
120  |  wileyonlinelibrary.com/journal/ter	�  Terra Nova. 2019;31:120–128.

1  | INTRODUC TION

The long-lasting debate on the origin of Periadriatic magmatism in 
the European Alps (Laubscher, 1983; Rosenberg, Berger, & Schmid, 
1995) has led to the formulation of one of the most successful the-
ories of modern geology, the slab breakoff model (Davies & von 
Blanckenburg, 1995; von Blanckenburg & Davies, 1995) that is now 
extensively adopted worldwide (Garzanti, Radeff, & Malusà, 2018 and 
references therein). Recent tomographic data for the Alpine region 

outline an unbroken European slab beneath the Western and Central 
Alps (Giacomuzzi, Chiarabba, & De Gori, 2011; Hua, Zhao, & Xu, 2017; 
Salimbeni et al., 2018; Zhao et al., 2016) (Figure 1a), which is incompati-
ble with the hypothesis of oceanic slab detachment after Adria-Europe 
continental collision, either in the Eocene (von Blanckenburg & Davies, 
1995) or in the early Oligocene (Dal Piaz, Bistacchi, & Massironi, 2003; 
Handy, Schmid, Bousquet, Kissling, & Bernoulli, 2010; Schmid, Pfiffner, 
Froitzheim, Schönborn, & Kissling, 1996). If tomographic data are cor-
rect, an alternative mechanism to explain Alpine magmatism is required.

 

Received: 16 November 2018  |  Revised: 30 January 2019  |  Accepted: 30 January 2019

DOI: 10.1111/ter.12377

P A P E R

Synchronous Periadriatic magmatism in the Western and 
Central Alps in the absence of slab breakoff

Wei-Qiang Ji1  |   Marco G. Malusà2  |   Massimo Tiepolo3,4 |   Antonio Langone4 |   
Liang Zhao1 |   Fu-Yuan Wu1

1State Key Laboratory of Lithospheric 
Evolution, Institute of Geology and 
Geophysics, Chinese Academy of Sciences, 
Beijing, China
2Department of Earth and Environment 
Sciences, University of Milano-Bicocca, 
Milan, Italy
3Department of Earth Sciences, Università 
degli Studi di Milano, Milano, Italy
4Istituto di Geoscienze e Georisorse, C.N.R. 
University of Pavia, Pavia, Italy

Correspondence
Wei-Qiang Ji, State Key Laboratory of 
Lithospheric Evolution, Institute of Geology 
and Geophysics, Chinese Academy of 
Sciences, Beijing, China.
Email: jiweiqiang@mail.iggcas.ac.cn
and
Marco G. Malusà, Department of Earth and 
Environment Sciences, University of  
Milano-Bicocca, Milan, Italy.
Email: marco.malusa@unimib.it

Funding information
National Key R&D Program of China, Grant/
Award Number: 2016YFC0600407; National 
Science Foundation of China, Grant/
Award Number: 41572055; International 
Partnership Program of the Chinese 
Academy of Sciences, Grant/Award Number: 
GJHZ1776

Abstract
Periadriatic Alpine magmatism has long been attributed to slab breakoff after Adria–
Europe continental collision, but this interpretation is challenged by geophysical data 
suggesting the existence of a continuous slab. Here, we shed light on this issue based 
on a comprehensive dataset of zircon U–Pb ages and Hf isotopic compositions from 
the main western Periadriatic intrusives (from Traversella to Adamello). Our zircon 
U–Pb data provide the first evidence of Eocene magmatism in the Western Alps (42–
41 Ma in Traversella), and demonstrate that magmatism started synchronously in dif-
ferent segments of the Alpine belt, when subduction was still active. Zircon U–Pb 
ages define younging trends perpendicular to the strike of the European slab, sug-
gesting a progressive Eocene–Oligocene slab steepening. We propose that slab 
steepening enhanced the corner flow. This process was more effective near the torn 
edge of the European slab, and triggered Periadriatic magmatism in the absence of 
slab breakoff.
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According to Davies and von Blanckenburg (1995), slab breakoff 
magmatism would be induced by the passive asthenosphere upwelling 
along the breakoff gap. Such magmatism should exhibit a mantle par-
entage, should be extremely localized, its trace should be nearly lin-
ear, its duration very short, and intrusions may display symmetrically 
younging trends with distance away from the breakoff gap (Davies & 
von Blanckenburg, 1995). Only part of these features are observed in 
the Alpine region: the Periadriatic plutons are indeed clustered along 

the Insubric Fault (Figure 1a,b), which probably favoured magma 
ascent (Rosenberg, 2004), but the widespread Periadriatic dykes 
(Bergomi, Zanchetta, & Tunesi, 2015; D'Adda et al., 2011) form a 
much wider belt parallel to the European slab (Figure 1b).

The location and age of magmatism may also reflect parame-
ters such as the distance from the slab, its angle and the polarity 
and rate of subduction. These parameters can vary during sub-
duction thus modifying the time, location and geochemistry of 

F IGURE  1  (a) Relationships between tectonic structure and Periadriatic magmatism in the Western and Central Alps (slab structure after 
Zhao et al., 2016). GF = Giudicarie Fault; VVP = Venetian Volcanic Province. (b) Summary of weighed mean 206Pb–238U zircon ages in the 
western Periadriatic intrusives (see Figures DR1–DR5 for detailed age maps and Concordia diagrams). S1–S49 = samples analysed in this 
work. Literature U–Pb ages (lozenges) compiled from: Berger et al., 2012; Bergomi et al., 2015; Broderick et al., 2015; D'Adda et al., 2011; 
Gianola et al., 2014; Hansmann & Oberli, 1991; Liati et al., 2000; Mayer et al., 2003; Romer et al., 1996; Samperton et al., 2015; Schaltegger 
et al., 2009; Schoene et al., 2012; Stipp et al., 2004; Tiepolo et al., 2011, 2014; von Blanckenburg, 1992. Green dots = Periadriatic dykes 
(after Bergomi et al., 2015; Bistacchi & Massironi, 2000; Kapferer, Mercolli, Berger, Ovtcharova, & Fügenschuh, 2012; Malusà, Philippot, 
Zattin, & Martin, 2006; Rosenberg, 2004). Dashed blue line = trace of the European slab according to the teleseismic tomography model of 
Zhao et al., 2016 (150 km depth slice, after Salimbeni et al., 2018). (c) Migration of Periadriatic magmatism in three steps (43–40, 35–32 and 
32–30 Ma) and relationships with the European slab as outlined by seismic tomography (Zhao et al., 2016). The distribution of Periadriatic 
dykes (shaded blue area) forms a belt parallel to the European slab that gets progressively wider from the Western to the Central Alps. The 
southern boundary of this envelope is near-parallel to the alignment of Periadriatic intrusives emplaced at 43–40 Ma (sTR, sRC, nRC, CA), 
whereas the northern boundary is near-parallel to the strike of the slab (dashed blue line) and to the trend defined by intrusives emplaced at 
32–30 Ma (BI and BG). White arrows = younging trends defined by zircon U–Pb ages [Colour figure can be viewed at wileyonlinelibrary.com]
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the magmatism (Carminati & Doglioni, 2012; Mullen, Paquette, 
Tepper, & McCallum, 2018). Notably, only part of the Periadriatic 
plutons have been dated by modern techniques so far (e.g. 
Samperton et al., 2015; Tiepolo, Tribuzio, & Langone, 2011), and 
a full coverage of Hf isotopic analyses is still missing for most of 
these plutons (e.g. Broderick et al., 2015; Schoene et al., 2012; 
Tiepolo, Tribuzio, Ji, Wu, & Lustrino, 2014). In this work, we pro-
vide the first self-consistent dataset of zircon U–Pb ages and Hf 
isotopic compositions from the main Periadriatic intrusives of the 
Western and Central Alps. Age and isotopic trends resulting from 
our analyses are discussed within the framework of available geo-
dynamic constraints for the Alpine region, shedding new light on 
the complex slab-mantle interactions during the latest stages of 
Alpine evolution.

2  | GEOLOGIC BACKGROUND

The European Alps are the result of Cretaceous-to-Palaeogene 
oblique subduction of the Alpine Tethys and adjoining European pal-
aeomargin beneath Adria (Handy et al., 2010; Malusà et al., 2015) 
(Figure 2a–c). In the Western Alps, Alpine subduction was active 
until the late Eocene, as attested by (U)HP rocks that reached the 

eclogitic peak at ~35 Ma (Rubatto & Hermann, 2001) and were 
rapidly exhumed during upper-plate divergent motion by 32 Ma, 
corresponding to the age of the stratigraphic cover of the Voltri 
massif (Liao et al., 2018; Malusà, Faccenna, Garzanti, & Polino, 2011; 
Quaranta, Piazza, & Vannucci, 2009). In the Eastern Alps, Alpine sub-
duction was active until the early Oligocene, as attested by eclogites 
of the Tauern Window that reached their pressure peak at ~31 Ma 
(Glodny, Ring, Kühn, Gleissner, & Franz, 2005) and then experienced 
crustal shortening (Rosenberg et al., 2018).

The Periadriatic magmatic rocks were emplaced in the 
Eocene-Oligocene (Schmid et al., 1996; von Blanckenburg et al., 
1998) within tectonic units already accreted to the Adriatic upper 
plate during the early stages of the Alpine evolution (Malusà et al., 
2011; Zanchetta, Garzanti, Doglioni, & Zanchi, 2012; Zanchetta, 
Malusà, & Zanchi, 2015). In the Western Alps, the Traversella 
pluton (sTR and nTR Figure 1b) includes monzodiorites and gab-
bros (~31 Ma, Krummenacher & Evernden, 1960) encased into 
Sesia-Lanzo metamorphic rocks to the NW of the Insubric Fault, 
similarly to the Biella pluton (BI) that includes monzonites, sy-
enites, granitoids and leucogranites dated at 31–30 Ma (Romer, 
Schärer, & Steck, 1996). On the opposite side of the fault, the 
nearby Miagliano tonalite (MI) was emplaced at ~33 Ma within 
lower crustal rocks of the Ivrea–Verbano Zone (Berger, Thomsen, 

F IGURE  2  (a–c) Palinspastic reconstruction of the Adria–Europe plate boundary zone in three steps (after Carminati et al., 2012; Malusà 
et al., 2011, 2015; Zanchetta et al., 2012, 2015); purple arrows show the relative plate motion, numbers = ages in Ma (Dewey, Helman, 
Turco, Hutton, & Knott, 1989); note that Alpine subduction was oblique to the European passive margin, and the inception of continental 
subduction migrated progressively from the Western to the Central Alps. Colour codes as in Figure 1. (d) Present-day relationships between 
the Alpine (European) and Dinaric (Adriatic) slabs as outlined by the high-resolution teleseismic P wave tomography model of Zhao et al. 
(2016) and by the 3-D Pn tomography model of Sun. et al. (2019) (simplified after Sun. et al., 2019). The European slab edge, indicated by 
the green arrow, may result from vertical tearing of the Alpine slab after the onset of Dinaric subduction [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Ovtcharova, Kapferer, & Mercolli, 2012). In the Central Alps, 
the Bregaglia pluton (BG) includes granodiorites and tonalites 
with minor gabbros and diorites, emplaced around 32–30 Ma 
into Austroalpine and Penninic units (Samperton et al., 2015), 
whereas the Novate leucogranite (NV) was dated at ~24 Ma (Liati, 
Gebauer, & Fanning, 2000). Farther east, the composite Adamello 
batholith was emplaced into South Alpine units between 43 and 
32 Ma (Broderick et al., 2015; Mayer et al., 2003), forming dis-
tinct magmatic units now exposed between the Insubric and 
Giudicarie faults (Figure 1b). In the early Oligocene, Periadriatic 
plutons were also intruded in the Eastern Alps (e.g. Rensen, 
Rieserferner and Karawanken plutons, see Bergomi et al., 2015 
for a review of available age constraints).

At the transition between the Central and Eastern Alps, 
the slab structure is particularly complex due to the onset of 
Dinaric subduction in the middle Eocene (Carminati, Lustrino, & 
Doglioni, 2012) (Figure 2c). Some authors (Handy, Ustaszewski, 

& Kissling, 2015; Schmid, Scharf, Handy, & Rosenberg, 2013), 
based on the Lippitsch, Kissling, and Ansorge (2003)'s teleseis-
mic tomography model, suggest that a continental Dinaric slab 
was subducted beneath the Eastern Alps down to ~250 km depth 
during the Neogene. Rosenberg et al. (2018), based on the tele-
seismic tomography model by Mitterbauer et al. (2011), interpret 
the deep velocity anomaly beneath the Eastern Alps as stemming 
from an oceanic and detached slab. Recent and higher resolu-
tion tomography models that benefited from the opening of the 
European seismic databases (Sun, Zhao, Malusà, Guillot, & Fu, 
2019; Zhao et al., 2016) depict a more complex interaction be-
tween the Alpine and Dinaric slabs (Figure 2d), and suggest the 
presence of a slab edge to the east of the Adamello batholith. 
Based on available tomographic and plate motion constraints 
(Figure 2), we suggest that this slab edge may have formed by 
vertical tearing of the Alpine slab in the Eocene, after the onset 
of Dinaric subduction.

F IGURE  3 Single zircon 206Pb–238U 
dates and Hf isotope compositions from 
the main Periadriatic intrusions of the 
Western and Central Alps. The field 
for the Bregaglia mafic rocks is after 
Tiepolo et al. (2014); literature data 
from the Re di Castello unit (small grey 
triangles) are from Schoene et al. (2012) 
and Broderick et al. (2015). The inset on 
the top-left summarizes the main trends 
discussed in the text. Note the systematic 
εHf(t) decrease from east to west in the 
mafic end-members (RCm, BGm and 
sTR) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3  | METHODS

We performed zircon U–Pb dating by LA-ICP-MS and in situ Hf iso-
tope analyses on 49 rock samples (see locations in Figure 1b). A de-
tailed description of the analytical procedures, detailed age maps, 
raw U–Pb and Hf isotope data and whole-rock major and trace ele-
ment datasets are provided in the Data S1.

4  | RESULTS

Zircon U–Pb ages and Hf isotopic compositions are summarized in 
Figures 1, 3 and Table 1. Dioritic rocks from the southern part of the 
Traversella intrusion (S1, S2) yielded the first evidence of Eocene 
magmatism in the Western Alps (42–41 Ma), which contrasts with 
the ages of ~33 Ma given by the monzodiorites and granitic dykes 
in the northern part (S3, S5, S6). The only Eocene ages in northern 
Traversella were provided by a mafic enclave (S4) and by inherited 
grains in the monzodiorite (Figure DR1). The εHf(t) isotopic composi-
tions of Traversella zircons range from −8.0 to −1.1 (Figure 3).

Zircons from the Biella monzonitic, syenitoid and granitoid com-
plexes (S7–S11) yielded ages at 31–30 Ma, whereas those from the 
Miagliano tonalite (S12) are around 33 Ma. Both results are consis-
tent with literature ages (Berger et al., 2012; Romer et al., 1996). 
Zircons from Biella and Miagliano have εHf(t) isotopic compositions 
ranging from −8.0 to −1.3.

U–Pb zircon ages from the Bregaglia granodiorites (S13, S16), 
tonalites (S14, S17) and leucogranites (S18) confirm the literature 
U–Pb ages of 32–30 Ma (e.g. Samperton et al., 2015), whereas a leu-
cogranitic dyke from the central part of the pluton (S15) provided 
a much younger age at 25 Ma. In the Novate intrusion, a tonalitic 

enclave (S19) yielded an age at 32 Ma, consistent with the crystalli-
zation age of the nearby Bregaglia tonalite. Younger ages (27–24 Ma) 
were provided by a biotite granite (S20) and a garnet-bearing two-
mica granite (S21). Zircon εHf(t) values in Bregaglia and Novate range 
between −8.5 and −0.3. Positive εHf(t) values were reported in 
Bregaglia mafic rocks (BGm in Figure 3) (Tiepolo et al., 2014).

In the Adamello batholith, the Corno Alto trondhjemites (S22–
S24) and various lithologies from the Re di Castello unit (S25–S32) 
yielded similar ages, in the range of 43–41 Ma. A trend of NW-
ward decreasing ages (from 38 to 33 Ma) is observed across the 
Adamello, Avio and Presanella units. All the Adamello dates are con-
sistent with available U–Pb literature ages on zircon (Broderick et al., 
2015; Mayer et al., 2003; Schoene et al., 2012; Stipp, Fügenschuh, 
Gromet, Stünitz, & Schmid, 2004; Tiepolo et al., 2011). Different 
units of the Adamello batholith display different zircon Hf isotopic 
compositions (Figure 3). Positive Hf isotopic values are found in sam-
ples from Corno Alto and south Re di Castello, and are particularly 
high (εHf(t) > 10) in hornblendites and gabbros (RCm in Figure 3) as 
also reported by Broderick et al. (2015). Samples from north Re di 
Castello show negative εHf(t) values. Large variations in Hf isotopes 
are observed in the Adamello, Avio and Presanella units where neg-
ative εHf(t) values are dominant.

5  | DISCUSSION

Our results can be interpreted in the light of the slab structure 
outlined by the tomography models of Zhao et al. (2016) and 
Sun et al. (2019), with particular emphasis on the attitude of the 
European slab and the role of the slab edge formed by vertical tear-
ing. As shown in Figure 1c, the middle Eocene zircon U–Pb ages 

Pluton Unit Sample

Zircon U–Pb ages (Ma) εHf(t)

This worka Literatureb This work Literature

Traversella sTR S1, S2 42–41 – −7.8/−1.1 –

nTR S3–S6 33 (41) – −8.0/−3.1 –

Biella MI S12 33 33 −5.2/−1.3 –

BI S7–S11 31–30 (30) 31–30 −8.0/−1.8 –

Adamello CA S22–S24 43 42 +2.6/+10.8 –

RCm S28–S29 41 43–40 +9.0/+13.9 +4.7/+14.4

sRC S25–S27 43 43–41 +2.1/+9.0 −0.4/+11.4

nRC S30–S32 41 39–38 −8.8/+7.0 –

AD S33–S41 38–37 (40, 
38)

42–37 −9.6/+6.7 –

AV S42–S44 36–34 (34) 36–33 −10.0/−3.2 –

PR S45–S49 34–33 32 −8.5/−2.8 –

Bregaglia BGm – – 31 – +1.6/+5.5

BG S13–S18 32–30 (25) 32–30 −7.6/−2.0 –

NV S19–S21 27–24 (32) 24 −8.5/−0.3 –
aSample mean ages as calculated in Figures DR1–DR5 and summarized in Figure 1b (data in round 
brackets are for mafic enclaves and in squared brackets for dykes). bSee references in Table DR2. 

TABLE  1 Summary of zircon U–Pb and 
Hf isotope data
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reported in the Traversella pluton demonstrate that magmatism 
started synchronously in the Western and Central Alps. The oldest 
(43–40 Ma) Periadriatic intrusives (sTR, sRC, nRC, CA) and dykes 
(cSAd, Bergomi et al., 2015) define an ENE-WSW alignment paral-
lel to the southern boundary of the Periadriatic dyke distribution 
(shaded blue area in Figure 1c). We observe a regular NW-ward 
progression of decreasing U–Pb ages in a direction perpendicular 
to the strike of the European slab (Figure 1c), also appreciated in 
the maps of Figure 1b. In the Central Alps, zircon U–Pb ages de-
crease from ~43 to ~30 Ma from the southeastern sector of the 
Adamello batholith (Corno Alto and Re di Castello) to Bregaglia, 
where younger ages are only found in a leucogranitic dyke coe-
val with the Novate intrusion. A similar trend of younging ages is 
also observed in the Western Alps. Diorites of the southern part 
of the Traversella pluton were emplaced at 42–41 Ma. The north-
ern Traversella monzodiorites and the Miagliano tonalites were 
intruded at 33 Ma. The Biella monzonitic, syenitoid and granitoid 
complexes were intruded at 31–30 Ma (Figure 1b,c).

The post-Oligocene dextral movements along the Insubric 
Fault (Malusà, Anfinson, Dafov, & Stockli, 2016; Schmid, Aebli, 
Heller, & Zingg, 1989) may have an impact on the above age 
trends. The Insubric Fault is an inherited Permian structure 
(Muttoni et al., 2003) lying at ~30° relative to the strike of 
the European slab (Figure 1c). Post-Oligocene movements 
along this fault are minor in the Western Alps (Bistacchi & 
Massironi, 2000; Malusà, Polino, & Zattin, 2009), but estimates 
of right-lateral slip in the Central Alps range from 10 to 20 km 
(Garzanti & Malusà, 2008) or ~30 km (Müller et al., 2001) to 
>100 km (Schmid & Kissling, 2000; Schmid, Kissling, Diehl, van 
Hinsbergen, & Molli, 2017). In this latter case, both the origi-
nal distance between the Bregaglia and Adamello plutons and 
the migration of magmatism inferred from Figure 1c would have 
been much larger. However, for very large fault offsets, some 
plutons would be located too far from any slabs, inconsistent 
with magma generation in a supra-slab environment as con-
strained by trace element compositions.

The incompatible trace element compositions of the Adamello, 
Bregaglia and Traversella mafic rocks are in fact supportive of a sub-
duction related origin, and in particular of mantle sources fluxed by 
slab-derived components (Tiepolo et al., 2014). As shown in Figure 3, 
the Hf isotopic ratios of these mafic end-members systematically 
decrease from east to west, from the Adamello batholith (RCm in 
Figure 3) through the Bregaglia pluton (BGm in Figure 3) to south-
ern Traversella (sTR in Figure 3). The mafic rocks from the Bregaglia 
pluton and the Adamello batholith were demonstrated to be almost 
unaffected by shallow level crustal contamination, and reflect the 
primary Hf isotopic signature of the mantle wedge (Tiepolo et al., 
2014). Diorites from Traversella were suggested to register limited 
crustal contamination (De Lummen & Vander Auwera, 1990), an hy-
pothesis in line with the absence, in diorites, of zircon inheritance 
(Table DR4), and with trace element compositions resembling those 
of uncontaminated Bregaglia and Adamello mafic rocks (Table DR6). 
However, the chemical features of the Traversella diorites contrast 
with the extremely low εHf(t) values, that are similar to those ob-
served for the Novate leucogranite. This εHf(t) signature requires 
the addition of 176Hf-depleted crustal material to the mantle source 
during subduction. Notably, the higher potassium contents at almost 
comparable SiO2 in mafic rocks, and the higher concentrations of Ba 
and Th (Table DR6 and Figure DR9), are all supportive of a higher 
continental flux in the mantle wedge of the Western Alps compared 
to the Central Alps. We interpret the εHf(t) systematic decrease from 
the Central to the Western Alps as the evidence of an increased 
input of continental material into the mantle source by subduction. 
This scenario is in line with palinspastic reconstructions showing 
that the inception of continental subduction migrated progressively 
from the Western to the Central Alps (Ford, Duchêne, Gasquet, & 
Vanderhaeghe, 2006; Malusà et al., 2015, 2018) (Figure 2a–c).

In the southeastern part of the Adamello batholith (south Re 
di Castello and Corno Alto units), depleted compositions during 
the early stages of Periadriatic magmatism are observed not only 
in mafic end-members (weighted εHf(t) > 10), but also in felsic rocks 

F IGURE  4 3-D model showing the proposed relationships 
between slab steepening and Periadriatic magmatism in the 
absence of slab breakoff. Slab steepening enhances the corner 
flow, more asthenospheric material is involved in source partial 
melting thus triggering magmatism. This process is more effective 
in the Central Alps (right side of the model) because of (i) the free 
boundary represented by the slab edge, (ii) the anchoring of the 
Dinaric slab that may have pushed back the European slab, and 
(iii) a minor amount of buoyant continental crust subducted at 
the trench. Migration of magmatism (10 km in the Western Alps, 
>40 km in the Central Alps) is based on Figure 1c and on plutons 
only. The estimate for the Central Alps is conservative, and may 
increase for greater amounts of dextral strike-slip accommodated 
along the Insubric Fault. Magmas with depleted compositions 
(green star) are generated in the vicinity of the torn edge of 
the European slab, due to the greater contributions of juvenile 
components during source melting (slab edge effect in the cartoon) 
[Colour figure can be viewed at wileyonlinelibrary.com]
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(weighted εHf(t) > 5). These values may reflect greater contributions 
of juvenile components during source melting, consistent with the 
vicinity to the slab tear at the junction between the Alpine and 
Dinaric subductions (Figure 2d). Slab tear may also account for the 
adakite-like melt compositions observed in mafic rocks from the Re 
di Castello Unit (Tiepolo & Tribuzio, 2005), and for the voluminous 
early-stage magmatism in the Adamello area.

The observed migration of Periadriatic magmatism in the Western 
and Central Alps (Figure 1c) may reflect a progressive steepening of 
the European slab in the absence of slab breakoff (Figure 4). Bergomi 
et al. (2015) have previously suggested slab steepening to explain a 
trend of northward-decreasing ages in the Periadriatic mafic dykes of 
the central Southern Alps (cSAd in Figure 1b,c). According to current 
models, they interpreted the emplacement of the main Periadriatic 
plutons in terms of slab breakoff. Our dataset supports a much more 
decisive role of slab steepening for magma generation. Slab steepen-
ing may have enhanced the corner flow, with more asthenospheric 
material involved in source partial melting. This process was more 
effective in the Central Alps than in the Western Alps (Figure 4) due 
to: (a) the free boundary represented by the slab edge after tearing; 
(b) the potential anchoring of the Dinaric slab that may have pushed 
back the European slab; (c) a minor amount of buoyant continental 
crust subducted at the trench (as confirmed by Hf isotopes). Recent 
tomography models (Zhao et al., 2016) confirm the presence of a 
steeper slab beneath the Central Alps (dip angle ~70–80°) compared 
to the Western Alps (dip angle ~60°).

During progressive slab steepening, major magma batches now 
forming the Periadriatic plutons ascended along different segments 
of the Insubric Fault (progressively westward in the Central Alps and 
progressively northward in the Western Alps) due to the obliquity 
of the fault relative to the slab. As shown in Figure 1c, the Biella and 
Bregaglia plutons lay exactly along the strike of the European slab 
outlined by seismic tomography, which suggests that slab steepen-
ing ended ~30 Ma ago, synchronously with the cessation of the main 
magmatic burst. The presence of major faults was not crucial for the 
ascent of smaller magma batches now forming the Periadriatic dykes. 
Their distribution even better marks the progressive steepening of 
the European slab, and gets progressively wider towards the Central 
Alps, where slab steepening was more pronounced (Figure 1c).

6  | CONCLUSIONS

Our comprehensive datasets of zircon U–Pb ages and Hf isotopic 
compositions shed new light on the debated origin of Periadriatic 
magmatism. Zircon U–Pb data demonstrate that magmatism started 
synchronously in the Western and Central Alps when subduction 
was still active. Hf data are supportive of varying input of conti-
nental material into the mantle source by subduction, which can be 
accounted for by an oblique subduction relative to the Mesozoic 
passive margin. High εHf(t) values in eastern Adamello are consist-
ent with the presence of a slab edge as constrained by seismic to-
mography, which determined a greater contribution of juvenile 

components during the early stages of source melting. Zircon U–Pb 
age trends suggest a progressive slab steepening during the Eocene-
Oligocene. We propose that slab steepening enhanced the corner 
flow. This process was more effective near the torn edge of the 
European slab, and may have triggered Alpine magmatism in the ab-
sence of slab breakoff.
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