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Abstract. The study of (in)dependence relationships among a set of categorical
variables collected in a contingency table is an amply topic. In this work we want
to focus on the so called context-specific independence where the conditional inde-
pendence holds only in a subspace of the outcome space. The main aspects that
we introduce concern the definition in the same model of marginal, conditional and
context-specific independencies, through the marginal models. Furthermore, we in-
vestigate how it is possible to test these context-specific independencies when there
are ordinal variables. Finally, we propose a graphical representation of all the con-
sidered independencies taking advantages from the chain graph model. We show the
results on an application on ”The Italian Innovation Survey” of Istat (2012).
Keywords: Context-specific independence, ordinal variables, graphical models, in-
novation.

1 Introduction

In the field of the categorical variables, with the term context-specific (CS)
independence we refer to the particular conditional independence that holds
only for some modalities of the variable(s) in the conditioning set, but not for
all. That is, given three variables X1, X2 and X3 we describe this situation as
X1 ⊥ X2|X3 = c3, where c3 is a subset of all possible values of X3. Among
other, Højsgaard (2004) [12] and Nyman (2016), [11] deepen this topic. In this
paper we want to improve the main results of these works by dealing with CS
independencies concerning subsets of all the considered (also ordinal) variables.
At this aim we use the Hierarchical Multinomial Marginal Models (HMMMs),
see Bartolucci, Colombi and Forcina, 2007 [1]; Cazzaro and Colombi, 2014 [3].
The need of this parametrization chases the will of consider a model where we
want to test simultaneously marginal and conditional independencies. In addi-
tion, it uses also local logits evaluated on different marginal contingency tables
in order to consider the ordered modalities of the CS conditioning variables.
The paper is organized as follows. In Section 2 we introduce the constraints
to impose on the HMMM in order to represent also CS independencies. The
proposed model is also represented through a Stratified Chain Graph Model
(SCGM), an extension of Stratified Graphical Model proposed by Nyman (2016)
[11], that uses a Chain Graph Model (CGM) to represent the classical condi-
tional independencies and labelled arcs in the graph to denote CS independen-
cies. The details are explained in Section 3.
Finally we analyze a real dataset, “The Italian Innovation Survey” of Istat
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(2012) [5], in order to investigate the effect of the innovation in different as-
pects of small and medium Italian enterprises on the grown in revenue terms.
The procedure and the results are showed in Section 4. In Section 5, we sum-
marize the main results of this work and future research.

2 Parametrization for context specific independencies

Let us consider q categorical variables (X1, . . . , Xq) taking values (i1, . . . , iq)
in the contingency table I = (n1×· · ·×nq), where the modalities of the generic
variable Xj , ij takes value in Ij . A parametrization of a model able to capture
marginal and conditional independencies among non ordinal variables comes
through the marginal model, see Bergsma and Rudas, 2002 [2], which defines
the classical log-linear parameters on marginal distributions by respecting cer-
tain properties of completeness and hierarchy. The marginal parameters are
ηML (iL) where M refers to the marginal set, L denotes the subset of variables
which the parameter pertains and iL, in parenthesis, the modalities of the vari-
able selected in L (when the parenthesis are omitted means that the parameters
refer to each iL ∈ IL). The following example shows how to define the marginal
parameters in order to describe a conditional independence.

Example 1 Let us consider a set of four variables, say X1, X2, X3 and X4 and
suppose we are interested in describing the independence X1 ⊥ X2|X3. At this
aim, we have to define the marginal sets {(1, 2, 3), (1, 2, 3, 4)} where (1, 2, 3, 4)
is a shortcut for (X1X2X3X4). Then, we define the classical log-linear param-
eters on the contingency table I1,2,3 restricted to (1, 2, 3) and the remaining
parameters on the unrestricted contingency table I. Finally, we have to con-
strain to zero the parameters associated to the statement of independence η1,2,31,2

and η1,2,31,2,3 .

Now, let us collect 4 subsets of variables, supposing A, B, C and D. As we
mentioned, our aim is to find a parametrization able to describe, beyond the
classical statements of conditional independencies, the following statement of
CS independence, formally:

A ⊥ B|(C = iC , D), iC ∈ K (1)

where ic is the vector of certain modalities of variables in C which take values
in K that is a subset of the modalities of C (IC) for which the conditional
independence holds. The independence in formula (1) holds if the marginal
log-linear parameters satisfy the following constraints∑

v∈V
c∈P(C)

ηMvc (ivic) = 0 iv ∈ Iv ic ∈ K (2)

where P(·) denotes the power set, V = {(P(A) \ ∅) ∪ (P(B) \ ∅) ∪ P(D)} and
K is a subset of the modalities of C (IC) for which the CS independence holds.



Example 2 (recall Example 1) Let suppose that we want to define through
marginal model the CS independence X1 ⊥ X2|X3X4 = i4, with i4 ∈ K where
K ⊆ I4 is a subset of the modalities i4 of X4 for which the conditional inde-
pendence holds. The constraints on the marginal parameters will be in this
case

η1,2,3,41,2 (i1i2) + η1,2,3,41,2,3 (i1i2i3) + η1,2,3,41,2,4 (i1i2i4) + η1,2,3,41,2,3,4(i1i2i3i4) = 0

i1 ∈ I1, i2 ∈ I2, i3 ∈ I3, i4 ∈ K.

Now, we consider the case where we have at least an ordinal variable. In this
unexplored case we move in the HMMM framework, see Bartolucci, Colombi
and Forcina, 2007 [1] and Cazzaro and Colombi, 2014 [3]. In the HMMMs,
beyond the baseline parameters, we can use parameters η coded with different
criteria in order to consider the possible proper order of the modalities. In this
work we take advantage from the local logits that compare the probability of
a cell πi with the previous one, for instance, referring to variable X1 we have
η11(i1) = log(

πi1

πi1−1
).

The independence in formula (1) holds if the parameters of HMMM, coded
with local logits, satisfy the following constraints∑

v∈V
c∈P(C)

∑
i∗c≤ic

ηvc(ivic) = 0 iv ∈ Iv ic ∈ K (3)

where P(·) denotes the power set, V = {(P(A) \ ∅) ∪ (P(B) \ ∅) ∪ P(D)} and
K is a subset of the modalities of C (IC) for which the CS independence holds,
see [10].

Example 3 By considering the CS independence in Example 2, by adopting
local logit for coding the conditioning variable, the constraints in formula (3)
become

η1,2,3,41,2 (i1, i2) + η1,2,3,41,2,3 (i1i2i3) +

+
∑i4
i∗4=1 η

1,2,3,4
1,2,4 (i1i2i

∗
4) +

∑i4
i∗4=1 η

1,2,3,4
1,2,3,4(i1i2i3i

∗
4) = 0 (4)

with i1 ∈ I1, i2 ∈ I2, i3 ∈ I3 and i4 ∈ K. It is worthwhile to note that the
constraints in formula (3), when we deal with local logit, correspond to the CS
independence X1 ⊥ X2|X3X4 ≤ i4, i4 ∈ K.

3 Stratified Chain Graph models

A Chain Graph is a graph with both directed and undirected arcs and with-
out any directed or semi-directed cycle. The vertices of a chain graph are
decomposable in so-called Chain Components, denoted by T1, ...., Ts. Within
these chain components there are only undirected arcs and between vertices



belonging to different components there are only directed arcs, all head toward
the same direction. Trivially, the Chain Graph Models (CGM) are graphical
models which take advantages from chain graphs to describe a system of in-
dependencies. There are different types of CGM, see Drton, 2009 [4], that
interpret in different way the presence/absence of directed/indirected arcs. In
this work we use the CGM of type I, see Lauritzen and Wermuth, 1989 [7] and
Frydenberg, 1990, [6], as natural generalization of classical graphical models.
CGMs are used when the variables to analyze are of different nature, such that
they can be naturally collected in different components. Furthermore, it is rea-
sonable to suppose that between variables within the same component there
is a kind of dependence relationship that differs from the relationship between
variables collected in different components. Therefore, it is possible to define
an explicative order between the variables collected in different components.
As it is shown in Rudas, Bergsma and Németh, 2010, [13] and in Nicolussi, 2013,
[9], the marginal log-linear models and the HMMMs give a suitable parameter-
ization for the CGM of type I. Now, the improvement in CGMs necessary to
represent the CS independencies closely follows the Nyman’s approach (Nyman,
2016 [11]) for undirected graphs. Thus we introduce the Stratified Chain Graph
Models (SCGM) as extension of stratified graphical models, [11]. A stratified
chain graph has, in addition to the previous graphs, labeled arcs. These iden-
tify the “stratum” of the models, that is the modality(ies) of the variable(s) in
the conditional set according to the context-specific independence.

Example 4 Let us consider 5 variables X1, X2, X3, X4 and X5. Suppose that,
according to the nature of the variables we can split them in two components
such that variables X1 and X2 can be considered explicative for X3, X4 and X5.
The SCGM represented by the graph in Figure 1 is one possible situation that
can occur. In this case we have the conditional independencies X3 ⊥ X2|X1 and
X5 ⊥ X1X2|(X3, X4) and the CS independence X3 ⊥ X4|(X1 = i∗1, X2, X5 =
i∗5).

X1

X2

X3

X4

X5

X5 = i5
*

X1 = i1
*

Fig. 1. SCGM with the labelled arc X3 − X4 referring to modality i∗1 of X1 and
modality i∗5 of X5.



4 Application on real data

In this section we investigate the potential of a model that simultaneously,
consider marginal, conditional and CS indpendencies on a set of (ordinal)
categorical variables. Our aim is to study the effect of innovation in small
and medium Italian enterprises, during the 2009-2012, in the revenue growth.
With the term “innovation” we refer to any improvement in product, services,
productive line, logistic system, organization and investment in Research and
Development (R&D) area. We used the “Italian innovation survey on SM en-
terprises” [5].
Thus we considered the revenue growth in 2012, G (Yes, No) henceforth de-
noted as variable 1, as the pure response variable. Then, we took into account
the innovation through three dichotomous variables referring to the period
2009-2012: innovation in products or services or production line or invest-
ment in R&D, IPSP (Yes, No), innovation in organization system, IORG
(Yes, No) and innovation in marketing strategies, IMAR (Yes, No), hence-
forth denoted as variables 2, 3 and 4 respectively. Finally, other variables
concerning the firm’s featuring in 2009-2012 were collected: the main market
(in revenue terms), MARK (A= Regional, B= National, C= International),
the percentage of graduate employers, DEG (1= 0% ` 10%, 2= 10% ` 50%,
3=50% ` 100%) and the enterprise size, TYP (1= Small, 2= Medium), hence-
forth denoted as variables 5, 6 and 7 respectively.
In order to analyze this dataset, we build a chain graph with three components
according to the nature of the variables, so in the first component we collect
the firm’s features (MARK 5, DEG 6, TYP 7), in the second component the
innovations variables (IPSP 2, IORG 3, IMAR 4) and in the third compo-
nent the revenue growth G 1. Then, starting from the complete chain graph,
where there are all possible edges, corresponding to the saturated HMMM, we
tested all chain graph models of type I with only one missing edge, in order
to investigate, one by one, which pairwise relationship is plausible. The test
was lead with the maximum likelihood ratio test, by comparing the likelihood
of unconstrained HMMM, with the likelihood of the corresponding constrained
model. In the HMMM, the parameters of dummy variables were codified with
baseline logits while the parameters referring to the ordinal MARK and DEG
were codified with local logits.
We removed from the complete chain graph all the edges which given positive
results in the previous tests, obtained in this way a reduced CGM. Subse-
quently, we test the reduced CGM adding one by one all the edges previously
removed. Table 1 shows the statistic test, the degree of freedom and the p-value
of the HMMM for the main significant models. The numbers involved in the
independencies represent the variables in the order of presentation. The CGMs
associated to these three HMMMs were depicted in Figure 2.

It is clear (i.e. it is common to all models), that the growth (1) is indepen-
dent by the innovation in the marketing strategies (4) given by the remaining
variables (2, 3, 5, 6, 7). In model A we have that the innovation in the orga-
nization system (3) is independent on the market where the enterprise works
(5) given the other variables concerning the innovation and the firm’s features



Name Independencies G2 df p-value

A
1 ⊥ 4|2, 3, 5, 6, 7

100.88 84 0.1012
3 ⊥ 5|2, 4, 6, 7

B
1 ⊥ 4|2, 3, 5, 6, 7

91.87 81 0.1921
4 ⊥ 7|2, 3, 5, 6

C
1 ⊥ 4|2, 3, 5, 6, 7

112.02 93 0.08723 ⊥ 5|2, 4, 6, 7
4 ⊥ 7|2, 3, 5, 6

Table 1. Values of likelihood ratio test G2 of HMMM associated to CG models.

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(a)

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(b)

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

(c)

Fig. 2. CG models.

(2, 4, 6, 7). On the contrary, in model B we have that the innovation in
marketing strategies (4) is independent on the enterprise’s size (7) given the
other variables concerning the innovation and the firm’s features (2, 3, 5, 6).
Model C is the union of the independencies in model A and in model B. As
we can see from Table 1 by choosing a reference level of the first type error α
equal to 0.1 we reject the null hypothesis, thus we have no enough evidence
to choose the model C. Thus, we considered the three independencies charac-
terizing model C like CS independencies and we test all possible alternatives.
The more interesting models were reported in Table 2. The preferable model,
according to the parsimonious principle, is C4. The difference between models
C and C4 is the independence concerning the organization system (3) and the
market where the enterprise works (5). In fact, in C4 this independence holds
only when the conditioning variable percentage of graduated employers (6) is
lower than 10% or greater than 50% that we can assume as indicator of unspe-
cialized or high specialized firms. This means that only when the percentage of
graduated employers is between 10% − 50% the market affects the innovation
in the organization system.

The stratified chain graph associated to the model C4 is depicted in Fig-
ure 3. In this graph the labeled arc between the node MARK and IORG
reports the modalities of the variables DEG according to the arc is removed.
That is, only when the variable DEG assume the first or the third modality,



Name Independencies G2 df p-value

C1
1 ⊥ 4|2, 3, 5, 6, 7

94.75 85 0.220023 ⊥ 5|2, 4, (6 = 1), 7
4 ⊥ 7|2, 3, 5, 6

C2
1 ⊥ 4|2, 3, 5, 6, 7

102.77 85 0.092053 ⊥ 5|2, 4, (6 = 2), 7
4 ⊥ 7|2, 3, 5, 6

C3
1 ⊥ 4|2, 3, 5, 6, 7

101.08 85 0.11253 ⊥ 5|2, 4, (6 = 3), 7
4 ⊥ 7|2, 3, 5, 6

C4
1 ⊥ 4|2, 3, 5, 6, 7

105.09 89 0.11713 ⊥ 5|2, 4, (6 = 1, 3), 7
4 ⊥ 7|2, 3, 5, 6

Table 2. Values of likelihood ratio test G2 test of HMMM

there is MARK independent by IORG given by ISPS, IMAR, DEG and
TYP.

G 1

IPSP 2IORG 3IMAR 4

MARK 5DEG 6TYP 7

DEG = 0%−10%

DEG = 51%−100%

Fig. 3. SCG model C4.

Finally, in Table 3 we report the values of the second order marginal log-
linear parameters (referring to paired variables) of model C4. At first we remind



that these are defined in the first marginal distribution where they occur. In
this case, the marginal subsets associated to the CG models in Figure 2 and to
the SCG model in Figure 3 are {(5, 6, 7), (2, 3, 4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 7)}. Fur-
thermore, we remind that in order to define the conditional (marginal) indepen-
dencies in model C4 we have to constraint to zero the parameter η1,2,3,4,5,6,71,4 and
all the higher order parameters, defined in the marginal set (1, 2, 3, 4, 5, 6, 7),
containing the paired variables (1, 4) and also the parameter η2,3,4,5,6,74,7 and all
the higher order parameters, defined in the marginal set (2, 3, 4, 5, 6, 7), contain-
ing the paired variables (4, 7). Finally, in order to define the CS independence,
according to the formula (3), we have to constrain to zero the sum of param-
eters η2,3,4,5,6,73,5 and all the higher order parameters, defined in the marginal
(2, 3, 4, 5, 6, 7), containing the paired variables (3, 5) but where the variable 6
assumes value 1 or 3. Note that in Table 3, the parameters η2,3,4,5,6,73,5 are free
and assume value zero. This reveals the lack of relationship between the vari-
ables MARK and IORG at least concerning the parameters of third or higher
order.

G 1 IPSP 2 IORG 3 IMAR 4 MARK 5 DEG 6
Variable Modalities Yes Yes Yes Yes National Internat. 10%-50% ≥ 50%
ISPS 2 Yes 0.1927

(0.0793)
IORG 3 Yes 0.1023 1.8221

(0.0709) (0.0827)
IMAR 4 Yes 0 1.4848 1.9967

(0.0000) (0.0907) (0.0764)

MARK 5
National 0.0980 0.6378 0 0.3005

(0.0688) (0.0960) (0.0000) (0.0928)
Internat. 0.4668 0.1517 0 -0.2096

(0.1486) (0.1815) (0.0000) (0.1912)

DEG 6
10%-50% 0.0332 0.5020 0.4372 0.4323 0.6902 0.2547

(0.0821) (0.10400) ( 0.0988) (0.0927) (0.0567) (0.0856)
≥50% -0.1333 -0.0422 0.5048 0.3451 0.1758 -0.1186

(0.1436) (0.2070) (0.1624) ( 0.1746) (0.1024) (0.1493)
TYP 7 Medium 0.3700 0.6447 0.5687 0 0.9878 0.7591 1.1702 -0.3302

(0.0790) (0.1064) (0.0868) (0.0000) (0.0497) (0.0775) (0.0543) (0.0899)

Table 3. Second order marginal log-linear parameters.

From Table 3 we can see that between the three innovation variables there
is a strong (positive) second order association: (IPSP, IORG) with log odds
ratio of 1.82, (IPSP, IMAR) with log odds ratio of 1.49 and (IMAR, IORG)
with log odds ratio of 2. In the graph they correspond to the undirected arcs
between the nodes 2 and 3. This means that is more likely to have firms that
improve innovations in different levels. Another strong association is between
the firm’s dimension and the main market. In particular it seems, reasonably,
that bigger is the firm bigger is the market where it works. It is also worthwhile
to focus on the parameters concerning the variable DEG, which discriminates
between a conditional and a CS independence in model C4. In particular
from Table 3 it came to light that there is a reverse direction between the
parameters (all positive) referring to the 10% − 50% modality and the one
referring to the ≥ 50% which are more than half negative. This means that



moving from the unspecialized firm (less than 10% graduate) to a medium
specialized firm (10%− 50% graduate), we have a positive association with all
the other variables. On the other hand, by considering the highly specialized
firm (≥ 50% graduate) with respect to the medium specialized firm, we can
see that there is a negative trend with the revenue growth. The same trend
occurs also with the innovation in product, services, product line and R&D
(IPSP), the main market (MARK) and the firm’s size (TYP). This change
probably would been unobserved by codifying the parameters with baseline
logits. Furthermore, by accepting the conditional independence 3 ⊥ 5|2, 4, 6, 7
we would not focus on the variable 6.

5 Conclusion

In this work we showed how to represent CS independencies in HMMMs when
we treat with ordinal variable and we are interested in representing also marginal
and conditional independencies. We also provide a graphical representation
based on chain graph in order to give visual simplification of the relationships
among the variables.
The final SCGM have been chosen following a two steps procedure to identify
the best CGM and then by watching the problem at hand to find the “strata”
of the graph, but further research will be dedicated to implement the procedure
able to test all possible models (testing all hypothesis of independence). Fur-
thermore, other research involves the definition of constraints for parameters
coded with “global” or “continuation” logits. It should be interenting also to
study the definition of SCGM by considering the Chain Graph Models of type
4, see Drton (2009) [4], with the parameterization explained by Marchetti and
Lupparelli (2011) [8].
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