
Early Integration Testing for Entity Reconciliation
in the Context of Heterogeneous Data Sources

Raquel Blanco, José G. Enrı́quez, Francisco J. Domı́nguez-Mayo, M. J. Escalona,
and Javier Tuya , Member, IEEE

Abstract—Entity reconciliation (ER) aims to combine data from
different sources for a unified vision. The management of large
volumes of data has given rise to significant challenges to the ER
problem due to facts such as data becoming more unstructured, un-
clean, and incomplete or the existence of many datasets that store
information about the same topic. Testing the applications that im-
plement the ER problem is crucial to ensure both the correctness
of the reconciliation process and the quality of the reconciled data.
This paper presents an approach based on model-driven engineer-
ing that allows the creation of test models for the early integration
testing of ER applications, contributing in three main aspects: the
description of the elements of the proposed framework, the def-
inition of the testing model, and the validation of the proposal
through two real-world case studies. This validation verifies that
the early integration testing of the ER application is capable of
detecting a series of deficiencies, which a priori are not known and
that will help to improve the final result that the ER application
offers.

Index Terms—Early testing, entity reconciliation, heteroge-
neous data sources, model-driven engineering, software testing,
specification-based testing.

NOMENCLATURE

ER Entity reconciliation.
ICT Information and Communications Technology.
MDE Model-driven engineering.
ETL Extract, transform and load.
ITR Integration testing rules.
SBVR Sematics of Business Vocabulary and Business Rules.
EBNF Extended Backnus-Naur Form.

This work was supported in part by the Spanish Ministry of Science and
Technology, under the projects PERTEST (TIN2013-46928-C3-1-R), MeGUS
(TIN2013-46928-C3-3-R), TestEAMos (TIN2016-76956-C3-1-R), POLOLAS
(TIN2016-76956-C3-2-R), and SoftPLM Network (TIN2015-71938-REDT);
in part by the Principality of Asturias (Spain), under the project
GRUPIN14-007; in part by European Regional Development Fund; and in
part by Fujitsu Laboratories of Europe. Associate Editor: P. Laplante.
(Corresponding author: Raquel Blanco.)

R. Blanco and J. Tuya are with the Department of Computer Science,
University of Oviedo, Oviedo 33003, Spain (e-mail: rblanco@uniovi.es;
tuya@uniovi.es).

J. G. Enrı́quez, F. J. Domı́nguez-Mayo, and M. J. Escalona are with the
Department of Computer and Language Systems, University of Seville, Seville
41004, Spain (e-mail: jose.gonzalez@iwt2.org; fjdominguez@us.es;
mjescalona@us.es).

I. INTRODUCTION

CURRENTLY, information management is critical in many
aspects of our lives. However, the incorporation of ICT

into everyday life causes people to experience an overload of
information, also known by the term “infoxication.” This term
refers to the difficulty that someone has in understanding a
problem and making decisions about it because of an excess of
information [1].

In the first era of ICT, the main problem that researchers had
was how to find information and how to store and manage it ef-
ficiently. Currently, due to the existence of Big Data and cloud
computing, the biggest problem is how to extract knowledge
from the information depending on the needs of each user [2].
Considering the large number of data sources that store infor-
mation related to the same topic, the need for heterogeneity
and cross-domain reconciliation become important features. In
this context, the problem of ER plays an important role in data
management, being one of the major research problems in data
quality management [3].

ER (also called entity resolution) is a fundamental problem
in data integration. It refers to combining data from different
sources for a unified vision or, in other words, identifying entities
from the digital world that refer to the same real-world entity.
It is an uncertain process because the decision to allocate a set
of records with the same entity cannot be taken with certainty
unless these records are identical in all their attributes or they
have a common key [4], [5]. This problem can be applied to
many different scenarios such as terrorist screening, insurance
fraud detection or e-health environments, among others.

While this problem is not new, the management of large vol-
umes of data presents new challenges and the necessity of carry-
ing out high-quality reconciliation of entities continues to grow
in the era of Big Data [2], [6]. Getoor and Machanavajjhala [7]
expose some of the main challenges of the ER in the Big Data
environment such as:

1) data heterogeneity, where it is becoming more common
that data are unstructured, unclean, or incomplete and also
there are diverse data types;

2) data being more linked, where it is necessary to infer
relationships in addition to equality;

3) making multirelational data, dealing with structure of en-
tities;

4) building multidomain systems, trying to customize meth-
ods that span across domains.

https://orcid.org/0000-0003-2855-0760
https://orcid.org/0000-0002-2631-5890
https://orcid.org/0000-0002-1091-934X

Due to the important challenges of the ER problem, it is
crucial to test the operations designed to carry out the recon-
ciliations and the applications that implement them, in order to
ensure both the correctness of the reconciliation and the high
quality of the reconciled data.

In this paper, we propose an approach based on the MDE
paradigm for testing applications that implement ER problems.
This approach relies on the ER problem specification and the
conceptual data models of the sources and the solution to be
achieved in order to define test models composed of a set of
business rules, which specify the system requirements. From
these business rules, the situations of interest to be tested (test
coverage items) can be automatically derived to guide the gen-
eration of the test cases.

MDE [8] emerged to address the complexity of software sys-
tems in order to express the concepts of the problem domain
in an effective way. In this way, the basic principle of MDE is
“Everything is a model” [9]. The main idea of the MDE is to
use a set of models to decrease the level of abstraction. Thus,
in the early stages of development, models are more abstract
than in the final stages where the models are much closer to
implementation. One of the advantages of MDE is its support
for automation, as the models can be automatically transformed
from the early stages of development to the final stages. There-
fore, MDE allows automating the tasks involved in software
development, such as the testing tasks.

In an earlier work [10], a first approach based on MDE that
allows the creation of test models for the integration testing of
ER applications was presented. In this new work, the test model
for integration testing, called the ITR model, is developed in
depth. In addition, we describe the application of the ITR model
to two real-world problems. The main contributions of this work
are as follows.

1) The description of the elements that constitute the frame-
work for testing the ER applications.

2) The definition of the ITR model for integration testing,
which represents the testing objectives as a set of business
rules, called integration rules.

3) The application of the proposal to two real-world prob-
lems.

The remainder of this paper is organized as follows: Section II
provides background and related work. Section III formulates
the ER testing problem. Sections IV and V describe the frame-
work for testing ER applications and the ITR model. Section VI
presents a real-world case study. Finally, this paper ends with
conclusions and future work.

II. BACKGROUND AND RELATED WORK

ER is a well-known problem and it has been investigated
since the birth of relational databases. With the advent of Big
Data, it has received significant attention due to the new chal-
lenges that arise as mentioned above. The techniques for solving
this kind of problem can be broadly classified into: determin-
istic rule-based methods [11]–[13], probabilistic-based meth-
ods [14]–[17], learning based techniques [18]–[21], and graph-
based techniques [22]–[26].

The approach in which early testing has been integrated is the
one presented in [2], where authors proposed an ER approach
based upon MDE and virtual graphs. This approach has some
relation with ETL [27] although the main goal of these kinds of
tools is not the development of the ER process but the integration
of information from different data sources into one or legacy
systems integrations. It has been very difficult to find related
work about testing in ER: however, taking into account that the
proposal bears some resemblance to the ETL, some works are
presented.

A variety of works can be found in the literature about test-
ing ETL processes. Some of them are related to analyzing the
impact of automated ETL testing on the data quality or to eval-
uating the quality of different approaches [28], [29]. Dakrory
et al. [30] proposed a testing framework to automate testing
data quality at the stage of the ETL process by automating the
creation and execution of these tests. Tesfagiorgish and JunYi
[31] proposed an approach of big data transformation testing
based on the concept of data reverse engineering. The closest
work that has been found is the one presented in [32]. The au-
thors developed a test framework that generates a small and
representative dataset from an original large dataset using input
space partition testing. However, this paper proposes using early
testing in the ER process, and as the approach developed is not
an ETL system, the objectives of the two papers are different.

Early testing focuses on the first phases of the software devel-
opment lifecycle [33]. One of the reasons for integrating early
testing in the selected approach is the benefits that it produces in
reducing costs in the verification and validation phase, and the
reduction of its complexity [34]. Most of the works related to
early testing study the automation of test case generation [35]–
[38]. The present work differs from foregoing works in that it is
not based on test case generation, but on the automation of test
coverage items that will guide the generation of test cases.

III. PROBLEM STATEMENT

Consider, for example, the following scenario: the informa-
tion stored into two databases DB1 and DB2, composed of the
tables R and S, respectively, is going to be reconciled into a
graph structure. Each row ri of R and sj of S is considered an
entity. The information that will constitute the solution of the ER
process, called the reconciled solution, is represented in nodes
and edges, where each node is an entity and the edges are re-
lationships between entities. The software engineer defines the
conceptual data model of this reconciled solution (henceforth
reconciled solution model), which contains the types of nodes
(that is, the types of entities) T and U, as well as the type of
edge (that is, the type of relationship) V.

Fig. 1 depicts the schemas of the data sources (DB1 and DB2)
and the model of the reconciled solution. The attributes C1, D1,
and D2 do not uniquely identify the entities tk of T and um of
U.

According to the reconciliation specification, an entity ri of R
is represented in the reconciled solution by some related entities
tk of T and um of U. An entity sj of S is also represented
by some related entities of T and U. Besides, an entity ri and

Fig. 1. Introductory example.

an entity sj could be represented by the same related entities
of T and U. The projection from R and S to the reconciled
solution is carried out via functions over their attributes (for
example, f1(A1,A2) leads the projection from an entity ri to
entities tk when the result of its evaluation is equal to C1).
The reconciliation specification also indicates that the value of
the attribute D2 is derived from the entities of R and S that
correspond to the same related entities of T and U: D2 takes its
value from A4 only if a predicate p(A4) is found to hold true;
otherwise, it takes its value from the function f5(A4, B3).

The left side of Fig. 2 shows an example of the information
stored in the data sources, which is going to be reconciled by an
application that implements the aforementioned ER specifica-
tion. The output of the execution of this application is depicted
on the right of Fig. 2. The entities r1 and r2 of R give rise to the
pair of entities (t1 , u1) and (t2 , u2) in the reconciled solution,
respectively, as well as the relationships between them. On the
other hand, the entity s1 of S has already been reconciled in the
related entities t1 and u1 , while the entity s2 derives the related
entities t3 and u3 . The value of the attribute D2 in the entities
u1 and u3 is obtained through the function f5, whereas its value
in the entity u2 is taken from r2 .

Consider that the application has a defect in the projection
from S to the reconciled solution, and an entity sj is considered
to be reconciled when f3(B1) is equal to the value of C1 in
some entity of T or f4(B2) is equal to the value of D1 in some
entity of U. If the application is not tested with meaningful data,
the defect may not be detected and, as a result, the application
could fail (for example, if the application is tested with the data
of Fig. 2, the defect is not detected).

Due to the fact that it is crucial to ensure the correctness of the
reconciliation process, it is essential to identify the important
features to be tested, called test conditions [39]. From these test
conditions, the situations of interest that are to be tested, called
test coverage items, are derived by means of some adequacy cri-
terion [40]. The test coverage items guide the generation of the
test inputs of the test cases, and allow the tester to evaluate their
adequacy. Regarding the testing of ER applications, the elabo-
ration of these test inputs involves the state of the data sources

before executing the reconciliation process (henceforth test data
sources) and the information that constitutes a reconciled solu-
tion that is going to be updated during the reconciliation process
(henceforth test reconciled solution).

For instance, one of the test conditions of the introductory ex-
ample is “testing the generation of new entities and relationships
in the reconciled solution from the table S.” The test coverage
items derived from this test condition that can detect the afore-
mentioned defect are: 1) there is an entity sj that corresponds
to an entity tk , but does not meet any related entity um ; and
2) there is an entity sj that corresponds to an entity um , but
does not meet any related entity tk . Fig. 3 shows the test inputs
derived from these test coverage items (the number next to each
node and each row of S indicates the test coverage item that is
being covered).

Creating both the test data sources and the test reconciled
solution is a crucial challenge, as the data stored are transformed
to produce the test output and they have to contain enough
meaningful data to adequately exercise the ER application.

The work presented in this paper deals with the definition of
test models for integration testing, called ITR Models, which
define the testing objectives (that is the test conditions) from
the ER specification by means of a set of business rules called
integration rules. These integration rules are specially focused
on the subsequent derivation of test coverage items that guide the
creation of the test data sources and the test reconciled solution.

The business rules, which are statements that define or con-
strain the business structure or the business behaviour [41], have
been used in other approaches focused on testing database ap-
plications, such as [42] and [43]. On the other hand, as the
integration rules are based on the system specification, they
could also be used to generate some implementation of the ER
application.

IV. FRAMEWORK FOR TESTING ER APPLICATIONS

The framework for testing ER applications was proposed in
our earlier work [10]. Fig. 4 depicts the architecture of the
framework, which is composed of four main blocks.

1) Data source models: allow the representation of the in-
formation in the data sources that are to be reconciled, as
well as the way of accessing them. These data sources can
be a structured or an unstructured database, a web service,
a warehouse, or other information generator.

2) Reconciled solution model: allows the software engineer,
once data sources have been defined, to design the con-
ceptual data model that represents the reconciled solution
to be achieved, according to the ER problem domain, as
a virtual graph.

3) Transformations model: represents the different transfor-
mations that the data in the sources must undergo in order
to carry out the ER and to be consistent with the recon-
ciled solution model. The description of this model is out
of the scope of this work.

4) Test models: allow the representation of the testing objec-
tives for the ER application in the early stages of the de-
velopment (once the data sources and reconciled solution
models have been defined). The test models can be fo-

Fig. 2. Example of information stored in the data sources and the reconciled solution.

Fig. 3. Test inputs of the introductory example.

Fig. 4. Framework architecture.

cused on different levels, such as unit testing, component
testing or integration testing. This paper is focused on
the definition of models for integration testing, called ITR
Models, which are described in Sections IV-C and V.

The following sections describe the aforementioned models,
which are representations of abstract models called metamodels.
These metamodels provide all the elements that are necessary
to create the models and include the attributes required to meet
the standard ISO/IEC TR 24774 [44].

Fig. 5. Data source metamodel.

A. Data Source Models

Fig. 5 displays the metamodel that allows the creation of
the data sources models. The metaclass DataSource represents
each data source involved in the ER process. Data retrieved
from each data source through the instantiation of the metaclass
Wrapper will be structured in a set of types of entities (metaclass
DataSourceEntity) that may be related to each other using the
metaclass DataSourceEntityLink. These types of entities will be

Fig. 6. Reconciled solution metamodel.

composed of a set of attributes (instantiation of the metaclass
DataSourceAttribute) that describe the entities themselves.

B. Reconciled Solution Model

The next block of the framework is the reconciled solution
model, which is based on a virtual graph. Graph technology
is a natural solution to dealing with problems related to Big
Data and especially for the relationships between entities. The
wide variety of existing algorithms, for example Dijkstra, A∗
or Kruskal among others, offer a great flexibility in providing
solutions to different problems. Theoretically, graphs can be
displayed in two ways: explicit and implicit. An explicit graph is
a collection of items (vertices and edges) that can be completely
stored in memory. An implicit (or virtual) graph is a graph that
cannot be completely stored in memory for various reasons,
such as size or hardware limitations [25].

With the implicit approach, it is possible to build structures
on the fly. This will allow the building of different solutions
to address many scenarios within a business logic where the
predefined data model cannot meet the extensibility or avail-
ability of the required data sources. Considering the advantages
that virtual graphs provide and the large amount of data that an
ER process uses, this option has been the one selected for this
proposal.

The elements that compose a reconciled solution model are
shown in the metamodel of Fig. 6, which is an extended version
of a graph metamodel [45]. It contains a set of vertices (meta-
class EntityVertex) that represent the types of entities, which are
composed of a set of attributes (metaclass Attribute). The ver-
tices are related by a set of edges (metaclass AssociationEdge)
that represent the types of relationships that can be established
among entities. A VirtualGraph is modeled as an abstract class
that implements the metaclass Graph.

Thus, the instantiation of the reconciled solution model is
a virtual graph that stores the entities (and their relationships)

that have been reconciled. The information stored in this virtual
graph at a specific stage of the reconciliation process is called
current reconciled solution, whereas the information stored after
finishing the reconciliation process is called final reconciled
solution.

C. ITR: a Test Model for Integration Testing

As stated above, this work is focused on the definition of test
models for integration testing (called ITR Models), which are
formed by a set of business rules, called integration rules, that
represent the test conditions. The ITR model is created in the
early stages of software development, taking into account the
data source models, the reconciled solution model, and the ER
specification stated by the expert.

Fig. 7 depicts the metamodel that represents the elements
of the integration rules (represented by the metaclass Integra-
tionRule) that constitute the ITR.

1) Integration context (represented by the metaclass Inte-
grationContext) establishes the connections between the
types of entities of one or several data source models and
the types of entities of the reconciled solution model that
are involved in a test condition, taking also into account
the types of relationships among them. These types of en-
tities and relationships are called context entities and con-
text relationships, respectively. The connections impose
conditions to be fulfilled in order to project the entities of
the data sources to the entities of the reconciled solution.
For instance, in the introductory example of Fig. 1 the IC
of test condition 1 would relate R with T and U via the
predicates f1(A1,A2) = = C1 and f2(A3) = = D1, as well
as via the relationship V.

2) Integration context view or view, for short, (represented
by the metaclass IntegrationView) connects a subset of the
context entities involved in an integration context. A view
is focused on a part of the projection defined by means of
an integration context. For instance, a possible view of the
integration context described above would relate R only
with T, as the testing objective is focused on the projection
between these two context entities.

3) Integration pattern (represented by the metaclass Integra-
tionPattern) imposes conditions on the context entities
and context relationships involved in an integration con-
text or view, as well as on their attributes, which are called
context attributes. These conditions lead the actions of the
ER process to be tested.

According to the integration pattern, our approach classifies
the integration rules into structural rules (represented by the
metaclass Structural) and load rules (represented by the meta-
class Load). The structural rules impose conditions to be fulfilled
in order to create new entities and relationships in the current
reconciled solution. The load rules establish conditions to be
fulfilled in order to derive the value of the attributes of the enti-
ties that belong to the current reconciled solution from the data
sources. In addition, the load rules are classified into several
types, according to two dimensions: the existence of precon-
ditions (conditional and nonconditional rules) and the kind of
condition to be fulfilled by the attributes (is, or, and, and xor

Fig. 7. ITR metamodel.

rules). The next section describes each type of integration rule
and the language used in their construction.

V. SPECIFICATION OF INTEGRATION RULES

This section describes how the integration rules are con-
structed, using a language based on the SBVR specification
[46] called RaQUEL (business Rules QUEry Language). The
following sections present the patterns that allow the expression
of the integration context, the integration context view, and the
integration patterns of each type of integration rule, which are
represented as attributes in the metaclasses of the ITR meta-
model.

A. Specification of Integration Contexts and Integration
Context Views

In order to describe the integration context and the integration
context views of an integration rule, it is necessary to define the
concept path that is used in their construction.

Definition 1: A path P is a set of one or more types
of entities (instances of the metaclasses DataSourceEntity
and EntityVertex) and/or types of relationships (instances
of the metaclasses AssociateEdge and DataSourceEntityLink)
R1 , R2 , . . . , Rn , where each pair (Ri , Ri+1) is directly connected

via some attributes in the predicate qi,i+1 :

Path P is R1 [q1,2] R2[q2,3] . . . [qn−1,n]Rn .

Each qi,i+1 can contain arithmetic and logical expressions
and functions, which involve attributes of R1 , R2 , . . . , Ri+1 .

Example 1: Consider the introductory example of Fig. 1, the
path that relates the types of entities R, T, and U is defined as
follows:

Path P1 is R [f1(A1,A2) == C1] T [C1 == source] V
[destination == D1 and f2(A3) == D1] U.

The definition of the concept path suggests the redefinition
of the integration context and the integration context view, as
well as the context entities, context relationships, and context
attributes in terms of this concept, as explained next.

Definition 2: An integration context (IC) is a set of one or
more paths P1 , P2 , . . . , Pm that define the connections between
the data source models and the reconciled solution model that
are involved in a test condition:

Integration context IC is P1 ,P2 , . . . ,Pm .

If an integration context is formed by only one path, it can be
defined directly by

Integration context IC is R1[q1,2] R2[q2,3] . . . [qn−1,n] Rn .

Fig. 8. Example of IC and IC view.

Example 2: Consider the introductory example of Fig. 1 and
the path P1 defined in Example 1, the integration context of the
test condition 1 is defined as follows:

Integration context IC1 is P1.

Definition 3: An integration context view or view, for short,
(VIC) of an integration context IC is a subset Rj , Rj+1 ,
Rj+2 , . . . , Rk of a path P of IC, where each pair (Ri , Ri+1)
(i = j . . . k– 1) is directly connected via the predicate defined
in P:

Integration context view VIC is Rj []Rj + 1[] . . . []Rk of IC.P.

Example 3: Consider test condition 1 of the introductory ex-
ample depicted in Fig. 1 and the integration context IC1 of
Example 2. Consider that one of the testing objectives is fo-
cused on the projection from R to T. The view focused on this
projection is defined as follows:

Integration context view V1IC1is R[]T of IC1.P1.

Definition 4: A context entity is a type of entity R of a path P
of an integration context IC denoted by IC.R. If R is not unique
in IC it is denoted by IC.P.R, where P is a path of IC that contains
R. A context entity of a view VIC of an integration context IC is
denoted by VIC.R.

Definition 5: A context relationship is a type of relationship
R of a path P of an integration context IC denoted by IC.R. If R
is not unique in IC it is denoted by IC.P.R, where P is a path of
IC that contains R. A context relationship of a view VIC of an
integration context IC is denoted by VIC.R.

Definition 6: A context attribute is an attribute A of a context
entity or a context relationship of an integration context IC
denoted by IC.A. If A is not unique in IC, it is denoted by
IC.P.R.A or IC.R.A, where P is a path of IC and R is a context
entity of P that contains A. A context attribute of a view VIC of
an integration context IC is denoted by VIC.A or VIC.R.A.

The set of paths involved in the definition of an integration
context, as well as the specification of this integration context
and its views are represented by the attributes paths, integra-
tionContext and view of the ITR metamodel, respectively.

Fig. 8 depicts the connections between the data source models
and the reconciled solution model of the introductory example,
along with the previous concepts for the test condition 1. R and
S (instances of DataSourceEntity) are connected to T and U
(instances of EntityVertex) to represent the projections defined
in the introductory example. The figure shows the path that
relates R with T and U, which is used to define the integration
context IC1 of test condition 1 and the view V1IC 1 , as well
as the context entities, the context relationship, and the context
attributes of both IC1 and V1IC 1 . Note that a type of entity (and
also a type of relationship) can have several names, according
to the different integration contexts and views in which they are
involved. For example, the type of entity R is denoted by IC1.R,
when it is involved in the integration context IC1, and V1IC 1 .R,
when it is involved in the view V1IC 1 .

Once the data source models and the reconciled solution
model have been instantiated, the integration contexts allow the
identification of the data that have been reconciled, called rec-
onciled context domain, and the data that have to be reconciled,
called unreconciled context domain:

1) The reconciled context domain is composed of the in-
stances of the context entities and context relationships
that meet the conditions imposed by the paths that form
this integration context.

2) The unreconciled context domain is composed of the rest
of the instances that do not meet the conditions imposed
by the paths of the integration context.

Similarly, the integration context views allow the identifica-
tion of the reconciled and unreconciled data that are derived
from the conditions they impose, called reconciled view domain
and unreconciled view domain, respectively. These four data
domains constitute the information on which the conditions im-
posed by the integration patterns of the integration rules are
applied.

The following definitions indicate how the aforementioned
data domains are obtained, taking into account definitions 1 to 6:

Definition 7: A path domain (DP) of a path P is the data
domain obtained from the Cartesian product of the instances of
Ri (i = 1. . . n) involved in P that fulfil the predicates qi,i+1 .
Each element of a data domain is called from now on tuple.

Definition 8: A reconciled context domain (RDIC) of an in-
tegration context IC is the data domain obtained from the Carte-
sian product of the tuples of the path domains DPi of the paths
Pi (i = 1. . . m) of IC that are equal on their common context
attributes, along with the tuples of DPi that do not match any
tuple.

Definition 9: An unreconciled context domain (UDIC) of an
integration context IC is the data domain formed by the instances
of the context entities and context relationships of IC that are
not included in the reconciled context domain RDIC of IC.

Definition 10: A reconciled view domain (RDV) of an in-
tegration context view VIC is the data domain obtained from
the Cartesian product of the instances of the subset Rj ,
Rj+1 , Rj+2 , . . . , Rk of the path P of IC involved in VIC,
which fulfil the predicates defined in P between each pair
(Ri , Ri+1) (i = j . . . k– 1).

Definition 11: An unreconciled view domain (UDV) of an
integration context view VIC is the data domain composed of
the instances of the context entities and context relationships
involved in VIC that are not included in the reconciled view
domain RDV of VIC.

B. Specification of Structural Rules

A structural rule establishes the projection from a context
entity IC.R (or VIC.R) that belongs to a data source model to
one or more context entities and context relationships IC.Si (or
VIC.Si) that belong to the reconciled solution model. It also
establishes one or several conditions on the context attributes
IC.Si .Aj (or VIC.Si .Aj) that constrain their values when the new
entities and relationships are added to the current reconciled
solution.

The projection imposed by the structural rule must be ful-
filled by each instance of IC.R (or VIC.R) that belongs to the
unreconciled context domain of IC (or the unreconciled view
domain of VIC). The integration pattern of a structural rule is
described below, using the EBNF notation [47].

Definition 12: The integration pattern of a structural rule
(represented by the attribute pattern of the metaclass Structural
of the ITR metamodel) is defined as follows:

structural rule = “Each unreconciled” (IC.R|VIC .R)
“generates” gen cond{“and” gen cond};

gen cond = “exactly one” (IC.Si |VIC .Si)“with” att cond;
att cond = (IC.Si.Aj |VIC .Si .Aj)“ = ”pj{“and”

(IC.Si.Aj |VIC .Si.Aj)“ = ”pj}
where each pj is a predicate over context attributes of IC.R (or
VIC.R) and/or IC.Si (or VIC.Si).

Example 4: Consider the introductory example of Fig. 1 and
the view described in Example 3, the integration pattern of the
structural rule that imposes conditions to project R to T is defined
as follows:

Each unreconciled V1IC1.R generates exactly one V1IC1.T
withV1IC1.T.C1 = f1(A1,A2).

This structural rule establishes that each instance of R that
belongs to the unreconciled view domain of V1IC 1 generates

a new instance of T in the current reconciled solution. It also
indicates that the value of the attribute C1 of this new instance
of T must be the result of the function f1 over the attributes A1
and A2 of R.

C. Specification of Load Rules

A load rule imposes one or more conditions that constrain the
value of a context attribute IC.S.A that belongs to the reconciled
solution model, according to one or several context attributes
IC.Ri .Bj that belong to the data source models. The conditions
must be fulfilled by each tuple of the reconciled context domain
of IC.

As stated in this section, the load rules are classified according
to two dimensions. The first dimension indicates whether a load
rule establishes preconditions that have to be fulfilled before
constraining the value of a context attribute (conditional rules),
or it does not establish any precondition (nonconditional rules).

The second dimension indicates the types of conditions that
constrain the value of the context attributes according to one
or several predicates (IS, OR, AND, XOR rules). These predicates
can be either arithmetical or logical expressions or functions
over context attributes of the IC, as well as constants or context
attributes of IC. The evaluation of the predicates returns a value
that fits the type of the context attribute constrained or a null
value, which indicates that the predicate was not able to reach a
concrete value (for example, because of a context attribute used
in a function does not exist, or because a context attribute has a
unknown value in its data source).

The following definitions describe the patterns of each cate-
gory, using the EBNF notation.

Definition 13: A conditional rule is a load rule whose inte-
gration pattern is defined as follows:

conditional rule = “If” p “then” rule pattern;

where p is a predicate over context attributes IC.S.A and/or
IC.Ri .Bj whose evaluation returns a Boolean value. This pred-
icate defines the preconditions to be fulfilled before constrain-
ing the value of the context attribute IC.S.A by means of
rule_pattern. This pattern is written according to Definitions
14–17 described next.

Definition 14: An IS rule is a load rule that constrains the
value of a context attribute IC.S.A, such that it must be equal to
the evaluation of a predicate p. The integration pattern is defined
as follows:

IS rule = “Each” IC.S.A “is” p;

Definition 15: An AND rule is a load rule that constrains the
value of a context attribute IC.S.A, such that it must be formed
by the union of the evaluations of the predicates pi that do not
return a null value. The integration pattern is defined as follows:

AND rule = “It is obligatory that” IC.S.A

“is composed of” pi{“and” pi};
Definition 16: An OR rule is a load rule that constrains the

value of a context attribute IC.S.A, such that it can be formed by
the evaluation of one or several predicates pi that do not return

a null value. The integration pattern is defined as follows:

OR rule = “It is permitted that” IC.S.A
“is composed of” pi {“or” pi};

Definition 17: An xor rule is a load rule that constrains the
value of a context attribute IC.S.A, such that it must be equal to
the evaluation of only one predicate pi . Each predicate pi has
a different priority ni (ni = 1, 2, etc., where 1 is the highest
priority) that indicates the order in which they are evaluated.
IC.S.A takes the value of the first predicate pi that does not
return a null value. The integration pattern is defined as follows:

XOR rule = prioritization “Each” IC.S.A “is only”

pi{“or”pi};
prioritization = pi “has priority”

ni{pi“has priority” ni};
The integration patterns of nonconditional IS, nonconditional

AND, nonconditional OR, and nonconditional XOR rules (or IS,
AND, OR, and XOR rules, for short) are directly described by
Definitions 14–17, respectively. These integration patterns are
represented by the attribute rulePattern of the metaclass Con-
ditionType of the ITR metamodel. In contrast, the conditional
IS, conditional AND, conditional OR, and conditional XOR rules
are defined by combining Definition 13 with Definitions 14–17,
respectively. The integration pattern of these conditional rules
is represented by the combination of the attributes condition-
alPattern of the metaclass Conditional and rulePattern of the
metaclass ConditionType of the ITR metamodel.

Example 5: Consider the introductory example of Fig. 1.
The conditional IS rules that represent the reconciliation of the
attribute D2 are defined as follows:

1) Path P1 is R [f1(A1,A2) = = C1] T [C1 = = source] V
[destination = = D1 and f2(A3) = = D1] U.

2) Path P2 is S [f3(B1) = = C1] T [C1 = = source] V
[destination = = D1 and f4(B2) = = D1] U.

3) Integration context IC is P1, P2.
4) If p(IC.A4) then IC.D2 is IC.A4.
5) If ! p(IC.A4) then D2 is f5(IC.A4, IC.B3).
Statements 1–3 define the integration context IC, whereas

statements 4 and 5 define the integration pattern of two condi-
tional IS rules. Note that the integration context IC can be used
to define several integration rules.

After defining the test conditions as a set of the integration
rules, the test coverage items can be derived by means of apply-
ing logic criteria [48], [49] over the conditions imposed by these
integration rules. This process is illustrated in the next section
through a case study.

VI. CASE STUDY

To evaluate the proposed framework and the ITR model for
integration testing, two real-word problems have been used as
case studies. The first case study makes use of the specifica-
tion of an application called DIPHDA (Dynamic Integration for
Patrimonila Heritage Data in Andalucı́a) that aims to reconcile
historical heritage data of Andalusia (Spain). The second case
study involves a real-word problem that is being studied by the

University of Seville pertaining to reconciling the digital infor-
mation related to the research publications of its researchers and
collaborators, known as the REPORTS project (Reconciling rE-
search PrOjects infoRmation and publicaTions for the university
of Seville).

The DIPHDA application is also used in this section to illus-
trate how the ITR model can be created and how it can be used
to derive the test coverage items from the test conditions. The
following sections present both the DIPHDA application and
the REPORTS project, describe the ITR models created, and
provide a summary of the test coverage items that were derived.
Finally, a discussion of the approach is presented.

A. Case Study 1: DIPHDA Application

The management of historical and cultural heritage informa-
tion in Andalusia (Spain) is being addressed by the cultural
council of the region using a horizontal and global system
called “MOSAICO” [50]. The aims of this system are: 1) to
offer a global information system that stores information about
the historical and cultural heritage of the region; 2) to offer
technological resources and tools for the management of this
information; and 3) to bring the general public and Government
more specific (and relevant) information related to historical
heritage. This system was developed to meet the objectives of
the cultural council, such as managing, protecting, preserving,
and promulgating the cultural heritage of Andalusia, as well as
bringing government services to the citizens of the region.

The information related to the numerous cultural and histor-
ical monuments of Andalusia is stored in several data sources,
and therefore it is very difficult to control all information pub-
lished about historical heritage in a global context. In addition,
the size and complexity of these data sources make the manage-
ment of these systems complicated due to the large amount of
information stored on them. It is therefore necessary to recon-
cile the existing information about monuments from all available
data sources.

Considering this problem, the DIPHDA application is being
developed with the collaboration of the Fujitsu Laboratories of
Europe. The objective of DIPHDA is to achieve significantly
improved accuracy and data management efficiency, based on
reconciliation logic applied to open data information, as opposed
to simple string matching reconciliation. This solution will be
capable of integrating different data sources. For this particular
case, the data sources “MOSAICO,” Wikipedia, and Yelp are
going to be used.

Our approach aims to generate the ITR model while DIPHDA
is being developed, so that it can be used not only to guide the
testing of the application but also to verify the requirements of
the ER problem. Due to the ITR model is composed of a set
of business rules written in a language based on SBVR, the
ER expert can easily understand it, with the result that missing
requirements may be discovered or inconsistent requirements
may be detected.

Fig. 9 depicts the data source models and the reconciled so-
lution model of DIPHDA. The classes Mosaico, DBPedia, and
Yelp (instances of the metaclass DataSourceEntity) model the

Fig. 9. Data source models and reconciled solution model of DIPHDA.

Fig. 10. Example of several instances of DBPedia and a current reconciled solution.

historical heritage elements of the data sources MOSAICO,
Wikipedia, and Yelp, respectively, that the cultural council of
Andalusia is going to use to perform the ER. The reconciled
solution model is composed of the classes Monument, City,
and Province (instances of the metaclass EntityVertex) that rep-
resent the types of entities considered necessary to carry out
the reconciliation of the historical heritage elements, as well
as the association classes Belong_to and Sited_in (instances of
the metaclass AssociationEdge), which represent the relation-
ships between these types of entities. The attribute p_name of
the reconciled solution model must be unique for each instance
of Province, while the attributes of the other classes are not

constrained by the unique restriction due to the possibility of
two cities that belong to different provinces having the same
name, or two monuments with the same name being sited in
two different cities.

Fig. 10 shows an example of the instances of DBPedia, as
well as a current reconciled solution. The instances of DBPedia
are rows of a table stored in a database, and each row represents
a historical heritage element to be reconciled. Similarly, the
instances of Mosaico and Yelp are rows of a table of a database
too. On the other hand, the instances of Monument, City, and
Province are the nodes of the virtual graph that represent the
entities stored in the current reconciled solution, whereas the

Fig. 11. Data source models and reconciled solution model of the REPORTS project.

instances of Belong_to and Sited_in are the edges between nodes
(that is, the relationships between entities).

B. Case Study 2: REPORTS Project

The information related to the research activities and the re-
sults of the researchers at the University of Seville, such as
research projects and publications, can be found in many dif-
ferent resources: proprietary databases like SISIUS (the insti-
tutional repository for community members at the University
of Seville), SICA (the institutional repository for researchers of
the Andalusian region in Spain), the data sources of other uni-
versities, abstract and citation databases, and social networking
sites like ResearchGate, etc. The reconciliation of this infor-
mation is an important issue to address, not only to maintain
knowledge about the research activities of the university and
community but also to report correct information to the research
community.

Researchers at the University of Seville have to report their
research activities and results to be disseminated and evaluated
by different institutional authorities. These research activities
and results are included and managed in sources like SICA
[53], SISIUS [54], or even in ResearchGate by researchers and
institutional authorities. In lot of cases, this information has
many inconsistencies, most frequently due to the mistakes made
by researchers and institutional authorities when information is
managed and, in some cases, due to other factors including the
maintainability of different systems, among others. For instance,
a new version of the SICA system was developed and an impor-
tant migration was performed in recent years. The consequences
of this migration were that a lot of information was affected. In
addition, most publications are automatically indexed in inter-
national systems like Scopus, Springer Link, Web of Science,
etc. As a result, it is a very complex task for researchers and in-
stitutional authorities to control, manage, and evaluate all of this
information. The REPORTS projects aims to help researchers

Fig. 12. Structural rules to project DBPedia to the reconciled solution.

and institutional authorities to reduce efforts and improve the
information quality for the dissemination and evaluation of their
research activities and results, by means of the ER of several
data sources.

As with the case study of the DIPHDA application, this case
study is focused on the early testing of the REPORTS project,
while it is still under study. The case study considers three
data sources; a proprietary store (SICA), Scopus, and Research-
Gate. Fig. 11 depicts the data source models and the reconciled
solution model. The classes Organization, Author, Paper, and
Reference (instances of the metaclass EntityVertex) represent
the type of entities involved in the reconciliation process, which
are related by the associations Member_of, Written_by, and Has
(instances of the metaclass AssocciationEdge).

C. ITR Models

The ITR models of DIPHDA and the REPORTS project were
designed from their ER specifications, considering both the data
sources and the reconciled solution models. The ITR model
of DIPHDA is composed of 18 integration rules: 9 structural
rules, 2 conditional IS rules, 1 conditional OR rule, 3 IS rules,
1 AND rule, and 2 XOR rules. The ITR model of the REPORTS
project is formed by 21 integration rules: 11 structural rules,
3 conditional XOR rules, 2 IS rules, 1 OR rule, 1 AND rule,
and 3 XOR rules. First, we designed the structural rules that
lead the creation of new entities and relationships in the current
reconciled solution. After that, we designed the different types of
load rules that constrain the value of the attributes. To illustrate
how the structural and load rules are created, the next sections
present the details regarding the DIPHDA application.

1) Structural Rules of the DIPHDA Application: According
to the ER specification, each historical heritage element stored
in MOSAICO, Wikipedia, and Yelp is represented in the recon-

ciled solution by means of an entity Monument sited in an entity
City that belongs to an entity Province. The specification also in-
dicates the attributes and functions that lead the projection from
the data sources to the reconciled solution. For example, Fig. 12
shows the statements of the three structural rules designed to
project DBPedia to the reconciled solution.

Statements 1 and 2 specify the integration context IC1 formed
by the path P1, which relates DBPedia with Province, City, and
Monument. This integration context is shared by the three struc-
tural rules. The order of the connections between the context
entities was established according to the cardinalities one-to-
many of the reconciled solution model. The predicates of P1
impose the conditions to be fulfilled to reconcile the instances
of the aforementioned context entities, and they usually involve
a similarity function called Equals. This function determines
whether two strings can be considered equal, according to a spe-
cific degree of similarity. For example, to determine whether an
instance of DBPedia corresponds to some instance of Province,
the evaluation of the function GetProvince (which returns the
name of a province from the angular distances represented by
the attributes latitude and longitude of DBPedia) must be equal
to the attribute p_name of Province.

The integration context IC1 allows the identification of the
data that have been reconciled from the data source Wikipedia
(represented by the context entity DBPedia), that is, the recon-
ciled context domain RDIC 1 , and the data that have not been
reconciled yet, that is, the unreconciled context domain UDIC 1 .
Fig. 10 shows both data domains.

Statements 3 and 4 of Fig. 12 define the integration context
views V1 and V2, which are focused on the projection from
DBPedia to Province and City, respectively. Note that V2 re-
lates DBPedia with City via Province, due to the one-to-many
cardinality between Province and City. V1 and V2 are subsets
of the path P1 that relax the conditions imposed by IC1 in or-

Fig. 13. Example of the reconciled view domain and unreconciled view domain of the view V1.

Fig. 14. XOR rule that reconciles the attribute m_building_type of Monument from DBPedia and Yelp.

der to obtain the unreconciled view domains that contain the
instances of both Province and City to be reconciled. Fig. 13
depicts the reconciled view domain RDV 1 and the unreconciled
view domain UDV 1 of the view V1.

Statements 5, 6, and 7 of Fig. 12 define the integration pat-
terns of the three structural rules that state the conditions that
lead the creation of new entities and relationships into the cur-
rent reconciled solution: instances of Province (statement 5),
City and Belong_to (statement 6), as well as Monument and
Sited_in (statement 7). The order of these statements constrains
the order in which the entities and relationship have to be cre-
ated, according to the cardinalities one-to-many established in
the reconciled solution model. Thus, the instances of Province
should be created before the instances of City, which should be
created before the instances of Monument.

For example, statement 5 establishes that each instance of DB-
Pedia that belongs to the unreconciled view domain of V1 (see

UDV 1 in Fig. 13) generates a new instance of Province. There-
fore, DIPHDA should generate the node Province “Málaga.”
On the other hand, statement 6 indicates that each instance
of DBPedia included in the unreconciled view data derived of
V2 generates a new instance of City and Belong_to. As a re-
sult, DIPHDA should create the nodes City “Santiponce” and
“Nerja,” as well as two relationships Belong_to: one relationship
between “Santiponce” and “Sevilla” and another one between
“Nerja” and “Málaga.”

2) Load Rules of the DIPHDA Application: The ER speci-
fication establishes several requirements to derive the value of
the attributes of the new entities stored in the reconciled so-
lution from the aforementioned data sources. Thus, nine load
rules were designed. Fig. 14 displays one of these load rules:
an XOR rule that reconciles the value of the context attribute
IC2.Monument.m_building_type from attributes of the context
entities DBPedia and Yelp.

TABLE I
NUMBER OF INTEGRATION RULES AND TEST COVERAGE

ITEMS OF CASE STUDY 1 (DIPHDA APPLICATION)

Type of integration rule Number of rules Number of test coverage items

Structural 9 108
Conditional IS 2 53
Conditional OR 1 30
IS 3 60
AND 1 21
XOR 2 52
Total: 18 324

Statements 1–3 define the integration context IC2 composed
of the paths P1 and P2, which relate DBPedia and Yelp with
Province, City, and Monument, as explained in the section above.
Statements 4–6 define the integration pattern of the XOR rule
that imposes the conditions to be fulfilled to derive the value
of the context attribute IC2.Monument.m_building_type. State-
ments 4 and 5 specify the prioritization of the context attributes
IC2.DBPedia.building_type and IC2.Yelp.categories, whereas
statement 6 establishes that IC2.Monument.m_building_type
can only obtain its value from one of these context attributes.
As a result, for each tuple that belongs to the reconciled
context domain of IC2, first IC2.DBPedia.building_type is
evaluated. If this evaluation does not return a null value,
IC2.Monument.m_building_type takes this value. Otherwise,
it takes the value of the evaluation of IC2.Yelp.categories.
Note that if both evaluations of IC2.DBPedia.building_type and
IC2.Yelp.categories return a null value, the context attribute
IC2.Monument.m_building_type also has an unknown value.

D. Test Coverage Items

After defining the ITR models, we applied a Masking modi-
fied condition decision coverage (MCDC)-based criterion over
the conditions imposed by the integration rules to derive the test
coverage items, that is, the situations of interest to be tested.
This criterion has demonstrated its utility in previous work,
such as [51] (for testing SQL queries) and [42] (for testing the
user–database interaction).

The masking MCDC criterion requires that every condition
in a logical decision has taken on all possible outcomes at least
once, every decision has taken all possible outcomes at least
once, and each condition in a decision has been shown to inde-
pendently affect the decision’s outcome [52]. In our case, each
integration rule gives rise to a logical decision, formed by the
conditions imposed by the integration context (or the integration
context view) and the integration pattern.

To automatically obtain the test coverage items, we used the
SQLFpcWS web service [51], which implements the masking
MCDC criterion. Tables I and II show the number of test cover-
age items derived from each type of integration rule. After that,
we generated the test inputs, which are composed of the test data
sources and the test reconciled solution that cover the test cov-
erage items, as a part of our early testing strategy. Afterwards,
we automatically evaluated the coverage achieved.

In order to generate the test inputs for the first case study
(DIPHDA application), our first approach began from the pop-

TABLE II
NUMBER OF INTEGRATION RULES AND TEST COVERAGE

ITEMS OF CASE STUDY 2 (REPORTS PROJECT)

Type of integration rule Number of rules Number of test coverage items

Structural 11 183
Conditional XOR 3 115
IS 1 44
OR 2 35
AND 1 35
XOR 3 144
Total: 21 556

TABLE III
NUMBER OF INSTANCES OF THE TEST DATA SOURCES AND TEST RECONCILED

SOLUTION OF CASE STUDY 1 (DIPHDA APPLICATION)

Type of entity or relationship Number of instances

Test data sources Mosaico 48
DBPedia 77

Yelp 40
Test reconciled solution Province 69

City 65
Belong_to 75
Monument 58

Sited_in 61
Total: 493

TABLE IV
NUMBER OF INSTANCES OF THE TEST DATA SOURCES AND TEST RECONCILED

SOLUTION OF CASE STUDY 2 (REPORTS PROJECT)

Type of entity or relationship Number of instances

Test data source SICA Publication 21
Publication_Author 27

Author 65
Test data source Scopus Publication 22

Publication_Author 29
Author 64

Other_Sign 59
Reference 11

Test data source Publication 21
ResearchGate Publication_Author 26

Author 64
Reference 10

Test reconciled solution Organization 6
Author 63

Member_of 71
Paper 22

Written_by 27
Reference 14

Has 11
Total: 633

ulated data sources MOSAICO, Wikipedia, and Yelp, which
accumulated 26 632 rows. Despite the large number of rows,
the percentage of coverage achieved was about 2%. Since com-
parison between actual and expected outputs becomes more
difficult with large test databases, we began from empty test
data sources, in order to keep them small and meaningful. The
same approach was taken for the REPORTS project, and we
began from empty test data sources.

Tables III and IV display the number of instances inserted into
the test data sources and the reconciled solution to achieve total

coverage for both case studies. All 324 coverage items derived
for the DIPHDA application and all 556 coverage items derived
for the REPORTS project are covered when evaluated over 493
and 633 instances of test data, respectively.

E. Fault Detection

Achieving a high test coverage is essential in order to test
the functionality of the application thoroughly, with the aim of
improving the quality of the final software product. Further-
more, developing test cases for increasing the coverage will
also increase the fault detection ability of the test cases [51].
The above results show that the information stored in the data
sources of the DIPHDA application (26 632 rows) covers a low
number of test coverage items (about 2%), with the result that
most of the meaningful situations to be tested are not exercised
and therefore, a fairly large number of possible defects are not
detected.

In contrast, by covering all the test coverage items derived
from the ITR models of both case studies (using 493 rows for the
DIPHDA application and 633 rows for the REPORTS project),
the following types of defects may be detected.

1) Faults in the projection from the context entities of the data
source models to the reconciled solution model. These
faults may produce failures in the creation of new in-
stances in the current reconciled solution, as well as dur-
ing the derivation of the value of the attributes that belong
to the instances that form the current reconciled solution.

2) Faults in the implementation of the ER specification that
guide the reconciliation of the context attributes of the
instances stored in the current reconciled solution, causing
failures when their values are derived.

3) Faults owing to the incorrect management of null values
or missing information. These faults may cause failures
when the instances of the data sources are projected to the
current reconciled solutions and when the attribute values
are derived.

To illustrate how we can detect the aforementioned faults and
failures, consider the following test coverage items derived for
the DIPHDA application. The test coverage item 1 is derived
from the structural rule whose integration pattern is depicted in
statement 7 of Fig. 12, whereas the test coverage items 2, 3, and
4 are derived from the XOR rule of Fig. 14.

1) Test coverage item 1: there is an instance of DBPedia that
meets an instance of City and an instance of Monument,
which are related by an instance of Sited_in, but it does
not meet any instance of Province.

2) Test coverage item 2: there is an instance of DBPedia (di)
that meets a set of instances Province (pi), City (ci) and
Monument (mi), which are related by instances of Be-
long_to and Sited_in. There is an instance of Yelp (yj)
that meets a set of instances Province (pj), City (cj),
and Monument (mj), which are related by instances of
Belong_to and Sited_in. Besides, mi.m name is equal
to mj.m name, ci.c name is different to cj.c name,
pi.p name is equal to pj.p name, and di.building type
is different to yj.categories.

3) Test coverage item 3: there is an instance of DBPedia
(di) that meets a set of instances Province (pi), City (ci),
and Monument (mi), which are related by instances of
Belong_to and Sited_in. There is an instance of Yelp (yj)
that meets the same instances pi, ci, and mi. Besides,
di.building type is different to yj.categories.

4) Test coverage item 4: there is an instance of DBPedia
(di) that meets a set of instances Province (pi), City (ci),
and Monument (mi), which are related by instances of
Belong_to and Sited_in. There is an instance of Yelp (yj)
that meets the same instances pi, ci and mi. Besides, the
evaluation of di.building type returns a null value and the
evaluation of yj.categories does not return a null value.

Fig. 15 depicts an example of some test data sources and a test
reconciled solution that covers the foregoing test coverage items.
The number on the left of each row of the test data sources and
the numbers in brackets below each node and relationship of the
test reconciled solution indicate the test coverage items that need
these instances so that they can be covered. For example, to cover
the test coverage item 1, row 1 of DBPedia that does not meet any
Province node, along with the related nodes City with c_name
= c1 and Monument with m_name = m1 are needed. Note that
the test reconciled solution represents the current reconciled
solution at the initial stage of the reconciliation process to be
tested, which is going to be updated during the execution of the
test cases.

The expected output of the execution of the test cases that
use the previous test data sources and test reconciled solution,
according to the structural rules of Fig. 12 and the XOR rule of
Fig. 14, is shown in Fig. 16. This expected output is formed by
the state that the final reconciled solution should have after the
execution of the test cases and it is called expected reconciled
solution. DIPHDA should generate the three new nodes high-
lighted in the figure, along with their relationships, from row
1 of DBPedia. It should also derive the value of the attribute
m_building_type of the Monument nodes (highlighted in the
figure) from the other rows of DBPedia and Yelp.

Next, we illustrate that generating test inputs to exercise the
test coverage items allows a more thorough testing that is able
to detect a number of defects in the implementation. Consider
a faulty implementation of DIPHDA that transforms the test
inputs of Fig. 15 into the final reconciled solution of Fig. 17.
This final reconciled solution, which is the observed output of
the execution of the test cases and is called observed reconciled
solution, reveals the existence of several defects.

1) Fault 1: the implementation does not check the cardinality
between Province and City, which was specified in the
reconciled solution model (that is, it has a defect in the
management of the reconciled solution model during the
projection of the entities). This defect produces failure 1 of
Fig. 17: the node City with c_name = c1 is connected with
two different Province nodes. As a result, the observed
reconciled solution does not conform to the reconciled
solution model.

2) Fault 2: the decision that checks whether a row of DBPedia
corresponds to a set of related nodes Province, City, and
Monument of the current reconciled solution is not correct,

Fig. 15. Example of test data sources and test reconciled solution.

Fig. 16. Expected reconciled solution.

because it only checks the nodes Province and Monument
(that is, the implementation has a defect in the projection
from DBPedia). This defect causes DIPHDA to consider
that row 2 of DBPedia corresponds to the set of related
nodes Province with p_name = p1, City with c_name =
c1, and Monument with m_name = m1, which is the same
set of related nodes that corresponds to row 1 of Yelp.
As a result, when the context attribute m_building_type is
derived through the XOR rule of Fig. 14, it has the value
“bt1” instead of “cat1” (see failure 2 of Fig. 17).

3) Fault 3: the implementation considers that the context at-
tribute categories has the higher priority, instead of build-
ing_type, when the context attribute m_building_type is
derived (that is, it has a defect in the prioritization of the
context attributes involved in the XOR rule of Fig. 14). This
defect produces failure 3 of Fig. 17: the context attribute
m_building_type of the Monument node with m_name =
m2 has the value “cat2,” instead of “bt2.”

4) Fault 4: the implementation does not include a decision
to check whether the context attribute building_type of

Fig. 17. Observed reconciled solution.

DBPedia has a missing value when it is used to derive
the value of m_building_type through the XOR rule of
Fig. 14 (that is, it has a defect in the management of
missing information). This defect produces failure 4 of
Fig. 17: the attribute m_building_type is missing in the
Monument node with m_name = m3, instead of having
the value “cat3.”

Because the information stored in the 26 632 rows included
in the data sources does not cover the test coverage items 1, 2,
and 4, faults 1, 2, and 4 would not be detected. However, we
were able to detect these defects by designing the tests to cover
the aforementioned test coverage items.

F. Discussion

The results of the case studies show that we derived a set
of test coverage items from the ITR model to guide the gen-
eration of meaningful test inputs of test cases that are able to
detect defects in the ER application. These test coverage items
were derived systematically from the ITR model and represent
interesting situations that are easy to forget when an applica-
tion is being developed. Besides, the number of instances in the
test data sources and the test reconciled solution that cover the
test coverage items of the DIPHDA application is considerably
lower than the number of rows of the production data sources,
and the coverage is considerably higher than that achieved us-
ing these production data sources. Therefore, it is possible to
thoroughly test the functional suitability of these types of appli-
cations with a small amount of data. An additional advantage
is that we reduce the effort of designing the expected output
and comparing it against the actual output. However, there are
several issues that may limit our approach, which are discussed
below.

First, the ITR metamodel may not provide all the elements
that are necessary to describe the whole class of ITR models, that

is, the models that represent the testing objectives of every ER
domain. To address this issue, different ER domains should be
analyzed to determine whether the current ITR metamodel has to
be extended with new metaclasses, attributes, and relationships,
so that it allows the creation of ITR models for these domains.
The extension of the ITR metamodel could also lead to the
extension and/or the adaptation of other related metamodels of
the framework for testing ER applications.

Second, the integration rules that constitute the ITR models
may not be expressive enough to represent all of the important
features that are to be tested of the ER application. To mitigate
this limitation, the integration rules can be extended in order
to include more complex conditions and deal with comparisons
based on functions in detail. Besides, there are some logical
formulations of SBVR that have not been considered in the
definition of the integration rules yet, which can be used to
extend their expressiveness.

Finally, the study is limited to the early testing of the real ap-
plication DIPHDA and the REPORTS project, obtaining similar
results on both. Therefore, the real effectiveness of the test cases
that were designed in the early stages of the development has
not yet been validated. This validation is going to be carried out
when the applications of the case studies are available. However,
the results of the case studies demonstrate that we have obtained
test coverage items that guide the generation of test cases which
can detect defects that could be present in the implementation.

VII. CONCLUSION AND FUTURE WORK

This work presents an integration of early testing to an ER
application. The previous work presented in [10] has been fur-
ther developed, giving rise to the ITR model. This model is
based on four main pillars: the reconciled solution model (that
represents the solution to be achieved), the data sources models
(that represent to data sources to reconcile), the transformations

model (that represents the transformation that data must undergo
in the different stages of the ER process), and the test models
(that represent the testing objectives for the ER). Also, testing
objectives have been represented as business rules in order to
automatically derive the test coverage items by the application
of the MCDC criterion.

The main contributions of this work may be summarized as:
1) the description of the elements that constitute the frame-
work for testing the ER applications; 2) the definition of the
ITR model for integration testing, which represents the test-
ing objectives as a set of business rules, called integration
rules; and 3) the application of the proposal to two real-world
problems.

This approach has been validated with two real-world case
studies based on the heritage information management of the re-
gion of Andalusia (Spain) and the publications of the researchers
of the University of Seville. After applying the test coverage
items derived from the ITR models, it was found that there are
three main type of faults: those related to the projection from
the context entities of the data source models to the reconciled
solution model, those related to the implementation of the ER
specification that guide the reconciliation of the attributes of the
instances stored into the current reconciled solution, and those
related to the incorrect management of null values or missing
information.

It has been verified that the addition of early integration test-
ing to the ER application is capable of detecting a series of
deficiencies, which a priori were not known and that will help
to improve the final result that the ER application offers. Fur-
thermore, applying early testing with a test model that allows
the use of the test coverage to guide the test case design process
has made it possible to reduce the amount of data that need to
be stored in the data sources used for testing, thereby achieving
a more exhaustive testing that covers 100% of the test coverage
items.

Future work encompasses several avenues such as the defini-
tion of the transformations that automate the process of gener-
ating the test cases, the extension of the test metamodel to cover
the unit testing of the transformations applied over the data
to carry out the ER (represented by the transformation model)
and the identification of different case studies to validate the
approach.

REFERENCES

[1] C. C. Yang, H. Chen, and K. Hong, “Visualization of large category map
for Internet browsing,” Decis. Support Syst., vol. 35, no. 1, pp. 89–102,
2003.

[2] J. G. Enrı́quez, F. J. Domı́nguez-Mayo, M. J. Escalona, J. A. Garcı́a-
Garcı́a, V. Lee, and G. Masatomo, “Entity identity reconciliation based
big data federation—A MDE approach,” in Proc. 2015 Int. Conf. Inf. Syst.
Develop., 2015.

[3] H. Wang, Innovative Techniques and Applications of Entity Resolution.
Hershey, PA, USA: IGI Global, 2014.

[4] L. Getoor and A. Machanavajjhala, “Entity resolution: Theory, practice
& open challenges,” Proc. VLDB Endow., vol. 5, no. 12, pp. 2018–2019,
2012.

[5] F. Wang, H. Wang, J. Li, and H. Gao, “Graph-based reference table con-
struction to facilitate entity matching,” J. Syst. Softw., vol. 86, no. 6,
pp. 1679–1688, 2013.

[6] A. Gal, “Uncertain entity resolution: Re-evaluating entity resolution in the
big data era: Tutorial,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1711–1712,
Aug. 2014.

[7] L. Getoor and A. Machanavajjhala, “Entity resolution for big data,” in
Proc. 19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2013, pp. 1527–1527.

[8] D. C. Schmidt, “Guest Editor’s introduction: Model-driven engineering,”
IEEE Comput., vol. 39, no. 2, pp. 25–31, Feb. 2006.

[9] J. Bézivin, “On the unification power of models,” Softw. Syst. Model.,
vol. 4, no. 2, pp. 171–188, 2005.

[10] J. G. Enrı́quez, R. Blanco, F. J. Domı́nguez-Mayo, J. Tuya, and M. J.
Escalona, “Towards an MDE-based approach to test entity reconciliation
applications,” in Proc. 7th Int. Workshop Autom. Test Case Des. Sel. Eval.,
2016, pp. 74–77.

[11] I. Bhattacharya and L. Getoor, “A latent dirichlet allocation model for
entity resolution,” in Proc. 2005 SIAM Int. Conf. Data Mining, 2005,
pp. 47–58.

[12] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita, “Declar-
ative data cleaning: Language, model, and algorithms,” in Proc. 27th Int.
Conf. Very Large Data Bases, Jul. 2001, pp. 371–380.

[13] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D.
Jurafsky, “Deterministic coreference resolution based on entity-centric,
precision-ranked rules,” Comput. Linguist., vol. 39, no. 4, pp. 885–916,
2013.

[14] V. S. Verykios, G. V. Moustakides, and M. G. Elfeky, “A Bayesian decision
model for cost optimal record matching,” VLDB J., vol. 12, no. 1, pp. 28–
40, 2003.

[15] N. Vesdapunt, K. Bellare, and N. Dalvi, “Crowdsourcing algorithms for
entity resolution,” Proc. VLDB Endow., vol. 7, no. 12, pp. 1071–1082,
2014.

[16] T. Williams and M. Scheutz, “POWER: A domain-independent algorithm
for probabilistic, open-world entity resolution,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2015, pp. 1230–1235.

[17] W. E. Winkler, “Methods for record linkage and Bayesian networks,”
Technical Report, Statistical Research Division, US Census Bureau, 2002.

[18] S. Sarawagi and A. Bhamidipaty, “Interactive deduplication using active
learning,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2002, pp. 269–278.

[19] W. W. Cohen and J. Richman, “Learning to match and cluster large high-
dimensional data sets for data integration,” in Proc. 8th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2002, pp. 475–480.

[20] J. Feng, J. Wang, T. Kraska, and M. J. Franklin, “CrowdER: Crowd-
sourcing entity resolution,” Proc. VLDB Endow., vol. 5, pp. 1483–1494,
Jul. 2012.

[21] J. Fisher, P. Christen, and Q. Wang, “Active learning based entity resolu-
tion using Markow logic,” Adv. Knowl. Discovery Data Mining, vol. 5476,
pp. 338–349, 2016.

[22] E. Ioannou, W. Nejdl, C. Niedere’e, Y. Velegrakis, and C. Nieder, “On-
the-fly entity-aware query processing in the presence of linkage,” Proc.
VLDB Endow., vol. 3, no. 1, pp. 429–438, 2010.

[23] J. Zhao, P. Wang, and K. Huang, “A semi-supervised approach for au-
thor disambiguation in KDD CUP 2013,” in Proc. 2013 KDD Cup 2013
Workshop, 2013, pp. 1–8.

[24] H. Wang, J. Li, and H. Gao, “Efficient entity resolution based on subgraph
cohesion,” Knowl. Inf. Syst., vol. 46, no. 2, pp. 285–314, Feb. 2016.

[25] J. Mondal and A. Deshpande, “Managing large dynamic graphs effi-
ciently,” in Proc. 2012 Int. Conf. Manage. Data, 2012, pp. 145–156.

[26] P. Malhotra, P. Agarwal, and G. Shroff, “Graph-parallel entity resolution
using LSH and IMM,” in Proc. CEUR Workshop, vol. 1133, pp. 41–49,
2014.

[27] P. Vassiliadis, “A survey of Extract–Transform–Load technology,” Int. J.
Data Warehousing Mining, vol. 5, no. 3, pp. 1–27, 2009.

[28] J. Singh and K. Singh, “Statistically analyzing the impact of automated
ETL testing on the data quality of a data warehouse,” Int. J. Comput. Elect.
Eng., vol. 1, no. 4, pp. 488–495, 2009.

[29] N. ElGamal, A. El Bastawissy, and G. Galal-Edeen, “Towards a data
warehouse testing framework,” in Proc. 2011 9th Int. Conf. ICT Knowl.
Eng., 2012, pp. 65–71.

[30] S. B. Dakrory, T. M. Mahmoud, and A. A. Ali, “Automated ETL testing
on the data quality of a data warehouse,” Int. J. Comput. Appl., vol. 131,
no. 16, pp. 9–16, 2015.

[31] D. G. Tesfagiorgish and L. JunYi, “Big data transformation testing based
on data reverse engineering,” in Proc. 2015 IEEE 12th Int. Conf. Ubiqui-
tous Intell. Comput., 2015 IEEE 12th Int. Conf. Auton. Trusted Comput.,
2015 IEEE 15th Int. Conf. Scalable Comput. Commun. Its Assoc. Work-
shops, 2015, pp. 649–652.

[32] N. Li, A. Escalona, Y. Guo, and J. Offutt, “A scalable big data test frame-
work,” in Proc. 2015 IEEE 8th Int. Conf. Softw. Testing Verification Vali-
dation, 2015, pp. 1–2.

[33] J. Gutiérrez, G. Aragón, M. Mejı́as, F. Jose, D. Mayo, and C. M. R. Cutilla,
“Automatic test case generation from functional requirements in NDT,”
in Proc. Int. Conf. Web Eng., 2012, pp. 176–185.

[34] P. André, J.-M. Mottu, and G. Sunyé, “COSTOTest: A tool for building
and running test harness for service-based component models (demo),” in
Proc. 2016 25th Int. Symp. Softw. Testing Anal., 2016, pp. 437–440.

[35] S. Nogueira, A. Sampaio, and A. Mota, “Test generation from state based
use case models,” Formal Asp. Comput., vol. 26, no. 3, pp. 441–490, 2014.

[36] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini, and G. Visaggio,
“Automated generation of test oracles using a model-driven approach,”
Inf. Softw. Technol., vol. 55, no. 2, pp. 301–319, 2013.

[37] J. J. Gutiérrez, M. J. Escalona, and M. Mejı́as, “A model-driven approach
for functional test case generation,” J. Syst. Softw., vol. 109, pp. 214–228,
2015.

[38] A. A. Sofokleous and A. S. Andreou, “Automatic, evolutionary test data
generation for dynamic software testing,” J. Syst. Softw., vol. 81, no. 11,
pp. 1883–1898, 2008.

[39] 29119-1:2013—ISO/IEC/IEEE International Standard for Software and
Systems Engineering—Software Testing—Part 1: Concepts and Defini-
tions, ISO/IEC/IEEE 29119-1:2013(E), vol. 2013, pp. 1–64, 2013.

[40] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and
adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997.

[41] D. Hay and K. A. Healy, “Defining business rules: what are they really?,”
Final Report, Revision 1.3, The Business Rules Group, 2000.

[42] R. Blanco, J. Tuya, and R. V. Seco, “Test adequacy evaluation for the
user-database interaction: A specification-based approach,” in Proc. IEEE
2012 5th Int. Conf. Softw. Testing Verification Validation, 2012, pp. 71–80.

[43] D. Willmor and S. M. Embury, “Testing the implementation of business
rules using intensional database tests,” in Proc. 2006 Testing Acad. Ind.
Conf. Pract. Res. Techn., 2006, pp. 115–126.

[44] Systems and Software Engineering—Life Cycle Management—Guidelines
for Process Description, ISO/IEC TR 247742010, 2010.

[45] S. Mazanek, “HelloWorld! An instructive case for the transformation tool
contest,” in Proc. 2011 5th Transformation Tool Contest, Zurich, Switzer-
land, Jun. 29–30, 2011, vol. 74, pp. 22–26.

[46] Sematics of Business Vocabulary and Business Rules, Version 1.4, OMG
Document Number: formal/2017-05-05, OMG, vol. 2017, 2017.

[47] Information Technology—Syntactic Metalanguage—Extended BNF, Int.
Stand. 149771996(E), vol. 1996, pp. 1–24, 1996.

[48] G. Kaminski, G. Williams, and P. Ammann, “Reconciling perspectives
of software logic testing,” Softw. Testing Verification Rel., vol. 18, no. 3,
pp. 149–188, 2008.

[49] G. Kaminski, P. Ammann, and J. Offutt, “Improving logic-based testing,”
J. Syst. Softw., vol. 86, no. 8, pp. 2002–2012, 2013.

[50] MOSAICO: Sistema de Información Para la gestión del Patrimonio
Cultural en Andalucı́a, MOSAICO. [Online]. Available: http://www.
juntadeandalucia.es/cultura/web/areas/bbcc/sites/consejeria/areas/bbcc/
contenidos/Mosaico/sistema_gestion_bienes_culturales. Accessed: Dec.
2017.

[51] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Full predicate coverage
for testing SQL database queries,” Softw. Testing Verification Rel., vol. 20,
no. 3, pp. 237–288, 2010.

[52] J. J. Chilenski, “An investigation of three forms of the modified condition
decision coverage (MCDC) criterion,” Security, Apr. 2001.

[53] SICA: Scientific System Information of Andalusian, SICA. [Online]. Avail-
able: https://sica2.cica.es/. Accessed: Dec. 2017.

[54] SISIUS: Information System about Researching at the University of Seville,
SISIUS. [Online]. Available: https://investigacion.us.es/sisius. Accessed:
Dec. 2017.

http://www.juntadeandalucia.es/cultura/web/areas/bbcc/sites/consejeria/areas/bbcc/contenidos/Mosaico/sistema_gestion_bienes_culturales
http://www.juntadeandalucia.es/cultura/web/areas/bbcc/sites/consejeria/areas/bbcc/contenidos/Mosaico/sistema_gestion_bienes_culturales
http://www.juntadeandalucia.es/cultura/web/areas/bbcc/sites/consejeria/areas/bbcc/contenidos/Mosaico/sistema_gestion_bienes_culturales
https://sica2.cica.es/
https://investigacion.us.es/sisius

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

