables show that our design

is more complex than the CNN2ECST, but less complex than the ZynqNet, and has

good performance and power for our task even after comparing to a network run by

ARM Cortex-M7 processor. Although the ROI and bounding box parts were not

performed in FPGA, it is still a significant time and power usage drop compared to

CPU and GPU. This result can help in next-generation machine learning, especially

in the automotive industry.



38

5. SUMMARY

5.1 Conclusion

In this research, our goal was to implement a hardware-software acceleration of an

RCNN network. We have designed an RCNN from scratch in MATLAB and used data

manipulation to perform the CNN part in hardware (FPGA) eventually successfully.

This research contributed to the state of the art in two ways: First, we created and

trained the network in MATLAB. Second, we have successfully taken an RCNN from

software into the Hardware using Petalinux which has seen much improvement in

timing. It achieved FPGA maximum utilization of 220 18k BRAMS, 92 DSP48Es,

8156 FFS, 11010 LUTs with an on-chip power consumption of 2.235 Watts. We met

the clock timing with 0 failing endpoint and 0 negative slack. Classification of images

in FPGA is reduced to 0.31 ms from 153 ms in CPU and 46ms in GPU. This result

can help in next-generation machine learning, especially in the automotive industry

since autonomous driving needs embedded, fast implementations.

5.2 Future Works

Even though we have achieved the basic goals in this work, there are still many

areas to improve the work. A few possible improvements:

• Larger training data-set: More images used as the labeled data-set makes better

training and more robust performance.

• Implement (ROI) preprocessing for RCNN in the ARM: RCNN holds a differ-

ence from the CNN because of its region of interest (ROI). This part was done

in MATLAB, but in future, that can be done in the ARM part of the FPGA.



39

• Compare: The design can be done on both with the bare metal application and

with Petalinux OS implementation and observe the differences.

• Alternate Network: Continue to improve the CNN, and compare performance.

• Multi-classification: Extend current bianry classifier to more objects.



REFERENCES



40

REFERENCES

[1] D. H. Hubel and T. N. Wiensel, ”Receptive fields and functional architecture of
monkey striate cortex”. Department of Physiology, Harvard Medical School,
1968, vol. 195, no. 1.

[2] “Top 10 robots artificial intelligence,” December 2017, Last Date Accessed:
01-16-2019. [Online]. Available: https://www.designboom.com/technology/top-
10-robots-artificial-intelligence-12-14-2017/

[3] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
Flexible, high performance convolutional neural networks for image classification.
International Joint Conference on Articial Intelligence, 2011.

[4] D. Gschwend, ZynqNet: An FPGA-accelerated embedded Convolutional Neural
Network. Swiss Federal Institute of Technology Zurich, 2016.

[5] “”CNN2ECST at Xilinx OpenHW Contest 2016,” June 2016, Last Date Ac-
cessed: 01-16-2019. [Online]. Available: https://bitbucket.org/necst/cnnecst-
benchmark

[6] “ImageNet: what is top-1 and top-5 error rate?” June 2015, Last Date Ac-
cessed: 01-16-2019. [Online]. Available: https://stats.stackexchange.com/
questions/156471/imagenet-what-is-top-1-and-top-5-error-rate

[7] J.J. Hull, “A database for handwritten text recognition research,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence ( Volume: 16 , Issue: 5 ,
May 1994 ), pp. 550–554, May 1994.

[8] “Handwritten Digits,” 2015, Last Date Accessed: 01-16-2019. [Online].
Available: https://cs.nyu.edu/ roweis/data.html

[9] J. L. McClelland, D. E. Rumelhart, and G. E. Hinton, Parallel distributed pro-
cessing: Explorations in the micro structure of cognition”. Cambridge, MA:
USA: MIT Press, 1986, vol. 1.

[10] S. J. Thorpe, ”Spike arrival times: A highly efficient coding scheme for neural
networks”. Paris: USA: MIT Press, 1990, vol. Parallel Processing in Neural
Systems.

[11] P. H. Winston, ”Artificial Intelligence”. Boston, MA: USA: Addison Wesley
Longman Publishing Co., Inc., 1992, vol. 3rd Edition.

[12] G. Luger and W. A. Stubblfield, ”Artificial Intelligence: Structures and Strategies
for Complex Problem Solving”. Redwood City, California: Benjamin/Cumming
Publishing, 1993, vol. 2nd Edition.



41

[13] J. Zou and R. Song, “Microarray camera image segmentation with faster- rcnn,”
2018 IEEE International Conference on Applied System Invention (ICASI), pp.
1–4, April 2018.

[14] R. N. de Souza, D. N. Muniz, and A. V. da Silva Fidalgo, “Ethernet communi-
cation platform for synthesized devices in xilinx fpga,” 2011 IEEE EUROCON
- International Conference on Computer as a Tool, pp. 1–4, 2011.

[15] “Object detection using faster r-cnn deep learning,” R2018B 2019, Last
Date Accessed: 01-16-2019. [Online]. Available: https://www.mathworks.com/
help/vision/examples/ object-detection-using-faster-r-cnn-deep-learning.html

[16] S. Woo and C. L. Lee, “Decision boundary formation of deep convolution net-
works with relu,” 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing,
4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and
Technology Congress(DASC/PiCom/DataCom/CyberSciTech), pp. 1–4, October
2018.

[17] A. Karpathy, “Cs231n convolutional neural networks for visual recognition,”
Github, 2018.

[18] “Trainrcnnobjectdetector,” R2018B 2019, Last Date Accessed: 01-16-2019.
[Online]. Available: https://www.mathworks.com/help/vision/ref/ trainrcnnob-
jectdetector.html

[19] “Collection of stop signs,” 2018, Last Date Accessed: 01-16-2019. [Online].
Available: http://clipart-library.com/stop-signs.html

[20] “Road sign shapes signify level of danger,” July 2017, Last Date Accessed:
01-16-2019. [Online]. Available: http://thenewswheel.com/road-sign-shapes-
signify-level-of-danger/

[21] “Stop sign at crossroads. rural road. exit onto the main road. main road. danger-
ous road. traffic signs stop,” Last Date Accessed: 01-16-2019. [Online]. Available:
https://www.dreamstime.com/stock-photo-stop-sign-crossroads-rural-road-exit-
onto-main-road-main-road-dangerous-road-traffic-signs-stop-image81284724

[22] “Stop signs with flashing lights installed at chardon twp intersection where
two teens were killed,” June 2017, Last Date Accessed: 01-16-2019. [Online].
Available: https://www.news5cleveland.com/news/local-news/oh-geauga/stop-
signs-with-flashing-lights-installed-at-chardon-twp-intersection-where-two-teens-
were-killed

[23] “Ohio woman loses lawsuit over foliage growing near stop sign,” June 2018,
Last Date Accessed: 01-16-2019. [Online]. Available: https://www.news-
herald.com/news/ohio/ohio-woman-loses-lawsuit-over-foliage-growing-near-
stop-sign/article ff463163-00d0-5926-9691-ea7ec8fa24eb.html

[24] “Sign bases,” 2019, Last Date Accessed: 01-16-2019. [Online]. Available:
https://www.dornbossign.com/rubberform-sign-base-w-plastic-round-pole/

[25] “Running a stop sign in Nevada ,” 2017, Last Date Accessed: 01-16-2019.
[Online]. Available: https://www.shouselaw.com/nevada/traffic/running-stop-
sign



42

[26] “Laminated poster road warning stop red sign traffic stop sign
poster print 24 x 36,” 2019, Last Date Accessed: 01-16-
2019. [Online]. Available: https://www.bhg.com/shop/home-comforts-
laminated-poster-road-warning-stop-red-sign-traffic-stop-sign-poster-print-24-x-
36-pb3533a9e1ab516dae87ed6cb12b7c7b3.html

[27] UG1188:SDAccel Development Environment Help for 2018.3. Xilinx, Inc., De-
cember 2018, vol. v2018.3.

[28] T. Rahman, ”Classification of Road Side Material using Convolutional Neu-
ral Network and A Proposed Implementation of the Network through Zedboard
Zynq 7000 FPGA”. Indianapolis, Indiana: Purdue University, December 2017,
MSECE Thesis.

[29] Xilinx, ”Zynq-7000 SoC Data Sheet: Overview”. Xilinx, Inc., July 2018, vol.
v1.11.1.

[30] “Creating a zynq boot image for an application,” 2013, Last Date Accessed: 01-
16-2019. [Online]. Available: https://www.xilinx.com/support/documentation/
sw manuals/xilinx14 7/SDK Doc/tasks/sdk t create zynq boot image.htm

[31] Xilinx, PetaLinux Tools Documentation. Xilinx, Inc., June 2018, vol. v2018.2.

[32] PetaLinux SDK User Guide: Installation guide. Xilinx, Inc., November 2018,
vol. v2013.10.

[33] Xilinx, PetaLinux Tools Documentation. Xilinx, Inc., June 2018, vol. v2018.2.

[34] L. Lai and N. Suda, “Enabling deep learning at the lot edge,” 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), January 2019.


