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Abstract In this paper, a transportation problem comprising stochastic demands, fixed
handling costs at the origins, and fixed costs associated with the links is addressed.
It is assumed that uncertainty is adequately captured via a finite set of scenarios. The
problem is formulated as a two-stage stochastic program. The goal is to minimize the
total cost associated with the selected links plus the expected transportation and fixed
handling costs. A prototype problem is initially presented which is then progressively
extended to accommodate capacities at the origins and multiple commodities. The
results of an extensive set of computational tests are reported and discussed.
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1 Introduction

In a transportation problem, some commodity available at a set of origins must be
shipped to a set of destinations. For each origin–destination pair, there is a unitary cost
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1124 Y. Hinojosa et al.

for the flow shipped through the corresponding link. The goal is to find the distribution
pattern that minimizes the overall transportation cost.

One common assumption in the literature is that every origin–destination pair repre-
sents a possible channel for shipping the commodity. In addition, it is often considered
that such channels are available when necessary. However, in many situations, none of
the previous conditions hold. One can find examples in logistics systems in which not
only are some distribution channels infeasible but also some contract (e.g., an option)
must be celebrated before setting a (feasible) channel ready for being used (see, for
instance, Xu and Nozick 2009). Other examples can be found in telecommunications
where traffic can only be sent through some channel if such channel has been previ-
ously made physically available (see Ahuja et al. 1993). Finally, a classical example
arises in production planning when a set of machines is available during a certain
period of time for producing a set of products (not all machines necessarily being able
to produce all products) and one has to decide which machines will produce which
products and in what quantities (see, for instance, Grieco et al. 2001 and the references
therein).

Another frequent assumption in a transportation problem is that the commodity to
be shipped is readily available at the origins. Again, this is not always the case. Often
the commodity has to be packed or handled somehow before being shipped. This may
imply fixed and/or variable costs (e.g., the preparation of some specific equipment).
Variable handling costs at the origins can be easily embedded in the variable trans-
portation costs. However, fixed handling costs have to be explicitly considered in a
model.

Finally, in many transportation problems, it is assumed that demand is deterministic
and known in advance. However, nowadays, due to many factors (e.g., the effect of
marketing campaigns, the evolution of the global economy, the appearance of new
competitors, etc.) markets tend to become extremely volatile leading to continuously
changing demands, which often occurs in an unpredictable manner.

In this paper, a transportation problem is proposed which gathers in the same mod-
eling framework the three features mentioned above. In particular, it is assumed that
a strategic (tactical) decision has to be made here-and-now concerning the distribu-
tion channels that should be selected/contracted/activated for shipping the commodity.
Such decision is made before knowing the exact demand that will occur. After demand
is disclosed, the tactical (operational) decision corresponding to the transportation pat-
tern is determined and the final costs can be evaluated. The second-stage decision is
constrained by the distribution channels selected/contracted/activated a priori. Fixed
costs are considered for the distribution channels (for instance, due to an option con-
tract). Furthermore, variable transportation costs (possibly including variable handling
costs at the origins) are considered as well as fixed handling costs at the origins. As
mentioned above, the latter may correspond, for example, to the set-up or preparation
of some equipment for processing or handling the commodity. The problem is formu-
lated as a two-stage stochastic mixed 0–1 problem. In the first stage, the decision to be
made regards the here-and-now decision about the distribution channels to select; in
the second stage—once the demand is known—the transportation decisions are made
and the transportation and handling costs are accounted for.
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Demand is assumed to be described by a discrete random vector, with a finite
domain, following a probability distribution that is known in advance. In other words,
uncertainty is assumed to be well captured by a finite set of scenarios, each of which
with some known probability of occurrence.

Despite being of practical relevance, not much literature can be found on stochastic
transportation problems. One of the earliest works is due to Williams (1963). A two-
stage stochastic programming problem is considered. In the first stage (before demand
is known) a transportation decision is made. This decision may result in under or
oversupply, which is accounted for in the second stage. In particular, penalty costs (for
unsupplied demand) and salvage costs (for oversupply) are considered. The problem
consists of finding the transportation plan that minimizes the total transportation costs
plus the expected costs for under and oversupply. The same problem has been addressed
by other authors (see Holmberg 1995; Holmberg and Jörnsten 1984; Qi 1985, and the
references therein).

The extension of the problem in which a fixed cost is associated with the operat-
ing origins is the so-called stochastic transportation–location problem and has been
addressed by França and Luna (1982), Holmberg and Tuy (1999), and LeBlanc (1977).
The problem consists of deciding the facilities to locate and the amounts to ship from
each operating facility to the customers before knowing the demand. The goal is to
minimize the total location and transportation costs plus the expected cost for shortages
and surplus.

Max Shen et al. (2003) extend the stochastic transportation–location problem by
considering inventory decisions at the destinations. Risk pooling benefits are obtained
by considering some destinations as redistribution points which allows safety stocks
to be considered and consequently, a pre-specified service level to be achieved.

Another extension of the ‘classical’ stochastic transportation problem was addressed
by Barbarosoǧlu and Arda (2004) in the context of disaster response. A two-stage sto-
chastic network flow problem is considered with several transportation modes. Uncer-
tainty is considered not only for the demand but also for the supply capacity and route
capacities. The goal is to minimize the expected inventory, transportation, surplus and
shortage costs.

A different perspective on transportation problems under uncertainty is considered
by Tsai et al. (2011), who consider a transportation problem with uncertainty in the
transportation capacities and costs.

Lium et al. (2009) find consolidation as a way to hedge against uncertain demand in a
multi-commodity stochastic service network design model. The two-stage stochastic
problem considered involves the choice of a service frequency (in the first stage)
and the decision about the transportation quantities (in the second stage). The goal
is to minimize the total cost associated with the vehicles plus the expected cost for
distributing the (multiple) commodities.

More recently, Thapalia et al. (2012) address a stochastic network flow problem
in which, a decision has to be made about the edges that should operate as well as
their capacity level to cope with stochastic demand. The goal is to minimize the total
cost associated with the edges plus the total expected transportation, shortage and
salvage costs. The same authors (Thapalia et al. 2012) consider random capacities in
a single-commodity network design problem.
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Finally, we can point out the recent work by Li et al. (2012) who consider a location
distribution problem with uncertain demand. Uncertainty, driven by a catastrophe such
as a hurricane, is captured via a finite set of scenarios.

At a first glance one could think that the problem we address in this paper is simply
a location–transportation problem with stochastic demands. However, this is not the
case. First, the decision about which origins to “activate” is now a recourse decision.
Moreover, as it will be shown later, the setting considered in this paper changes the
structure of the solutions that is typically associated with the stochastic location–
transportation problem.

The problem at hand can be put in the context of stochastic network design problems.
Nevertheless, it corresponds to a new paradigm which, to the best knowledge of the
authors, has not been considered so far.

Our contribution with this paper is twofold: first, to propose a modeling framework
for integrating all the aspects discussed above; second, to assert the extent to which an
off-the-shelf commercial solver can be used to solve the problem to optimality using
the models proposed.

The remainder of the paper is organized as follows. In Sect. 2, the base setting of
the problem is introduced and some modeling issues are discussed. In the following
section, this setting is extended with some features that are relevant from a practical
point of view. In Sect. 4, we report the computational experiments performed with
the models discussed. The paper ends with some conclusions drawn from the work
present and some ideas for further research.

2 Problem formulation

As mentioned above, we address a two-stage transportation problem with stochastic
demands. Before demand is disclosed, a decision has to be made regarding the dis-
tribution channels/links that should be selected. For each selected link, a fixed set-up
cost is incurred. After demand is disclosed, a recourse decision is considered which
consists in defining the quantities to ship from the origins to the destinations using the
channels previously selected. A cost is considered for each unit of flow traversing a
link. A fixed handling cost is considered at each operating origin.

The fact that the decision about the distribution channels to set-up is made here-
and-now (i.e., before knowing the demand) may lead to setting up some links which
in the end are not used due to short demand. Nevertheless, like in many investment
problems, some risk has to be incurred. Such risk is somehow accounted for by the
trade-off imposed in the model we propose below for all costs involved in the problem.

To formulate the problem, the notation below is considered.
Sets:

I Set of origins.
J Set of destinations.

Deterministic parameters:

ci j Set-up/activation cost for link (i, j), i ∈ I , j ∈ J .
di j Unitary cost for the flow in arc (i, j), i ∈ I , j ∈ J .
hi Fixed handling cost at origin i ∈ I . We assume that this value is strictly positive.
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Stochastic parameters:

D j Demand of customer j ∈ J .

The decisions to be made can be represented by the following decision variables:

yi j =
{

1 if link (i,j) is selected

0 otherwise
i ∈ I, j ∈ J

xi j = Flow to be shipped from i ∈ I to j ∈ J .

zi =
{

1 if origin i is used

0 otherwise
i ∈ I.

The problem can be formulated as follows:

min
∑
i∈I

∑
j∈J

ci j yi j + Q(y) (1)

s. t.
∑
i∈I

yi j ≥ 1 j ∈ J (2)

yi j ∈ {0, 1} i ∈ I, j ∈ J (3)

with Q(y) = E
[
Q(y)

]
and

Q(y) = min
∑
i∈I

∑
j∈J

di j xi j +
∑
i∈I

hi zi (4)

s. t. xi j ≤ Myi j i ∈ I, j ∈ J (5)∑
i∈I

xi j ≥ D j j ∈ J (6)

∑
j∈J

xi j ≤ Mzi i ∈ I (7)

∑
j∈J

yi j ≥ zi i ∈ I (8)

xi j ≥ 0 i ∈ I, j ∈ J (9)

zi ∈ {0, 1} i ∈ I (10)

The first-stage problem determines the distribution channels to be selected. The
objective function (1) evaluates the total fixed cost for such links. Constraints (2)
assure that each customer has at least one distribution channel available for receiving
the commodity. Constraints (3) define the domain of the network design variables.

In the second stage, the flows are determined. The objective function (4) quantifies
the total distribution cost (possibly including variable handling costs at the origins)
and the total fixed handling costs at the origins. Constraints (5) assure that flow can
only be shipped through the channels previously selected. M denotes a large value.
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Constraints (6) assure the satisfaction of the demand. Constraints (7) assure that if
flow is shipped from some origin then the corresponding fixed handling cost must be
accounted for. As above, M denotes a large value. Constraints (8) ensure that origin i
can be activated only if some link (i, j) is set-up. Finally, constraints (9) and (10) are
domain constraints.

Note that in the second-stage problem, variables yi j are fixed and D j are random
variables. Furthermore, the coefficients of the y-variables in the second-stage problem
are deterministic. Therefore, the problem has fixed recourse.

Remark 1 Due to the fact that no capacity constraint is considered at the origins, once
at least one distribution channel exists for each customer (which is assured by the
first-stage problem), there is always a feasible solution to the second-stage problem.
Accordingly, this is a stochastic problem with (relatively) complete recourse. Note that
the problem would be of no interest if constraints (2) were not considered. By these
constraints, the decision maker is explicitly assuring that the problem is of relevance
to him/her.

2.1 Extensive form of the deterministic equivalent

If demand levels are fully determined by a finite range of levels, say S, it is possible
to go further in terms of the problem formulation. With this purpose, define

D js Demand level of customer j ∈ J under demand level s.
ps Probability that demand level s occurs.

Consider also the following redefinition of the recourse decision variables:

xi js = Flow to be shipped from i ∈ I to j ∈ J under demand level s ∈ S.

zis =
{

1 if origin i handles flow in demand level s

0 otherwise
i ∈ I, s ∈ S.

The extensive form of the deterministic equivalent is as follows:

min
∑
i∈I

∑
j∈J

ci j yi j +
∑
s∈S

ps

⎡
⎣∑

i∈I

∑
j∈J

di j xi js +
∑
i∈I

hi zis

⎤
⎦ (11)

s. t.
∑
i∈I

yi j ≥ 1 j ∈ J (12)

xi js ≤ Myi j i ∈ I, j ∈ J, s ∈ S (13)∑
i∈I

xi js ≥ D js j ∈ J, s ∈ S (14)

∑
j∈J

xi js ≤ Mzis i ∈ I, s ∈ S (15)

∑
j∈J

yi j ≥ zis i ∈ I, s ∈ S (16)
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yi j ∈ {0, 1} i ∈ I, j ∈ J (17)

xi js ≥ 0 i ∈ I, j ∈ J, s ∈ S (18)

zis ∈ {0, 1} i ∈ I, s ∈ S (19)

It should be pointed out that first-stage variables y are the same for all demand levels,
which means that the non-anticipativity principle is being implicitly considered in the
above formulation. Variables x and z are the second-stage decision variables. In this
model, the first stage contains only binary variables whereas the second stage contains
binary and continuous variables.

Note that constraints (13) and (15) can be “tuned” by considering M = D js in (13)
and M = ∑

j∈J D js in (15).
In addition, the reader should also observe that constraints (12) are redundant in

this model as they appear together with constraints (13) and (14).
Finally, the objective function together with constraints (13) and (15) assure that

constraints (16) hold: by constraints (15), zis = 1 if and only if xi js > 0 for some j
(note that, since the term hi zis > 0 appears in the objective function, if xi js = 0 for
all j , then zis = 0). On the other hand, if xi js > 0, then yi j = 1 by constraints (13).
Thus, constraints (16) hold and they can be removed from the model.

Remark 2 No capacity constraints are considered in the problem above. Accordingly,
one might think that the commodity is always shipped via the cheapest activated links
regardless of the demand level defined by the different scenarios. If this was the case,
the problem could be reduced to the standard simple plant location problem. However,
this is not the case. In fact, to hedge against uncertainty, it may be convenient to select
more links, even though some of them will not be used in all scenarios, if the variation
in the demand levels is large enough to compensate the activation costs. The following
example highlights this aspect.

Consider an instance of the problem with |I |=2 origins, |J |=3 destinations, and
|S|=2 demand levels (scenarios). Furthermore, consider the parameters given as fol-
lows:

• ci j = 1 for all (i, j), i ∈ I , j ∈ J .
• hi = 4 for all i ∈ I .
• di j for all (i, j), i ∈ I , j ∈ J , are given according to the following table:

j1 j2 j3

i1 3 3 1

i2 1 1 2

• D js for all j ∈ J , s ∈ S, are given by:

j1 j2 j3

s1 2 2 1

s2 1 1 10

• ps = 0.5 for all s ∈ S.
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(a)

(c)(b)

Fig. 1 Example. a Distribution channels selected with the unitary transportation costs. b Scenario 1:
transportation decisions. c Scenario 2: transportation decisions

Figure 1 illustrates the optimal solution (which is straightforward to obtain). In
particular, Fig. 1a depicts the distribution channels selected and the corresponding
unitary transportation cost. In scenario 1 (Fig. 1b) only origin i2 is used to serve all
destinations, whereas in scenario 2 (Fig. 1c), j1 and j2 are served by origin i2 and j3
is served by origin i1. It is easy to conclude that the optimal value for the objective
function is 19.

As it can be observed, in scenario 1, link (i2, j3) is used although it is not the cheapest
available in terms of the unitary transportation costs for shipping to destination j3.
This is explained by the existence of fixed handling costs at the origins, which makes
it less attractive to use origin i1. Furthermore, in this example, we can see that it may
be optimal to set up some arc that is not used in all scenarios.

3 Extensions of the base setting

In this section, we progressively extend the basic setting introduced in Sect. 2 to
incorporate two features of practical relevance: the existence of multiple commodities
and capacities at the origins. These extensions will be defined, giving rise to the
corresponding stochastic problems.

3.1 Multiple commodities

One immediate extension of the problem regards the case in which there are multiple
commodities. Consider the following notation:
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L Set of commodities
d�i j Unitary cost for the flow of commodity � ∈ L in arc (i, j), i ∈ I , j ∈ J .

h�i Fixed handling cost for commodity � ∈ L at origin i ∈ I .
D�

j (Stochastic) Demand of customer j ∈ J for commodity � ∈ L .

To formulate the problem we consider the first-stage y-variables defined as before.
Regarding the recourse decisions, we now consider:

x�i j = Flow of commodity � ∈ L to be shipped from i ∈ I to j ∈ J .

z�i =
{

1 if origin i is used for shipping commodity �

0 otherwise
i ∈ I, � ∈ L .

The first-stage problem is (1)–(3) as before. Regarding the second-stage problem,
we now have:

Q(y) = min
∑
i∈I

∑
j∈J

∑
�∈L

d�i j x�i j +
∑
i∈I

∑
�∈L

h�i z�i (20)

s. t.
∑
�∈L

x�i j ≤ Myi j i ∈ I, j ∈ J (21)

∑
i∈I

x�i j ≥ D�
j j ∈ J, � ∈ L (22)

∑
j∈J

x�i j ≤ Mz�i i ∈ I, � ∈ L (23)

x�i j ≥ 0 i ∈ I, j ∈ J, � ∈ L (24)

z�i ∈ {0, 1} i ∈ I, � ∈ L (25)

The objective function (20) and constraints (21)–(25) have the same meaning as
(4) and (5)–(10), respectively, but now adapted to the multi-commodity setting.

As before, variables yi j are fixed, D�
j are random variables, and the problem has

(relatively) complete recourse.
If demand levels are fully determined by the finite set of demand levels S, we

consider D�
js denoting the demand level of customer j ∈ J for commodity � under

scenario s ∈ S. In addition, we define:

x�i js = Flow of commodity � to be shipped from i ∈ I to j ∈ J under a demand
level s ∈ S.

z�is =
{

1 if origin i handles the commodity � in scenarios

0 otherwise
i ∈ I, � ∈ L , s ∈ S.

The extensive form of the deterministic equivalent can be written as follows:

min
∑
i∈I

∑
j∈J

ci j yi j +
∑
s∈S

ps

⎡
⎣∑

i∈I

∑
j∈J

∑
�∈L

d�i j x�i js +
∑
i∈I

∑
�∈L

h�i z�is

⎤
⎦ (26)
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s. t.
∑
i∈I

yi j ≥ 1 j ∈ J (27)

∑
�∈L

x�i js ≤
∑
�∈L

D�
js yi j i ∈ I, j ∈ J, s ∈ S, (28)

∑
i∈I

x�i js ≥ D�
js j ∈ J, � ∈ L , s ∈ S (29)

∑
j∈J

x�i js ≤ z�is
∑
j∈J

D�
js i ∈ I, � ∈ L , s ∈ S. (30)

yi j ∈ {0, 1} i ∈ I, j ∈ J (31)

x�i js ≥ 0 i ∈ I, j ∈ J, � ∈ L , s ∈ S (32)

z�is ∈ {0, 1} i ∈ I, � ∈ L , s ∈ S (33)

Note that in the above formulation, constraints (28) and (30) represent already a
refinement in which “M” was replaced by more appropriate constants.

3.2 Introduction of capacity constraints

So far we have assumed that no limit exists on the amounts to be shipped through
the network. However, in practice, this is often not the case. In fact, even when no
capacities exist on the links, one may find limited capacity at the origins (e.g., handling
capacity). Taking this aspect into account, we assume now that in addition to multiple
commodities, there are supplying capacities at the origins. In particular, for each i ∈ I
and � ∈ L denote by K �

i the maximum amount of commodity � available at origin i .
The capacitated problem can be easily formulated by replacing (23) with

∑
j∈J

x�i j ≤ K �
i z�i i ∈ I, (34)

or by replacing (30) with

∑
j∈J

x�i js ≤ K �
i z�is i ∈ I, s ∈ S. (35)

The introduction of the previous capacity constraints has an impact on the feasibility
structure of the problem: it may happen that a first-stage solution (the selected distri-
bution channels) is such that for some scenarios no feasible solution exists because
the total available capacity at the origins to which the customers are connected is
not enough to satisfy the demand. This means that the (relatively) complete recourse
property is lost. Such type of first-stage solution is undesirable. This can be explicitly
stated in the model by considering a penalty cost for non-supplied demand, which
makes sense from a practical point of view (e.g., non-supplied demands means an
opportunity loss that often can be accounted for monetarily). This penalty can only be
evaluated after demand is known which means that it should force the second-stage
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problem to comprise the new cost component. In particular, the second-stage function
Q(y) can be extended by considering one additional term representing this penalty.

Denote by ψ�j the cost per unit of demand of customer j in terms of commodity �

that is not supplied. In addition, let��j be the amount of demand which is not supplied.
The second-stage problem becomes

Q(y) = min
∑
i∈I

∑
j∈J

∑
l∈L

d�i j x�i j +
∑
i∈I

∑
l∈L

h�i z�i +
∑
j∈J

∑
l∈L

ψ�j�
�
j (36)

s. t.
∑
�∈L

x�i j ≤ Myi j i ∈ I, j ∈ J (37)

��j ≥ D�
j −

∑
i∈I

x�i j j ∈ J, � ∈ L (38)

∑
j∈J

x�i j ≤ K �
i z�i i ∈ I, � ∈ L (39)

��j ≥ 0 j ∈ J, � ∈ L (40)

x�i j ≥ 0 i ∈ I, j ∈ J, � ∈ L (41)

z�i ∈ {0, 1} i ∈ I, � ∈ L (42)

The magnitude of ψ�j compared with the costs d�i j and h�i will be crucial to
define the extent to which the decision maker accepts not to supply demand. For

ψ�j > maxi∈I d�i j + maxi∈I {ci j +h�i }
D�

j
the demand will be supplied until the limit of the

operating distribution capacity. In any case, the problem has now (relatively) complete
recourse as there is no obligation to supply all the demand. Therefore, the second-stage
feasibility set is always non-empty.

Finally, the extensive form of the deterministic equivalent becomes:

min
∑
i∈I

∑
j∈J

ci j yi j +
∑
s∈S

ps

⎡
⎣∑

i∈I

∑
j∈J

∑
�∈L

d�i j x�i js +
∑
i∈I

∑
�∈L

h�i z�is +
∑
j∈J

∑
�∈L

ψ�j�
�
js

⎤
⎦

(43)

s. t.
∑
i∈I

yi j ≥ 1 j ∈ J (44)

∑
�∈L

x�i js ≤
∑
�∈L

D�
js yi j i ∈ I, j ∈ J, s ∈ S (45)

��js ≥ D�
js −

∑
i∈I

x�i js j ∈ J, � ∈ L , s ∈ S (46)

∑
j∈J

x�i js ≤ K �
i z�is i ∈ I, � ∈ L , s ∈ S (47)

��js ≥ 0 j ∈ J, � ∈ L , s ∈ S (48)

yi j ∈ {0, 1} i ∈ I, j ∈ J (49)
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x�i js ≥ 0 i ∈ I, j ∈ J, � ∈ L , s ∈ S (50)

z�is ∈ {0, 1} i ∈ I, � ∈ L , s ∈ S (51)

In this formulation,��js denotes the amount of commodity � requested by customer
j which is not supplied if the demand level is s (� ∈ L , j ∈ J , s ∈ S).

3.3 Measuring the relevance of using a stochastic approach

Although being a well-known fact that no measure exists which is robust for measuring
the relevance of using a stochastic programming approach, most of the authors rely
on measures which, at least, can give some indication of this relevance. Among these
measures, we have considered the value of the stochastic solution (VSS) (the reader can
refer to Birge (1982) and Birge and Louveaux (1997) for the use of this measure in two-
stage stochastic problems and to Escudero et al. (2007) for a multi-stage setting). In
addition, to get a better perception on the relevance of the stochastic solution across all
scenarios, we considered two additional measures. The first one relates somehow with
the VSS. The second measure is related with the expected value of perfect information
(EVPI) (see also Birge and Louveaux (1997) for the use of this measure in stochastic
programming problems).

To compute the VSS, the random variables are replaced by their expected values
and the resulting deterministic problem is solved. The optimal solution to this prob-
lem gives a first-stage feasible solution to the original stochastic problem because
the original first-stage constraints and variables appear unchanged in this determinis-
tic problem. Furthermore, the fact that the problem has relatively complete recourse
assures that such first-stage solution has a feasible completion in terms of the second-
stage problem. Thus, it can be considered as a first-stage solution to the stochastic
problem. Solving the stochastic problem fixing this first-stage solution leads to a com-
plete solution to the stochastic problem. The difference between the value of this
solution—say AEV—and the optimal value of the stochastic problem—say SP—is
the value of the stochastic solution, i.e., VSS = AEV − SP.

For the above reasons, it becomes clear that the solution corresponding to AEV can
be considered as an approximated solution to the stochastic problem. Furthermore, as
we shall see, for the uncapacitated version of the problem, such solution is usually
easier to obtain and provides tight gaps.

In our case, replacing the random variables D�
j by their expectation—say D

�

j —
leads to a deterministic problem that we include below (in its capacitated version) for
the sake of completeness.

min
∑
i∈I

∑
j∈J

ci j yi j +
∑
i∈I

∑
j∈J

∑
�∈L

d�i j x�i j +
∑
i∈I

∑
�∈L

h�i z�i +
∑
j∈J

∑
�∈L

ψ�j�
�
j (52)

s. t.
∑
i∈I

yi j ≥ 1 j ∈ J (53)

∑
�∈L

x�i j ≤
∑
�∈L

D
�

j yi j i ∈ I, j ∈ J (54)
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��j ≥ D
�

j −
∑
i∈I

x�i j j ∈ J, � ∈ L (55)

∑
j∈J

x�i j ≤ K �
i z�i i ∈ I, � ∈ L (56)

��j ≥ 0 j ∈ J, � ∈ L (57)

yi j ∈ {0, 1} i ∈ I, j ∈ J (58)

x�i j ≥ 0 i ∈ I, j ∈ J, � ∈ L (59)

z�i ∈ {0, 1} i ∈ I, � ∈ L (60)

Note that model (52)–(60) results from model (43)–(51) by considering a single
demand level, which is the one corresponding to the demands levels being defined

according to D
�

j .
A simple way for obtaining AEV is first to obtain the set of values EVs (s ∈ S), each

of which representing the optimal value of the problem we can define for each scenario
s ∈ S when the first-stage variables are fixed according to the optimal solution to the
deterministic problem. Then, we can simply set AEV = ∑

s∈S psEVs .
Analogously, the value SP (optimal value of the stochastic problem) can be written

as a weighted sum of the set of values SPs (s ∈ S), each of which representing the
optimal value of the objective function under scenario s when the first-stage variables
are fixed to the optimal values obtained in the stochastic version of Problem (43)–(51).
In particular, SP = ∑

s∈S ps S Ps .
Taking the previous aspects into account, we can write

VSS = AEV − SP =
∑
s∈S

ps (EVs − SPs) .

Looking into the previous formula, we realize that we have a weighted deviation,
which is dependent on the magnitude of the values involved. To get a better perception
of this value, we can consider the relative percent VSS, which can be computed as

VSSR = 100 × 1

S P
(AEV − SP) = 100 × 1

SP

∑
s∈S

ps (EV s − SPs) .

Although relevant, the previous expression tells nothing about the behavior of the
deterministic solution across all scenarios. An alternative we consider is the following
modified measure:

EEVR = 100 ×
∑
s∈S

ps
EVs − SPs

SPs
.

The EVPI represents the maximum amount that the decision maker would be willing
to pay in order to get perfect information. This value is computed as the difference
between the expected value with (additional) perfect information about the realized
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scenario and the expected value without knowing the actual state of nature. Thus, EVPI
measures the value of the stochastic solution as compared to the values of actually
realized solutions.

To obtain the EVPI we can start by computing the set of values WSs (s ∈ S),
each of which representing the optimal value of the problem we can associate with
each scenario (i.e., assuming perfect information). These values can be gathered
into the well-known wait-and-see solution, which is commonly denoted by WS.
Accordingly,

WS =
∑
s∈S

psWSs

and the EVPI is defined as

EVPI = SP − WS =
∑
s∈S

ps (SPs − WSs) .

Again, this measure says little about the individual scenarios. We consider, as an
alternative, a measure which not only is independent from the magnitude of the values
involved but also captures some information across all scenarios:

EVPIR = 100 ×
∑
s∈S

ps
SPs − WSs

WSs
.

In synthesis, for the problem addressed in this paper, we measure the relevance of
using a stochastic approach using VSSR , EEVR and EVPIR .

4 Computational tests

In this section, we report the results of a series of computational tests performed to
evaluate the behavior of the models proposed in Sects. 2 and 3. It is also a goal with
these tests to understand the extent to which a commercial solver can be used to solve
the addressed problems to optimality.

All computational tests have been performed on a PC with a Intel(R) Core(TM)
i7 processor with 2.80 GHz and 8 GB of RAM. Programs were implemented using
Visual C++ 2010 Express and ILOG CPLEX Studio Academic 12.5.1 with the Concert
Technology routines. Default parameters have been used.

4.1 Test data

Before generating the instances, we identified four relevant factors: the number of
(i) origins, (ii) destinations, (iii) scenarios and (iv) commodities. For each of these
factors, we consider different possibilities which determine the dimensions of the test
instances. In particular, |I | is chosen in the set {10, 20, 50}, |J | in {20, 50, 100}, |S|
in {8, 12, 20, 30} and |L| in {1, 2, 3}.
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Once the dimensions are set, one instance was generated as follows:

• The unitary flow shipment costs dl
i j were drawn from a uniform distribution

U [10, 100].
• The fixed handling costs hl

i were drawn from a uniform distribution U [500, 3500].
• The set-up costs ci j (i ∈ I , j ∈ J ) were drawn from a uniform distribution centered

at 55×DT
|I |×|J | with range ± 1

4 × 55×DT
|I |×|J | , where DT = 680

3 ×|J |×|L| is a reference value
for the total demand level. Note that DT is not an estimate of the total demand level
for one scenario. Furthermore, this estimation is considered only for generating
the distribution of the set-up cost for the links, i.e., the costs associated with the
network design. We recall that the design of the network is to be decided before
the actual demand is disclosed, which means that the network design chosen will
be used no matter the scenario that will actually occur. Accordingly, the value DT
was computed assuming equal probability for every scenario.

• Demand ranges were generated according to a uniform distribution. Three possible
intervals were considered: (i) U [10, 50], (ii) U [100, 200] and (iii) U [400, 600].

• Our data sets always include the following four different types of scenarios: (S1) all
the demand levels are drawn from interval (i); (S2) all the demand levels are drawn
from interval (ii); (S3) all the demand levels are drawn from interval (iii) and; (S4)
For each customer a demand level is initially chosen randomly considering the
same probability for the three different intervals. Several scenarios of each type
were considered depending on the total number of demand levels to be drawn (8,
12, 20 or 30). They are summarized below:

|S| |S1| |S2| |S3| |S4|
8 1 1 2 4

12 1 1 2 8

20 1 1 4 12

30 3 3 6 18

• ps = P[ξ = s] = 1
|S| .

• The maximum amount of commodity � available at origin i , K �
i is drawn from a

uniform distribution centered at DT
|I |×|L| with range ±0.2 × DT

|I |×|L| .• The unitary penalty costs for not supplying the demand of customer j in terms
of commodity �, ψ�j , was drawn from a uniform distribution centered at β =
100 + 3500+α+α/4

680/3 with range ±0.1 × β, where α = 55×DT
|I |×|J | .

For each combination of |I |, |J |, |L| and |S|, five instances were generated for the
uncapacitated case as well as for the capacitated one. In total, approximately 1,000
instances were generated.

Remark 3 1. The cardinalities considered for |I |, |J |, |S| and |L| define the number of
binary and continuous variables to be used. In Table 1, we find this information for
stochastic capacitated multi-commodity problem (43)–(51). For each combination
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Table 1 Dimension of the test instances for the stochastic capacitated multi-commodity problem (43)–(51).

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

Binary Continuous Binary Continuous Binary Continuous

10 20 1 210 220 220 440 230 660

8 280 1,760 360 3,520 440 5,280

12 320 2,640 440 5,280 560 7,920

20 400 4,400 600 8,800 800 13,200

30 500 6,600 800 13,200 1,100 19,800

50 1 510 550 520 1,100 530 1,650

8 580 4,400 660 8,800 740 13,200

12 620 6,600 740 13,200 860 19,800

20 700 11,000 900 22,000 1,100 33,000

30 800 16,500 1, 100 33,000 1,400 49,500

100 1 1,010 1,100 1, 020 2,200 1,030 3,300

8 1,080 8,800 1,160 17,600 1,240 26,400

12 1,120 13,200 1,240 26,400 1,360 39,600

20 1,200 22,000 1,400 44,000 1,600 66,000

30 1,300 33,000 1,600 66,000 1,900 99,000

20 20 1 420 420 440 840 460 1,260

8 560 3,360 720 6,720 880 10,080

12 640 5,040 880 10,080 1,120 15,120

20 800 8,400 1,200 16,800 1,600 25,200

30 1,000 12,600 1,600 25,200 2,200 37,800

50 1 1,020 1,050 1,040 2,100 1,060 3,150

8 1,160 8,400 1,320 16,800 1,480 25,200

12 1,240 12,600 1,480 25,200 1,720 37,800

20 1,400 21,000 1,800 42,000 2,200 63,000

30 1,600 31,500 22,00 63,000 2,800 94,500

100 1 2,020 2,100 2,040 4,200 2,060 6,300

8 2,160 16,800 2,320 33,600 2,480 50,400

12 2,240 25,200 2,480 50,400 2,720 75,600

20 2,400 42,000 2,800 84,000 3,200 126,000

30 2,600 63,000 3,200 126,000 3,800 189,000

50 50 1 2,550 2,550 2,600 5,100 2,650 7,650

8 2,900 20,400 3,300 40,800 3,700 6,1200

12 3,100 30,600 3,700 61,200 4,300 91,800

20 3,500 51,000 4,500 102,000 5,500 153,000

30 4,000 76,500 5,500 153,000 7,000 229,500

100 1 5,050 5,100 5,100 10,200 5,150 15,300

8 5,400 40,800 5,800 81,600 6,200 122,400

12 5,600 61,200 6,200 122,400 6,800 183,600

20 6,000 102,000 7,000 204,000 8,000 306,000

30 6,500 153,000 8,000 306,000 9,500 459,000
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of |I |, |J | and |L|, we include a line for |S| = 1. This line corresponds to the
dimension of the expected value problem (a single scenario which is defined by
the average demand levels). Observing this table, we realize that some instances are
quite large namely in terms of the number of binary variables. These dimensions
are relevant even considering the state-of-the-art in terms of mixed-integer linear
stochastic programming. For instance, considering a general two-stage mixed-
integer linear stochastic problem, Escudero et al. (2012) tackle test instances which,
for a compact representation (as we consider in this paper), have up to 20 binary
variables in the first stage and 6,300 in the second stage.

2. A scenario is a complete realization of the joint random vector of demand levels.
Nevertheless, the recourse function is based on the choice of the network design.
This way, in our model, the combinatorial choice of the network design is put
together with all the possible scenarios that may occur, which leads to a huge
number of possibilities.

3. Despite the comment above, at a first glance, one might think that the number of
scenarios is too small. However, it should be noted that in practice, uncertainty
in the demand level for some product or service is captured via a finite number
of scenarios or using some probability law. In the first case, one possibility is
to consider a base demand level (estimated, for instance, using some marketing
research approach) and some variations from this level (e.g., 20 % above and
below). This means that in total, the number of scenarios is not large. In fact, in
such a case, it would be difficult to sustain 100 or 500 scenarios drawn from a
simple estimate. In the second case, when a probability law can be adjusted to
the demand level, the number of scenarios is typically infinity (apart from some
exceptions as it is the case with the binomial distribution which, nevertheless, is
not often found in the literature for describing demand). With an infinite number
of scenarios, the models proposed in this paper (like the large majority of the
stochastic programming models published in the literature) cannot be used because
they cannot be solved explicitly. Accordingly, one has to resort to some sampling
method (e.g., sample average approximation) which relies on a set of samples
(of scenarios) drawn from the underlying distribution. In this case, a sequence of
finite-scenario problems has to be solved. For convergence purposes, the number
of scenarios does not need to be high as far as more problems can be solved.

4. It is important to note once more that in our modeling framework we are consider-
ing at the same time the design of the network and the stochasticity of the demand.
This way, to see how the design is affected by the demand, we have to consider,
apart from homogenous cases, also extreme cases. This explains the choices made
for demand level generation. We also recall that as observed before, for homoge-
nous cases, the solutions of our model will tend to behave close to the the solution
of an uncapacitated facility location problem.

4.2 Computational results

As mentioned above, we have used the solver ILOG CPLEX Studio Academic 12.5.1
to solve the generated instances. In particular, we registered the cpu time (in seconds)
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Table 2 Average gaps and CPU time (in seconds) for the stochastic uncapacitated multi-commodity prob-
lem

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

Gap CPU CPUmax Opt Gap CPU CPUmax Opt Gap CPU CPUmax Opt

10 20 8 0.00 0.20 1.00 5 0.00 0.60 1.00 5 0.00 0.80 1.00 5

12 0.00 0.20 1.00 5 0.00 1.00 1.00 5 0.00 2.80 4.00 5

20 0.00 0.20 1.00 5 0.00 1.80 3.00 5 0.00 5.40 7.00 5

30 0.00 0.40 1.00 5 0.00 3.00 4.00 5 0.00 19.80 25.00 5

50 8 0.00 0.40 1.00 5 0.00 0.80 2.00 5 0.00 2.00 3.00 5

12 0.00 0.40 1.00 5 0.00 1.40 2.00 5 0.00 4.20 5.00 5

20 0.00 0.60 1.00 5 0.00 2.80 3.00 5 0.00 6.40 8.00 5

30 0.00 1.00 1.00 5 0.00 4.20 6.00 5 0.00 25.60 37.00 5

100 8 0.00 0.60 1.00 5 0.00 2.00 2.00 5 0.00 5.20 7.00 5

12 0.00 0.60 1.00 5 0.00 3.00 4.00 5 0.00 7.20 9.00 5

20 0.00 1.40 2.00 5 0.00 4.60 5.00 5 0.00 13.20 17.00 5

30 0.00 2.40 3.00 5 0.00 7.80 9.00 5 0.00 23.40 31.00 5

20 20 8 0.00 0.20 1.00 5 0.00 1.60 2.00 5 0.00 6.20 9.00 5

12 0.00 0.60 2.00 5 0.00 3.60 5.00 5 0.00 16.40 23.00 5

20 0.00 1.00 2.00 5 0.00 8.80 11.00 5 0.00 29.80 47.00 5

30 0.00 0.80 1.00 5 0.00 23.20 37.00 5 0.00 60.20 76.00 5

50 8 0.00 1.00 1.00 5 0.00 5.00 6.00 5 0.00 20.40 23.00 5

12 0.00 1.20 2.00 5 0.00 11.00 18.00 5 0.00 27.00 38.00 5

20 0.00 1.20 2.00 5 0.00 12.40 20.00 5 0.00 62.20 75.00 5

30 0.00 2.60 4.00 5 0.00 44.00 55.00 5 0.00 203.60 279.00 5

100 8 0.00 1.20 2.00 5 0.00 3.20 4.00 5 0.00 10.60 12.00 5

12 0.00 1.60 3.00 5 0.00 6.40 7.00 5 0.00 29.60 43.00 5

20 0.00 2.80 3.00 5 0.00 11.00 18.00 5 0.00 57.00 65.00 5

30 0.00 3.80 4.00 5 0.00 33.20 46.00 5 0.00 205.40 257.00 5

50 50 8 0.00 6.80 10.00 5 0.00 46.20 93.00 5 0.00 157.80 196.00 5

12 0.00 11.00 15.00 5 0.00 182.20 481.00 5 0.00 954.40 2,350.00 5

20 0.00 23.60 48.00 5 0.00 218.80 293.00 5 0.00 2,204.80 3,165.00 5

30 0.00 54.20 112.00 5 0.00 1,739.80 3,365.00 5 0.00 8,108.00 14,625.00 5

100 8 0.00 13.20 18.00 5 0.00 153.00 280.00 5 0.00 1,751.60 5,558.00 5

12 0.00 20.60 24.00 5 0.00 422.00 756.00 5 0.00 6,764.00 19,374.00 5

20 0.00 51.00 74.00 5 0.00 1,008.20 1,565.00 5 0.01 10,789.20 36,003.00 4

30 0.00 210.00 546.00 5 0.01 7,978.75 36,002.00 4 0.06 – – 0

required to obtain an optimal solution for each instance. A time limit of 36,000 s (10
h) was considered. For those instances where the time limit was reached, the relative
gap between the objective value of the best integer solution and the best-known lower
bound on the optimal solution value was saved.

Tables 2, 3, 4, 5 and 6 report the results obtained for the instances associated with
each combination of the parameters |I |, |J |, |L| and |S|. In all tables, we can find the
rows grouped into several blocks, one for each value of |I |. Within each block, a row
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Table 3 Average gaps and CPU time (in seconds) for the stochastic capacitated multi-commodity problem

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

Gap CPU Opt Gap CPU Opt Gap CPU Opt

10 20 8 0.00 42.33 5 0.00 5,333.67 5 0.40 35,520.67 1

12 0.00 1,335.67 5 0.43 27,849.33 1 1.83 – 0

20 0.00 5,307.67 5 1.24 – 0 2.09 – 0

30 0.49 – 0 2.34 – 0 2.51 – 0

50 8 0.00 1,164.33 5 0.26 – 0 0.39 – 0

12 0.28 – 0 0.68 – 0 0.78 – 0

20 0.53 – 0 0.83 – 0 0.97 – 0

30 0.80 – 0 1.05 – 0 1.15 – 0

100 8 0.05 – 0 0.12 – 0 0.15 – 0

12 0.25 – 0 0.31 – 0 0.37 – 0

20 0.40 – 0 0.32 – 0 0.40 – 0

30 0.45 – 0 0.53 – 0 0.61 – 0

20 20 8 0.05 12,699.33 2 0.65 – 0 0.92 – 0

12 0.20 33,927.67 1 0.98 – 0 1.54 – 0

20 0.40 – 0 1.17 – 0 1.73 – 0

30 0.87 – 0 1.59 – 0 2.36 – 0

50 8 0.35 – 0 1.10 – 0 1.43 – 0

12 0.87 – 0 2.16 – 0 2.46 – 0

20 1.02 – 0 2.14 – 0 2.84 – 0

30 1.66 – 0 2.85 – 0 4.04 – 0

100 8 0.30 – 0 0.50 – 0 0.76 – 0

12 0.62 – 0 1.20 – 0 1.40 – 0

20 0.66 – 0 0.99 – 0 1.65 – 0

30 1.06 – 0 1.82 – 0 1.88 – 0

50 50 8 0.40 – 0 0.97 – 0 1.32 – 0

12 0.65 – 0 1.39 – 0 2.54 – 0

20 0.72 – 0 1.86 – 0 2.30 – 0

30 1.16 – 0 2.95 – 0 10.40 – 0

100 8 0.48 – 0 1.35 – 0 2.50 – 0

12 1.16 – 0 3.00 – 0 4.13 – 0

20 1.58 – 0 2.79 – 0 10.15 – 0

30 2.06 – 0 8.78 – 0 13.78 – 0

corresponds to a set of instances with a fixed number of destinations |J | and demand
levels |S|. Furthermore, the columns are also grouped into blocks, one for each value
of |L|. Thus, each entry in these tables corresponds to a value computed over all the
instances associated with a particular combination of |I |, |J |, |L| and |S|.

In Tables 2 and 3, we can observe results for the stochastic uncapacitated and
capacitated problems, respectively. Each entry in the columns headed by ‘Gap’ con-
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Table 4 Percentage relative V SS and the corresponding CPU time (in seconds) for the uncapacitated
multi-commodity problem

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

V SSR CPU V SSR CPU V SSR CPU

10 20 8 0.02 0.00 0.00 0.40 0.00 0.80
12 0.00 0.20 0.00 0.40 0.03 0.80
20 0.00 0.20 0.00 0.40 0.04 1.00
30 0.00 0.20 0.05 0.80 0.06 1.00

50 8 0.00 0.20 0.00 0.60 0.00 0.60
12 0.00 0.20 0.00 0.00 0.00 0.80
20 0.00 0.00 0.00 0.40 0.00 1.00
30 0.00 0.00 0.00 0.40 0.00 1.00

100 8 0.00 0.20 0.00 0.40 0.00 0.60
12 0.00 0.20 0.00 0.40 0.00 1.20
20 0.00 0.40 0.00 0.20 0.00 1.20
30 0.00 0.20 0.00 0.40 0.00 1.20

20 20 8 0.00 0.20 0.06 0.80 0.06 0.80
12 0.03 0.20 0.07 0.80 0.08 1.00
20 0.07 0.40 0.07 1.20 0.14 1.40
30 0.13 0.20 0.15 0.80 0.23 1.40

50 8 0.01 0.20 0.03 0.40 0.04 1.20
12 0.01 0.40 0.05 0.00 0.01 1.00
20 0.01 0.20 0.03 0.60 0.03 1.40
30 0.03 0.40 0.02 1.00 0.04 2.00

100 8 0.00 0.20 0.00 0.60 0.00 1.40
12 0.00 0.40 0.00 1.00 0.01 1.60
20 0.00 0.00 0.00 1.20 0.00 1.20
30 0.00 0.20 0.00 1.40 0.01 2.60

50 50 8 0.29 1.40 0.07 1.00 0.07 1.60
12 0.22 1.40 0.03 1.60 0.05 2.40
20 0.22 1.20 0.03 1.40 0.04 2.40
30 0.37 1.40 0.04 2.20 0.10 3.20

100 8 0.10 0.60 0.01 2.00 0.02 4.60
12 0.08 0.20 0.03 3.40 0.02 5.20
20 0.08 0.00 0.03 2.80 0.01 5.80
30 0.14 0.80 0.02 4.00 0.04 8.00

tains an average of percentage gaps. Each gap is defined by 100× (bestinteger −
bestobjective)/bestobjective, where bestinteger is the objective value of the best inte-
ger solution and bestobjective is the best-known lower bound on the optimal solution
found by the solver. An entry in the columns headed by ‘CPU’ gives the average cpu
time (seconds) required by the solver to obtain the optimal/best solution. An entry
in the columns headed by ‘CPUmax’ gives the maximum cpu time (seconds) among
the instances corresponding to the entry. In addition, an entry in the columns headed
by ‘Opt’ indicates the number of instances that could be solved to optimality within
the time limit. Finally, the symbol “–” in some entry indicates that the time limit was
reached for all the five instances corresponding to the entry.

Observing Tables 2 and 3, we can immediately realize that there is a clear difference
between the uncapacitated and the capacitated cases. In fact, the inclusion of capacity
constraints significantly worsens the efficiency of the solver and consequently, the
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Table 5 Percentage relative VSS and the corresponding CPU time (in seconds) for the capacitated multi-
commodity problem

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

V SSR CPU V SSR CPU V SSR CPU

10 20 8 9.38 1.00 5.62 6.00 4.22 25.67

12 8.02 1.33 4.64 30.00 2.77 101.00

20 12.20 1.33 5.58 2.67 3.70 35.33

30 5.61 2.00 3.00 43.67 1.75 88.00

50 8 9.45 3.67 4.74 24.00 4.17 705.00

12 10.19 4.00 3.98 239.67 2.04 5, 827.33

20 13.08 3.67 5.67 216.00 3.49 797.00

30 5.68 31.33 1.78 3, 319.67 1.17 1, 099.67

100 8 10.90 25.67 4.80 12, 457.67 2.90 10, 448.00

12 8.41 175.67 3.01 1, 552.33 1.92 12, 099.33

20 12.02 22.33 5.85 4, 326.33 2.61 6, 990.00

30 4.21 96.67 1.57 4, 998.00 1.15 4, 065.00

20 20 8 13.94 2.33 7.88 36.67 6.28 4, 915.67

12 15.01 20.67 8.85 1, 489.00 7.20 –

20 19.53 5.67 11.69 27.67 7.40 360.33

30 13.31 9.00 7.47 815.33 4.11 –

50 8 14.63 22.33 9.08 6, 770.67 5.80 –

12 13.91 1, 114.00 7.29 – 4.88 –

20 20.05 30.33 10.08 9, 897.33 5.91 –

30 12.09 3, 010.00 4.45 – 1.79 –

100 8 15.93 1, 861.33 8.37 9, 612.00 4.51 75.67

12 14.73 9, 605.33 6.63 – 3.83 2, 747.00

20 21.48 1.00 10.26 4.00 6.70 103.33

30 10.12 4.33 2.97 – 1.66 4, 908.00

50 50 8 22.30 4, 899.33 14.47 – 9.95 –

12 28.03 – 17.28 – 11.97 –

20 31.59 6, 474.67 19.62 – 13.33 –

30 22.66 – 13.07 – 1.30 –

100 8 21.89 – 11.48 – 7.80 –

12 24.46 – 13.91 – 7.96 –

20 29.97 – 16.10 – 3.91 –

30 18.44 – 3.21 – −4.66 –

quality of the results. This is not unexpected. In fact, as in many other optimization
problems, the inclusion of capacity constraints seems to add extra complexity to the
structure of the problem.

Observing in more detail the results in these tables we realize that in the uncapac-
itated case, we were able solve to optimality all instances even for a large number
of origins, destinations and commodities, with the single exception being the set of
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Table 6 Values of EVPIR and EEVR for the capacitated multi-commodity problem

|I | |J | |S| |L| = 1 |L| = 2 |L| = 3

EVPIR EEVR EVPIR EEVR EVPIR EEVR

10 20 8 13.68 16.69 14.63 9.23 14.94 6.76

12 14.73 11.56 14.10 6.53 15.00 3.66

20 14.69 19.75 15.89 9.26 15.06 5.94

30 16.15 7.79 16.92 4.23 16.31 2.27

50 8 6.83 21.63 11.17 9.73 11.61 8.69

12 7.98 17.12 11.50 6.08 12.03 3.07

20 9.97 24.85 12.24 10.29 12.39 6.31

30 10.45 9.00 12.44 2.42 12.23 1.61

100 8 4.21 26.77 8.49 10.59 9.32 6.46

12 5.27 14.68 8.56 4.85 10.40 2.99

20 6.46 24.19 9.52 11.24 10.23 5.00

30 6.98 7.32 9.81 2.33 10.75 1.34

20 20 8 17.84 26.24 20.58 13.24 19.19 9.78

12 16.46 23.52 18.64 12.38 18.41 9.52

20 16.58 33.00 18.44 17.84 17.50 11.28

30 20.03 19.46 20.12 10.50 19.35 5.70

50 8 11.16 34.51 13.65 19.35 14.44 11.23

12 10.90 24.88 14.00 12.10 14.05 7.32

20 11.09 42.37 13.78 18.74 15.04 11.48

30 13.46 21.14 15.66 7.29 16.85 3.15

100 8 7.24 43.10 9.59 21.59 11.69 10.70

12 6.95 27.20 10.70 11.57 11.85 6.51

20 7.87 46.91 10.59 21.43 12.79 13.46

30 9.17 19.87 12.30 4.65 12.83 2.63

50 50 8 15.26 51.81 18.47 29.33 18.54 19.01

12 12.50 48.98 15.61 26.68 17.17 18.62

20 11.70 60.20 15.09 36.23 15.20 22.96

30 14.27 37.70 18.38 21.41 31.35 5.54

100 8 10.98 64.20 13.71 30.27 15.59 19.19

12 10.43 47.46 13.72 25.62 15.86 14.18

20 10.24 69.49 13.42 34.47 30.33 10.14

30 13.21 36.98 27.49 8.38 35.00 −4.16

instances with 50 origins, 100 destinations, 30 scenarios and 2/3 commodities. In
any case, it becomes clear that, when considering the uncapacitated case, a general
solver seems to provide an efficient tool for solving or, at least, for approximating
quite accurately, the optimal solution to the problem.

On the other hand, for the capacitated case, very few instances could be solved
successfully to optimality using the solver. In general, the solver could not obtain
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an actual optimal solution within the time limit (note that in this table we do not
include the column ‘CPUmax’ because the corresponding values are always equal to
the time limit). This is not surprising as we are dealing with a mixed 0–1 stochastic
programming problem and thus a problem that can be expected to be hard to solve
(Escudero 2009).

Nevertheless, it should be pointed out that in the majority of instances for which an
optimal solution was not obtained within the time limit, the final gap is quite small,
which indicates that a good approximation to the optimal solution can, in general, be
obtained within the time limit. The exception to this regards the instances with 50
origins and 3 commodities with 20 and 30 scenarios.

Another aspect that can be observed in Tables 2 and 3 regards the slight increase of
the gaps when the number of commodities and/or the number of scenarios increases.
Note, however, that the increase is small. This was expected. In fact, this behavior
simply translates the increase in the dimension of the instances which, often, makes a
mixed 0–1 problem harder to solve.

In Tables 4 and 5, we can observe the relative percentage VSS and the cpu time (in
seconds) required to obtain such value for the uncapacitated and capacitated problems,
respectively. An entry in the column headed by ‘VSSR’ gives the average relative
percentage value (%) of the stochastic solution as introduced in Sect. 3.3. Note than
in our case, ps = 1

|S| , s ∈ S. An entry in the columns headed by ‘CPU’ corresponds
to the average cpu time (seconds) required by the solver to obtain the optimal/best
value of the stochastic solution. As before, the symbol “–” indicates that the time limit
was reached for the computations required by the five instances corresponding to the
entry. It should be noted that when the time limit is reached, we consider the value of
the best integer solution found in the computation of V SSR .

The observation of Tables 4 and 5 gives a first indication on the relevance of using
a stochastic approach for the problem we are addressing. For the uncapacitated case
(Table 4) we realize that the first-stage solution provided by the expected value problem
leads to an accurate approximation for the optimal first-stage decision. However, this
is far from true in the capacitated case. In fact, observing Table 5, we realize that the
relative V SS is quite significant in most of the instances.

Table 4 allows us to conclude that the relevance of using a stochastic approach is
marginal for the uncapacitated case. Accordingly, we proceed the analysis only for
the capacitated problem. For this case, Table 6 reports the relative values EEVR and
EVPIR discussed in Sect. 3.3. Note, again, that in our case ps = 1

|S| , s ∈ S.
The observation of Table 6 gives strength to the relevance of using a stochastic

approach for the problem we are addressing. In fact, the percentage values are quite
significant across all the instances. It is also important to note that the GAP of the
stochastic problem gets larger as the instance size increases. Thus, since the best
feasible solution provided by the solver is the value considered for producing the
values in columns VSSR and EEVR , the decrease in these values is naturally expected.
In addition, this same phenomenon explains the negative value that appears in Tables 5
and 6. Such negative value simply means that the solver was not able to find a feasible
solution better than the solution provided by the expected value problem, which shows
the difficulty of the problem at hand.
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As far as the EVPIR is concerned, we realize that the difference between the values
of the solution induced by the stochastic problem across all scenarios is quite different
from the value we would obtain with perfect information. This gives an indication that
the “degree of stochasticity” in the data is quite significant, which fully justifies the
use of a stochastic approach. As far as the EEVR values are concerned, we conclude
that, again, the average difference across all scenarios between the solution induced by
the expected value problem and the stochastic solution is again quite significant. This
is a clear indication that considering the expected value problem for approximating
the first-stage optimal solution is an oversimplification for the problem at hand.

5 Conclusion

In this paper, a two-stage stochastic transportation problem was considered that com-
prises fixed handling costs at the origins and fixed set-up costs for the transportation
channels. The problem was formulated as a two-stage stochastic mixed 0–1 program-
ming problem. In the first stage, a decision is made about the links to select. In the
second stage, a recourse decision is considered for the amounts to ship and the origins
to activate. The problem was presented in its simpler setting and was progressively
extended in order to accommodate multiple commodities and capacities at the origins.

Based on the results provided by a series of computational tests performed, we
conclude that like in other optimization problems, the inclusion of capacity constraints
increases dramatically the difficulty of the problem and makes it significantly harder
when it comes to solving the problem to optimality using a general solver. Furthermore,
the relevance of considering a stochastic approach is negligible in the uncapacitated
case but it is quite significant in the capacitated one. Therefore, in the latter case, it is
definitely worth considering a modeling framework which captures the uncertainty in
the data.

This paper opens several research directions. One concerns the need for the devel-
opment of exact and approximate procedures specifically tailored for the capacitated
problem. Another aspect worth investigating regards possible extensions to the prob-
lem addressed in this paper as it is the case in which there are specific link capacities. In
such case, as it happened when capacities were considered at the origins, the stochastic
problem does not have relatively complete recourse and the first-stage feasibility must
be properly accounted for.
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