Metadata, citation and similar papers at core.ac.uk

Provided by AIR Universita degli studi di Milano

Noname manuscript No.
(will be inserted by the editor)

Delay and Disruption Management in Local Public
Transportation via Real-time Vehicle and Crew
Re-scheduling: a Case Study

Federico Malucelli - Emanuele Tresoldi

Received: date / Accepted: date

Abstract Local public transport companies, especially in large cities, are fac-
ing every day the problem of managing delays and small disruptions. Disrup-
tion management is a well-established practice in airlines and railways. How-
ever, in local public transport the approaches to these problems have followed
a different path, mainly focusing on holding and short-turning strategies not
directly associated with the driver scheduling. In this paper we consider the
case of the management of urban surface lines of Azienda Trasporti Milanese
(ATM) of Milan. The main issues are the service regularity as a measure of the
quality of service, and the minimization of the operational costs due to changes
in the planned driver scheduling. We propose a simulation based optimization
system to cope with delays and small disruptions that can be effectively used
in a real-time environment and takes into account both vehicle and driver
scheduling. The proposed approach is tested on real data to prove its actual
applicability.

Keywords Delay Management - Disruption Management - Local Public
Transportation - Real-time Optimization - Real-word scenario - Big Data -
Vehicle Scheduling - Crew Scheduling

Introduction
One of the key elements affecting the perceived quality of the local public

transport is the regularity of the service. The service provider, in accordance
with the municipality, relates the so called regularity of the service to how
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much the actual service adheres to the planned one. This adherence is com-
puted considering the difference between the actual and the planned headways
at all stops and the actual distance covered by on duty vehicles. This regu-
larity, however, is continuously threaten by disruptions or small disturbances.
These inconveniences induce further disruptions when the service provider has
to comply with the regulations of driver shifts. The final effect is a loss of
reliability of the transportation system and additional costs due to penalties
to be paid to the municipality and to extra allowances for drivers.

The daily operations of transit companies are often monitored by an oper-
ation central office taking advantage of Automated Vehicle Monitoring (AVM)
systems and mobile telecommunication devices. In the case of ATM of Milan,
each operator visually controls the operations of one or more lines on a screen
reporting in real-time the vehicle positions on a map. The operators can de-
tect from the screen delays or anomalies that may generate disruptions, or
they collect information from drivers about troubles on the line such as vehi-
cle breakdowns, accidents or medical and safety emergencies. In the presence
of a disruption involving a vehicle or part of the infrastructure, the opera-
tor decides the actions to be taken coordinating the behavior of the drivers
involved in the disruption or in the recovery actions. The basic actions that
an operator can adopt in case of disruptions or disturbances are, for exam-
ple, to perform vehicle short-turns, to delay a vehicle, or to cancel portions or
complete trips. In exceptional cases the operator may also decide to use spare
drivers or vehicles.

Even though operators are very good in recovering disruptions or prevent-
ing them, they usually have not the intuition on the effect of their interventions
on resource management. Indeed they are not enabled to have a full under-
standing of the effect of their actions on the vehicle and crew scheduling.
Moreover, the task of manually adjusting the planned scheduling goes beyond
the duty of the operators. Thus the effect of recovering a disruption in the
morning may have an even worse disruptive effect later on when drivers duties
come to an end. Another key issue is to recognize potential disruptive condi-
tions as early as possible, when the recovery actions can have a smaller impact
on the service management.

These issues call for a thorough analysis of the problem and the study
of optimization methods to be included into a decision support tool to assist
operators in taking decisions. This decision support tool can fruitfully take
advantage of the huge quantity of real-time data made available by the AVM.

Disruption management in transportation is a very well studied subject in
airlines (Clausen et al., 2010) and in railways (Jespersen-Groth et al., 2009;
Cacchiani et al., 2014). Disruption management in local public transport has
followed a different path. The first approaches date back to the early seventies,
see for example Newell (1972). These works, and the following ones, see Ibarra-
Rojas et al. (2015) for a comprehensive literature review, are mainly focused
on the headway regularity and the bus bunching phenomenon, proposing a
variety of control strategies. Very limited attention has been devoted to the
crew rescheduling issues that are actually critical in our case study, especially



Delay and Disruption Management in Local Public Transportation 3

when they are connected with the regularity of the service. This makes the
disruption management problem of our case closer to those arising in airlines
and railways, though the presence of additional degrees of freedom opens for
different types of approaches.

Our contribution is twofold. On the one hand, we analyze the disruption-
delay management of public transport integrating the three components of
service regularity, vehicle scheduling and crew scheduling. On the other hand,
we propose a tool that, exploiting the real-time data, helps the operators in
facing the problem with the ultimate objective of increasing the quality of
service. The solutions produced by the tool use the available resources to
propose in real-time adjustments of vehicle and crew scheduling with a clear
assessment of their impact both on the service quality and on the operational
cost.

The paper is organized as follows. In Section 1 we briefly classify disrup-
tions in public transport and and we analyze the related works. In Section 2
we present the case study and the current approach of ATM. In this section we
also point out the main weaknesses of the current way of detecting disruptive
conditions, based on the way the regularity of the service is measured, and we
propose some alternatives. In Section 3, we introduce the overall framework
to detect and manage disruptions and disturbances. The framework is based
on a discrete event simulator, used to forecast the evolution of the service,
and on a tabu-search algorithm for the real-time vehicle re-scheduling. In sec-
tion 4, we present a column generation method used to tackle the real-time
crew scheduling re-optimization. An extensive computational experience on
real data is presented in Section 5 for both single and multiple lines.

1 Delay and Disruption Management
1.1 Classification of disruptions and measures of regularity

According to Clausen et al. (2010), a disruption is “a deviation from the orig-
inal plan sufficiently large to require a substantial change in operations”. In
this definition, two important concepts are considered: the planned service
usually produced by the off-line execution of an optimization procedure, and
the observed service. When the observed service is too different from the
planned one, we say that we have a disruption. However, not every deviation
from the original plan requires a substantial change in operations, and indeed
identifying such cases becomes a delicate task.

An alternative and complementary term used in case of minor disruptions
is disturbance. We say that a line has a disturbance in case some vehicles are
operating with limited differences with respect to the planned timetable. Dis-
turbances can, in general, be reduced and solved by carefully holding, speed-
ing up, or slowing down vehicles. Nevertheless, if the disturbances are not
controlled, they can easily evolve into severe disruptions giving rise to the so
called “snow-ball effect”.
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Disruptions are usually classified depending on their causes (e.g., acci-
dents, medical emergencies, vehicle breakdowns, drivers arriving late at the
relief point, severe traffic congestion, critical weather conditions, etc.), and
on their medium and long term effects. In this work we will disregard the so
called Planned disruptions, that is changes in the service caused by planned
works, as well as the so called Long-term disruptions that is those arising
in the presence of severe weather conditions forecasts (Maroti, 2013). The
type of disruption involved in our study are the disruptive events: when
a portion of the network is blocked, as for example due to demonstrations,
accidents or line breakdowns, vehicle breakdowns or driver illness. All these
events involve a heavy adjustment that implies rerouting lines or canceling
trips, trying to guarantee a service to all passengers. In this case the main
concern is to provide alternative services to passengers. There are some con-
tributions as for example Jin et al. (2015); Kepaptsoglou and Karlaftis (2009);
Kiefer et al. (2016) and Cadarso et al. (2013). In the case of ATM these events
are managed manually by officers. Their main interest arises once the blocking
event has been removed and the service, when the vehicle and crew scheduling
have to be recovered in the shortest possible time. However we will consider
in particular the disruptions caused by minor events or by the accumulation
of small delays (minor disruptions or disturbances). In the presence of
disturbances, most of the times, it is possible to maintain and/or recover the
regularity of a single line by suitably regulating vehicle speeds and managing
holding times at the terminals. If the rest times at the terminal are not manda-
tory, and the location where the vehicle stops technically allows it, they can
be shortened or lengthened in order to improve the regularity. These problems
are often referred as the bus holding, see for example Hernandez et al. (2015)
and Hickman (2001). They can be approached either in a centralized way or
in a self regulating way (Cats et al., 2012; Xuan et al., 2011) and can also
be addressed in real-time taking into consideration dynamic running times
and demand (Sanchez-Martinez et al., 2016). Moreover the endogenous dis-
ruptions, that are not due directly to external causes, but are related to the
personnel shifts, will play a central role in our analysis. Indeed even if the ser-
vice is apparently regular, as far as headways are concerned, the accumulated
delays may disrupt the driver scheduling. Some drivers may result excessively
late at their relief point or at the end of their shift. This type of anomaly
is typically solved by abruptly interrupting the trip so that the driver can
reach the relief point in time. This is one of the main causes of the regularity
degradation at ATM and is not currently managed by the officers of the op-
eration room. Thus, we will mainly focus on minor disruptions, disturbances
and endogenous disruptions, and the recovery phase of disruptive events. In
particular, we will focus on methods to detect at an early stage the potential
disruptions and to adapt in real-time the vehicle and the crew scheduling.
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1.2 Related works

Disruption management has been studied in airline industry in the last twenty
years, see for example Johnson et al. (1994); Lettovsky et al. (2000) and
Clausen et al. (2010). In this case the high operational costs and the dramatic
consequences of disruptions on the management as well as on passengers gave
a strong motivation to the research.

Also railways have put some attention on the problem (Jespersen-Groth
et al., 2009). In this case, the most diffused approaches take advantage of
some results obtained in job scheduling. Vehicles correspond to jobs, and
trips/infrastructures correspond to machines (Raheja and Subramaniam, 2002;
D’Ariano et al., 2008). In this context, very often, the complexity of the con-
straints, mainly due to the shared infrastructure, suggested hybrid approaches
conjugating optimization techniques with simulation, as for example in Berger
et al. (2011).

The disruption management, of local transport systems has initially focused
on the headway regularity, dealing with the so called bus holding problem.
That is, devising strategies for holding or pacing vehicles in order to increase
the regularity (see Daganzo, 2009; Xuan et al., 2011). In Eberlein et al. (1998)
and Eberlein et al. (2001), the real-time problem is studied in a deterministic
setting and the objective is to minimize the passenger waiting time at stops.
The case of a single line with self coordinating vehicles, knowing the headway
with respect to the previous and the next vehicles, is proposed in Bartholdi
and Eisenstein (2012). In the bus holding problem, the issues deriving from
crew scheduling are not considered. A brief survey of the contributions of this
type is summarized in Yang and Li (2012).

Vehicle rescheduling problems are also studied in connection with passenger
logistic issues. In the presence of a disruption involving vehicles or portions of
the network, vehicles must deviate providing an alternative service to passen-
gers with enough capacity (Li et al., 2009). In other cases new alternative lines
have to be designed as in Kiefer et al. (2016), or portions of the network must
be reconnected by “bridging” services (extensive examples in Cadarso et al.,
2013; Kepaptsoglou and Karlaftis, 2009; Jin et al., 2015), or delays must be
managed in order to guarantee the connections (see Giovanni et al., 2014).

As for the solution methods, the most common approach is to apply the
same techniques used in the off line planning phase to the so called core prob-
lem. That is a problem restricted to the disrupted services and a few more.
The core problem is then tackled by a variety of methods ranging from integer
programming (Nissen and Haase, 2006), column generation (Huisman, 2007;
Potthoff et al., 2010), multicommodity flow (Wei et al., 1997), or constraint
programming (Jespersen-Groth et al., 2009). All proposed methods stress on
the fact that problems must be solved in real-time since they arise at opera-
tional level.

Usually the vehicle re-scheduling and the crew re-scheduling problems are
tackled separately. In Visentini et al. (2013) the contributions on vehicle re-
scheduling problems are surveyed and classified depending on the type of trans-
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portation. In many cases, the attention is devoted to the crew schedule recovery
and the modified vehicle schedule is taken as an input. This happens when the
service has a particular structure (e.g. hub and spoke in case of airlines) or
when the alternative solutions for vehicle are so few that vehicle re-scheduling
can be easily managed manually. Or vice-versa, the attention falls on the ve-
hicle re-scheduling (as in railways or some road transportation cases) because
it is by far more complicated that the crew re-scheduling one. Some papers,
as Walker et al. (2005), deal with the simultaneous recovery of disruptions
in both vehicle and crew scheduling, however they refer to a peculiar single
track railway setting, where train takeovers and crossings must be careful con-
sidered. Also Huisman and Wagelmans (2006) tackled the vehicle and crew
rescheduling problem jointly, showing the benefits of a combined approach in
terms of effectiveness. However, the high computational times do not allow for
a real-time application in practical cases.

One of the main issues is to detect unrecoverable disruption as early as
possible, when recovery actions can be taken at reasonable cost and with a
low impact on passengers and crews (see Abdelghany et al., 2004).

All the above mentioned works constitute an important source of inspira-
tion, both from the methodological and practical standpoint. However, none
of them addresses completely the main aspects of the disruption management
problem faced by ATM. In particular, the regularity of the service in con-
nection with the crew scheduling, the early detection of potential disruptive
conditions with a special attention to the endogenous ones and the real-time
vehicle and crew rescheduling.

1.3 Disruption identification: Evaluating the regularity of the service

The main challenge in managing disruptions is to be able to distinguish be-
tween the events or conditions that may have a negative impact on the service
regularity and those whose effect is limited and do not need special attention.
In order to infer this information, we formalize the concept of service regu-
larity and relate it to measurable indices. Therefore, whenever we identify a
condition where the index of regularity can be substantially improved, we are
in the presence of a potential disturbance/disruption. The concept of regular-
ity depends on the type of service offered by public transport. We distinguish
two ways of offering public transit:

1. Timetabled service: In this case, the frequencies are usually low. At each
stop of the line the precise time when the vehicle will arrive and depart
(timetable) is specified.

2. Frequency based service: In this case, the frequencies are higher, thus
the headway is rather small. At each stop, the headway is specified instead
of the timetable (e.g., a vehicle every 7 minutes). Note that, in this case,
even in the presence of generalized delays, the service is not perceived as
disrupted by passengers, provided that frequencies are regular and aligned
with the planned ones.
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The threshold on the headway that distinguishes this two types of service
falls between 10 and 12 minutes. In this paper we concentrate on frequency
based services. Indeed our system takes full advantage from the fact that
a disrupted service may be perceived as regular, if the headways are evenly
spaced. However, due to changes in the vehicle scheduling, it might be required
to adjust the driver scheduling in real-time, in order to avoid to generate
endogenous disruptions. Our approach could be applied also to a timetabled
service, though the effects would be much more limited.

There are many ways to estimate the regularity of the service. The most
regular service is obviously that reproducing exactly the planned timetable.
Thus the regularity measure should consider the adherence of the provided
service with the planned one. In the case of a timetabled service, the measure
will consider the planned timetable, while in the frequency based service this
measure can be relaxed, and only the headways will be accounted for. In the
literature many proposals are present (see Barabino et al., 2013, for a brief
survey). Among the many indices of the literature we will consider the following
ones, that will be compared with our proposed ones.

HR Headway Ratio: the ratio between the observed headway and the planned
one.

HS Headway Standard Deviation: standard deviation of the difference between
the observed and the planned headways.

PR Percentage Regularity Deviation: the percentage average ratio between the
deviation of the observed headway from the planned one and the planned
headway.

Refer to section 5.3 for the formal definition.

In the next section we consider, for our case study, how ATM is currently
measuring the regularity of the service, enlightening possible pitfalls. Moreover,
we propose alternative indices that are better adaptable to the real time re-
optimization of vehicle and crew scheduling.

2 The ATM case

The Azienda Trasporti Milanesi (ATM) is one of the largest local public trans-
port companies in Italy. It serves an area of about 657 squared km with about
2.5 millions of inhabitants and an overall volume of 691 millions of passengers
and 147 millions of traveled kilometers per year. The surface services involve
103 bus lines, 19 tram lines and 4 trolley bus lines covering a network of more
than 1000 kilometers and managing a fleet of about 2000 vehicles.

The service regularity index used in the agreement with the municipality
works as follows. For the sake of simplicity, let us examine a single line and let
n. be the number of planned stops during the whole service period.
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2.1 Current index of regularity and anomalies

A so called bad pass occurs every time a vehicle arrives more than ¢ minutes
late with respect of the planned headway, or in case of a skipped stop. Let ny
be the number of bad passes on a line. The index of regularity of the line is
the ratio between the number of regular passes and the total:

1(01) = ("_””> (1)

Ne

Note that this type of index does not account for early passes. This is in-
tentional, since, considering the actual headway, a vehicle anticipating its pass
at a stop, while the other vehicles are maintaining their schedule, will result as
an early pass with respect to the previous vehicle. However, the next vehicle
will generate a bad pass considering the actual headway. Thus penalizing the
late pass as well as the subsequent early one (of the same amount), would pe-
nalize the same event twice. Moreover, this type of regularity index penalizes
in the same way an almost good pass (i.e. a vehicle missing the regularity of
a few seconds) and a very bad one (i.e. a vehicle with a headway much higher
that the threshold). This could have some sense in an ex-post evaluation envi-
ronment, as it is currently used. While, in a setting where the service provider
wishes to increase the index of regularity, this type of measure may generate
some pathological behaviors.

Indeed, in the presence of a group of vehicles of the same line following each
other at a short distance (bus bunching phenomenon), only the first vehicle
gives rise to bad passes at all stops, according to 1(01). Moreover, the attempt
of improving the regularity by detouring a vehicle of the bunch, so that it closes
the large gap in front of the bunch, could worsen the index I(01), though the
service, as perceived by the users, would improve. An automated system that
uses I(01) to improve the regularity, in the presence of disturbances, would
let the service converge towards bus bunching cases. In addition, from that
situation it would be impossible to escape by applying single detour actions,
since any single action would not be able to improve the regularity index.

2.2 Alternative ways to evaluate the service regularity

In order to overcome the pitfalls of I(01), we introduce some other indices
that share the basic idea of I(01). However, the new indices account for both
late and early passes, with the intention of using them more profitably in an
automated system that aims at improving the regularity by modifying the
vehicle schedule.

2.2.1 Piecewise linear function for evaluating the index of reqularity

Consider the gap x(q) between the planned headway of pass ¢ (v.(q)) and the
observed one (v,(q)):

2(q) = vo(q) — ve(q) (2)
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A negative value of x(q) means an early pass, while a positive value means a
delay.
Let us define the function f(z(q)) of the gap x(q) as follows:

—az(q) ifz(q) < —6(’1)
0 if — 01 <z < (92

F@@) = o) it 6 < a(q) < 00 (3)
yx(q) + 6 if 03 < 2(q)

where 01, 65, 05(> 63) and «, 8,v(> ), 0 are suitable parameters. The function
f(z(q)) is 0 if the pass is regular and it is greater than 0 (not necessarily equal
to 1) if the pass is irregular. If we want to ignore the contribution of earliness
on the index of regularity it suffices to set @ = 0. Note that this index includes
also the simple 7(01) if we set « = 8 =~ = 0 and § = 1. The contribution
of the function f(x(q)) due to values x(q) > 03 intends to penalize large gaps
more than the equivalent sum of small gaps.
The index of regularity based on the piece-wise function is:

I(PW) =" f(a(a) (4)

qEP

where P is the set of all passes that actually occurred in the observed period.
Note that the set P does not include all planned passes as in the ATM index.
Thus, if a stop is skipped due to vehicle short-turns it is not considered in the
set P.

2.2.2 Quadratic function for evaluating the index of regularity

The idea behind the quadratic penalty function stands on the intention of
accounting for lateness (and earliness) more than linearly. This implies that
a large lateness with respect to the planned headway will be penalized more
than the equivalent sum of small delays. The quadratic penalty function is
defined as follows:
n'z(q)* if 2(q) <01
f(z(q)) =<0 if 61 < z(q) < &2 (5)
n"2(q)* if 2(q) > 02

The interval [—01,d2] defines a tolerance zone: vehicles arriving at the stop
not later than ds and not earlier than §; with respect to the headway are not
penalized. The index of regularity based on the quadratic function is:

1QA) =) f'(x() (6)

qeP
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2.3 Considering driver shifts in the measure of regularity

As mentioned earlier, the divergence of the service timetable from the planned
one is one of the main causes of endogenous disruptions, especially when driver
shifts are concerned. For this reason, the introduction of another index ac-
counting for the regularity of the driver schedule, could be of help in taking
decisions. Let D denote the set of drivers on duty, and for every driver d let
Ry be the set of possible relief points. Note that in Ry a relief point may
appear more than once since a driver can pass by the relief point more than
once. Hence in practice, relief points in R, are space/time occurrences. Let us
assume that the initially planned relief point (original site and original time)
has index 1 for all drivers. Let ET? be the planned passing time at the relief
point r of driver d and OT? be the observed one. The adherence to the planned
schedule of driver d can be measured as the smallest difference in time at any
relief point in Ry:

yq = min{0? = OT¢ — ET{ : 0% > ¢,r € Ry} deD (7)

where € is a suitable tolerance threshold introduced to avoid too much earli-
ness in the alternative relief points. Notice that € can be also fixed to a (small)
negative value. In addition we can account for the inconvenience caused by the
fact that a driver has to change the site of the original relief point, that is if the
minimum in (7) corresponds to a relief point spatially different from the orig-
inal one. Let z4 be a 0-1 indicator that equals one if there is such a change. A
third term is the amount of lost kilometers with respect to the planned service.
This is evaluated considering the difference between the planned kilometers of
each driver and the expected ones. This can be easily computed by considering
the difference between the planned relief point and the actual one, not only
considering the difference in the site but also that in time. Let s4 denote such
a difference in kilometers.

A parametric measure of the adherence of the scheduling with respect to
the planned one is:

IA:¢Zyd+§ZZd+T]ZSd (8)

deD deD deD

where ¢, £ and 7 are suitable non negative trade-off parameters.

3 Disruption-delay management framework

Currently, the officers take their decisions about recovering the regular service
relying upon their expertise. The effects of these actions on the service reg-
ularity are evaluated only according to their experience and intuition, and it
is almost impossible for them to assess the impact of alternatives. Determin-
ing the effect of the recovering actions on the driver schedules is even more
difficult, and this is actually the most critical issue for ATM management.
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However, having defined a set of indices to evaluate the regularity of the
service, detecting potential disruptive conditions and evaluating the impact of
possible actions on the scheduling becomes possible. To do that we draw up
a discrete simulation tool that forecasts the system behavior and allows us to
compare the effect of different solutions.

The actions that can be taken are:

— to force vehicle short-turns, that is stopping a vehicle and detouring it in
a suitable position in the line, in the same direction or in the opposite one.
This implies that passengers must alight and take the following vehicle of
the same line.

— to hold vehicles at stops or terminals.

— to shorten (or skip) breaks at terminals.

— to micro-adjust the vehicle speed.

In order to feed the simulator with the complete information, all possible
actions must be identified, in particular for the short-turns it must be specified
between which two stops it may take place, and how much time it needs.

The simulation is intended to evaluate the effect of the actions within a
sufficiently wide interval of time. To this aim, we compare the regularity index
output by the simulation when some actions are made with that coming from
the simulation when no action is carried out.

The simulator routine is based on a set of events referring to the vehicle
positions along the time. The routine considers a simulation interval A starting
from the current moment. Initially the set of events contains the last AVM
observation for each vehicle on duty, and the events corresponding to new
vehicles entering the service within the simulation interval. The new events
are generated from the current ones updating the position of the vehicles.
Position and time are randomly generated by using the travel time distribution.
A discussion about the travel time distribution obtained from historical data
can be found in Malucelli and Tresoldi (2018). Within the simulation routine
the indices of service regularity are updated according to the functions defined
in the previous sections.

Ideally, the set of actions maximizing the improvement of the regularity
index should be identified. To solve this problem we used a tabu-search pro-
cedure (Glover and Laguna, 1997). The tabu-search starts from the current
vehicle and crew schedule and explores neighboring solutions by trying all pos-
sible actions selecting them from a set A. The output of the tabu-search is a
subset W* C A of actions, which, if applied, will allow with high probability
to improve the index of regularity obtained without applying any action. To
produce a more reliable result the simulation is repeated several times.

Once a set of actions W* that increases the regularity of service in the sim-
ulation have been identified, the driver scheduling is adapted. This is done by
solving an optimization problem with the objective of minimizing the changes
with respect to the planned duties and minimizing uncovered service. The
description of the overall working framework of the delay/disruption manage-
ment system can be found in Carosi et al. (2015).



12 F. Malucelli, E. Tresoldi

4 Real-time Driver Re-scheduling

Once the vehicle schedule has been modified, both due to delays and as a
result of the possible improving actions, the crew schedule has to be adapted.
One possible approach is to apply the algorithm used for planning the service,
though it must be applied to a very limited sub-problem, with respect to
the original one. However, the characteristics of the sub-problem, in terms of
size, objectives and constraints suggest an ad hoc approach. Indeed the main
objective is no longer to minimize the cost, but to minimize the changes with
respect to the planned service, in order to simplify the implementation of the
actions. Moreover, the union regulations applied in the planning phase can be
partially relaxed. Another important aspect is that in the re-scheduling sub-
problem we have to account for the fact that drivers are already on duty and
they expect to work in the same period as from the initial planning. Notice
also that it may happen that, with the new vehicle schedule, some trips remain
uncovered. These cases can be managed if the uncovered trips appear in the
end of a vehicle duty or if they involve the use of the so called “hot” spare
drivers, that are officially on duty waiting for emergency calls. This implies
that, though in a limited extent, the re-scheduling problem has to consider
also changes in the vehicle schedule, limiting the inconvenience on the users.

4.1 Problem statement

We are given a set of drivers and a set of vehicle duties each one defined as
a set of consecutive trips and some additional operations. Each vehicle duty
is split into pieces of service corresponding to continuous driving periods as-
signed to a driver. Each piece of service has a starting time and an ending
time, and a starting and ending location that may be a depot or a relief point
on the line (example in Figure 1). For each driver we are given the remaining
maximum working and driving times and the maximum number of remaining
pieces of service. In addition, since the decisions are taken when the service is
carried out, we also know the assignment of drivers to the currently worked
pieces in case they are on duty. The problem consists in finding an assignment
of the pieces of service to the drivers, maintaining the assignment of the cur-
rently worked pieces, so that it complies with the regulations. The regulations
account for the maximum duration of the working shift, the maximum total
driving time, the maximum uninterrupted driving time, the starting and end-
ing location of the driver shift, the number and duration of breaks between
pieces of work. The objective function accounts for the cost of possible driver
extra allowances and the amount of uncovered service. Notice that, in this
assignment, previously planned duties may be disassembled into atomic pieces
of service and then assembled again in a different way to form new duties that
are more convenient to cover the service.
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4.2 Graph representation

Atomic pieces of service

THip 4
T4SR1 i T4RIR2 T4R2E
Locgy. R 2 . R 2 . Liocey
Timess Relief Point 1 Relief Point 2 Timees
Locy—4 Loco—y
Timey 4 Timey_y

Graph
representation

Fig. 1 Graph representation of a part of vehicle duty

We utilize a directed acyclic graph G = (N, A) to support the modeling.
The node set N is partitioned into a set of drivers Ny, including possible
spare ones, a set of pieces of service Ny, and some special nodes N, used
to manage breaks. The set of arcs A represents the compatibilities between
pieces of service. There is an arc (j,j') € A if the pieces of service j and j' can
be assigned consecutively to the same driver. Moreover, there are arcs (d, 7)
connecting each driver d to pieces of service compliant with the regulations
that can be assigned to him /her. Nodes representing breaks are connected to
any other node. One example of graph G is represented in Figure 2).

V3
T1R

i

Fig. 2 Example of compatibility graph used in the pricing sub-problem. Break nodes are
not included for the shake of readability.

Notice that, if one driver d is currently on duty, there are only arcs (d, j)
such that j is the current piece of service assigned to d or its possible modi-
fications (shortened or lengthened pieces of service derived from the original
one). A path in G starting form a node d in Ny and satisfying the additional
constraints deriving from regulations, corresponds to a feasible completion of
duty for driver d. The driver re-scheduling problem corresponds thus to finding
a path covering of G using feasible paths starting from “driver" nodes.
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4.3 Column Generation approach

The most successful approaches to the off line version of the Crew Scheduling
problem are based on column generation (see for example Desaulniers et al.,
2005; Gualandi and Malucelli, 2013). Moreover, with this approach part of the
complexity of the problem, due to the involved regulations, is transferred to
the pricing sub-problem. Indeed, the pricing subproblem can be easily tailored
to take into account additional features and requirements.

The idea of the approach is to use two set of binary variables x, and yj.
Variables x,, are associated to each feasible completion (i.e., feasible path) p
and are used in a set partitioning framework. Variables y; are associated with
each (atomic) piece of service h (which is a unsplittable portion of vehicle
duty) and are set to 1 if h remains uncovered. Let E},;, be the incidence matrix
of the path p, that is Ey, = 1 if and only if path p covers the piece of service h
and let Bg, be the driver-path association matrix that is Bg, = 1 if driver d is
associated with path p. Let H denote the set of atomic pieces of service. The
crew re-scheduling optimization problem (CRP) is then formulated as follows:

CRP: min Z cpTp + Z Chyn (9)
pEP hinH
> Enpay+yn =1 VheH (10)
peP
> Bz, <1 vd € D (11)
peEP
z, € {0,1} VpeP (12)
yn € {0,1} VheH (13)

where P is the set of feasible completions and ¢, denotes the overall cost of
a completion. This cost ¢, is equal to the number of minutes of extra work
required by completion p plus 0.1 for each of the following modification with
respect to the planned duty: starting location, ending location, relief point.
The penalty for skipping a piece of service ¢}, is equal to twice the number of
minutes required to complete the piece of service h. The objective function (9)
aims at the minimization of the total cost given by the sum of pieces of services
not covered, extra working time and driver duties modifications. Note that the
last one is usually not a direct cost for the company. The first constraint (10)
states that each piece of service h is either covered by exactly one compatible
completion or is skipped and consequently its corresponding yj variable is set
to 1. This ensures the feasibility of the problem even if, due to the modified
vehicle schedule, some piece of service is not covered by any driver. The second
constraint (11) establishes that a driver cannot be assigned to more than one
completion (duty).

In our implementation of the column generation method the Restricted
Master Problem (RMP) is given by the linear relaxation of the CRP and it is
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initialized with a set of columns made up of zero cost columns corresponding
to all original driver shifts. For each driver, taking into consideration the new
vehicle schedule, we generate a column containing all feasible pieces of service
that the driver was supposed to complete during his/her original duty. Pieces
of service falling outside the original working shift are left uncovered.

A

-}

Fig. 3 Example of reduced graph used in the initialization procedure

Since many of the columns composing the best solution are obtained by
removing or adding a single node to an original driver shift, the initial set
is integrated with columns generated by a simple algorithm that is able to
find basic feasible modifications of the original drivers shifts. This procedure
is run once for each driver and makes use of a restricted graph (see Figure 3).
In the graph, each driver node is connected only to nodes representing the
pieces of work associated with vehicles he/she is supposed to cary out in the
originally planned shift. Moreover, for each vehicle, only the nodes compatible
with the time and location limits of the original driver shift are considered,
though a small tolerance in the starting and ending time of each part of the
driver shift can be accounted for. On this graph the algorithm, following a
greedy approach, looks for a path reaching as many nodes as possible. Only
two decisions have to be taken in this problem: where to start and where to
change vehicle (when possible). The algorithm generates one path for each
available starting location (one or two at most), it changes vehicle in the last
feasible node (compatible with breaks regulations, time and location limits)
and reaches the new vehicle in the first possible location. The algorithm runs
in linear time in the size of the restricted graph and generates up to 2 x |D|
columns.

At each step of the column generation procedure the RMP is solved and,
exploiting the dual representation of the problem, a set of new columns p
corresponding to z, variables with negative reduced cost is found solving a
pricing sub-problem and it is added to the RMP. This process stops when no
useful column is found in the pricing phase.
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4.4 Pricing subproblem

In details, the dual master problem of the CRP read as follows:

max Z (n +74) + Z Vg + Z op (14)

heH deD peEP

Z Eh,p:u'h + Z deVd + Op S Cp Vp eP (15)
heH deD

N VheH (16)
heH

vg <0 vd € D (17)
op <0 VYpeP (18)
<0 VheH (19)

where dual vectors p and v correspond to constraints (10) and (11) while dual
vectors 7 and o are associated with the additional constraints x, <1 Vp e P
and y, <1 Vh € H coming from the linear relaxation of (12) and (13).

The expression of the reduced cost ¢, associated with primal variable z,
in terms of dual variables is:

Cp=cp— Z n — Z Vg — Op (20)

heH(p) deD(p)

where H(p) represents the set of atomic pieces of service included in path p and
D(p) is the associated driver. The pricing sub-problem looks for the path p that
minimizes (, and satisfies the constraints. The search of a negative reduced
cost completion can be modeled as an elementary shortest path problem with
resource constraints. The four resources considered in the problem are: the
total working time, the total driving time, the uninterrupted driving time and
a single break. It is worth noting that, while three resources are characterized
by a monotonic consumption function, the costs and the uninterrupted driving
time have a non monotonic behavior (e.g. the uninterrupted driving time is
reset when a break is consumed).

The pricing problem is solved with a standard dynamic programming
method based on Feillet et al. (2004). This problem can be decomposed into
independent subproblems, one for each driver, that can be solved in parallel.

When the pricing is not able to return a negative reduced cost path for
any driver, thus there is no variable that can potentially improve the value of
the linear relaxation of the re-scheduling problem (RMP), the integer CRP is
solved to the optimality using all columns found. This is obviously a heuristic
approach. A complete Branch and Price scheme should be applied to guarantee
the optimality. This choice is due to the limited time available in the real-time
setting.
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5 Computational Results

In order to evaluate the performance and effectiveness of the procedure we
have implemented the complete Delay Management Framework in C++ using
COIN-OR CBC 2.9.7 (Lougee-Heimer, 2003) as MIP solver. All tests were done
on an Intel Core i7-3770K with 16 GB of RAM running Microsoft Windows
10 Pro (64 bits).

5.1 Data set

The data set used in the experimental phase includes 215 real scenarios in-
volving two lines, in particular, ATM tram line 14 (105 instances) and trolley
bus line 92 (110 instances). The operation period covers the months of June,
September and November 2015 from 07:00 to 20:00. Line 14 counts 104 stops,
up to 25 vehicles simultaneously on duty, about 66 drivers, 16 relief points and
up to 16 potential improving actions for every trip. The average round trip
traveling time is about 2 hours and 10 minutes, the planned headways go from
5 minutes during peak hours to 9 minutes in off-peak hours. Line 92 has an
average round trip traveling time of about 1 hour and 35 minutes and planned
headways ranging from 4 minutes in rush hours to 9 minutes during off-peak
hours. This line has 66 stops, up to 20 vehicles simultaneously on duty, 50
drivers, 5 relief points and up to 5 possible improving actions for each trip.

In all scenarios the simulation interval A has been set to 2 hours, the length
of the tabu list is equal to 3 and 10 rounds of simulation are considered (pa-
rameters foqe and k in the tabu-search algorithm). The software is expected
to produce a solution for vehicle re-scheduling in less than 5 minutes.

In the crew re-scheduling phase tolerances are taken into account in order
to simulate the real behavior of drivers. In particular, for each driver, the
starting time of the shift considers a tolerance of 10 minutes (a driver must
be at the starting location of the shift at least ten minutes in advance) and
the total duty time can include up to 20 minutes of extra work with respect
to the planned one. The execution time of the crew re-scheduling is limited to
5 minutes.

5.2 Column Headers

In tables from 1 to 9 the column headings have the following meaning;:

— PF: service regularity index used for the optimization.
— 01 ATM regularity index.
— PW: Piece-wise linear regularity index.
— QA: Quadratic regularity index.
— HR: Headway ratio based regularity index, percentage ratio between
the observed headway and the planned one. See section 5.3 for a formal
definition.
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— HS': Headway standard deviation based regularity index: standard devi-
ation of the difference between the observed and the planned headways.
See section 5.3 for a formal definition.

— PR: Percentage regularity deviation based regularity index: the per-
centage average ratio between the deviation of the observed headway
from the planned one and the planned headway. See section 5.3 for a
formal definition.

— HY — x: Hybrid regularity index composed by the combination of the
function estimating the impact of the actions on the drivers scheduling
and the x regularity index.

— %I: percentage improvement in the regularity, with respect to IRy, mea-
sured with the regularity index used for the optimization.

— Avg %I: average percentage improvement in the regularity, with respect
to IRp. This is the average value obtained evaluating both the starting
situation and the solution found with all available penalty functions.

— %No: number of instances where no improving actions were found.

— N Ac: number of improving actions in the solutions found (max allowed
improving actions: 10).

— KM-Ac: lost Km due to actions, e.g. portion of the itinerary left uncovered
due to a short-turn or a trip limitation.

— V T: computational time for the vehicle re-scheduling algorithm (tabu
search), in seconds.

— KM-D*: lost Km due to the driver scheduling adjustment.

— %D-D*: percentage difference between the length of the optimized driver
duties and the planned ones.

— %M-D*: percentage of drivers having changes either in the relief points,
or in the starting/ending location, or the duty extended by more than 10
minutes.

— Extra*: extra working time, in seconds, required in the optimized schedul-
ing. Each individual driver duty can be extended by at most 20 minutes
as requested by ATM.

— D T: computational time for the crew re-scheduling algorithm (column
generation), in seconds.

5.3 Comparison of regularity functions

In this section, we analyze the performance of the disruption-delay manage-
ment framework and crew rescheduling using different regularity functions. In
particular we consider PW and QA, introduced in this paper, 01 by ATM
and HR, HS and PR, taken from the literature. Since PW and QA functions
have several parameters that can affect the behavior of the system, a prelim-
inary computational experiment to determine suitable parameter settings is
described in Malucelli and Tresoldi (2018).
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Let v,(q) and v.(q) denote the observed and the expected headways in
stop ¢ and let P be the set of all observations. The index of regularity for the
literature functions is computed in the following way:

HR =1 — |55 —1;
HS =1-—std({vo(q),Yq € P})/avg({ve(q),Vq € P});

PR —1— ZqGP |’U6(Qf;"uo(‘Z)|/ve(Q).

The ATM 01 regularity function has ¢t = 180[s].

The results obtained on line 92 and 14 are reported in tables 1, 2 and in
tables 3, 4 respectively. We tested the system on single lines for two main
reasons. On the one hand, we wanted to set up the system and verify its
efficiency in a limited context, even though the lines that we studied are among
the most complex and critical of the service network. On the other hand, ATM
usually manages resources (vehicles and drivers) independently on each line,
thus generating data on the crew scheduling would have been artificial. We
will extend the experiments to a multi line case in section 5.5.

Table 1 PF Comparison - Line 92

PF | %l Avg %l  %No N Ac KM-Ac VT

01 3.281 0.849 12.727 3.314 2209 5.073
PW | 59.219 1.705  4.545 5.874 1.758  5.172
QA | 1359 2897  4.545 5.600 1.695  4.745
HR | 0.687 -19.624  0.000 9.630 2.690 5.214
s 6.392 2089  1.818 8.061 2.387  5.049
PR | 4.104 1.704  0.000 7.600 2.180 5.115

Table 2 PF Comparison - Line 92
PF | KM-D* %D-D* %M-D* Extra* DT

01 0.628 0.792 4.288 295.872  0.295
PW 0.253 1.014 6.584  406.147 0.372
QA 0.095 0.980 6.912  337.379  0.435
HR 1.080 1.171 9.690 970.430 1.249
HS 0.469 0.860 8.218 379.551 0.816
PR 0.390 0.803 7.062 364.800 0.829

Considering columns %I and Avg%I regularity functions 01 and HR per-
form very poorly and generate solutions that actually decrease the regularity
of the service when the results are evaluated with any other function. More-
over, function 01 is not able to find any improving solution in almost 13%
of the instances. HR always proposes a large number of actions, even if it
provides very little improvement in the regularity of the service. All the other
indices are able to improve the overall quality of the service. They provide
comparable performances from the regularity of the service point of view and
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Table 3 PF Comparison - Line 14

PF | %l Avg %1  %No NAc KM-Ac VT

01 5.690  -4.927 13.33 4.821  17.791 24.647
PW | 53.181 4760  1.905 6.937  7T.468 24.338
QA | 6715  6.928 4761 6.750  9.697 24.481
HR | 3.302 -15.218 0.000 9.741  36.531 24.835
HS | 23.812  3.180 0.000 8.580  11.679 24.586
PR | 6575 5438 0.000 8296  10.407 24.540

Table 4 PF Comparison - Line 14
PF \ KM-D*  %D-D* %M-D* Extra* DT

01 8.761 2.240 11.867 1684.746  33.160
PW 4.139 0.918 7.535  1469.456  37.656
QA 4.395 1.074 7.465 1507.289  34.806
HR 14.877 1.723 24.884  3797.926  60.142
HS 6.790 1.591 13.501 1631.630  58.597
PR 6.519 1.016 11.484  1553.914  58.349

propose similar number of actions. However, there are differences when the
cost of implementing the solution is taken into account. The actions proposed
in solutions provided by PW and QA have a lower impact on the cost than
those found with HS and PR (see column KM-Ac). As for the evaluation on
the impact on the driver scheduling (columns KM-D*, %D-D* %M-D* and
Ezxtra*), the solutions proposed when using PW and QA have a better per-
formance with respect to HS or PR. Finally, it is worth noting that, due to
this fact, the computational burden to re-optimize the driver scheduling for
the outcome of HS and PR is almost double than that of PW and QA. In
conclusion, the disruption-delay management framework that uses PW or QA
functions provides solutions that are comparable with those of HS and PR
in terms of regularity, while the solutions are by far more efficient in term of
cost and difficulty of implementation.

5.4 Hybrid function

Combining ideas shown in sections 2.2 and 2.3 a new hybrid index HY, taking
into account simultaneously the index of regularity and the index IA (see
section 2.3) measuring the adherence of the crew scheduling to the planned
one, can be defined as follows:

HY =PF+¢Y y:i+€Y z+nY s

ieD i€D i€D

where PF is the basic index of regularity computed with any function
presented before. This hybrid function has been tested on all available data
with parameters: ¢ = 0.10, £ = 0.05 and n = 0.15. Values for y;, z; and s;
are estimated from a simple solution of the problem described in Section 4.
For this estimation, no pricing is executed and once the master problem is



Delay and Disruption Management in Local Public Transportation 21

initialized with the heuristic procedures described it is solved considering all
generated columns and including integrality constraints. The solution of the
master problem in this phase can require up to 0.1 seconds.

Table 5 Hybrid PF Comparison - Line 92

HY-PF | %I Avg %I  %No  NAc KM-Ac VT
HY-01 3.210 0.555 16.363  5.866 1.622  5.286
HY-PW | 57.090 3.438 4.545  6.800 1.537  5.265
HY-QA 1.347 2.954 14.545 6.238 1.131  5.021
HY-HR 0.540  -14.575 0.000 7.390 0.440 5.031
HY-HS 6.225 3.055 7.272  7.837 2.381 5.101
HY-PR 3.879 2.228 4.545  7.463 2.126  5.199
Table 6 Hybrid PF Comparison - Line 92
HY-PF ‘ KM-D*  %D-D* %M-D*  Extra* DT
HY-01 0.366 0.368 3.182 387.793 0.724
HY-PW 0.095 0.761 6.327 413.411 0.823
HY-QA 0.000 0.470 3.890 398.702 0.768
HY-HR 0.000 0.647 3.325 773.490 0.772
HY-HS 0.261 0.632 6.406 365.880 0.972
HY-PR 0.158 0.551 4.632 333.779  0.807
Table 7 Hybrid PF Comparison - Line 14
HY-PF | %L Avg %l %No  NAc KM-Ac VT
HY-01 5.346 -7.541  19.048  6.852 11.082 23.691
HY-PW | 50.680 8.680 1.905 7.962 6.620 25.411
HY-QA 5.702 7.099 5.714  7.787 4.440 24.743
HY-HR 2.188  -10.552 0.000 9.099 12.617  23.514
HY-HS 20.005 6.957 0.952 7.975 7.188 24.104
HY-PR 5.672 6.128 1.905 8.025 8.127  24.352
Table 8 Hybrid PF Comparison - Line 14
HY-PF ‘ KM-D*  %D-D* %M-D* Extra* DT
HY-01 1.475 0.543 4.597  1324.180 27.617
HY-PW 3.304 0.509 6.075 1650.405 41.960
HY-QA 1.240 0.360 3.635 1539.787  25.044
HY-HR 6.049 0.682 12.270  3008.481 46.598
HY-HS 2.175 0.483 4.939 1464.463  44.468
HY-PR 2.734 0.444 7.243 1614.911 46.614
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The results obtained on all available instances using all penalty functions
described in this document are reported in tables 5, 6, 7 and 8 grouped by
line.

It is worth noting that the relative performance differences between penalty
functions remain the same since the performance of the hybrid function strictly
depends on the basic function. Poor functions (01, HR) generate bad results
even inside this hybrid framework. However, comparing these tables with the
corresponding results detailed in the previous sections (see tables 1, 2,3, 4)
a few considerations can be drawn. The impact of the hybridization on the
service regularity improvement (%1) is minimal and it is greatly compensated
by the increase in the robustness of the generated solutions (Avg %I). This
means that the solutions found using any basic function in the hybrid system
are more likely to be considered good solutions even when the regularity of
the service is re-checked ex-post with a different function. The number of
improvement actions used in hybrid and regular solutions is similar, but the
type of improvement actions is different. In particular, solutions generated
with hybrid function favors low impact actions such as shortening/lengthening
breaks instead of route deviations and short-turning trips. This produces a
strong reduction (30% on average) in the kilometers lost due to improving
actions (KM-Ac) and it is achieved with, on average, less than one second
increase in the computational time of the tabu search algorithm (column V
T).

Furthermore, the best improvement is obtained in the reduction of the
implementation cost of the solutions. Indeed, three of the four main cost in-
dicators (columns KM-D* %D-D* %M-D*) are reduced by more than 50%
on average while the average extra working time employed does not change
(column Eztra*). Finally, it is worth noting that with a hybrid function, since
the number of improving actions in the solutions is lower, the associated crew
re-scheduling problems are easier to solve and require on average 20% less
computational time.

5.5 Multi-line optimization

Since the delay-disruption management system is effective and efficient in deal-
ing with single lines, we consider now the case where multiple lines can be
optimized at the same time. In particular we focus on cases where drivers
are shared between different lines with some relief points in common. In this
case we could not obtain real data. Thus, starting from lines 14 and 92 (line
structure, frequencies, relief points, driver duties, etc.) we have randomly gen-
erated ten instances in order to simulate three different lines with independent
vehicles and shared drivers.

The results obtained on these instances, using the PW regularity function
with the best settings defined in Malucelli and Tresoldi (2018), are reported
in table 9. We have considered two different types of optimization:
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Single : the three lines are optimized independently. V' T and D T report
the sum of the three independent computational times required to find
the solution for the three lines; KM-D* and Extra* are the sum of all km
lost and extra seconds used on the three lines; %D-D* and %M-D* are
computed taking into account all drivers duties for the three lines.

Multi : vehicles are optimized independently while all drivers are considered
as part of a single super-line encompassing all three lines.

Table 9 Multi-line optimization

Scenario VT KM-D*  %D-D* %M-D* Extra* DT

1-Single 291.49 64 1.83 63.90 6923 616.87
1-Multi 320.85 14 0.11 3.08 3621 231.15
2-Single 45.03 10 0.47 0.00 18 1.52
2-Multi 48.20 0 0.17 0.00 18 16.36
3-Single 15.47 25 1.56 27.31 5063 0.15
3-Multi 15.96 21 1.54 21.15 6923 0.30
4-Single 60.30 28 1.22 8.33 3464 6.16
4-Multi 69.67 18 0.74 19.05 6705 60.21
5-Single 14.18 41 1.98 58.25 6119 0.15
5-Multi 14.43 32 2.11 29.41 7227 0.43
6-Single 10.99 15 1.53 44.61 3345 3.24
6-Multi 11.32 0 1.45 29.76 3270 21.00
7-Single 15.73 41 1.98 58.25 6119 0.25
7-Multi 15.88 32 2.11 27.45 7227 0.43
8-Single 14.87 25 1.56 27.31 5063 0.16
8-Multi 15.07 21 1.54 21.15 6923 0.40
9-Single 9.08 15 0.57 29.89 3409 2.86
9-Multi 9.13 0 0.53 28.57 3270 17.23
10-Single 44.78 0 0.14 0.00 126 12.26
10-Multi 50.99 0 0.14 0.00 126 43.58

The results highlight a huge costs improvement when drivers from multiple
lines are shared. This is mainly due to the great reduction in kilometers lost,
48% on average. Moreover, the average increase in driver duties length and in
the percentage of driver duties to be modified are also reduced by 19% and
15% respectively. The extra time, on the other hand, is increased by 14% on
average. However, this is expected since we are able to cover more kilometers
and the contribution in the objective function for extra time is smaller with
respect to that of lost kilometers.

As for computational times, on the one hand, in the vehicle optimization
procedure times are similar. There is a little overhead when resources must be
split among different lines, but it is usually smaller than 10%. On the other
hand, the size of the driver re-scheduling problem is definitely increased when
multiple lines are optimized together, requiring on average double the time
used for independent lines.
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6 Conclusions

In this paper we tackled the real-time disruption-delay management problem
in local public transportation considering the real case of ATM. The paper
presents the following main contributions:

1. We defined new indices of regularity that can overcome the pitfalls of
the index currently used by ATM when applied within an automated re-
scheduling system with the purpose of improving the performance.

2. We introduced and implemented the disruption-delay management frame-
work integrating vehicle and crew real-time re-scheduling for one local pub-
lic transport line.

3. We performed an extensive testing campaign on more than 200 real world
scenarios using our newly introduced indices of regularity as well as a few
indices taken from the literature. The results obtained demonstrate the
feasibility and effectiveness of our approach.

4. We introduced a hybrid index of regularity that takes into account vehicles
and crews simultaneously. We demonstrated that this hybrid index provides
an improvement in the regularity of the service almost as good as with
the other ones and it able to greatly reduce the cost due to the crew re-
scheduling.

5. We proved the flexibility and scalability of the presented framework by
solving some multi-line scenarios with three different lines sharing drivers.

This study shows the feasibility of vehicle and crew re-scheduling in real-
time on real scenarios and represents a solid starting point for the implemen-
tation of an actual online real-time decision support system to help control
room operators in their daily work. A preliminary version of this support tool
has been implemented and it is currently tested on some lines of ATM.

However, there is room for improvements and further developments. In
particular, the reliability of the discrete event simulator can be improved tak-
ing explicitly into account additional elements such as expected traffic flow,
weather conditions and drivers behavior to dynamically modify the empirical
distribution used for the generation of traveling times. This can be very bene-
ficial especially when the evolution of the transportation line is simulated over
a time horizon of several hours.
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