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ABSTRACT

Background: Cortical dysfunctioning significantly contributes to the pathogenesis of motor symptoms in
Parkinson's disease (PD).
Objective: We aimed at testing whether an acute levodopa administration has measurable and specific
cortical effects possibly related to striatal dopaminergic deficit.
Methods: In thirteen PD patients, we measured the electroencephalographic responses to transcranial
magnetic stimulation (TMS/EEG) of the supplementary motor area and superior parietal lobule (n=38)
before and after an acute intake of levodopa. We also performed a single-photon emission computed
tomography and ['?*I|N-w-fluoropropyl-2p-carbomethoxy-3p-(4-iodophenyl)nortropane to identify the
more affected and the less affected brain side in each patient, according to the dopaminergic innervation
loss of the putamen. Cortical excitability changes before and after an acute intake of levodopa were
computed and compared between the more and the less affected brain side at the single-patient as well
as at the group level.
Results: We found that levodopa intake induces a significant increase (P < 0.01) of cortical excitability
nearby the supplementary motor area in the more affected brain side, greater (P < 0.025) than in the less
affected brain side. Notably, cortical excitability changes nearby the superior parietal lobule were not
statistically significant.
Conclusions: These results strengthen the idea that dysfunction of specific cortico-subcortical circuits
may contribute to pathophysiology of PD symptoms. Most important, they support the use of navigated
TMS/EEG as a non-invasive tool to better understand the pathophysiology of PD.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

(fMRI) [3] have shown that cortical dysfunctioning contributes to
the pathogenesis of symptoms in Parkinson's disease (PD). Spe-

Functional neuroimaging studies using positron emission to-
mography (PET) [1], single-photon emission computed tomogra-
phy (SPECT) [2] and functional magnetic resonance imaging
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cifically, the cortical regions that have been mostly studied are the
Supplementary Motor Area (SMA), the Dorsolateral Prefrontal
Cortex (DLPFC) and the Primary Motor Cortex (M1). While for M1
findings are more controversial [4], an abnormal reduction of SMA
excitability has been consistently reported and also confirmed by
neurophysiological studies of the electrophysiological signature of
motor preparation, such as movement-related potentials [5,6].
Overall, several experimental evidences foster the hypothesis that
SMA dysfunctioning should be taken into account to explain the
pathogenesis of bradykinesia, which is the cardinal symptom of
PD [7].

1935-861X/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

Al Asymmetry index

DAT Dopamine reuptake transporter
DLPFC Dorsolateral prefrontal cortex
EEG Electroencephalography

EF Electric field

fMRI Functional magnetic resonance imaging
ICA Independent Component Analysis
H+ Less affected hemisphere

H- More affected hemisphere

H&Y Hoehn and Yahr scale

IRA Immediate response area

LMFP Local mean field power

M1 Primary motor cortex

MRI Magnetic resonance imaging

PBR Putamen-specific binding ratio

PET Positron emission tomography

I'TMS Repetitive transcranial magnetic stimulation
SMA Supplementary motor area

SPECT Single-photon emission computed tomography
SPL Superior parietal lobule

SS Symptom sub-score

TEPs TMS-evoked potentials

TMS Transcranial magnetic stimulation

UPDRS-III Unified Parkinson Disease Rating Scale motor part

A reduction of SMA activity follows the typical dopaminergic
impairment within the basal ganglia that characterizes PD: this
cortical area is a crucial component of the basal ganglia-thalamo-
cortical circuit model, which is composed of parallel reentrant
cortico-subcortical circuits spreading from specific cortical areas,
passing through the basal ganglia and thalamus, and projecting
back to their respective areas of origin [8,9]. In particular, the basal
ganglia [10,11] and especially the putamen [12,13] are densely
interconnected with the motor and premotor cortex as well as the
SMA. A pathological hyper-connectivity between SMA and puta-
men, but not with caudate, has also been shown in PD patients
using a resting state fMRI approach [14].

Therefore, several functional and anatomical characteristics of
the SMA provide an empirical rationale for using this cortical area
as a potential therapeutic target of neuromodulatory approaches.
Indeed, repetitive TMS (rTMS) applied over the SMA in random-
ized, double-blind studies has been reported to modestly improve
motor symptoms in patients with PD [15,16], but the clinical
benefit of cortical stimulation at the single patient level is still
debated [17].

Besides its possible therapeutic use, single-pulse TMS is also
suitable to investigate motor cortex dysfunctioning through motor
potentials evoked by direct stimulation of M1 [7]. This conventional
neurophysiologic approach has revealed an excessive corticospinal
motor output at rest and a reduced facilitation of muscular acti-
vation during voluntary muscle contraction in PD patients
[7,18—-20]. In this context, the combination of navigated TMS with
simultaneous high-density electroencephalography (TMS/EEG) al-
lows to non-invasively probe both local and global changes of brain
excitability and connectivity [21] through the recording of TMS-
evoked potentials (TEPs), which represent genuine cortical re-
sponses to a direct perturbation [22]. In addition, the neuro-
navigated TMS/EEG system offers the unique opportunity to target
associative cortical areas, and to obtain a direct readout of cortical
function that does not involve either the cortico-spinal tract or
peripheral muscle activation.

Therefore, following previous approaches aimed at detecting
cortical dysfunctions in PD, TMS/EEG may be used to disclose
functional properties of secondary cortical regions involved in the
basal ganglia-thalamo-cortical loop and to obtain complementary
information related to the complex pathophysiology of PD motor
signs and symptoms.

With this aim, we measured TEPs recorded during stimulation
of SMA before and after levodopa intake in PD patients. Specifically,
in the present study we tested i) whether an acute levodopa intake
has specific and measurable effects on cortical excitability (here
referred to as the strength of the cortical response to a direct
perturbation) and ii) whether these neurophysiological effects

parallel the asymmetry of akinetic-rigid symptoms and the corre-
sponding dopaminergic striatal innervation loss.

Materials and methods

Patient population. We enrolled thirteen patients with idiopathic
PD (Table 1), diagnosed according to the UK Parkinson Disease
Brain Bank criteria [23]. All patients were on stable dopaminergic
treatment for at least three months prior to this study and were
showing a significant benefit from levodopa administration. Clin-
ical assessment was performed with the Unified Parkinson Disease
Rating Scale motor part (UPDRS-III) [24]: a left and a right symptom
sub-score (SS) was computed by summing the items between 22
and 26, in which a lateralized score is available [25] (Table 1). The
following clinical inclusion criteria were applied: (i) UPDRS part I
score of 0, (ii) Hoehn and Yahr (H&Y) scale [26] stage 2; (iii) no
psychiatric disorders or other neurological diseases other than PD;
and (iv) absence of any sign indicative for atypical parkinsonism
(e.g., gaze abnormalities, autonomic dysfunction, psychiatric dis-
turbances, etc.). All patients had no cognitive decline as assessed by
the Mini-Mental State examination, Clock Drawing Test and Frontal
Assessment Battery. Patients with medical history of seizures, loss
of consciousness and traumatic brain injury, intracranial metallic
devices and/or of cardiac pacemakers were excluded to prevent
potential adverse effects of TMS. Anatomical T1-weighted magnetic
resonance images (MRI; 1.5T scanner, Achieva, Philips Medical
Systems, Amsterdam, The Netherlands; 0.94 x 0.94 x 1 mm spatial
resolution) were collected within a week prior to TMS/EEG
assessment; only patients without major structural abnormalities
(e.g, white matter lesions or cortical atrophy) were enrolled in the
study. The local ethical committee approved the study design and
all patients signed an informed consent form.

SPECT imaging. All patients were evaluated with single-photon
emission computerized tomography (SPECT) in order to objec-
tively ascertain the asymmetry of dopaminergic degeneration. The
striatal dopamine reuptake transporter (DAT) density was
measured with SPECT and ['%3I|N-w-fluoropropyl-2p-carbome-
thoxy-3p-(4-iodophenyl)nortropane (FP-CIT) (for more details,
refer to [27]). Scanning was performed with a triple detector
gamma-camera (Prism 3000, Philips, Eindhoven, The Netherlands)
equipped with low-energy ultra-high resolution fan beam colli-
mators (4 subsets of acquisitions, matrix size 128 x 128, radius of
rotation 12.9—13.9 cm, continuous rotation, angular sampling: 3°,
duration: 28 min) about 3—4 h after intravenous administration of
110—185 MBq of FP-CIT (DaTSCAN™, GE Healthcare, Arlington
Heights, IL, USA) preceded by thyroid blockade (10—15 mg of Lugol
solution per os). Brain sections were reconstructed with an iterative
algorithm (OSEM, 4 iterations and 15 subsets), followed by 3D
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Table 1

Demographic and clinical characteristics of Parkinson's disease patients. y = years; f = female; m = male; LEDD = levodopa equivalent daily dose [54]; UPDRS-IIl = Unified
Parkinson Disease Rating Scale motor part; SS = symptom sub-score; PBR = putamen-specific binding ratio; Al = asymmetry index; H- is the brain side with lower PBR (i.e. the

more affected side); N/A = not applicable.

Patient age (y)/gender disease duration (y) LEDD (mg/day) UPDRS-III SS meds-off/ PBR Al H-
meds-on
meds-off meds-on left right left right

1 73/f 1 100 10 8 6/5 3/3 0.88 0.73 —-18.63 right
2 57/m 4 505 13 7 31 9/5 1.20 141 16.09 left
3 66/m 18 115045 21 17 4/3 8/6 0.62 0.65 4.72 left
4 53/f 2 505 13 7 31 7/4 0.97 0.80 -19.21 right
5 70/m 6 715 9 2 7/2 0/0 0.49 0.40 -20.22 right
6 58/m 14 738.15 16 4 4/0 5/1 0.25 0.31 2143 left
7 51/f 3 505 9 5 2/0 2/1 1.07 1.09 1.85 N/A
8 69/m 5 600 9 3 5/2 1/0 0.67 0.40 -50.47 right
9 63/m 4 610 19 8 7/3 8/3 0.77 0.89 14.46 left
10 55/m 7 718.2 7 0 5/0 2/0 1.00 0.61 —48.45 right
11 73/m 9 480 16 8 5/3 6/4 1.15 1.50 26.42 left
12 61/m 4 405 14 4 2/0 5/1 0.60 0.82 30.99 left
13 53/f 5 460 19 6 9/2 4/1 1.27 0.76 -50.25 right

filtering of sections obtained (Butterworth, order 5, cut-off 0.31 Ny)
and attenuation correction (Chang method, factor 0.12). The
putamen-specific binding ratio (PBR) for the left and right hemi-
sphere was estimated by semi-quantitative image analysis with the
two dimensional Crescent ROI algorithm (12 mm-thickness)
implemented in QuantiSPECT (GE Healthcare, Arlington Heights, IL,
USA) software package [28]. The asymmetry index (Al) was
computed as [PBR(right) — PBR(left)]/[PBR(right) + PBR(left)] x 200
(as reported by Ref. [29]). The brain side with lower PBR was
labeled as H-, whereas the one with higher PBR was labeled as H+
(Table 1). Within the patient population, PBR was lower on the left
brain side in 7 patients (Al > 0) and on the right brain side (Al < 0)
in the remaining 6 patients (Table 1). However, in two patients (n. 3
and n. 7) Al was lower than 10%, indicating that dopaminergic
denervation was almost symmetric according to SPECT imaging.
We decided to exclude patient n. 7 from group analysis because the
lateralized symptom sub-score in meds-off session was not asym-
metric as well (SS(left) =SS(right) =2, Table 1). Conversely, we
decided to include patient n. 3 into group analysis considering the
left hemisphere as H-, because behavioral motor deficits were
definitely prevalent on the right body side, consistent with the
asymmetry direction (Al = 4.72) provided by SPECT imaging. In the
remaining 11 patients, clinical assessment was congruent with
SPECT imaging asymmetry (i.e. worse motor impairments contra-
lateral to H-), except for patient n. 4 who showed higher SS score on
the body side ipsilateral to H-.

Experimental protocol. The experimental protocol (Fig. 1A) con-
sisted in two experimental sessions: the first one (meds-off) was
performed after that levodopa had been withdrawn overnight for at
least 12 h, dopamine-agonists had been suspended for three days
and all other dopaminergic drugs (e.g. MAO-B inhibitors) for one
week prior to the experiment. The second session (meds-on) star-
ted 60 min after oral intake of 200/50 mg of fast-released soluble
levodopa/benserazide. Each session involved a clinical assessment
with the UPDRS-III (about 10 min duration) and a neurophysio-
logical assessment by means of TMS/EEG measurements (between
25 and 45 min duration).

TMS/EEG measurement. Brain responses to TMS were recorded
with a 60-channel TMS-compatible EEG amplifier (Nexstim Ltd.,
Helsinki, Finland). Impedance at all electrodes was kept below 5 k(.
EEG was referenced to an additional electrode on the forehead,
band-pass filtered between 0.1 and 350 Hz and sampled at 1450 Hz
with 16 bit resolution. Vertical electrooculogram was recorded with
two extra sensors in order to monitor ocular movements and
blinks. TMS was delivered with a Focal Bipulse 8-Coil (mean/outer

winding diameter ca. 50/70 mm, biphasic pulse shape, pulse length
ca. 280 s, focal area of the stimulation hot spot 0.68 cm?; eXimia
TMS Stimulator, Nexstim Ltd., Helsinki, Finland). The coil was al-
ways placed tangentially to the scalp, in order to optimize trans-
mission of the magnetic field to the cortical surface. Stimulation
parameters were carefully controlled by means of a Navigated Brain
Stimulation (NBS) system (Nexstim Ltd., Helsinki, Finland), that
employs a 3D infrared tracking position sensor unit (Polaris,
Northern Digital Inc., Waterloo, Canada) and integrates T1-
weighted MRIs recorded from all patients. Stimulation intensity
was set to induce an estimated maximum electric field (EF) in the
target area of about 120 V/m, in order to elicit robust and repro-
ducible EEG responses [30,31]. Since supra-threshold stimulation of
the primary motor cortex produces TEPs that are also affected by a
peripheral sensory feedback [32], we always checked that stimu-
lation intensity did not evoke muscle twitches to prevent a con-
founding factor. Single TMS pulses were delivered with an inter-
stimulus interval randomly jittering between 1500 and 1800 ms
(equivalent to ca. 0.56—0.67 Hz), which does not induce any reor-
ganization/plasticity processes possibly interfering with longitu-
dinal measurements [31]. During TMS stimulation, patients wore
in-ear headphones continuously playing a customized masking
noise [33] to maximally reduce the contribution of auditory po-
tentials elicited by TMS-associated clicks to genuine brain re-
sponses to TMS [34].

TMS targeting. The caudal portion of the middle-superior
frontal gyrus (Supplementary Motor Area - SMA, Brodmann area
- BA6) was stimulated with TMS in all patients on both brain sides.
In 8 out of 12 patients (n. 1-2-3-4-6-8-11-12), the superior parietal
lobule (SPL, Brodmann area - BA7) was additionally targeted
bilaterally as a control region not specifically involved in the
dopamine-dependent cortical-basal ganglia-thalamo-cortical cir-
cuitry [9]. Supplementary Table 1 reports the MNI-transformed
anatomical coordinates of the TMS hotspots in each patient (see
also Fig. 1B and Supplementary Fig. 1). In each cortical target, the
location of the maximum EF was always kept on the convexity of
the gyrus with the induced current perpendicular to its main axis,
about 1 cm lateral to the midline in order to prevent unwanted
direct activation of scalp or facial muscles [35]. Homologous
cortical areas of the left and right hemisphere were stimulated
with the same estimated EF intensity and direction in a counter-
balanced order across patients and sessions. Therefore, either two
(SMA left and right) or four (SMA left and right; SPL left and right)
TMS/EEG measurements were collected in each patient during
each experimental session.
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Fig. 1. Outline of the experimental protocol and data analysis procedures. A. Experimental protocol timeline. B. The central plot shows that the dopaminergic impairment of the
putamen (as measured by the putamen-specific binding ratio - PBR) is asymmetric: specifically, the left part of panels B, C and D refers to the less affected brain side (H+) while the
right part to the more affected brain side (H-). The topographical scalp maps show the overall EEG channels layout: the selected clusters of channels nearby the SMA (Supple-
mentary Motor Area) target are highlighted. The location of the SMA (cyan closed path) and the spatial extent of the cortical sources that project to the corresponding cluster of
selected channels (yellow) are depicted on brain maps (see Supplementary Fig. 1 for methodological details). C. Average TMS-evoked potentials (TEPs) recorded from a repre-
sentative patient (n. 1) during meds-off (blue) and meds-on (red) sessions. The large and early positive and negative TEP components are respectively highlighted by a reversed U-
shaped black line and a U-shaped black line. Vertical dashed lines mark the time intervals for computing the immediate response area (IRA). D. Local mean field power (LMFP)
computed on the cluster of channels nearby the SMA target during meds-off (blue) and meds-on (red) sessions. The central plot shows the percentage change of IRA (A4IRA)
between meds-off and meds-on sessions computed nearby the stimulated SMA target on the less affected brain side (H+) and on the more affected brain side (H-).

Data preprocessing. Data analysis was carried out using MAT-
LAB® (2014b, The MathWorks Inc.). Single-trial TMS-evoked po-
tentials (TEPs) were visually inspected and artifact-contaminated
trials (e.g. sporadic movement artifacts) were rejected from further
analysis. EEG was band-pass filtered between 1 and 80 Hz, down-
sampled to 725Hz, and re-referenced to the common average
reference after removal and interpolation of bad channels (always
less than six and located on the scalp periphery) with the spherical
method implemented in the EEGLAB toolbox [36]. The channels
nearby the stimulated sites were never rejected because signal
quality was always acceptable. Typical artifacts of muscular and
ocular origin were reduced by subtracting visually-selected

components estimated by Independent Component Analysis (ICA)
(runica function, EEGLAB toolbox). Average TMS-evoked potentials
were computed from a minimum number of 90 artifact-free single
trials (mean + standard error across all TMS/EEG measurements:
233 + 8 trials; range 97—380 trials) for each stimulation site and
session.

Computation of the Immediate Response Area. TEPs were specif-
ically analyzed to measure cortical excitability (here referred to as
the strength of the cortical response to a direct perturbation) and
its modulation by acute levodopa intake; therefore, we focused
data analysis on the early components of the EEG responses evoked
by TMS nearby the stimulated site, similarly to [37]. Four clusters of
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six neighboring channels each were defined nearby the TMS coil
positions during stimulation, according to the Nexstim manufac-
turer labelling (which does not rigorously correspond to the In-
ternational 10—20 nomenclature): {AF1, F5, F1, FC3, FC1, C1} and
{AF2, F2, F6, FC2, FC4, C2} corresponding to the left and right SMA
target respectively and {C1, CP3, CP1, P3, P1, P03} and {C2, CP2, CP4,
P2, P4, PO4} corresponding to the left and right SPL target respec-
tively (Fig. 1B and Supplementary Fig. 1 show the spatial extent of
the cortical regions that project to each cluster). For each cluster,
the local mean field power (LMFP) was computed as square root of
squared TEPs averaged across the neighboring channels. The im-
mediate response area (IRA) was computed as the area subtended
by the LMFP over a specific time interval, which was individually
defined according to the same procedure described in Ref. [37].
Specifically, we considered the early and large TEP components
locally triggered by TMS, consisting in a positive wave (Fig. 1B, black
reversed U-shaped line) followed by a negative wave (Fig. 1B, black
U-shaped line). The time intervals were defined in correspondence
to the local minima of the LMFP encompassing the early positive
and negative evoked waves. For each stimulated site and patient,
we defined a specific time interval based on the EEG responses
obtained during the meds-off session and we used the same in-
terval also for the corresponding meds-on session. At the group
level, the following time intervals (mean + standard deviation)
were defined for the LMFP computed nearby the SMA and the SPL
targets respectively: between 15.2 +2.76 ms and 63.4 +9.65 ms
and between 13.8 + 1.38 ms and 57.9 + 11.3 ms.

In order to measure the effect of acute levodopa intake on
cortical excitability, the percentage change of IRA between meds-
off and meds-on sessions was computed as follows:

AyIRA = (IRAon - IRAoff) / IRA x 100

For each stimulated cortical region, A4xIRA was computed from
the cluster of channels nearby the TMS target as well as from the
corresponding contralateral cluster using the same time interval.

Non-parametric permutation-based statistical analysis, as
described in Ref. [37], was applied to compare IRA values between
meds-off and meds-on sessions at the single-patient level. Specif-
ically, under the null hypothesis of equivalence between meds-off
and meds-on session, 1000 surrogate TEPs were computed by
averaging single trials randomly selected from the two sessions;
then, a null distribution of IRA values was obtained from the LMFPs

A

™S
[ |
8uv : — meds-off g pv

— meds-on
o /\
i}
=

of surrogate TEPs. A¢IRA was considered significant at P < 0.05
when either IRAqg or IRA,, values laid beyond the 2.5-th and the
97.5-th percentile tails of the null distribution.

After the identification of the H+ and H- brain sides in each
patient using the PBR, group analysis was performed by pooling
together the EEG responses to stimulation of either the H+ or the
H- brain side, irrespective of specific anatomic side. At the group
level, non-parametric Wilcoxon signed-rank test was applied to
identify whether A4IRA was significantly different from O across
patients as well as to compare between the AyIRA values obtained
from stimulation of H+ and H- brain sides. The same statistical test
was also used to compare clinical scores between meds-off and
med-on sessions at the group level.

Results

From a clinical perspective, as expected acute levodopa intake
resulted in a significant improvement of motor symptoms in all
patients (Table 1). In fact, at the group level we found a significant
decrease of the UPDRS-III score (W(13) = —-91, P=0.0002) as well
as of the SS (W(13) = —91, P =0.0002 on the left and W(13) = —66,
P =0.001 on the right body side) in meds-on as compared to meds-
off sessions.

From a neurophysiological perspective, Fig. 2A shows the
grandaverage TEPs and LMFPs obtained from the clusters of chan-
nels nearby the stimulated SMA in meds-off (blue) and meds-on
(red) sessions (grandaverage TEPs obtained from all stimulation
sites and sessions are shown in Supplementary Fig. 2). At the group
level, A4IRA between meds-off and meds-on sessions was signifi-
cantly different from O only on the more affected brain side H-
(Table 2; P <0.01). Specifically, A4IRA nearby the stimulated SMA
was significantly higher (P = 0.021) in H- than H+ (Fig. 2B). At the
single-patient level, A4IRA was always significantly different from
0 nearby the stimulated SMA on the H- brain side (Table 2). Of note,
A«IRA was negative in H- and higher in H+ than H- only in one
patient (n. 4), who also showed contrasting evaluations between
clinical and SPECT assessments (Table 1).

As a control for the spatial extent of this effect, we applied the
same analysis to the clusters of channels contralateral to the
stimulated SMA and we did not find any significant difference
(P=0.79) of A%IRA between H- and H+ sides (Fig. 3A and Table 2).
This result suggests that levodopa intake has mainly a local effect
on cortical excitability nearby SMA rather than producing global
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Fig. 2. Cortical excitability changes in the supplementary motor area. Grandaverage of TEPs averaged across the channels nearby the SMA target and corresponding gran-
daverage LMFP (shading represents the standard error). B. Percentage change of the immediate response area (Ay4IRA) between meds-off and meds-on sessions nearby the

stimulated SMA in each patient.
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Table 2

Percentage change of the immediate response area (A%IRA) between meds-off and meds-on sessions nearby and contralateral to the stimulated supplementary motor
area (SMA) and superior parietal lobule (SPL) on H + and H- brain sides. H+ and H- refer to the brain side with higher and lower putamen-specific binding ratio respectively.
*P < 0.05,*P < 0.01 when testing whether A4IRA was significantly different from O (either assessed by non-parametric permutation-based statistical analysis at the single-
patient level or by non-parametric Wilcoxon signed-rank at the group level). i = group average; SE = standard error.

patient SMA SPL

nearby contralateral nearby contralateral

H+ H- H+ H- H+ H- H+ H-
1 -0.14* 0.27* -0.27* -0.05 -0.21* -0.14 0.01 0.26
2 -0.19* 0.48* —-0.09 0.21 0.55* 0.12* 0.65* -0.23*
3 0.11 1.16* 0.11* 0.33* 1.02 0.11 0.62 —0.03
4 0.17 -0.33* 0.15 -0.49 -0.02 -0.02 -0.09 -0.21
5 0.13 0.43* 0.05 0.62*
6 0.08 0.19* —0.08 0.29* —0.03 0.24 0.17* 022
7
8 0.02 0.36* 0.02 0.46*
9 0.79* 1.00* 2.02* 0.44*
10 1.06* 1.18* 1.09* 0.72* 0.4* 0.45* 0.53 0.36
11 -0.11 0.26* -0.12* —-0.55* 0.07 1.59* 0.77* 0.69*
12 0.05 0.10* 0.18* 0.29* -0.14* 1.5* -0.01 0.84*
13 0.54* 0.63* 0.09 1.21*
u+SE 0.21+0.11 0.48™ +0.13 0.26+0.19 0.29+0.14 0.21+0.15 0.48 +0.24 0.33+0.12 0.24+0.14

changes in brain responses to TMS. In addition, in order to control
for the effect of levodopa on other brain regions, we analyzed the
EEG responses to TMS of SPL: AyIRA was not significantly different
between H- and H+ neither nearby (Fig. 3B; P = 0.38) nor contra-
lateral (Fig. 3C; P=0.55) to the stimulated SPL (Table 2).

Since only 2/3 of the patients have been stimulated on SPL, we
have verified whether the significance of the difference of A%IRA
between H- and H+ brain sides obtained from SMA stimulation was
confirmed on 100 random samples of 7 out of 11 patients (patient n.
4 has been excluded from this analysis because of its peculiar
characteristics with respect to SPECT and clinical assessment). Non-
parametric Wilcoxon signed-rank test confirmed that A%IRA
nearby the stimulated SMA was significantly higher (P = 0.016) in
H- than H+ in all 100 random samples.

When disregarding SPECT imaging, the comparison of AyIRA
between the left and right brain side did not reveal any significant
difference (nearby the stimulated SMA: W(12)=-22, P=0.42;
contralateral to the stimulated SMA: W(12) = 20, P = 0.47; nearby
the stimulated SPL: W(8)= -2, P=0.95; contralateral to the
stimulated SPL: W(8) =6, P=0.74). This result further highlights
that the observed modulation of cortical excitability nearby SMA is

specifically driven by the asymmetric impairment of dopaminergic
neurons in the putamen.

Discussion

This study is the first to demonstrate that TMS/EEG allows non-
invasively measuring the neurophysiological effects of an acute
levodopa intake in cortical areas other than the primary motor
cortex.

We observed that cortical excitability, as measured by the early
EEG responses to TMS elicited nearby the stimulated site, signifi-
cantly changes following levodopa administration. More specif-
ically, we found that cortical excitability nearby the SMA was
significantly increased ipsilateral to the more affected brain side
and that this increase was higher than in the less affected hemi-
sphere. Notably, in accordance with the very unique role of SMA in
the cortico-basal-ganglia-thalamo-cortical circuitry, the EEG re-
sponses to TMS of the parietal cortex (SPL) were not significantly
affected by levodopa intake on both sides.

Previous fMRI studies [3,38] have shown that the hemodynamic
SMA activity is abnormally reduced during meds-off condition and
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Fig. 3. Group results concerning control sessions. Percentage change of the immediate response area (A4IRA) between meds-off and meds-on sessions (A) contralateral to the
stimulated SMA, (B) nearby the stimulated SPL and (C) contralateral to the stimulated SPL in each patient.
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is relatively normalized after levodopa intake. In line with these
previous imaging findings, our TMS/EEG based neurophysiological
approach further confirms that levodopa replacement therapy af-
fects the cortical activity nearby the SMA by producing an increase
of the local neural response to a direct stimulation.

On the more affected brain side, the levodopa-related modula-
tion of cortical excitability nearby the SMA was significant at the
single-patient level (Table 2): notably, the direction of this change
was the same (an increase) in all but one patient, who showed a
significant decrease on the more affected and increase on the less
affected brain side. This pattern of “reversed excitability” was
particularly interesting because only in this patient worse motor
clinical signs were ipsilateral to the most affected putamen.
Therefore, in this case, the modulation of cortical excitability
nearby the SMA induced by acute levodopa intake was more in
agreement with the clinical assessment. Since the degree of motor
asymmetry can be more pronounced than the one measured by FP-
CIT and SPECT ([39], other factors possibly involving non-
dopaminergic derangements [40,41] might contribute to this
peculiar presentation.

Although the entire basal ganglia system is widely altered in PD,
DAT measurements of the putamen returned better predictors of
motor disability in comparison with equivalent measurements of
the whole striatum [42,43]. Interestingly, specific anatomical and
functional connections have been reported between the putamen
and the SMA in both animal [10,44] and human studies by means of
resting-state functional magnetic resonance imaging [13,14] and
diffusion tensor imaging [12]. Our study provides further evidence
for this preferential relationship by showing that the levodopa-
related asymmetric increase of cortical excitability nearby the
SMA parallels the clinical presentation and the dopaminergic
impairment of the putamen.

So far, measurements of cortical excitability in PD have been
conducted by applying TMS on the primary motor cortex to mea-
sure motor threshold, motor-evoked potentials, electromyographic
silent period to cortical stimulation and intracortical facilitation/
inhibition [7]. The most consistent finding is an excessive cortico-
spinal output at rest and a reduced intracortical inhibition, espe-
cially on the more affected brain side [18]: these results has been
mainly interpreted as compensatory for deficiency of movement
facilitation, which characterizes PD [19,20,45]. Our results cannot
be directly compared to these previous studies because we targeted
different cortical sites (i.e. SMA and SPL) and directly measured the
evoked brain responses to TMS instead of the evoked peripheral
activity. However, functional neuroimaging studies have associated
the increase of motor cortex excitability with a concurrent hypo-
activation of the SMA and have revealed that these abnormal pat-
terns can be relatively normalized by therapy [3]. Therefore, the
analysis we carried out at the single-subject level further supports
the existence of pathological as well as compensatory mechanisms
that involve an abnormal flow of information, reaching the SMA.

While SMA hyperactivation has been shown to predict the
development and severity of levodopa-induced dyskinesia [46,47],
SMA hypoactivation has been frequently linked to the pathogenesis
of bradykinesia [48]. In agreement with these hypotheses, while
low-frequency inhibitory rTMS on the SMA has been shown to
transiently improve involuntary movements [49], high-frequency
excitatory rTMS has been successfully applied to reduce hypo-
kinetic symptoms in some patients, possibly by facilitating SMA
activity [15,48].

Levodopa disposition is highly variable both within and be-
tween patients because of several peripheral and central pharma-
cokinetic features, which also account for its marked plasmatic
concentration fluctuations over time and eventually affect the
actual drug amount reaching the neural targets [38,50,51]. In this

study, we stimulated the different cortical targets in a counter-
balanced order across patients and sessions, starting about 60’ after
intake of the same amount of levodopa. Although the pharmaco-
logical effects on neurophysiological parameters is time-
dependent, we chose to assess excitability of different cortical re-
gions in a counterbalanced order across patients and sessions in
order to prevent any bias towards a specific brain region.

The present study is the first to show an asymmetric effect of
levodopa intake on cortical excitability associated with the corre-
sponding degree of dopaminergic impairment in the putamen. We
did not include a control group to evaluate the performance of a
physiological dopaminergic system and the placebo effect since
normative values for cortical excitability are not available: none-
theless, the less affected hemisphere could be used as a reliable
intra-individual control [38]. It would be certainly interesting to
replicate and further confirm these experimental results in a
selected and larger population with a more controlled and homo-
geneous difference between the left and right basal ganglia system.

The results reported in this study refer to the signals recorded at
the scalp level: this approach allows to pool together the EEG re-
sponses to stimulation of either the H+ or the H- brain side, irre-
spective of specific anatomic side. Clearly, the interpretation of
these results in terms of source activity locally generated at specific
cortical areas is challenging because of several reasons. First, TMS
pulses actually excite a patch of cortical surface as large as several
cm? [52,53], thus preventing to constrain direct perturbation
within a small anatomical region. Second, the electrical activity of a
point-like source actually projects over several EEG electrodes as
well as the signal recorded at a single electrode is affected by the
activity of a spatially large cortical area. Third, different EEG elec-
trodes display partially correlated signals because of a certain
overlap among the cortical regions projecting to them. The appli-
cation of rigorous source modelling methods would be useful to
increase the spatial accuracy of the results and could possibly reveal
local effects of levodopa within specific cortical regions. However,
in this case, patients with the H- brain side on the left should be
analyzed separately from patients with the brain side H- on the
right, in order to properly account for inter-hemispheric anatomical
differences.

In conclusion, our findings support the use of navigated TMS/
EEG as a non-invasive tool to better understand the role of different
cortical regions in the pathophysiology of PD. From a neuro-
modulatory perspective, the pattern of cortical excitability nearby
the SMA revealed by TMS/EEG should be further exploited to
identify and candidate PD patients to specific inhibitory (low-fre-
quency) or excitatory (high-frequency) rTMS protocols. In this
respect, TMS/EEG approach could also be used to monitor cortical
excitability over time and possibly predict the onset of levodopa
related adverse events (e.g. dyskinesia) along with disease
progression.
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