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ABSTRACT 

Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. 

The DNM1L gene encodes for the DRP1 protein, an evolutionary conserved member of 

the dynamin family, responsible for fission of mitochondria, and having a role in the 

division of peroxisomes, as well. DRP1 impairment is implicated in several neurological 

disorders and associated with either de novo dominant or compound heterozygous 

mutations. In five patients presenting with severe epileptic encephalopathy we identified 

5 de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast 

model. Fluorescence microscopy revealed abnormally elongated mitochondria and 

aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these 

organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, 
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in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an 

abnormal distribution of mitochondria in the muscle tissue. 

Graphical Abstract 

DNM1L de novo dominant variants impaired mitochondrial fission and produced 
abnormal distribution of mitochondria in the muscle tissue. 

 

KEY WORDS: DNM1L; mitochondrial dynamics; mitochondrial fission; mitochondrial 

disorders; epileptic encephalopathy; muscle biopsy. 

INTRODUCTION 

The DNM1L (dynamin 1 like) gene encodes for the DRP1 protein, an evolutionary 

conserved member of the dynamin family, responsible for fission of mitochondria, a 

process required for normal mitochondrial dynamics and distribution. When activated, 

DRP1 translocates from a cytosolic pool to the outer mitochondrial membrane, where it 

oligomerizes, hydrolyzes GTP, and assembles into spiral filaments around mitochondrial 

tubules, allowing the organelles division. After the completion of this process, DRP1 

spirals likely disassemble from mitochondria for future rounds of mitochondrial fission 

(Youle et al., 2012). 

DRP1 has an important role in the maintenance of mitochondrial (Otsuga et al., 1998) 

and peroxisomal morphology (Pitts, 2004, Schrader et al., 2016), mediating organelle 

membrane remodeling during a variety of cellular processes. Mitochondria exist as a 

dynamic tubular network with projections that move, break, and reseal in response to 
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local environmental changes; the size and morphologic arrangement of mitochondria are 

due to a dynamic balance between mitofusins-dependent mitochondrial fusion and 

DRP1-dependent mitochondrial fission (Santel & Fuller, 2001). 

Defects in mitochondrial dynamics, including the inhibition of mitochondrial fission and 

fusion, are responsible for many human diseases (Lenaers et al., 2012; Stuppia et al., 

2015; Kim et al., 2017; Pozo Devoto & Falzone, 2017; Alexiou et al., 2017). Besides 

mutations in DNM1L (Waterham et al., 2007), dysfunctions in mitochondrial fission has 

been also associated with mutations in genes codifying for adaptors of DRP1, such as 

MFF and MID49/MIEF2 (Shamseldin et al., 2012; Koch et al., 2016; Bartsakoulia et al., 

2018). 

DRP1 impairment is implicated in several neurological disorders associated with either 

de novo dominant or compound heterozygous DNM1L mutations (MIM #603850). 

Encephalopathy due to defective mitochondrial and peroxisomal fission-1 is 

characterized by early onset with psychomotor delay and hypotonia, progressive course 

and death in childhood. Many patients develop refractory seizures, consistent with an 

epileptic encephalopathy, and thereafter show neurological decline. Age at onset, 

symptoms, and severity are variable, and some patients may not have 

clinical/biochemical evidence of mitochondrial or peroxisomal dysfunction (Fahrner et 

al., 2016; Nasca et al., 2016). 

Better known clinical conditions that occur more frequently are related to defects in 

factors that conversely are implicated in mitochondrial membrane fusion such as 

Charcot–Marie–Tooth disease type 2A caused by dominant or recessive mutations in 

MFN2 (mitofusin 2, MIM #608507), and optic atrophy or Leigh-like infantile 

encephalopathies caused by dominant or recessive mutations in OPA1 (MIM #605290). 

Additional rare neurological phenotypes of “optic atrophy plus” syndrome and 3-

methylglutaconic aciduria or cataracts are related to recessive or dominant mutations in 

OPA3 (MIM #606580), a factor involved in mitochondrial shaping; a mild Charcot–

Marie–Tooth disease type 2K is caused by biallelic recessive mutations in GDAP1 (MIM 

#606598), that encodes for a mitochondrial protein involved in mitochondrial dynamics; 

and finally mitochondrial myopathy and ataxia has been recently reported to be due to 

dominant or recessive mutations in MSTO1 (MIM #617619), encoding a cytoplasmic 

pro-mitochondrial fusion protein (Nasca et al., 2017). 
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Cultured fibroblasts from patients with these genetic conditions usually show either 

mitochondrial fragmentation, corresponding to genetic defects of factors implicated in 

mitochondrial membrane fusion (MFN2, OPA1) (Zanna et al., 2008), or abnormally 

elongated mitochondria and aberrant peroxisomes in cases with mutations in MFF (Koch 

et al., 2016) and DNM1L (Nasca et al., 2016).  

Histochemical and ultrastructure characterization of skeletal muscle biopsies of subjects 

harboring OPA1 mutations showed the presence of cytochrome c oxidase-deficient fibers 

associated with multiple mitochondrial DNA deletions in the majority of patients, either 

affected by dominant optic atrophy plus variants or with isolated optic nerve involvement 

(Yu-Wai-Man et al., 2010). On the other hand, few papers have reported studies on 

muscle biopsy of patients with mutations in additional genes regulating mitochondrial 

morphology, and no abnormalities have been found (Waterham et al., 2007; Fahrner et 

al., 2016; Yoon et al., 2016; Koch et al., 2016; Nasca et al., 2016), although Chao et al 

(2016) reported mitochondrial shape abnormalities at electron microscopy. 

Here we describe on a series of 5 sporadic patients affected by severe epileptic 

encephalopathy associated with heterozygous mutations in DMN1L showing peculiar 

mitochondrial distribution changes in the muscle biopsy. So far, these abnormalities of 

mitochondrial distribution in muscle seem to be specific for the DMN1L related epileptic 

encephalopathy. 

METHODS 

Standard protocol approvals, registrations and patients consents 

The study was approved by the Ethical Committees of the Bambino Gesù Children’s 

Hospital, Rome, Italy, and the C. Besta Neurological Institute, Milan, Italy, in agreement 

with the Declaration of Helsinki. 

Histological, ultrastructural and biochemical analyses in muscle 

Cryostatic cross-sections of quadriceps muscle biopsies were processed according to 

standard histochemical and immunohistochemical procedures. Immunohistochemical 

studies were performed with rabbit polyclonal TOMM20 antibody (Santa Cruz 

Biotechnology) (in green) and with monoclonal antibody against merosin (Chemicon) (in 
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red). Confocal microscopy was performed on a Leica TCS-SP8X laser-scanning confocal 

microscope (Leica Microsystems, Mannheim, Germany) equipped with white light laser 

(WLL) source, 405nm diode laser, 3 Internal Spectral Detector Channels (PMT) and 2 

Internal Spectral Detector Channels GaAsP. Sequential confocal images were acquired 

using a 63x-oil immersion objective (1.42 numerical aperture, Leica Microsystems) with 

a 1024x1024 format, and scan speed 400Hz. Z-reconstructions (30 stacks) were obtained 

with a z-step size of 0.3 µm. To improve contrast and resolution of mitochondrial 

distribution, confocal raw images were deconvolved by Hyvolution2 software (Leica 

Microsystems) before 3D reconstruction. Then deconvolved z-stacks were imported into 

LAS X 3D Analysis (Leica Microsystems) software to obtain their three-dimensional 

surface rendering. Each group of image was processed and analyzed using the same 

settings (i.e. laser power and detector amplification). For ultrastructural studies, muscle 

specimens were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) at 4°C. 

Samples were post-fixed with 2% OsO4 in 0.1 M cacodylate buffer (pH 7.4) for 1 h. 

Specimens were dehydrated in a graded series of ethanol and embedded in epon resin. 

Thin sections were evaluated with a transmission electron microscope (EM 109 Zeiss) 

(Fattori et al., 2018). 

Respiratory chain complexes (RCCs) activities were assayed in muscle homogenate and 

normalized to citrate synthase activity, using a previously reported spectrophotometric 

method (Bugiani et al., 2004). 

Mutational analysis 

Genomic DNA was isolated from blood and cultured skin fibroblasts using QIAamp 

DNA mini kit (QIAGEN, Valencia, CA, USA). DNA from Pt.1, Pt.2 and Pt.3 underwent 

high-throughput sequencing by TruSight One panel (Illumina, San Diego, CA) 

comprehensive of > 4.800 clinically relevant genes. The enrichment was achieved 

following manufacture instruction and the sequencing analysis was performed on MiSeq 

System. Variant-Studio software was applied for analysis, classification, and reporting of 

genomic variants. After excluding previously annotated single nucleotide changes 

occurring with high frequency in populations (>1%), we prioritized variants predicted to 

have functional impact (i.e. nonsynonymous variants and changes affecting splice sites). 

Pt.4 and Pt.5 were analyzed using a custom gene panel for the screening of 224 genes 

associated with mitochondrial diseases (Ardissone et al., 2018). Sanger sequencing was 
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used to validate all the annotated functionally relevant variants, as well as to check 

variant segregation in the families. Bioinformatics tools based on heuristic methods, 

SIFT (http://sift.jcvi.org), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2) and 

Mutation Taster (http://www.mutationtaster.org/) were used for pathogenicity prediction 

of the variants. 

For the identification of multiple deletions, we performed Long Range PCR using 

TaKara LA Taq DNA Polymerase (Takara Biotechnology-Dalian Co., Ltd.) amplifying a 

11242bp mtDNA fragment with forward-4800 (5’ttcacttctgagtcccaga-3’) and backward-

16042 primers (5’ctgcttccccatgaaagagaacagagaa-3’). 

Western blotting analysis and antibodies 

For SDS-PAGE, 40 μg of fibroblasts homogenate were loaded in a 12% denaturating gel. 

Western blot (WB) was achieved by transferring proteins onto polyvinylidene difluoride 

(PVDF) membrane and probed with specific antibodies. Specific bands were detected 

using Lite Ablot Extend Long Lasting Chemiluminescent Substrate (Euroclone, Pero 

(Mi), Italy). Densitometry analysis was performed using Quantity One software (BioRad, 

Hercules, CA, USA). 

RCC subunits were detected using the following monoclonal antibodies purchased from 

MitoScience (Eugene, OR, USA): Complex I – NDUFA9; complex II – SDHB; complex 

IV – COXII; Complex V – ATP5B; porin (VDAC). Polyclonal rabbit GAPDH (Sigma-

Aldrich) and monoclonal antibody OPA1 (BD Biosciences) and DRP1 (Abcam) were 

also used. 

Biochemical analysis, Immunostaining and Imaging in fibroblasts 

Human fibroblasts were obtained from a diagnostic skin biopsy and grown in DMEM 

medium supplemented with 10% fetal bovine serum, 4.5 g/L glucose, and 50 μg/mL 

uridine. Complex V activity (in the direction of ATP synthesis) was measured in 

fibroblast mitochondria, using reported spectrophotometric methods (Rizza et al., 2009). 

Mitochondrial respiration was measured using a SeaHorse FX-96 apparatus (Agilent 

Technologies, Santa Clara, CA), as previously described (Invernizzi et al., 2012). 

To display the mitochondrial network arrangement, fibroblasts from Pt.1, Pt.2, Pt.3 were 

fixed and permeabilized using methanol:acetone (2:1) for 10 min at room temperature, 

then a blocking solution containing 5% BSA in PBS was used. The polyclonal rabbit 
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TOMM20 antibody (Santa Cruz Biotechnology) was applied overnight and visualized 

using Alexa Fluor 647 secondary antibody (Jackson ImmunoResearch), both antibodies 

were used at the dilution of 1:500. Images were acquired with a fluorescence-inverted 

microscope (Leica DMi8). An average of 8 image planes was obtained along the z-axis at 

0.2 µm increments using LASX 3.0.4 (Leica) software. For Pt.4 and Pt.5 the 

mitochondrial network was visualized in living cells using the mitochondrial fluorescent 

dye MitoTracker Red-CMXRos (Invitrogen) at final concentrations of 50 nM for 30 min; 

then images were acquired with a confocal microscope (Leica TSC-SP8). 

For peroxisomal immunostaining we used the polyclonal rabbit PMP70 antibody (Sigma-

Aldrich) applied overnight at the concentation of 1:200, followed by Alexa Fluor 488 

secondary antibody (1:500). The peroxisomal staining was visualized using the same 

parameters used above. Analysis of peroxisomal morphology was conducted using the 

image processing package ImageJ (Fiji). Images were then binarized, thresholded, and 

subjected to particle analysis to acquire form factor (“circularity”: 4π*area/perimeter2). 

Functional studies in yeast  

Yeast strains and media. The yeast strains used in this work were the haploid strain 

W303-1B (MATa leu2-3, trp1-1, can1-100, ura3-1, ade 2-1, his3-11) and its isogenic 

strain dnm1::KanR, and the hemizygous diploid strain W303 dnm1∆ (MATa/MATa leu2-

3/leu2-3, trp1-1/trp1-1, can1-100/can1-100, ura3-1/ura3-1, ade 2-1/ade2-1, his3-

11/his3-11 DNM1/dnm1::KanR). All experiments were performed in Synthetic complete 

medium (SC, 6.9 g/l yeast nitrogen base without amino acids (ForMedium), 1 g/l drop-

out mix without amino acids or bases necessary to keep plasmids) (Kaiser et al., 1994). 

Media were supplemented with carbon sources (Carlo Erba Reagents) as indicated in the 

text in liquid phase or after solidification with 20g/L agar (ForMedium). 

Construction of dnm1 mutant strains. dnm1 mutant alleles and dnm1 mutant strains were 

constructed as previously reported (Nasca et al., 2016). Briefly, dnm1 mutant alleles were 

constructed using mutagenic overlap PCR with the oligonucleotides reported in 

Supplementary Table S1, digested with BamHI and XbaI or XbaI and SalI, and subcloned 

in pFL38DNM1. In order to obtain haploid wild type or mutant strains all plasmids were 

introduced by transformation in the W303-1B dnm1Δ haploid strain and in the W303 
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dnm1Δ hemizygous diploid strain using the “LiAc/SS carrier DNA/PEG quick method” 

as previously reported (Gietz & Woods, 2002). 

Yeast analyses. Spot assay was performed by spotting 5x104, 5x103, 5x102 and 5x101 

cells on SC supplemented with different carbon sources. Petite frequency was measured 

as previously reported (Baruffini et al., 2010) in six to eight independent clones for each 

strain. Oxygen consumption rate was measured in SC medium as previously described 

(Goffrini et al., 2009) on five independent clones, after growth in conditions, which 

minimized the petite frequency, which was lower than 5%. (Nolli et al., 2015). All 

experiments were performed at 37°C, except for the measurement of the petite frequency 

in the diploid strains, which was performed at 28°C. 

Statistical analysis 

For each experiment, data obtained were calculated as the mean of replicates ± standard 

deviation (SD). For analysis on peroxisomal morphology data were analysed using 

unpaired two-tailed Student's t-tests; for yeast experiments, data were compared with 

one-way ANOVA followed by Bonferroni’s test. 

Structural analysis 

The residues affected by the missense mutations described in this work (p.Gly223Val, 

p.Gly362Asp, p.Phe370Cys, and p.Arg403Cys) were mapped on crystal structures of 

homologues proteins. The crystal structure of a dimeric human dynamin-1-like protein 

(Protein Data Bank, PDB, 3W6O) was used for the p.Gly223Val mutation. The crystal 

structure of the Dynamin-3 tetramer (PDB 5A3F) was used for the p.Gly362Asp, 

p.Phe370Cys, and p.Arg403Cys mutations. The cryo-electron microscopy structure of 

human dynamin-1 co-assembled with MID49 (PDB 5WP9) was used to obtain the 

detailed view of the site of the p.Phe370Cys mutation. Molecular structures were 

rendered with PyMOL (http://www.pymol.org). 
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RESULTS 

Clinical features and Brain MRI findings 

Patient 1 is a girl single-born from unrelated healthy young parents. At birth, there was 

no breathing distress, no jaundice, and weight was 2.850 kg. She had normal motor 

milestones in the first year of life and was able to walk without any support at age 17 

months. She pronounced her first words around 1 year of age, and later at age 4 years she 

started in kindergarten and had good attendance and integration. At age 2 years and a 

half, the child manifested generalized clonic seizures while falling asleep, and then 

displayed an ataxic syndrome with prominent intentional and postural tremor that 

persisted for 2 weeks. About 7-8 weeks later, a cluster of myoclonic seizures of face and 

left side limbs with vomiting and drooling appeared together with relapsing of ataxia. 

She was admitted at a local hospital were a brain MRI showed T2 hyperintensities in the 

posterior white matter regions and some T2 hyperintensities in the cortical areas. More 

recently, a MRI performed at age 6 years showed moderate global cerebral and cerebellar 

atrophy (Figure 1A-B and E-F). Serial MRIs taken in the same month at different days 

showed that the cortical DTW restriction hyperintensity in the right precentral gyrus and 

in the pallidum and thalamus of the right hemisphere (Figure 1C) spontaneously vanished 

20 days later when a serial brain MRI was performed (Figure 1D). She was admitted at 

our hospital for a Super refractory Status Epilepticus (SRSE) which began one month 

before, and was unresponsive to multiple doses of tiopentone. SRSE was treated with 

propofol and with high dose of topiramate and perampanel, and was characterized by 

repetitive to continuous focal myoclonic seizures clinically lateralized to the right side, 

especially involving the face and the right arm. The polymyographic video/EEG 

recordings showed high amplitude theta-delta activity, lateralized to the left side. Ictal 

EEG confirmed the cortical nature of the seizures as it was characterized by low 

amplitude rhythmic fast discharge lateralized to the left side evolving into a focal spike-

and-wave complexes, corresponding to the clinical focal contralateral myoclonus. 

Intercritical EEG confirmed the interhemispheric asymmetry with persistent slow activity 

over the left central regions. SRSE lasted for 50 days and was the only status epilepticus 

she had so far. 

Patient 2 is a boy born as a preterm infant from TC scheduled at 36 weeks of gestational 

age because prenatal ultrasound monitoring indicated a fetal growth restriction appearing 
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in the last trimester. At birth weight was 2.020 kg, Apgar 9-10. The neonatal period was 

uneventful, and developmental milestones were regular because he started to walk 

without support at the age 15 months, although he showed delay in attaining language 

and failure to thrive (weight always around 3rd centile) from the first months of life. 

Preliminary genetic investigations (karyotype, MLPA 22q12.2, telomeres, fragile X) 

yielded no abnormalities. Moreover, gastroenterological and endocrinological 

investigations (FT4, TSH, IgA, EMA, Anti TG, AGA) carried out during hospitalization 

showed increased GOT (84.9 IU/L), central hypothyroidism (TSH levels 1.27 mU / ML, 

Ft3 2.4 pg/ml with NV of 2.4-4.2 and Ft4 7.6 pg/ml with NV of 8.5-16.5) and low levels 

of ACTH (18 pg/ml with NV of 0-46 pg/ml). During the follow up increased serum 

lactate was detected (4.71 mmol/l, NV 0.6-2.3 mmol/l). The child was treated with 

thyroid hormone and started therapy with hydrocortisone. Around age 3 years the boy 

started with a prolonged repetitive left hemiclonic SRSE and additional single episodes 

relapsed during the follow-up with a frequency of at least twice a month although he was 

taking antiepileptic polytherapy with phenobarbital, topiramate, and clonazepam. At age 

7 years serial brain MRIs performed three times in a timeframe of 3 months, showed only 

a slight global cerebral atrophy, and a cortical DTW restriction hyperintensity was 

observed only once in the right precentral gyrus (Figure 1 G-J). MR spectroscopy did not 

detect any lactate peek. Polymyographic video/EEG recordings during one episode of 

SRSE with subsequent left focal myoclonic seizures, showed, only as a counterpart of the 

seizures, a pattern of RHADs (Rhythmic High Amplitude Delta superimposed by fast 

activity) over the contralateral central regions. Focal RHADs were also present during 

sedation. Later on, during the SRSE, which was treated with topiramate, propofol and 

ketamine, RHADs were no longer recorded, and were replaced by persistent focal slow 

activity. SRSE lasted 17 days together with epilepsia partialis that was noticed over the 

left side of the body. 

Patient 3. The girl is the second child from unrelated parents; an eldest sister aged 12 

years was healthy. She was born by a planned TC delivery, at term, and weight was 

2.950 kg at 40 weeks of gestation. The child had a normal development from the 

newborn period to the age of 5 years, although a mild hearing loss was suspected. 

Around the age of 5 years she was admitted to the intensive care for the abrupt 

manifestation of a myoclonic status epiplepticus during an intercurrent febrile episode. 

The patient needed a prolonged hospital admission because she manifested repeated 
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severe myoclonic or right prolonged hemiclonic SRSE that was associated with a 

psychomotor deterioration. During the follow up the child presented with very frequent 

and long duration seizures of generalized or hemiclonic SRSE and a persistent interictal 

myoclonus at upper and lower limbs. One previous brain MRI performed at age 3 years 

was considered normal, while the last brain MRI performed at age 7 years (Figure 2A-D) 

showed global cortical atrophy that was prominent in both the right hemisphere and the 

homolateral cerebral peduncle. There was also abnormal T2 high intensity signal (long 

TR images) of the deep white substance at the semi-oval white matter and in the 

paratrigonal site bilaterally with involvement of the subcortical spaces in the temporo-

insular areas bilaterally (data not shown). The DWI study did not show any signs of 

recent cerebral and cerebellar parenchymal abnormalities. The ventricular system was 

moderately enlarged. Polygraphic video/EEG recordings performed during the chronic 

phase of the disease showed poorly organized cerebral activity, both in wakefulness and 

sleep, with theta activity superimposed by fast rhythms. Polymyographic recording 

confirmed right side high frequency myoclonus, predominantly at the right hand and 

right face, rhythmic in nature, persistent during sleep, without a clear-cut correlation with 

the EEG transients. 

Patient 4 is the only child from unrelated parents. A half-brother from previously 

mother’s marriage presented with severe psychomotor delay, refractory epilepsy and 

myoclonic status epilepticus at 2 years of age; he died for unknown reason at 3 years. 

This boy was born at term after an uncomplicated pregnancy and delivery. Psychomotor 

delay was reported since the first months of life: he achieved sitting position at 12 

months, autonomous gait and first words at 3 years of age. First neurological evaluation 

performed at 4 years showed psychomotor delay and pyramidal signs at lower limbs; 

instrumental exams including brain MRI and EEG were reportedly normal. At 5 years 

and 5 months of age, few days after a viral illness, he presented partial motor status 

epilepticus. In the following months, refractory epilepsy and psychomotor regression 

were reported. He manifested motor partial, tonic, myoclonic seizures and spasms, and 

experienced two episodes of myoclonic status epilepticus resembling SRSE, refractory to 

midazolam, thiopentone, vitamin B6 and propofol. EEGs were not available; brain MRI 

performed one month after first status epilepticus disclosed T2 hyperintensities in 

thalami and in right hemisphere temporo-parieto-occipital cortex that appeared reduced 

40 days later when a serial brain MRI was performed (Suppl. Figure S1 A-E). He was 
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admitted to our hospital at 5 years and 9 months manifesting spastic tetraparesis, no 

postural control, hyperkinesis but poor voluntary movements and severe cognitive 

impairment. Seizures frequency was daily. Polymyographic video/EEG disclosed 

epilepsia partialis continua at the right arm intermingled with asymmetric tonic seizures 

mainly involving left side arm and related with generalized low voltage fast rhythms with 

parieto-occipital prevalence, EEG background activity and sleep pattern were not 

organized. Brain MRI showed global cerebral atrophy (Suppl. Figure S1 F-J). Visual and 

sensory evoked potential showed central conduction abnormalities, motor and sensory 

nerve conduction velocities disclosed sensitive and motor axonal neuropathy. Fundus 

oculi and brainstem auditory evoked were normal. Blood routine exams, pyruvate, amino 

acids plasmatic levels, very long chain fatty acid (VLCFA), phytanic acid and urinary 

organic acids were normal. Mild elevated lactate level in serum was detected (2.3 mmol/l 

nv 0.8-2.1). Respiratory chain complexes activity was normal in muscle. Patient died for 

respiratory failure at 6 years of age. 

Patient 5 is the only child from unrelated parents. Family history was unremarkable. She 

was born at term after an uneventful pregnancy. At birth weight was 3.050 kg, Apgar 9-

9. After birth, she presented respiratory distress that required intensive care and oxygen 

supplementation for 20 days. During the first months, psychomotor development was 

reportedly normal (head control at 2 months of age). Between 4-6 months of age 

development delay and failure to thrive became evident; from 7-8 months to 1 years of 

age she suffered from self-inflicted finger and mouth ulcers and pain insensitivity was 

reported (i.e. receiving vaccine injections). In the second year of life she presented 

prolonged clonic seizures at left face. At 3 years of age she was first evaluated in our 

institute: she presented with short stature (weight and length <3rd percentile), 

microcephaly (<3rd percentile), dysphagia, tetraparesis with extrapyramidal signs, 

dystonic postures involving both upper and lower limbs, dyskinesias and athetoid 

movements, absence of postural control, absence of language. Epileptic seizures were not 

noticed from parents but polymyographic video/EEG recorded tonic seizures at upper 

limbs related with multifocal generalized epileptiform abnormalities and showed poorly 

organized cerebral activity, both in wakefulness and sleep. Treatment with 

leveretiracetam was started but EEG pattern remained unchanged. From the age of 4 

years dyskinesias and dystonia worsened. Serial bran MRI (7 months 2 ys and 1 month, 4 

ys and 4 months) showed thin corpus callosum together with signs of increased cortical 
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subarachnoid spaces suggesting cortical involvement, and progressive cerebellar atrophy 

(Suppl. Figure S2); no cortex involvement was noticed. Brainstem auditory evoked and 

visual evoked potential showed central conduction abnormalities, motor and sensory 

nerve conduction velocities disclosed sensitive and motor axonal neuropathy. Fundus 

oculi was normal. Blood routine exams, plasmatic uric acid, lactate and pyruvate in 

plasma and CFS, plasmatic amino acids levels, VLCFA were normal. Molecular analysis 

of PLA2G6, POLG1, NARP/MILS mutations were negative. Muscle biopsy was not 

performed. At last follow up, at 5 ys, clinical conditions were stable. 

Histological and biochemical analyses 

Histochemistry of the muscle sample of Pt.1, Pt.2, Pt.3 showed scattered fibers with a 

patchy reduction of cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) 

stain with aspects of polymorphic core like areas (Figure 3, left and central panels). 

Similarly areas of reduced immunoreactivity were observed using the TOMM20 

antibody confirming impairment of the mitochondrial network distribution (Figure 3, 

right panel). Muscle histochemistry in Pt.4 also showed multiple areas of patchy 

reduction of cytochrome c oxidase (Suppl. Figure S3 A), while Electron Microscopy 

(EM) showed enlarged mitochondria; sometimes two mitochondria were coupled and 

appeared to be in close relationship to each other (Suppl. Figure S3 B-C). Occasionally, 

the sarcomeric organization appeared to be normal, though the Z line was often absent 

(Suppl. Figure S3 D). In addition, in some areas mitochondria were quite absent (Suppl 

S3 Fig E-F), whereas in others they were present in large collections (Suppl S3 Fig G-H). 

Histochemical serial sections of the muscle biopsy in Pt. 3 showed that fibers devoid of 

mitochondria were type 1 fibers (Supp. Figure S4). Furthermore, confocal microscopy of 

the muscle biopsy (Supp. Figure S5, Supp. Figure S6) showed an altered and irregular 

array of Z-bands, while patchy areas devoid of mitochondria were clearly observed with 

TOM20 staining. In spite of the irregular aspect of the Z bands in confocal microscopy, 

no major alterations such as streaming of the Z bands were observed at the EM level 

(Supp. Figure S3).  

Histochemistry of the muscle sample of a patient harboring compound heterozygous 

mutations in OPA1 (Nasca et al., 2017) was studied and compared with those of DNM1L 

patients and showed no patchy staining abnormalities (Figure 3 lowest panel). In 

addition, by Long Range PCR we also searched comparatively for multiple deletions in 
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muscle samples and found multiple deletions only in the OPA1 mutated patient and no in 

the DNM1L patients (data not shown). 

Muscle biopsy was not performed in Pt.5. 

RCCs biochemical analysis in muscle homogenate was normal in all patients (data not 

shown). Accordingly, the activity of Complex V (in the direction of synthesis of ATP) 

measured in Pt.1 fibroblast mitochondria, as well the oxygen consumption in Pt.4 and 

Pt.5 fibroblasts were normal (data not shown). 

Mutational analysis 

Bioinformatics analysis carried out on the TruSight One panel, performed in Pt.1, Pt.2 

and Pt.3, led to the identification of a single gene entry, DNM1L (NM_012062, 

NP_036192). In Pt.1 we identified the heterozygous, previously unreported variant 

c.668G>T (p.Gly223Val) (Figure 4A); in Pt.2 we identified the heterozygous variant 

c.1207C>T (p.Arg403Cys), already reported (Fahrner et al., 2016) (Figure 4B); in Pt.3 

we identified the heterozygous unreported variant c.1109T>G (p.Phe370Cys) (Figure 

4C). Segregation for the three mutations in the corresponding families was negative, and 

then they can be considered as de novo mutations. Similar filtering analysis was applied 

to the panel, containing ~230 genes associated with mitochondrial disease, used for Pt.4 

and Pt.5. In Pt.4 we identified 2 heterozygous DNM1L variants: c.1085G>A 

(p.Gly362Asp) and c.1535T>C (p.Ile512Thr) (Figure 4D-D’). The first nucleotide 

change corresponded to rs148686457, with a frequency 0.008% in the ExAC database, 

whereas the second was not reported in any public database. Given that DNM1L 

mutations may present as recessive or dominant traits, we evaluated the segregation in 

the healthy parents of Pt.4 by Sanger sequencing: we found that the c.1535T>C 

(p.Ile512Thr) was inherited from the mother (Figure 4D’) while the c.1085G>A 

(p.Gly362Asp) was not present in any of the two parents and may represent a de novo 

event (Figure 4D). Indeed, the same change has been recently reported as a de novo 

mutation (Vanstone et al., 2016). An in-depth evaluation of the familial history revealed 

that the mother had a son with epileptic encephalopathy from another man. This child 

died at 3 years of age: no material was available for genetic studies. By subcloning PCR 

products obtained from Pt.4’s cDNA, we were able to assess that the two DNM1L 

variants were on the same allele (i.e., the maternal allele, harboring the c.1535T>C 
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variant identified in the mother). Moreover, a further analysis of DNM1L genomic region 

using a next-generation sequencing (NGS) approach revealed that the c.1085G>A was 

present in the mother’s blood DNA, although at very low level (~5%). These findings 

suggested a maternal germline mosaicism for the dominant mutation c.1085G>A 

(p.Gly362Asp), that may even explain the affected status of the Pt.4’s half-brother 

(Suppl. Figure S7). In Pt.5 we identified a heterozygous variant c.1084G>A 

(p.Gly362Ser); the variant was not detected in the parents’ DNA by Sanger or NGS 

analyses (Figure 4E). The variant was absent in public SNP databases; nevertheless, it 

was reported as a de novo mutation in a patient with refractory epilepsy (Sheffer et al., 

2015). 

All new mutations herein reported were pathogenetic while tested in silico (Suppl. Table 

S2), and were not reported in public (dbSNP142, ExAC, 1000 Genomes, HGMD, 

gnomAD) and in-house databases. 

Western blotting analysis 

To evaluate the impact of the mutations on DRP1 stability, we performed WB analysis 

on fibroblasts. We observed a significantly increased (in Pt.3) or normal (in Pt.1, Pt.2, 

Pt.4 and Pt.5) level of the protein when normalized to GAPDH (Figure 5A-B), in contrast 

with the strong reduction present in DNM1L-recessive cases (Nasca et al., 2016). The 

expression level of OPA1 and of different subunits of the RCCs showed no differences 

compared to controls (data not shown). 

Immunostaining and imaging in cultured fibroblasts 

Because of the pivotal role of DRP1 on dynamics of mitochondria and peroxisomes, we 

performed morphological studies on patients’ fibroblasts. We used the antibody 

TOMM20 in fixed cells (for Pt.1, Pt.2 and Pt.3) or Mitotracker red in living cells (for 

Pt.4 and Pt.5), both specific for mitochondrial staining. In normal glucose medium we 

observed an increased filamentous network in mutant fibroblasts of all patients (Suppl. 

Figure S8, left panels), although Pt.1 displayed a mixed population in which hyperfused 

mitochondria are associated with swollen and rod-shaped mitochondria and Pt.5 showed 

dot-shaped mitochondria (Figure 6, left panel). In galactose-supplemented medium, a 

condition that forces cells to use the oxidative phosphorylation for ATP production and 

usually causes elongation of mitochondrial network in control cells, the mitochondrial 
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network of DNM1L-mutant fibroblasts showed a lower tendency to fuse associated with a 

more disorganized network and an altered mitochondria morphology, with swollen, dots, 

rings, and “chain-like” structures (Figure 6, right panels; Suppl. Figure S8 right panels). 

For the immunovisualization of peroxisomes, we used an antibody against a peroxisomal 

protein, PMP70. In contrast with the highly diffused punctuated staining present in 

control cells, in Pt.4 and Pt.5 cytoplasm (Figure 7) we observed organelles longer, larger, 

and less uniformly distributed into cytoplasm; although in minor extent, peroxisomal 

alterations were present also in Pt.1, Pt.2 and Pt.3 (Suppl. Figure S9). Accordingly, the 

morphometric analysis showed decreased form factors for circularity in the patient’s cells 

compared to controls, with a significant reduction for Pt.4 and Pt.5 (Figure 7; Supp. 

Figure S9). 

Functional studies in yeast  

The deleterious effect of the p.Arg403Cys substitution was already experimentally 

demonstrated (Fahrner et al. 2016). To assess the pathogenic role of the other identified 

DNM1L variants as well as to compare the effects of different substitutions on the same 

amino acid (p.Gly362), we performed complementation studies in a S. cerevisiae strain 

lacking DNM1, hereafter referred to as Δdnm1. DNM1 is the yeast orthologue of human 

DNM1L; the amino acid residues corresponding to p.Gly223Val, p.Gly362Asp, 

p.Gly362Ser and p.Ile512Thr variants are conserved between the two species, being in 

yeast p.Gly252, p.Gly397, p.Ile543, whereas human p.Phe370 is not conserved, being 

p.Tyr405 in yeast. The dnm1Δ strain was transformed either with the wt DNM1, the 

dnm1G252V, dnm1G397D, dnm1G397Sor dnm1I543T mutant alleles, under the endogenous 

DNM1 promoter, as well as with the empty plasmid. To test the possible effects on 

mitochondrial function, we first evaluated the oxidative growth by spot assay analysis on 

medium supplemented with either glucose or ethanol or glycerol. The oxidative growth 

of the dnm1G397D and the dnm1G397S mutant strains was partially affected compared to the 

DNM1 wild type strain, especially on ethanol, whereas the growth of the dnm1G252V was 

similar to the strain dnm1Δ; on the contrary the growth of the dnmII543T mutant was 

unaffected (Figure 8A). To further investigate the OXPHOS defect, the oxygen 

consumption was measured and according to the growth phenotype, the oxygen 

consumption rate of the dnm1G397D and of the dnm1G397S mutants was respectively 30% 

and 20% lower than that of the wild type strain, whereas the oxygen consumption rate of 
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dnm1G252V and of the dnm1 null strain was decreased by 60%; also the dnmII543T mutant 

showed a slight though significant reduction of respiratory activity (Figure 8B). In yeast, 

mutations in several nuclear genes encoding for proteins involved in mitochondrial 

dynamics, such as MGM1 (the homologous gene of human OPA1), (Sesaki et al., 2003; 

Nolli et al., 2015), FZO1 (hMFN1), (Rapaport et al., 1998) and DNM1 itself (Bernhardt 

et al., 2015), affect mtDNA stability. Although the patients reported in this study did not 

show any mtDNA defects, we measured the frequency of petite, i.e. clones which are 

unable to grow on an oxidative carbon source due to large deletions or lack of mtDNA, 

in order to further highlight the defect of mutant Dnm1 proteins. Deletion of DNM1 as 

well as the expression of dnm1G252V resulted in a significant increase of petite frequency 

(∼50%) compared to the wild-type strain, whereas expression of dnm1G397D or dnm1G397S 

partially decreased mtDNA stability (∼40% and ∼25%, respectively), which is, however, 

lower than the DNM1 wild-type strain or the dnmII543T (∼8% and ∼15%, respectively) 

(Figure 8C). 

Altogether these results validated the pathogenicity of the mutations Gly252Val, 

Gly397Asp and Gly397Ser, showing also that substitution of Gly397 with aspartate is 

more deleterious than substitution with serine. The amino acid change Ile543Thr slightly 

affects the activity of the protein as well, being the respiratory activity and the petite 

frequency slightly altered compared to DNM1 wild type. Since the variant Ile512Thr was 

present in the patient in cis with the Gly362Asp, we also constructed a yeast mutant 

allele carrying both the corresponding variants. Interestingly, the dnm1G397D-I543T strain 

showed a more severe phenotype than the strain carrying the sole mutation Gly397Asp; 

in fact, the oxidative growth, the respiratory activity and the mtDNA mutability become 

similar to that of the null mutant suggesting that Ile543Thr is a phenotypic modifier 

(Figure 8A-C). 

Finally, we tested whether the mutations have a dominant or recessive effect by 

measuring the oxygen consumption rate of the diploid hemizygous DNM1/dnm1∆ strain 

transformed with the plasmid having mutant alleles or with the empty vector. The 

respiratory activity of the heteroallelic strains DNM1/dnm1G397D, DNM1/dnm1G397S and 

DNM1/dnm1G397D-I543T, but not that of DNM1/dnm1G252V and DNM1/dnm1I543T, was lower 

compared to the hemizygous strain DNM1/dnm1∆. This indicates that Gly397Asp and 

Gly397Ser have a partial dominant-negative effect whereas Ile543Thr and, quite 
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unexpectedly, Gly252Val act as recessive mutations (Figure 8D), at best concerning the 

effect on oxygen consumption. To better deepen this point, we investigated in the 

heteroallelic strain DNM1/dnm1G252V another phenotype, i.e the petite frequency, based 

on the observation that the mutation Lys41Ala, generally recognized as dominant (Frank 

et al., 2001), increased the petite frequency in an heteroallelic diploid mutant strain 

(Nasca et al., 2016). The significant increase (3.3-fold±0.6, p<0.001) of the petite 

frequency observed, compared to the hemizygous strain, suggests that also the 

Gly252Val mutation behaves as partially dominant, at least for this specific phenotype. 

Structural analysis 

All the identified missense mutations affect sites, which are totally or highly conserved 

sites among species (Figure 9A) and imply replacements with residues presenting 

physicochemical properties that differ significantly from those of the wild type amino 

acids. The p.Gly223Val mutation causes the substitution of the tiny and flexible glycine 

with a hydrophobic valine, which is expected to induce structural changes in the GTPase 

domain near residues 215-221 important for the binding of GTP (Figure 9B). The 

p.Gly362Asp and p.Gly362Ser mutations replace the tiny glycine with the anionic 

aspartic acid or with the hydrophilic serine, respectively, modifying the N-terminus of an 

α-helix also exploited in dynamin tetramerization (Figure 9C), as inferred by homology 

of dynamin-1-like with dynamin 3, another member of the dynamin family. The 

p.Phe370Cys mutation affects the large and hydrophobic phenylalanine that is important 

for the stability of monomers and for the tetramer formation (Figure 9D). In fact, Phe370 

is involved in several intramolecular hydrophobic interactions, which are disrupted by 

the replacement with the small cysteine and the latter might also become engaged in 

disulfide bond formation with other cysteines located nearby (Suppl. Figure S10). The 

p.Arg403Cys mutation implies the change of the cationic arginine into the tiny and 

neutral cysteine at sites that contribute to the core of tetrameric dynamin assembly 

(Figure 9E), as previously reported (Fahrner et al., 2016). 
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DISCUSSION 

Here we described five patients with epileptic encephalopathy and de novo dominant 

missense mutations in DNM1L. We identified two novel variants in Pt.1 and Pt.3, 

whereas in Pt.2 and Pt.5 we found two variants that were reported so far (Fahrner et al., 

2016; Sheffer et al., 2015). Pt.4 showed two variants on the same allele; the first was 

inherited from the mother and the second, recently described as a de novo mutation 

(Vanstone et al., 2016), was present in the mother’s blood DNA at low level (~5%), 

suggesting a maternal mosaicism. We observed a quite strict genotype-phenotype 

correlation, with overlapping clinical presentations between Pt. 2, Pt. 4, Pt. 5 and the 

previously described patients harboring the same mutation (reported by Fahrner et al., 

2016, Vanstone et al., 2016 and Sheffer et al., 2015 respectively). 

Following the first description of Waterham et al. (2007), there have been increasing 

reports in the last 2 years on patients, frequently sporadic, with de novo dominant-

negative DNM1L mutations who are affected by early onset encephalopathy with 

microcephaly and drug resistant seizures, progressive brain atrophy or abnormal brain 

development, optic atrophy, and occasionally persistent lactic acidemia. The degree of 

severity was broad, ranging from neonatal death to prolonged survival (Fahrner et al., 

2016; Zaha et al., 2016; Sheffer et al., 2016; Vanstone et al., 2016; Chao et al., 2016). A 

similar spectrum of clinical presentations has been also reported for DNM1L recessive 

mutations (Yoon et al., 2016; Nasca et al., 2016). More recently, dominant mutations in 

DNM1L have been also related to isolated optic atrophy in three large families (Gerber et 

al., 2017). 

The patients described here presented clinical manifestations quite similar to previously 

reported DNM1L cases manifesting early onset encephalopathy and characterized by 

development delay, together with episodes of SRSE, progressive cerebral atrophy, and 

transitory abnormal T2 hyperintensities and DTI restriction areas at MRI. In addition, 

elevated lactate level in serum was detected in Pt.2 and Pt.4, whereas lactate was normal 

in other patients. There are no clues about a peroxisomal dysfunction: when available 

(Pts 4 and 5), plasma phytanic and pristanic acids concentrations, typically increased in 

patients with peroxisomal disorders [ten Brink et al.,  1992], were normal. Excluding the 

16 patients with mild non-syndromic optic atrophy, six patients of the twelve reported in 

literature showing similar clinical manifestations died in early-childhood (Waterham et 
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al., 2007; Chao et al., 2016; Yoon et al., 2016; Zaha et al., 2016) and in four cases death 

occurred in the first year of age (Waterham et al., 2007; Chao et al., 2016; Yoon et al., 

2016). It is not clear why some mutations give rise to premature death. The cause of the 

early-childhood death cannot be attributed to the mode of transmission, since early death 

occurred both in patients with a dominant de novo mutation and in patients with recessive 

mutations (Waterham et al., 2007; Chao et al., 2016; Yoon et al., 2016; Zaha et al., 

2016), neither to the residual amount of DRP1, given that fibroblasts from a patient with 

long survival showed a strong reduction of the total amount of the protein (Nasca et al., 

2016). In the cohort of our patients only the Pt.4 died at six years of age, differently from 

the one already described with the same p.Gly362Asp mutation who showed prolonged 

survival (Vanstone et al., 2016). However, Pt.4 carried also a second, maternally 

inherited heterozygous DNM1L variant (p.Ile512Thr), which may explain the different 

degree of severity in these two cases; indeed, the yeast studies suggested that the 

p.Ile512Thr change can be a modifier, able to worsen the phenotype associated with the 

p.Gly362Asp mutation. 

Clinical signs of a severe epileptic encephalopathy with frequent episodes of SRSE and 

EEG abnormalities do not seem to be peculiar signs of this condition. Noteworthy, MRI 

abnormalities, and particularly the detection of transitory abnormal T2 hyperintensities 

and DTI restriction areas in the basal ganglia or the cortical areas are quite characteristic 

for DNM1L encephalopathy, although may rarely occur in other conditions such as 

MELAS or may represent a unspecific sign due to status epilepticus. 

Probably the most peculiar finding in the cohort of our patients is the muscle 

histology/histochemistry showing core like areas using oxidative enzyme staining for 

COX and SDH, which suggest an abnormal distribution of mitochondria in the muscle 

tissue. We found this pattern in all the examined muscle biopsies. Notably, reduced 

mitochondrial numbers and size and a paucity of mitochondria between sarcomeres in 

muscle have been noticed in transgenic Drosophila models expressing DNM1L variants 

identified in patients (Chao et al., 2016). Areas devoted of mitochondria have not been 

found in muscle biopsies of OPA1 mutated patients that can sometimes show ragged red-

COX negative fibers correlated with mitochondrial DNA instability (Amati-Bonneau et 

al., 2008). In the investigated patient with recessive OPA1 defect, although COX 

negative fibers were not detected, we confirmed multiple deletions. Contrariwise, in 
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muscle samples of DNM1L patients, the impairment of the mitochondrial network 

distribution was not associated with mitochondrial DNA instability. 

The primary sequence of DRP1 consists of four conserved regions: the GTPase domain, 

the middle, the variable, and the GTPase effector domain (GED). Revising all the cases 

published, we noted that mutations that fall into the GTPase domain are typically 

associated with a recessive trait (except for the cases not associated with early 

encephalopathy, reported by Gerber et al., 2017), while mutations that fall into the 

middle domain are expressed as dominant-negative. Here, we report on four mutations 

falling in the middle domain, which we suggest having a dominant negative effect on the 

oligomers stability. In fact, we likely exclude a DRP1 haploinsufficiency, as we observed 

normal or significant increase of protein level by western blotting analysis. Moreover, we 

excluded a gain of function effect on the physiological activity of DRP1 because we did 

not observe increase in mitochondrial fission; on the contrary patient’ fibroblasts showed 

hyperfused mitochondria. In only one of our patients (Pt. 1) we identified a mutation 

(p.Gly223Val) which falls into the GTPase domain, even if the nucleotide change is 

located at the boundary between the GTPase and the central domain. The yeast model 

indicated that it acts with a dominant-negative effect but probably through a mechanism 

different from the other mutations located in the middle domain. It is possible that the 

same mechanism may explain also the cases with isolated optic atrophy, harboring 

dominant mutations in the GTPase domain (Gerber et al., 2017); nevertheless, a gain of 

function effect has been postulated as well (Wangler et al., 2018). 

In the cytosol, DRP1 exists as a mixture of dimers and tetramers (Macdonald et al., 2014) 

and, when recruited to mitochondria via receptors anchored to the mitochondrial outer 

membrane (Losón et al., 2013), hydrolysis of GTP triggers conformational changes in 

DRP1 oligomers that generate the mechanical force to promote mitochondrial membrane 

scission (Francy et al., 2015). The middle and GED domains promote DRP1 self-

assembly, required for mitochondrial fission (Chang et al., 2010), while the variable 

domain seems to act as a negative regulator of DRP1 self-assembly (Francy et al., 2015). 

Structural analysis revealed hypothetical mechanisms of protein impairment and 

malfunctioning for all the missense mutations presented in this study. Specifically, the 

p.Gly223Val substitution seems to hamper the binding of GTP, hence the GTPase 

activity, the p.Gly362Asp mutation impairs the tetramer formation, as previously 
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described by the two-hybrid experiment of Farhner et al., 2016. Finally, also the 

p.Phe370Cys could influence the protein oligomerization. In the patient fibroblasts with 

this mutation we observed a significant increase of DRP1 level probably due to its altered 

degradation, in fact this amino acid change might cause disulfide-mediated abnormal 

multimerization. As matter of fact, in the protein structure the p.Phe370Cys mutation is 

located close to the mouse p.Cys452Phe substitution (p.Cys446Phe in the human 

protein), which has been demonstrated to cause an increase in higher-ordered assembly 

with supranormal GTPase function and a failure of oligomer disassembly (Cahill et al., 

2016). 

At the cellular level we found the presence of hyperfused, swollen and rod-shaped 

mitochondria in fibroblasts from all our patients, as reported for others DNM1L 

mutations (Waterham et al., 2007, Fahrner et al., 2016; Zaha et al., 2016; Sheffer et al., 

2016; Vanstone et al., 2016; Nasca et al., 2016; Gerber et al., 2017; Ladds et al., 2018; 

Ryan et al., 2018). The morphological anomalies were not associated with overt 

OXPHOS dysfunctions, in fact we did not observe reduction of OXPHOS subunits levels 

and cellular respiration was unaffected. Likewise, the activities of the MRC complexes in 

muscle were normal in the four patients of our cohort for whom muscle biopsy was 

obtained. The same findings have been reported in most of the DNM1L-mutant cases; in 

only few patients slightly decreased activity of complex IV, altered ATP production or 

impaired oxygen consumption were observed in fibroblasts (Sheffer et al., 2016; Nasca et 

al., 2016), or in muscle (Ladds et al., 2018). Surprisingly, histochemistry of Pt.1, Pt.2, 

Pt.3 and Pt.4 showed scattered fibers with a partial reduction of COX and SDH stainings, 

and with aspects of polymorphic core like areas. Moreover, we also identified areas with 

reduced immunoreactivity to mitochondrial signal, suggesting an abnormal distribution 

of organelles. Accordingly, the EM examination showed a few fields, mainly located at 

the center of the fibers, devoid of mitochondria. In these areas the sarcomeric 

organization was quite normal, though the Z lines were often absent (Supp. Figure S3) as 

reported in selenoprotein-related diseases (Cagliani et al., 2011), or somewhat irregular 

(Supp. Figure S5, Supp. Figure S6). Interestingly, at EM the areas devoid of 

mitochondria did not show any major misalignment such as streaming of the Z-bands, 

that is well known to occur in the cores which are typically devoid of oxidative stains in 

RYR1 related myopathies (Monnier et al; 2000). This is a new finding and can be 

considered as a key aspect suggesting mutations in DNM1L. In fact, no peculiar 
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histochemical alterations have been reported so far in the muscle biopsies of DNM1L 

patients. The histological features of muscle biopsies associated with the de novo 

dominant mutation p.Arg403Cys, very recently reported (Ladds et al., 2018), are often 

found in other mitochondrial diseases and cannot be considered specific for DRP1 

impairment. 

In addition to mitochondrial fission, DRP1 is also implicated in the division of 

peroxisomes (Schrader et al., 2016); to this purpose we investigated peroxisomal 

morphology and in fibroblasts from Pt. 4 and Pt. 5 we observed organelles significantly 

longer, larger, and less uniformly distributed into cytoplasm, in contrast with the highly 

diffused punctuated staining present in control cells; the same condition has been 

described for other patients with mutations in DNM1L (Waterham et al., 2007; Nasca et 

al., 2016; Zaha et al., 2016) and in transgenic Drosophila model expressing a mutant 

form of DNM1L (Chao et al., 2016). 

It is not clear why defects of mitochondrial and peroxisomal fission affect predominantly 

the nervous system. It was demonstrated that DRP1 is required for embryonic and brain 

development in mice (Ishihara et al., 2009; Wakabayashi et al., 2009). Particularly, 

DRP1 knockout (KO) caused alteration of mitochondrial morphology and proliferation of 

embryonic Purkinje cells, suggesting that their development depends highly on 

mitochondrial division (Wakabayashi et al., 2009). Subsequently, it has been 

demonstrated that loss of DRP1 led to accumulation of oxidative damage, decreased 

respiratory function, and neurodegeneration also in post-mitotic Purkinje cells, while 

DRP1 KO Mouse Embryonic Fibroblasts (MEFs) maintain normal respiration and ATP 

levels (Kageyama et al., 2012). Given that post-mitotic neurons contain high ROS levels 

and do not proliferate, the mitochondrial quality control mechanism is essential, while in 

MEFs, which actively proliferate, mitochondria are produced continuously during cell 

proliferation and therefore the effect of any oxidative damage may be diluted by the 

newly formed mitochondria. Moreover, a previous study has shown that the delivery of 

mitochondria into dendritic protrusions in response to synaptic stimulation is strictly 

dependent on an efficient mitochondrial transport, that requires DRP1-dependent division 

(Li et al., 2004); altered mitochondrial distribution likely affects the function and 

formation of synapses as well as the survival of neurons (Sheng & Cai, 2012; Sheng, 

2017). Therefore, the retained DRP1 activity is likely sufficient for organs with limited 
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mitochondrial remodeling, while impaired DRP1 activity could strongly affect the 

nervous system, thus explaining the involvement of DRP1 in many neurodegenerative 

disorders. 
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Figures 

Figure 1 MRI pattern of Pt.1 (A-F) obtained at age 6 years and Pt.2 (G-J) obtained at age 

7 years. A: T2 weighted axial image; B: FLAIR weighted axial image; C-D: serial DTI 

images obtained serially in two different days of the same month. In Pt1 the MRI shows 

signs of global cerebral and cerebellar atrophy, with moderate enlargement of the 

ventricles. Two serial brain axial DTI weighted MRIs were performed in the same month 

with a distance of 20 days; the first MRI showed a cortical DTW restriction 

hyperintensity in the right precentral gyrus, and abnormal DTI restriction hyperintensities 

corresponding to the pallidum and thalamus of the right hemisphere (C). These 

abnormalities vanished spontaneously 20 days later when a serial brain MRI was 

performed (D). In Pt.2 the T1 weighted sagittal image (G) and axial T2 weighted (I) and 

corresponding axial FLAIR weighted images were consistent with a slight global 

cerebral atrophy, while a cortical DTW restriction hyperintensity was observed only once 

in the right precentral gyrus (G-J) out of 3 MRI scans performed within 3 months of 

time. 
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Figure 2 MRI pattern of Pt3. Brain MRI performed at age 7 years. A: T2 weighted axial 
image; B: the corresponding FLAIR weighted axial image; C: sagittal T1 weighted; D: 
coronal T2 weighted image, showing global severe cortical atrophy that was prominent 
in both the right hemisphere and the homolateral cerebral peduncle (A-B). 

 

Figure 3 Panel showing the histochemistry of quadriceps muscle samples of Pt.1, Pt.2, 
Pt.3 and control. The muscle histochemistry of serial sections of three patients with 
heterozygous dominant mutations in DNM1L and stained with cytochrome c oxidase 
(COX) and succinate dehydrogenase (SDH) showed scattered fibers with a patchy 
reduction of both COX and corresponding SDH staining, with aspects of polymorphic 
core like areas (left and central panel). Similarly areas of reduced immunoreactivity were 
observed using the TOMM20 antibody confirming impairment of the mitochondrial 
network distribution (right panel). These abnormalities were not detected in the muscle 
biopsy of a patient with biallelic mutations in OPA1 (last bottom row) already described 
(Nasca et al., 2017). The plasma membrane is stained in red fluorescence with an 
antibody against dystrophin. 
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Figure 4 Electropherograms. The variants identified by NGS in DNM1L (A-E) have 

been confirmed by Sanger sequencing in all patients and their parents. In D’ the second 

variant identified in Pt.4 (c.1535T>C), inherited from the mother. 
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Figure 5 Western blotting analysis. Immunoblot analysis of total lysates from controls 
(Ct) and patients (Pt) fibroblasts using DRP1, VDAC, and GAPDH antibodies. The latter 
was used as loading control. The steady state level of DRP1 protein is significantly 
increased in Pt.3 fibroblasts. Values in the graph are given as the mean ± SD (n = 4 to 5); 
*, p<0.05. 

 

Figure 6 Characterization of the mitochondrial network: analysis by fluorescence 
microscopy. A-B: Representative images of mitochondrial morphology in fibroblasts 
from Pt.1, Pt.5 and Ct, grown either in glucose or galactose medium. In glucose medium 
(left panel) patients’ fibroblasts are characterized by a mixed population with hyperfused 
swollen and rod-shaped mitochondria; in galactose medium (right panel) the 
mitochondrial network of patients’ fibroblasts showed a lower tendency to fuse 
associated with a more disorganized network and an altered mitochondria morphology, 
with swollen, dots, rings, and “chain-like” structures. (Scale bar: 25 μm). 
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Figure 7 Characterization of the peroxisomal network: analysis by fluorescence 

microscopy. Immunofluorescence staining with the anti-PMP70 antibody of fibroblasts 

from Ct, Pt.4 and Pt.5. Patients’ fibroblasts displayed organelles longer, larger, and less 

uniformly distributed into cytoplasm compared to control (Scale bar: 25 μm). A form 

factor (“circularity”) value of 1.0 indicates a perfect circle; values approaching to 0.0 

indicate increasingly elongated shapes. 
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Figure 8 Functional studies in yeast. A: Phenotypic analysis of haploid strains through 

spot assay. Serial cell dilutions (5x104, 5x103, 5x102 and 5x101 cells/spot) of dnm1∆ 

haploid strain transformed with DNM1 wild type or mutant alleles were spotted on SC 

medium supplemented with either 2% glucose or 2% glycerol. Pictures were taken after a 

3-days incubation at 37°C. B: Petite frequency of dnm1∆ haploid strain transformed with 

DNM1 wild type or mutant alleles. Values are means of six to eight independent clones ± 

SD. **(p<0.01) and ***(p<0.001) in a ANOVA test followed by a Bonferroni’s test. C: 

Respiratory activity of dnm1∆ haploid strain transformed with DNM1 wild type or 

mutant alleles. Values are means ± SD of experiments on five clones and have been 

normalized to the respiratory activity of the DNM1 wt strain. *(p<0.05) and 

***(p<0.001) using ANOVA with post-hoc Bonferroni’s test. D: Respiratory activity of 

DNM1/dnm1∆ diploid strain transformed with DNM1 wild type or mutant alleles. Values 

are means ± SD of experiments on five clones and have been normalized to the 

respiratory activity of the DNM1 wt strain. *(p<0.05) and ***(p<0.001) using ANOVA 

with post-hoc Bonferroni’s test. 
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Figure 9 Conservation and structural mapping of residues affected by the missense 

mutations G223V, G362D, F370C, and R403C. A: multiple sequence alignment among 

species (invariant columns are grayed). B: mapping of G223 on the crystal structure of a 

dimeric human dynamin-1-like protein (PDB 3W6O; residues 215-221, colored in 

magenta, are important for GTP binding; the cocrystallized nucleotide analogue is shown 

as sticks). Mapping of G362 (C), F370 (D), and R403 (E) on dynamin tetramer (PDB 

5A3F). The red dotted lines indicate the disordered regions in which R403 is hosted in 

two of the four dynamin monomers. The different dynamin chains are in distinct colors. 

Amino acid numbering is made according to the isoform 1 of dynamin-1-like protein 

(NP_036192.2). 
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