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Abstract 52 

Many signal perception mechanisms are connected to Ca2+-based second messenger 53 

signaling to modulate specific cellular responses. The well-characterized plant hormone 54 

auxin elicits a very rapid Ca2+ signal. However, the cellular targets of auxin-induced Ca2+ are 55 

largely unknown. Here, we screened a biologically annotated chemical library for inhibitors of 56 

auxin-induced Ca2+ entry in plant cell suspensions to better understand the molecular 57 

mechanism of auxin-induced Ca2+ and to explore the physiological relevance of Ca2+ in auxin 58 

signal transduction. Using this approach, we defined a set of diverse, small molecules that 59 

interfere with auxin-induced Ca2+ entry. Based on annotated biological activities of the hit 60 

molecules, we found that auxin-induced Ca2+ signaling is, among others, highly sensitive to 61 

disruption of membrane proton gradients and the mammalian Ca2+ channel inhibitor bepridil. 62 

Whereas protonophores nonselectively inhibited auxin-induced and osmotic-stress-induced 63 

Ca2+ signals, bepridil specifically inhibited auxin-induced Ca2+. We found evidence that 64 

bepridil severely alters vacuolar morphology and antagonized auxin-induced vacuolar 65 

remodeling. Further exploration of this plant-tailored collection of inhibitors will lead to a 66 

better understanding of auxin-induced Ca2+ entry and its relevance for auxin responses.  67 

  68 
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Introduction 69 

The plant hormone auxin is a potent regulator of a diverse set of developmental processes, 70 

ranging from embryogenesis, postembryonic organogenesis, and regeneration to tropic 71 

growth responses (Vanneste and Friml, 2009). These pluripotent effects in plant 72 

development make auxin a key player in the plant’s developmental plasticity. Moreover, 73 

auxin is subject to extensive cross-talk with many other signaling pathways for flexible 74 

integration in auxin-regulated development (Chaiwanon et al., 2016; Liu et al., 2017). 75 

Decades of extensive research have led to the formulation of a canonical auxin signaling 76 

pathway. In short, the perception of auxin occurs via the auxin-induced stabilization of a 77 

coreceptor complex constituted by a TIR1/AFB F-box protein and Aux/IAA proteins, resulting 78 

in the ubiquitination and proteolysis of the latter. Consequently, Aux/IAA-interacting AUXIN 79 

RESPONSE FACTORs (ARFs) can become active (Lavy and Estelle, 2016; Weijers and 80 

Wagner, 2016). This auxin signaling mechanism can explain many of the plant’s responses 81 

to auxin. In addition, a nontranscriptional branch of TIR1/AFB-based auxin perception was 82 

recently connected to the nontranscriptional inhibition of elongation (Fendrych et al., 2018), 83 

vacuolar remodeling (Lofke et al., 2015), and activation of Ca2+ signaling (Dindas et al., 84 

2018).  85 

A large body of literature describes the role of Ca2+ in a variety of cellular processes in plants 86 

in the context of responses to light, and biotic and abiotic stress (reviewed in Tuteja and 87 

Mahajan, 2007; Kudla et al., 2010; Kudla et al., 2018). However, little is known about the role 88 

of Ca2+ signaling downstream of auxin. Interestingly, a few reports connect Ca2+ to auxin 89 

transport regulation (Dela Fuente and Leopold, 1973; Benjamins et al., 2003; Zhang et al., 90 

2011; Rigo et al., 2013). More recently, auxin-induced cytosolic Ca2+ increase was proposed 91 

to contribute to auxin’s inhibitory effect on root growth and auxin-regulated root hair growth 92 

via the nonselective cation channel CNGC14 (Shih et al., 2015; Dindas et al., 2018). Jointly, 93 

these reports illustrate the importance of Ca2+ in auxin physiology. Despite this recent 94 

progress, it is clear that much remains to be uncovered about the underlying signaling 95 

mechanism and its cellular targets. 96 
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 97 

Several types of plant Ca2+ channel types exist in relatively large gene families, as illustrated 98 

in a few examples in Arabidopsis (Arabidopsis thaliana): 20 CYCLIC NUCLEOTIDE-GATED 99 

CHANNELs (CNGCs; Ma and Berkowitz, 2011), 20 GLUTAMATE RECEPTOR-LIKE 100 

CHANNELs (GLRs; Forde and Roberts, 2014), and 16 OSCA/TMEM63 channels (Murthy et 101 

al., 2018; Zhang et al., 2018). This genetic complexity greatly hinders pinpointing the Ca2+ 102 

channels that are involved in a given Ca2+ regulated process. Therefore, the involvement of 103 

Ca2+ in any process in plants is often deduced from using Ca2+ chelators such as EGTA and 104 

BAPTA or very nonselective Ca2+ channel blockers such as La3+ and Gd3+. However, these 105 

treatments do not reveal anything about the molecular nature of the Ca2+ channel involved. 106 

Moreover, some important side effects need to be considered when using these treatments 107 

to manipulate Ca2+, for example, acidification caused by EGTA and BAPTA releasing four H+ 108 

when binding two Ca2+ and the efficient precipitation of phosphates by La3+ (reviewed in De 109 

Vriese et al., 2018). 110 

The importance of Ca2+ in human physiology and neurology led to the development of an 111 

extensive pharmacological toolbox to manipulate specific groups of Ca2+ channels. Simple 112 

drug treatments thus allow manipulation of specific Ca2+ channels and evaluation of its effect 113 

on any process of interest. Unfortunately, the Ca2+ signaling machinery in plants has 114 

diverged significantly from the one in the animal kingdom, with many of the Ca2+ signaling 115 

components of animals being absent in plants and vice versa (Nagata et al., 2004; Edel et 116 

al., 2017). For instance, channels associated with muscle and nerve Ca2+ signal transduction 117 

in animals, such as L-type voltage-dependent Ca2+ channels (VDCCs; Zuccotti et al., 2011), 118 

inositol 1,4,5-triphosphate receptors (IP3Rs; Nixon et al., 1994), and ryanodine receptors 119 

(RyRs; Lanner et al., 2010) are either missing or significantly different in plants. Hence, many 120 

Ca2+ channel inhibitors established in animal systems are arguably of limited use in plants. 121 

Only a few ionotropic GLR inhibitors (DNQX, CNQX, MNQX, and AP5) were also shown to 122 

have inhibitory effects on specific plant GLR-based Ca2+ channeling activities (reviewed in 123 

De Vriese et al., 2018), but the molecular nature and specificity of these inhibitory effects 124 
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remain to be characterized. These examples illustrate that there is an important need to 125 

develop Ca2+ channel inhibitors directly in plant systems to stimulate plant Ca2+ research.  126 

Here, we set out to identify small molecules that modify the shape and amplitude of auxin-127 

induced cytosolic Ca2+ dynamics and use them to further explore the role of Ca2+ signaling in 128 

cellular auxin responses. We screened a collection of biologically active and structurally 129 

diverse compounds for inhibitors of auxin-induced Ca2+ signaling in transgenic tobacco 130 

(Nicotiana tabacum) BY-2 cell lines that express YFP-apoaequorin as a reporter of Ca2+ 131 

signaling. Our primary screen identified 80 potential inhibitors, of which 67 were reconfirmed 132 

in a confirmation screen. Based on annotated biological functions, we found that 133 

protonophores nonselectively interfered with auxin-induced Ca2+. Moreover, we found that 134 

auxin-induced Ca2+ signals were much more sensitive to bepridil than hyperosmotic-stress-135 

induced Ca2+ signals. This differential drug sensitivity is consistent with distinct Ca2+ channel 136 

types being involved in the Ca2+ response (Yuan et al., 2014; Shih et al., 2015; Dindas et al., 137 

2018). Interestingly, we found that bepridil had a severe impact on vacuolar morphology, to 138 

the extent that it antagonized auxin-induced vacuolar remodeling. The resulting set of 139 

inhibitors thus represents a valuable expansion of the toolbox with nonspecific and 140 

semiselective inhibitors for exploring the role of Ca2+ signaling in plants.  141 

 142 

Results 143 

Assay development and chemical screen 144 

Unlike whole plants, which are composed of complex mixtures of cell types with different 145 

stimulus sensitivities, tobacco BY-2 cell suspension cultures are highly homogenous in terms 146 

of cell type and developmental stage, thus making them highly suited for high-throughput 147 

screening in a multiwell format. A BY-2 cell suspension line expressing YFP-fused 148 

apoaequorin (YA) (Mehlmer et al., 2012) was established for luminescence-based 149 

quantification of Ca2+ signals (Shimomura et al., 1962; Knight et al., 1991). Aequorin is a 150 
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bioluminescent photoprotein that emits blue light upon Ca2+ binding and has been used 151 

extensively as a Ca2+ sensor (Shimomura et al., 1962; Shimomura, 2005) (Fig. 1A). The YFP 152 

fused to the aequorin was used to visualize expression of the probe in the BY-2 cells but did 153 

not contribute to the sensor activity. The assay was miniaturized to 96-well plate format and 154 

validated by assessing the effect of 14 known elicitors of Ca2+ signaling. The known elicitors 155 

induced distinct signals in this BY-2 cell culture (Fig. 1B-O), corroborating the suitability of 156 

the cells to assess the effect on Ca2+ signaling.  157 

The BY-2 cell suspensions were poorly responsive to exogenous application of auxins (Fig. 158 

1H-J). This probably reflects an auxin insensitivity that is associated with prolonged culturing 159 

of the cells in relatively high 2,4-D concentrations (0.2 mg/L ≈ 1 µM in the growth medium). 160 

Therefore, the 2,4-D concentration was increased to 500 µM, which resulted in a robust 161 

auxin-induced Ca2+ response. Immediately after 2,4-D addition, the luminescent signal rapidly 162 

increased and reached a maximum after approximately 90 seconds, which attenuated to 163 

close to baseline levels around 300 seconds after addition (Fig. 1J). By using the viability 164 

stains propidium iodide (PI) and fluorescein diacetate (FDA), no obvious difference in cellular 165 

integrity was observed after 1-hour treatment with 2,4-D, suggesting that the immediate Ca2+ 166 

response to 2,4-D (within minutes) is unlikely the result of a defect in cellular viability 167 

(Supplemental Fig. S1). 168 

Next, we aimed to evaluate the quality of our assay by calculating its Z-prime (Z’) factor, 169 

which is a commonly used statistical indicator of quality for high-throughput assays (Zhang et 170 

al., 1999). It allows estimation of the quality of the bioassay in discriminating the effect of hit 171 

molecules from read-out variation based on two parameters: 1) the ‘separation band’ of the 172 

assay: the difference between the mean of the negative control plus three times the standard 173 

deviations of the negative control and the mean of positive control minus three times the 174 

standard deviations of the positive controls, and 2) the dynamic range of the assay: the 175 

difference between the mean of the positive and negative controls. In a good assay, the 176 

means of the positive and negative controls differ strongly from each other, while the 177 
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standard deviations are very low (Fig. 2A). An ideal assay has a Z’ factor close to 1, and 178 

assays with a Z’ factor between 0.5 and 1 are generally considered to be excellent (Zhang et 179 

al., 1999). Here, we calculated the Z’ value of our assay based on the means and standard 180 

deviations of the peak intensities of mock-treated cells (DMSO) and cells treated with a 181 

nonspecific Ca2+ channel inhibitor (GdCl3) (Fig. 2A). The Z’ factor was 0.54, suggesting that 182 

our assay is robust enough to reliably distinguish potential inhibitors from well-to-well 183 

variation. Subsequently, we used this experimental setup to screen the Spectrum collection 184 

(MicroSource Discovery Systems) of 2,320 annotated compounds (Fig. 2B). This resulted in 185 

the identification of 80 molecules that reduced the maximal response induced by 500 µM 2,4-186 

D to less than 55% of that of the respective DMSO controls. Next, we used a more sensitive 187 

well-per-well reconfirmation assay via a plate reader, which also allowed assay of the viability 188 

of the cells at the end of the assay by adding a discharge solution. This treatment causes 189 

disruption of the membrane integrity and flooding of the cytoplasm with Ca2+, which binds the 190 

remnant reconstituted aequorin, and thus generates a sharp, strong luminescence peak 191 

(discharge peak) (Fig. 2C). Out of the 80 primary hits, 67 were reconfirmed for reducing the 192 

auxin-responsive Ca2+ signal by more than 45% (Supplemental Table S1). Of these 67 193 

confirmed hits, 39 showed no obvious short-term cytotoxicity, as evidenced by the presence 194 

of a large Ca2+ discharge peak (Fig. 2C (green); Supplemental Table S1 (confirmed)). 195 

However, 28 confirmed hits caused a reduction (Fig. 2C (yellow); Supplemental Table S1 196 

(semi-confirmed)) or even complete absence of the Ca2+ discharge peak, indicating a defect 197 

in Ca2+ compartmentalization mechanisms and/or cell viability (Fig. 2C (blue); Supplemental 198 

Table S1 (cytotoxic)). Based on structural features, the 67 hits retained after the confirmation 199 

screen could be organized into 43 clusters of structurally similar compounds (Supplemental 200 

Table S1).  201 

Given that both the primary screen and confirmation screen represented single-well 202 

analyses, we aimed to further validate a part of our dataset using multiple biological repeats. 203 

Therefore, we selected 13 commercially available hit molecules representing a large 204 
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chemical diversity for further validation (Table 1). The auxin-induced Ca2+ responses were 205 

analyzed in 4-8 replicates on YFP-apoaequorin-expressing BY-2 cells (Mehlmer et al., 2012). 206 

Out of the 13 tested chemicals, 10 could be confirmed to strongly modify the 2,4-D induced 207 

Ca2+ signature, while maintaining a robust discharge peak (Fig. 2D). Together, these data 208 

highlight that our set of 67 hits after the confirmation screen is rich in potent modifiers of 209 

auxin-induced Ca2+ signaling.  210 

 211 
 212 
Fenamates alter the shape of auxin-induced Ca2+ 213 

Among the 67 confirmed hit compounds, we found four highly related fenamate-type 214 

chemicals: flufenamic acid (FFA (1)), niflumic acid (NFA (2)), tolfenamic acid (TFA (3)), and 215 

flunixin meglumine (4) (structures of all compounds described in the manuscript are shown in 216 

Supplemental Fig. S2). Unlike any other tested hit compounds, which simply reduced the 217 

amplitude of the Ca2+ response, these fenamates had a dramatic effect on the shape of the 218 

Ca2+ response. Treatment with FFA, NFA, or TFA reduced the maximum of the Ca2+ signal, 219 

but also revealed a novel Ca2+ signal that preceded the maximum (Fig. 3A-C). Such an effect 220 

on the Ca2+ signal shape was not observed for any of the other hit compounds that were 221 

selected for validation.  222 

Seedlings grown for 7 days in the presence of 20 µM FFA, NFA, or TFA had significantly 223 

shorter roots than seedlings grown on control plates and displayed a reduced gravitropic root 224 

growth, as indicated by a reduced vertical growth index (Fig. 3D-E; Supplemental Fig. S3). 225 

Consistently, we observed spreading of the expression of the synthetic auxin response 226 

reporter DR5rev::VENUS-N7 in the columella and stem cell niche (Fig. 3F-H), reminiscent of 227 

an inhibitory effect on auxin transport. However, neither of the two known auxin transport 228 

inhibitors, 2-[4-(diethylamino)-2-hydroxybenzoyl]benzoic acid (BUM (8)) and 1-N-229 

naphtylphtalamic acid (NPA (9)), had an obvious effect on auxin-induced Ca2+ (Fig. 4A-C), 230 
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suggesting that a block in auxin transport does not explain the effect of fenamates on Ca2+ 231 

signaling.  232 

The inhibition of cyclooxygenase activity by fenamates renders them suitable for use as 233 

nonsteroidal anti-inflammatory drugs (NSAIDs) (Graham, 2016), and NFA has reported anion 234 

channel inhibitory activities (Diatloff et al., 2004; Gilliham and Tester, 2005). Based on these 235 

reported bioactivities, we investigated whether other NSAIDs and anion channel inhibitors 236 

have a similar effect on Ca2+ signaling (Fig. 4A). Of two structurally unrelated NSAIDs 237 

(ibuprofen (10) and oxaprozin (11)) and two unrelated anion channel inhibitors, 5-nitro-2-(3-238 

phenylpropylamino) benzoic acid (NPPB (12)) and 9-anthracenecarboxylic acid (9-ACA (13)), 239 

only NPPB inhibited auxin-induced Ca2+ (Fig. 4D-G). However, the effect of NPPB was 240 

clearly distinct from the effect of fenamates on Ca2+ response dynamics (Fig. 4G), suggesting 241 

that the observed effects of fenamates on Ca2+ signaling are independent of any additional 242 

effects on cyclooxygenases or anion channels.  243 

These analyses suggest that the effect of fenamates on Ca2+ signaling is not related to any of 244 

their known (cyclooxygenase inhibition and anion channel inhibition) and observed (auxin 245 

transport inhibition) biological activities but is rather a distinct feature associated with the 246 

chemical structure. Therefore, we also tested the effect of a range of commercially available 247 

structurally similar compounds to see whether the effect of the fenamates could be explained 248 

by the presence of a specific substructure (Fig. 4A). However, every tested molecular variant 249 

(diphenylamine (14), diphenylmethane (15), α-phenyl-o-toluic acid (16), aniline (17), and 250 

anthranilic acid (18)) failed to inhibit/modify auxin-induced Ca2+ signals at 50 µM (Fig. 4H-L), 251 

suggesting that the fenamate-core structure represents the biological activity on Ca2+. 252 

Moreover, when revisiting the primary screen data of all fenamates that were included in the 253 

Spectrum library, we found that fenamic acid (5) and mefenamic acid (6) showed a tendency 254 

to reduce the Ca2+ response changes, albeit with a lower potency than the validated 255 

fenamates, while the effect of meclofenamate sodium (7) was negligible (Fig. 4A).  256 
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When we evaluated the 2,4-D-sensitive root growth, no obvious resistance or hypersensitivity 257 

could be observed, suggesting that fenamates do not affect auxin perception or 2,4-D uptake 258 

(Supplemental Fig. S4A). Similarly, no obvious resistance or hypersensitivity to the ethylene 259 

precursor 1-aminocyclopropane-1-carboxylic acid (ACC) could be observed in seedlings 260 

grown in the presence of these fenamates (Supplemental Fig. S4A). In addition, we also 261 

evaluated the effects of NPPB, 9-ACA, BUM, NPA, and the fenamate analogues on root 262 

growth and their sensitivity to 2,4-D and ACC (Supplemental Fig. S4B). Interestingly, unlike 263 

FFA, NFA, and TFA, diphenylamine, aniline, and anthranilic acid caused a significant 2,4-D 264 

resistance, which further illustrates a completely different mode of action between the 265 

effective fenamates and diphenylamine, aniline, and anthranilic acid. 266 

 267 

Protonophores impair the Ca2+ response to distinct stimuli and render roots 268 

insensitive to 2,4-D  269 

Inspection of the 67 confirmed hits revealed a total of at least 13 molecules with reported 270 

protonophore activities in different organisms (Supplemental Table S1), suggesting an 271 

important contribution of H+ gradients to auxin-induced Ca2+. We selected niclosamide (19), 272 

(+)-usnic acid (20), and cloxyquin (21) as structurally diverse representatives of this group of 273 

hits. Both niclosamide and (+)-usnic acid could be confirmed as potent inhibitors of auxin-274 

induced Ca2+ signals (Fig. 5A-B), while cloxyquin only caused a modest reduction in the peak 275 

of the Ca2+ signal (Fig. 5C). To test whether the suspected protonophore activities of 276 

niclosamide and (+)-usnic acid are the underlying cause of their observed inhibitory effect on 277 

Ca2+ signals, we also analyzed three well-characterized, but structurally unrelated 278 

protonophores: carbonyl cyanide m-chlorophenyl hydrazone (CCCP (22)), tyrphostin A23 279 

(TyrA23 (23)) and endosidin9 (ES9 (24)) (Dejonghe et al., 2016). In addition, we included the 280 

K+ selective ionophore valinomycin (25) to account for general disruption of gradients of 281 

monovalent cations. Similar to niclosamide and (+)-usnic acid, the three tested 282 
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protonophores were potent inhibitors of 2,4-D-induced Ca2+ signaling (Fig. 5D). Importantly, 283 

protonophore treatment did not have obvious defects in Ca2+ discharge profiles in the BY-2 284 

cells, suggesting that an impaired Ca2+ compartmentalization cannot explain the inhibition of 285 

2,4-D-induced Ca2+. Unlike the protonophores, valinomycin did not reduce the maximal Ca2+ 286 

responses (Fig. 5D), suggesting that 2,4-D-induced Ca2+ signaling specifically requires 287 

proton-based gradients, rather than K+ gradients. These findings are entirely consistent with 288 

the recently reported very tight interdependence between H+ and Ca2+ dynamics (Behera et 289 

al., 2018). 290 

Because protonophores dissipate H+-gradients across membranes, including the 291 

mitochondrial membranes, they are expected to interfere with ATP production due to 292 

mitochondrial uncoupling. Therefore, we evaluated the evolution of ATP content in BY-2 cells 293 

during 60-minute treatments with 20 or 50 µM niclosamide, (+)-usnic acid, or cloxyquin (Fig. 294 

5E). As a positive control we included the well-described protonophore CCCP (20 µM). 295 

Within 2 minutes, niclosamide, (+)-usnic acid, and CCCP caused a significant reduction of 296 

cellular ATP levels compared to DMSO-treated cells. Niclosamide had a milder effect on the 297 

ATP levels than (+)-usnic acid and CCCP. In contrast, cloxyquin did not interfere with ATP 298 

production, even at prolonged incubation times. This suggests that niclosamide and (+)-usnic 299 

acid have protonophore activities in plants, which could explain how they inhibit 2,4-D-300 

induced Ca2+ signals.  301 

Next, we evaluated the effects of these molecules on root growth (Fig. 5F). While cloxyquin 302 

did not cause any noticeable defects, plants treated with niclosamide had on average slightly 303 

longer primary roots, while (+)-usnic acid had a strong inhibitory effect on the primary root 304 

length, suggesting that they have distinct cellular targets. Moreover, (+)-usnic acid induced 305 

DR5rev::VENUS-N7 expression in the lateral root cap, which was not observed with 306 

niclosamide and cloxyquin (Fig. 5G-J). When cotreated with 100 nM 2,4-D and niclosamide 307 

or cloxyquin (but not (+)-usnic acid), the seedlings had significantly longer roots than the 308 

controls (Fig. 5F). However, as cloxyquin only caused a slight inhibition of 2,4-D-induced 309 
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Ca2+ signaling and did not disturb ATP production in BY-2 cells, the observed resistance to 310 

2,4-D is likely unrelated to impairment of Ca2+ signaling or protonophore activity. Importantly, 311 

the protonophores did not render root growth resistant to ACC (Fig. 5F), as seen for 2,4-D 312 

uptake-defective aux1 mutants (Swarup et al., 2001), suggesting that the observed 2,4-D 313 

resistance is not due to impaired AUX1-mediated auxin uptake.  314 

 315 

Bepridil is a potent inhibitor of auxin-induced Ca2+ signaling and modifies vacuolar 316 

morphology 317 

Bepridil (26) is the only molecule inhibitor with reported Ca2+ channel inhibitory effects that 318 

we identified in our chemical screen (Yatani et al., 1986; Sarajarvi et al., 2012; Lipsanen et 319 

al., 2013). Also, in the validation, bepridil robustly interfered with the auxin-induced Ca2+ 320 

response compared to mock-treated cells, while maintaining a strong response to the 321 

discharge solution (Fig. 6A). This suggests that bepridil is a potent inhibitor of 2,4-D-induced 322 

Ca2+ signaling in BY-2 cells. Moreover, bepridil potently inhibited the rapid IAA-induced Ca2+ 323 

response in roots of Arabidopsis seedlings expressing the intensiometric Ca2+ sensor R-324 

GECO1 (Fig. 6B-C; Supplemental Video S1). 325 

Bepridil treatment on Arabidopsis seedlings caused a dose-dependent reduction in primary 326 

root length (Fig. 6D), which was associated with altered DR5rev::VENUS-N7 expression in 327 

the lateral root cap (Fig. 6E-F). Cotreatment of seedlings with 20 µM bepridil and either 100 328 

nM 2,4-D, 20 µM ACC, 150 nM NAA, or 250 nM NAA did not result in noticeable growth 329 

resistance to any of the hormone treatments (Fig. 6G). Because vacuolar remodeling was 330 

proposed to be part of the mechanism by which auxin inhibits root growth (Löfke et al., 2015) 331 

and because bepridil interferes with auxin-induced Ca2+ signaling, we next investigated the 332 

effect of bepridil on vacuoles by analyzing the localization of the tonoplast marker VAMP711-333 

YFP (Fig. 6H-I). Bepridil dramatically altered vacuolar morphology, inducing swollen and 334 

roundish central vacuoles in Arabidopsis roots (Fig. 6H). Notably, auxin treatments induce 335 
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smaller luminal vacuoles, which consequently impact on cellular elongation rates (Löfke et 336 

al., 2015; Scheuring et al., 2016). However, in the presence of bepridil, the auxin effect on 337 

vacuolar morphology was abolished (Fig. 6H-I), tentatively suggesting that auxin-regulated 338 

vacuolar remodeling could depend on a bepridil-sensitive step.  339 

During the vacuolar morphology experiments, the tonoplast marker VAMP711-YFP seemed 340 

to display some ectopic subcellular pattern. Therefore, we also analyzed several fluorescent, 341 

late endosomal markers. Each of these markers had an aberrant localization pattern after 342 

bepridil treatment (Supplemental Fig. S5). These observations suggest that bepridil has 343 

pleiotropic effects on late endosomal trafficking, which could complicate the interpretation of 344 

the auxin resistance of vacuolar remodeling after bepridil treatment. When lowering the 345 

bepridil concentration, we found that vacuolar morphology was still aberrant at 10 µM, but 346 

was no longer obviously impaired at 5 µM (Supplemental Fig. S6). 347 

 348 

Sucrose-induced Ca2+ signals are highly sensitive to fenamates and sterol 349 

biosynthesis inhibitors, but not to bepridil 350 

Next, we sought to evaluate the specificities of the identified inhibitors. The auxin response 351 

requires CNGC14 for eliciting Ca2+ (Shih et al., 2015; Dindas et al., 2018), while 352 

hyperosmotic stress is predicted to activate OSCA/TMEM63-type mechanosensitive Ca2+-353 

permeable channels (Yuan et al., 2014; Murthy et al., 2018; Zhang et al., 2018). Thus, auxin 354 

and hyperosmotic stress activate two distinct Ca2+ entry mechanisms.  355 

We used 0.5 M sucrose as a hyperosmotic stimulus. When eliciting YFP-apoaequorin-356 

expressing Arabidopsis seedlings, we observed a very fast and transient rise in [Ca2+]cyt (Fig. 357 

7; Supplemental Fig. S7), as was previously described for such hyperosmotic treatments 358 

(Furuichi et al., 2001; Stephan et al., 2016). The sucrose-induced Ca2+ signal was 359 

characterized by an initial large peak in free [Ca2+]cyt that reached a maximum value (1.5-2 360 

µM range) within seconds. After reaching the maximum peak value, the Ca2+ signal quickly 361 
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decreased until it reached an elevated steady-state concentration 30-40 seconds after elicitor 362 

addition (Fig. 7; Supplemental Fig. S7).  363 

We evaluated the fenamates (FFA, NFA, and TFA), the protonophores (niclosamide, (+)-364 

usnic acid, ES9, and CCCP), and bepridil for their ability to inhibit hyperosmotic-stress-365 

induced Ca2+. Additionally, we also tested two imidazole-type fungicides (clotrimazole (27) 366 

and oxiconazole nitrate (28)), which were initially identified as inhibitors of 2,4-D-induced 367 

Ca2+ signals but were not further pursued in the context of auxin responses due to a poor 368 

reproducibility in follow-up experiments (Supplemental Fig. S8). All tested fenamates, three 369 

protonophores ((+)-usnic acid, ES9, and CCCP) and, surprisingly, both imidazoles potently 370 

interfered with sucrose-induced Ca2+ (Fig. 7; Supplemental Fig. S7). This suggests that 371 

hyperosmotic stress Ca2+ entry is much more sensitive to inhibition of sterol biosynthesis 372 

than 2,4-D-induced Ca2+ responses. On the other hand, while bepridil and niclosamide were 373 

potent inhibitors of auxin-induced Ca2+, they did not inhibit the sucrose-induced Ca2+ 374 

response (Fig. 7D, H). Niclosamide was the only one of the tested protonophores that could 375 

not inhibit sucrose-induced Ca2+, suggesting that its inhibitory effect on auxin-induced Ca2+ 376 

may not be related solely to its protonophore activity. Together, these data illustrate that 377 

auxin and hyperosmotic stress Ca2+ responses show different pharmacological sensitivities. 378 

 379 

Discussion 380 

The molecular mechanism by which auxin regulates transcriptional changes is largely 381 

captured by the very well characterized TIR1/AFB-based degradation of Aux/IAA 382 

transcriptional corepressors. This pathway accounts for much of the auxin-regulated 383 

transcriptional changes and, thus, the cellular response. Recently, TIR1/AFB-based auxin 384 

perception was also found to be required for nontranscriptional cellular responses, such as 385 

rapid and reversible inhibition of root growth (Fendrych et al., 2018). The inhibitory effect of 386 

auxin root elongation is correlated with alkalinization of the apoplast (Barbez et al., 2017), 387 
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activation of Ca2+ signals through CNCG14 (Shih et al., 2015), and remodeling of the vacuole 388 

(Löfke et al., 2015). Alkalinization of the apoplast is possibly the result of the coordinated 389 

inhibition of plasma membrane H+-ATPase activity and AUX1-mediated H+/IAA- uptake from 390 

the apoplast (Dindas et al., 2018). Moreover, auxin-induced alkalinization of the apoplast is 391 

coupled to CNGC14-dependent auxin-induced Ca2+ signaling in the epidermis (Shih et al., 392 

2015). Importantly, root elongation of cngc14 mutants is mildly insensitive to inhibitory auxin 393 

levels (Shih et al., 2015), suggesting that auxin-induced cytosolic Ca2+ increase is part of the 394 

root growth inhibitory auxin signaling pathway. We identified bepridil as a potent inhibitor of 395 

auxin-induced cytosolic Ca2+ increase and found that bepridil interferes strongly with auxin-396 

induced vacuolar remodeling. This makes it tempting to speculate that auxin-induced 397 

cytosolic Ca2+ increase controls vacuolar morphology. However, the strong pleiotropic effects 398 

on late endosomal compartments preclude drawing such strong conclusions. Therefore, it 399 

will be interesting to identify the molecular target(s) of bepridil and characterize its function in 400 

auxin-regulated vacuolar remodeling. 401 

The identification of bepridil as a potent inhibitor of auxin-induced Ca2+ is consistent with its 402 

reported Ca2+ channel blocker function in animals (Yatani et al., 1986; Sarajarvi et al., 2012; 403 

Lipsanen et al., 2013) and suggests, in line with cngc14’s defects in auxin-induced cytosolic 404 

Ca2+ increase (Shih et al., 2015), that CNGC14 might be a bepridil target. However, 405 

electrophysiological experiments demonstrated that bepridil inhibits outward rectified K+ 406 

currents in plant protoplasts (Thomine et al., 1994). This hints at a functional coupling of 407 

auxin-induced Ca2+ entry with outward rectified K+ currents as described for Ca2+ spiking 408 

during nodulation (Ane et al., 2004; Charpentier et al., 2008; Charpentier et al., 2016). 409 

However, auxin activates inward rectified K+ currents in Arabidopsis and maize (Thiel and 410 

Weise, 1999; Philippar et al., 2004), and we found that the K+ selective ionophore 411 

valinomycin had no effect on auxin-induced Ca2+ signals. Instead, it seems more likely that 412 

bepridil targets CNGC14 and/or other CNGCs via structural features that they share with 413 

outward rectifying K+ channels. 414 
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Recently, the protonophore carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) 415 

was shown to completely inhibit the ATP-induced Ca2+ response, while pretreatment with the 416 

ionophore nigericin only had marginal effects on the Ca2+ and pH transients (Behera et al., 417 

2018). These observations are perfectly in line with our findings showing that protonophores 418 

are potent inhibitors of auxin- and osmotic-stress-induced Ca2+ signaling and strengthen 419 

previous notions that Ca2+ and pH are functionally coupled in several cellular processes in 420 

plants, including root hair and pollen tube growth (Herrmann and Felle, 1995; Monshausen et 421 

al., 2008; Michard et al., 2017), cold stress response (Gao et al., 2004), and touch response 422 

(Monshausen et al., 2009). Also, disruption of the transmembrane pH gradient via 423 

alkalinization of the apoplast interfered with auxin-induced Ca2+ entry in root hairs (Dindas et 424 

al., 2018). This was explained by a need for a proton gradient to drive AUX1-mediated 425 

H+/IAA- symport into the cell. In this model, the inability of IAA to enter the cell in aux1 426 

prevents TIR1-mediated CNGC14 activation (Dindas et al., 2018). In turn, cngc14 has a 427 

defect in AUX1 activity, providing a mechanistic model for the coupling of Ca2+ and H+ 428 

dynamics during auxin response. However, NAA-induced cytosolic Ca2+ increase was 429 

recently also coupled to a cytoplasmic acidification (Behera et al., 2018), which cannot be 430 

explained by AUX1-mediated H+ uptake, as NAA is not a good substrate for AUX1 (Yang et 431 

al., 2006).  432 

In summary, by exploring a small subset of hits, we readily identified several new inhibitors of 433 

auxin-induced Ca2+. Further exploration of these inhibitors will thus lead to novel insights in 434 

the mechanism (e.g. protonophores) and the physiological relevance of auxin-induced Ca2+ 435 

(e.g. vacuolar remodeling). Importantly, the use of a library of annotated molecules has the 436 

added advantage that many of the compounds are commercially available and thus are 437 

easily accessible to researchers for further characterization and analysis of structural 438 

derivatives with a higher inhibitory potency and specificity. Identification of the molecular 439 

targets will be key for further refining the inhibitors in terms of specificity and affinity. 440 

 441 
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Materials and methods 442 

BY-2 cell lines and Arabidopsis plant lines 443 

We stably transformed wild-type tobacco BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2) cell 444 

suspensions with a kanamycin-resistant construct for constitutive expression of YFP-fused 445 

apoaequorin (AEQ) driven by an ubiquitin (UBQ10) promoter as previously described 446 

(Mehlmer et al., 2012). The transgenic BY-2 cell lines were maintained by weekly dilution 447 

(1:40) in modified Linsmaier and Skoog (LS) medium. The cell cultures were agitated on a 448 

rotary shaker at 130 rpm at 25°C in the dark and used in experiments 5 days after 449 

subculture. 450 

Transgenic Col-0 Arabidopsis seedlings that carry a proUBQ10::YFP-apoAEQ cassette were 451 

used in our experiments (Mehlmer et al., 2012). These lines were generated using 452 

Agrobacterium-mediated transformation via the floral-dip method (Clough and Bent, 1998). 453 

Transformants were selected based on BASTA resistance and YFP expression levels and 454 

were made homozygous in subsequent generations. 455 

The other used plant lines expressing R-GECO1 (Keinath et al., 2015), DR5rev::VENUS-N7 456 

(Heisler et al., 2005), Ara7-mRFP (Jia et al., 2013), VAMP727-YFP (Ebine et al., 2008), 457 

2xFYVE-YFP (Vermeer et al., 2006), VAMP711-YFP (Geldner et al., 2009), VAMP711-458 

mCherry (Geldner et al., 2009)have been described previously. 459 

 460 

Compounds 461 

The compounds used for the primary screen and confirmation screen belong to the Spectrum 462 

compound library (MicroSource Discovery Systems) and were dissolved in DMSO. The 463 

compounds used in follow-up experiments (FFA, NFA, TFA, diphenylamine, 464 

diphenylmethane, α-phenyl-o-toluic acid, aniline, anthranilic acid, NPPB, 9-ACA, NPA, BUM, 465 

clotrimazole, oxiconazole nitrate, artemether, niclosamide, (+)-usnic acid, cloxyquin, bepridil, 466 
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TyrA23, CCCP, and valinomycin) were obtained from Sigma-Aldrich (Overijse, Belgium) and 467 

dissolved in DMSO. Coelenterazine-h was obtained from Promega (Leiden, The 468 

Netherlands) and dissolved in methanol. 469 

 470 

 471 

Primary screen setup  472 

The Spectrum library of 2320 compounds with a wide range of reported biological activities 473 

and structural diversity (MicroSource Discovery Systems) was screened for inhibitors of 2,4-474 

D-induced Ca2+ signaling. The individual compounds and controls were added to 100 µL 475 

YFP-apoaequorin-expressing BY-2 cells in white 96-well plates, with a final concentration of 476 

50 µM per well. Negative (0.5% DMSO) and positive (10 mM GdCl3) controls were added to 477 

both outer columns of each multiwell plate. After a 30-minute incubation period in the dark to 478 

reduce background signals, 100 µL 2,4-D (final concentration 500 µM) was added to each 479 

well with a liquid handling robot (Tecan Freedom EVO200 with 96-channel head) and 480 

immediately transferred to the luminescence imaging system (NightSHADE LB 985 in vivo 481 

Plant Imaging System, Berthold Technologies) to ensure capturing the peak signal in each 482 

well. The induced luminescent signal was measured for 30 cycles with a 10-second exposure 483 

time per cycle. The maximum signal in each well was calculated and normalized to the 484 

average of the negative control of the corresponding multiwell plate. 485 

 486 

Luminescence measurements of Ca2+ responses in BY-2 cells during confirmation 487 

screen and follow-up experiments  488 

Five days after subculturing, YFP-apoAEQ-expressing BY-2 cells were collected by 489 

centrifugation, washed, and resuspended in fresh BY-2 medium. Aequorin was reconstituted 490 

in the BY-2 cells by adding 2.5 μM of coelenterazine-h (Promega, Leiden, The Netherlands) 491 
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for 3 hours under agitation in the dark. Afterwards, 100 µL of reconstituted BY-2 cells was 492 

added to each well of a white 96-well plate (PerkinElmer), and the cells were preincubated 493 

with the hits identified in the primary screen for 30 minutes to 1 hour in the dark. For 494 

measuring elicitor-induced Ca2+ responses per well, 100 µL elicitor solution was added to the 495 

cells, after which the aequorin-induced light emission was measured every 1.5 seconds for 496 

200 seconds (every 2 seconds for 240 seconds during the confirmation screen) with a 497 

luminescence plate reader (all measurements were done in a LUMIstar Galaxy, BMG 498 

LABTECH, unless mentioned otherwise). Immediately after this measurement, the remaining 499 

reconstituted aequorin was discharged by the addition of 50 µL of discharge solution (0.1 M 500 

CaCl2 and 20% ethanol (v/v)), and luminescence was measured every 1.5 seconds for an 501 

additional 100 seconds (every 2 seconds for 160 seconds during the confirmation screen). 502 

The bioluminescence signal of our transgenic BY-2 cell lines could not be converted to 503 

absolute [Ca2+]cyt values because the total luminescent signal after aequorin discharge could 504 

not be completely detected in situ due to saturation of the plate reader detector. Therefore, 505 

all treatments were always evaluated relative to controls within each corresponding multiwell 506 

plate. This normalization also accounted for day-to-day variation in amplitude and shape of 507 

the Ca2+ signals. 508 

 509 

Luminescence measurements of Ca2+ responses in Arabidopsis seedlings  510 

Gas-sterilized seeds were grown on plates containing half-strength Murashige and Skoog 511 

(MS) medium for 3 days until germination. Freshly germinated seedlings were transferred 512 

individually to wells of sterile, white, 96-well microplates (PerkinElmer) containing 130 µL of 513 

medium composed of ½ MS salts (2.2 g/l), 0.5 g/l MES, 1% sucrose, and 0.08% phyto agar. 514 

This low phyto agar concentration provided modest support for the growing seedlings while 515 

still allowing rapid mixing of injected pretreatment compounds and elicitor solutions. The 516 

transparent lids of the 96-well plates were sealed with Parafilm to prevent medium 517 
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evaporation. The seedlings were grown in the plates for 2 to 3 days in a growth chamber 518 

under continuous light conditions at 21°C. The evening before measurement, 130 µL of water 519 

containing 2.5 µM coelenterazine-h (Ctz-h; Promega, Leiden, The Netherlands) was added 520 

to each well to allow overnight reconstitution of apoaequorin into functional aequorin. During 521 

this incubation, the plate was covered in aluminum foil to prevent light-induced degradation 522 

of Ctz-h. The following day, 130 µL of the medium was removed and replaced with 130 µL of 523 

a solution containing 2x the final concentrations of the compounds in water. After a 1-hour 524 

preincubation period, 130 µL medium was removed just before the luminescence 525 

measurements, to allow the addition of elicitor solutions. 526 

The seedling-containing 96-well plates were analyzed in a luminescence plate reader 527 

(LUMIstar Galaxy, BMG LABTECH). Luminescence was first measured every 0.3 seconds 528 

for 6 seconds to establish a baseline reading, after which 100 µL of a 2x elicitor solution was 529 

automatically added and luminescence was further measured every 0.3 seconds for 54 530 

seconds. Subsequently, the plate was removed from the plate reader and 100 µL of solution 531 

was removed from each well. The plate was then placed into the plate reader again and 532 

luminescence was measured every 0.3 seconds for 6 seconds to establish a baseline signal. 533 

Subsequently, 100 µL of discharge solution (2 M CaCl2 and 50% ethanol) was automatically 534 

added and luminescence was further measured every 0.3 seconds for 54 seconds in order to 535 

determine the remaining aequorin in the seedlings. 536 

 537 

Quantification of Ca2+ response data in transgenic YFP-apoaequorin-expressing 538 

Arabidopsis thaliana seedlings 539 

Raw light data measured by the LUMIstar Galaxy plate reader were converted to calcium 540 

concentration by applying the empirically determined formula pCa = 0.332588(-logk) + 541 

5.5593 (Knight et al., 1996). The rate constant k in this formula equals the elicitor-induced 542 
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luminescence counts per second divided by the total remaining counts. The total remaining 543 

counts were determined after adding discharge solution (2 M CaCl2 + 50% ethanol). 544 

 545 

Phenotyping  546 

Wild-type gas-sterilized Arabidopsis thaliana seeds were plated on ½ MS medium 547 

supplemented with the appropriate compounds and/or hormones (3 rows/plate, 0.5 cm 548 

between seeds). For the primary root length experiments, the plated seeds were first 549 

stratified for 3 days in the dark at 4°C and subsequently transferred to a growth chamber 550 

under continuous light conditions at 21°C. After 7 days of growth, the plates were scanned 551 

and the primary root lengths of the seedlings were measured with ImageJ. For each 552 

treatment 10-61 individual roots were counted. 553 

 554 

Late endosomal marker localization 555 

Three- to four-day-old seedlings from the endomembrane marker lines (2xFYVE-YFP, Ara7-556 

mRFP, and VAMP727-YFP) were pretreated with control medium or 50 µM bepridil for 5 557 

hours. The control medium (CaPLUS) consists of the following components dissolved in 558 

MilliQ (for 0.5 liters): 25 mL MS basal salt micronutrient solution, 5 g sucrose, 0.05 g 559 

myoinositol, 0.25 g MES, 0.413 g NH4NO3, 0.045 g MgSO4, 0.475 g KNO3, 0.043 g H2KO4P
-, 560 

and 0.083 g CaCl2, with pH set to 5.7.  561 

For imaging of the endomembrane markers, the confocal laser scanning microscopes Leica 562 

SP2 (Leica Microsystems) and Zeiss 710 (Zeiss) were used. Fluorescence emission of 563 

mRFP (ex 561 nm/em 570-630 nm) and YFP (ex 514 nm/em 520-565 nm) was detected 564 

using a 63x water objective (NA 1.2, digital zoom 1,2x). Images were analyzed using Fiji 565 

(Schindelin et al., 2012).  566 

 567 
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R-GECO1 visualization  568 

Seedlings from the R-GECO1 line were pretreated for 30 minutes with 50 µM bepridil or 569 

0.1% DMSO and mounted in a specialized imaging chamber as previously described 570 

(Himschoot et al., 2018). The imaging chamber was mounted on the stage of an Ultra View 571 

Vox spinning disc microscope (PerkinElmer) and 250 nM IAA was added to elicit a Ca2+ 572 

response in the samples. R-GECO1 fluorescence intensity was monitored for 8 minutes after 573 

elicitor addition and processed as previously described (Himschoot et al., 2018). Per 574 

treatment, 3-4 individual measurements were performed.  575 

 576 

DR5rev::VENUS-N7 visualization 577 

DR5rev::VENUS-N7 seedlings were grown for 5 days on ½ MS plates containing the 578 

appropriate compounds or 0.1% DMSO. For each treatment, 5 seedlings were stained with 579 

freshly prepared PI solution (15 μM in distilled water) for 2 minutes, rinsed twice in water, and 580 

subsequently spread on a glass microscope slide. Fluorescence emission of 581 

DR5rev::VENUS-N7 (ex 514 nm/em 535-590 nm) and PI (ex 514 nm/em 570-630 nm) was 582 

visualized and imaged using a Leica SP2 confocal microscope (Leica Microsystems). 583 

 584 

Analysis of vacuolar morphology  585 

Analysis of vacuolar morphology was carried out on 6-day-old seedlings of a tonoplast 586 

marker line (pUBQ10::VAMP711-YFP) that were grown on solid ½ MS medium. The samples 587 

were pretreated for 5 hours with 50 µM bepridil or solvent control (DMSO). Subsequently, the 588 

seedlings were transferred to plates containing either DMSO, 50 µM bepridil, 250 nM IAA, or 589 

bepridil and IAA (50 µM and 250 nM, respectively). Afterwards, seedlings were grown for 590 

another 3 hours prior to image acquisition. Roots were mounted in PI solution (0.02 mg/mL) 591 

to counterstain cell walls and report viability. YFP was excited at 514 nm (fluorescence 592 
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emission: 525 nm - 555 nm) and PI at 561 nm (fluorescence emission: 644 - 753 nm) using a 593 

Leica TCS SP5 confocal laser scanning microscope equipped with a Leica HCX PL APO CS 594 

63 × 1.20 water-immersion objective. Confocal images were analyzed using ImageJ. To 595 

calculate the vacuolar morphology index, the longest and widest distance of the biggest 596 

luminal structure was measured and multiplied (Lofke et al., 2015). The atrichoblast cells 597 

were quantified before the onset of elongation (late meristematic). To depict this region, the 598 

first cell being twice as long as wide was considered as the onset of elongation. Starting from 599 

this cell, the next cell towards the meristem was excluded (as it usually shows either partial 600 

elongation and/or already substantial vacuolar expansion), and vacuoles of the subsequent 4 601 

cells were quantified as described previously (Dünser et al., 2017). 602 

 603 

BY-2 viability assay 604 

Five-day-old BY-2 cells were treated with H2O, 1% DMSO, 500 µM 2,4-D, or a combination 605 

of 1% DMSO and 500 µM 2,4-D. After 1 hour of treatment, the cells were stained with freshly 606 

prepared FDA-PI staining solution (15 µM FDA and 15 µM PI in BY-2 medium) for 5 minutes 607 

in the dark. Afterwards, the cells were washed with fresh medium and 100 µL of cells was 608 

spread on a glass microscope slide per treatment. For each treatment, approximately 100 609 

cells were counted using an Ultra View Vox spinning disc microscope (PerkinElmer) and 610 

classified as alive or dead based on their individual uptake of FDA and PI. For each 611 

treatment, 2-4 such individual measurements were performed. 612 

 613 

ATP content determination  614 

Wild-type tobacco BY-2 cell cultures were used and maintained as described earlier. Five 615 

days after subculturing, the BY-2 cell suspension was diluted 5 times in modified LS medium 616 

and preconditioned in the dark for 1 hour on a shaker before use. The cells were 617 
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subsequently distributed in white 96-well plates (95 µL/well) and 5 µL of the appropriate 618 

compounds (DMSO, cloxyquin (50 and 20 µM final concentration), niclosamide (50 and 20 619 

µM final concentration), (+)-usnic acid (50 and 20 µM final concentration), and CCCP (20 µM 620 

final concentration)) was added with a Freedom EVO robot (Tecan). All compounds were 621 

dissolved in DMSO with the final DMSO concentration for each treatment being 0.66%. 622 

There were 8 repeats per treatment. The ATP levels were detected by adding 80 µL of the 623 

ATPlite 1step Luminescence Assay System (PerkinElmer) after incubation of the cells in the 624 

presence of the compounds for the indicated time. Luminescence was measured with an 625 

EnVision 2104 Multilabel Reader (PerkinElmer). 626 

 627 

Accession Numbers 628 
Sequence data from this article can be found in the GenBank/EMBL data libraries under 629 
accession numbers E14214.1 (apoaequorin), JN258411.1 (R-GECO1), NM_115290.5 630 
(VAMP727-At3g54300) and NM_119367.3 (VAMP711- AT4G32150). 631 
 632 
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Supplemental Fig. S1. DMSO and 2,4-D have no significant impact on BY-2 cell viability. 634 

Supplemental Fig. S2. Overview of chemical structures. 635 

Supplemental Fig. S3. Higher magnification of root phenotypes of fenamate-treated plants. 636 

Supplemental Fig. S4. Diphenylamine, aniline, and anthranilic acid make roots resistant to 637 

2,4-D.  638 

Supplemental Fig. S5. Bepridil has a profound impact on endomembrane trafficking. 639 

Supplemental Fig. S6. Bepridil has a profound impact on vacuolar morphology. 640 

Supplemental Fig. S7. The protonophores ES9 and CCCP alter sucrose-induced Ca2+ 641 

signals. 642 

Supplemental Fig. S8. Imidazoles are not robust inhibitors of 2,4-D induced Ca2+. 643 
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Supplemental Video S1. Bepridil inhibits the IAA-induced Ca
2+

 response in Arabidopsis 646 

roots expressing R-GECO1 (.avi file) 647 

 648 

 649 

Tables 650 

Table 1. Thirteen compounds selected for further validation experiments  651 

Name Reported Bioactivities Reference 

Artemether antimalarial agent, HMGCoA inhibitor Korade et al., 2016 

Bepridil hydrochloride calcium-blocking agent, antiarrhythmic, 

antihypertensive, calmodulin antagonist 

Narahara et al., 1992 

Clotrimazole antifungal, antibacterial, sterol biosynthesis inhibitor Qiu et al., 2017 

Cloxyquin antibacterial, antifungal Hongmanee et al., 2007 

Dicyclomine hydrochloride anticholinergic Ali et al., 2018 

Flufenamic acid anti-inflammatory, analgesic, antipyretic Habjan and Vandenberg, 

2009 

Niclosamide anthelmintic, teniacide Monin et al., 2016 

Niflumic acid analgesic, anti-inflammatory Hogg et al., 1994 

Oxiconazole nitrate antifungal, sterol biosynthesis inhibitor Jegasothy and Pakes, 

1991 

Tannic acid nonspecific enzyme/receptor blocker Isenburg et al., 2005 

Tolfenamic acid anti-inflammatory, analgesia Pentikainen et al., 1981 

Triclosan anti-infective, antibacterial, antifungal Heath et al., 1999 

(+)-Usnic acid antibacterial Latkowska et al., 2006 

 652 
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Figure Legends 657 

Fig. 1. Fourteen elicitors induce a distinct Ca2+ signal in aequorin-expressing BY-2 658 

cells. (A) Schematic representation of aequorin complex formation and bioluminescent 659 

reaction. A functional aequorin complex is formed upon binding of apoaequorin with its 660 

substrate coelenterazine (CTZ) in the presence of O2. The binding of three Ca2+ ions leads to 661 

the conversion of CTZ into coelenteramide (CTA) and CO2, upon which blue light (λ = 469 662 

nm) is emitted. (B-O) Ca2+ response of YFP-apoaequorin-expressing BY-2 cells treated with 663 

various potential elicitors: (B) 0.5 M D-glucose, (C) 0.5 M sucrose, (D) 0.5 M D-mannitol, (E) 664 

0.5 M D-sorbitol, (F) 0.3 M NaCl, (G) 167 µM and 500 µM  ATP, (H) 167 µM and 500 µM IAA, 665 

(I) 20 µM and 500 µM NAA, (J) 167 µM and 500 µM 2,4-D, (K) 5 mM salicylic acid (SA), (L) 666 

167 µM and 500 µM gibberellin (GA3), (M) 167 µM and 500 µM 6-benzylaminopurine (6-667 

BAP), (N) 125 nM flg22, and (O) 5 mM H2O2. The data represent average luminescence 668 

values of 3 individual measurements in the same multiwell plate. Error bars represent ± SEM. 669 

 670 

Fig. 2. Schematic representation of primary screen for Ca2+ signaling inhibitors. (A-B) 671 

Multiwell setup for screening inhibitors of auxin-induced Ca2+ responses via YFP-672 

apoaequorin-expressing BY-2 cells. Based on the means and standard deviations of both the 673 

positive (10 mM GdCl3, purple) and negative (0.5% DMSO, cyan) controls of a test run, a Z’ 674 

score of 0.54 could be calculated (A), supporting the robustness of the assay. Using this 675 

setup, the Spectrum library of 2320 compounds was screened for inhibitors of 2,4-D-induced 676 

Ca2+ signaling (B). The outer columns contained positive (10 mM GdCl3, purple) and 677 

negative (0.5% DMSO, cyan) controls, with the assay compounds in the 10 inner columns 678 

(50 µM; white). Addition of auxin induced a rapid luminescence-based signal that was 679 

detected with the NightSHADE luminescence imaging system. From this library, 80 hit 680 

compounds were retained that caused a maximum signal less than 55% of that of the 681 

DMSO-treated control cells. (C) Confirmation screen of the 80 hit compounds in a multiwell 682 
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plate reader. After 240 seconds, 50 µL discharge solution (0.1 M CaCl2 and 20% ethanol) 683 

was added and luminescence was measured for the remaining 160 seconds. Based on their 684 

Ca2+ response and burst patterns, the tested compounds could be further categorized into 4 685 

groups: confirmed (green), semiconfirmed (yellow), cytotoxic (blue), and false-positive (red) 686 

compounds. (D) Maximum 2,4-D-induced Ca2+ response signal of YFP-apoaequorin-687 

expressing BY-2 cells pretreated with 50 µM of 13 selected hit compounds. The data  688 

represent average maximum luminescence values of 4-8 individual measurements in 689 

comparison to the average of 4-8 DMSO controls in the same multiwell plate. Error bars 690 

represent ± SEM. Bars are color-coded based on the underlying Ca2+ response and burst 691 

patterns. Student’s t-test p-values: *p < 0.05, **p < 0.01, and ***p < 0.001. Bepr., bepridil; 692 

FFA, flufenamic acid; NFA, niflumic acid; TFA, tolfenamic acid; Clot., clotrimazole; Ox. Nit., 693 

oxiconazole nitrate; Art., artemether; Nicl., niclosamide; U.A., (+)-usnic acid; Clox., cloxyquin; 694 

Dic. Hyd., dicyclomine hydrochloride; T.A., tannic acid; Tricl., triclosan. 695 

 696 

Fig. 3. Fenamates alter the shape of auxin-induced Ca2+. (A-C) 2,4-D-induced Ca2+ 697 

response of YFP-apoaequorin-expressing BY-2 cells treated with 50 µM FFA (A), NFA (B), 698 

or TFA (C). Discharge solution was added after 200 seconds. The data represent average 699 

luminescence values of 4-8 individual measurements (solid lines) in comparison to the 700 

average of 4-8 DMSO controls (dotted lines) in the same multiwell plate. Error bars represent 701 

± SEM. (D) Phenotype of WT Col-0 seedlings grown for 7 days in presence of 0.1% DMSO 702 

or 20 µM FFA, NFA, or TFA. (E) Vertical Growth Index (VGI) values for the roots from (D). 703 

For each treatment, 42 to 47 roots were measured. Student’s t-test p-values: ***p < 0.001. 704 

(F-H) Confocal microscopy images of 5-day-old DR5rev::VENUS-N7 seedlings grown on 705 

0.1% DMSO (F), 20 µM FFA (G), and 20 µM TFA (H). Green: DR5rev::VENUS-N7 signal; 706 

red: propidium iodide staining.  707 

 708 
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Fig. 4. Functional and structural fenamate analogs do not alter the shape of auxin-709 

induced Ca2+. (A) Overview of a small-scale SAR analysis of the fenamates. Based on 710 

known and observed functions and structures of the hit fenamates, a set of functional and 711 

structural analogs was investigated. (B-C) 2,4-D-induced Ca2+ response of YFP-712 

apoaequorin-expressing BY-2 cells treated with 50 µM of the auxin transport inhibitors BUM 713 

(B) and NPA (C). Discharge solution was added after 200 seconds. The data represent 714 

average luminescence values of 4 individual measurements (solid lines) in comparison to the 715 

average of 4 DMSO controls (dotted lines) in the same multiwell plate. Error bars represent ± 716 

SEM. (D-E) 2,4-D-induced Ca2+ response of YFP-apoaequorin-expressing BY-2 cells treated 717 

with 50 µM of the NSAIDs ibuprofen (D) and oxaprozin (E) (note: measurements were done 718 

with a new plate reader (GloMax Navigator - Promega) because the old one was defective). 719 

The data represent average luminescence values of 8 individual measurements (solid lines) 720 

in comparison to the average of 8 DMSO controls (dotted lines) in the same multiwell plate. 721 

Error bars represent ± SEM. (F-L) 2,4-D-induced Ca2+ response of YFP-apoaequorin-722 

expressing BY-2 cells treated with 50 µM of 2 anion channel inhibitors (9-ACA and NPPB; F-723 

G) and various compounds structurally similar to fenamates (H-L). Discharge solution was 724 

added after 200 seconds. The data represent average luminescence values of 4 individual 725 

measurements (solid lines) in comparison to the average of 4 DMSO controls (dotted lines) 726 

in the same multiwell plate. Error bars represent ± SEM. BUM, 2-[4-(diethylamino)-2-727 

hydroxybenzoyl]benzoic acid; NPA, 1-N-naphtylphtalamic acid; 9-ACA, 9-728 

anthracenecarboxylic acid; NPPB, 5-nitro-2-(3-phenylpropylamino) benzoic acid; α-ph.-o-tol. 729 

acid, α-phenyl-o-toluic acid; A.U., arbitrary units. 730 

 731 

Fig. 5. Protonophores impair the 2,4-D-induced Ca2+ response and render roots 732 

insensitive to 2,4-D. (A-C) 2,4-D-induced Ca2+ response of YFP-apoaequorin-expressing 733 

BY-2 cells treated with 50 µM niclosamide (A), (+)-usnic acid (B), or cloxyquin (C). Discharge 734 

solution was added after 200 seconds. The data represent average luminescence values of 4 735 
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individual measurements (solid lines) in comparison to the average of 4 DMSO controls 736 

(dotted lines) in the same multiwell plate. Error bars represent ± SEM. (D) Maximum 2,4-D-737 

induced luminescence in YFP-apoaequorin-expressing BY-2 cells treated with 50 µM of the 738 

hit protonophores niclosamide and (+)-usnic acid, the ionophore valinomycin, or the non-hit 739 

protonophores tyrphostin A23, CCCP, and ES9. Four individual measurements were 740 

performed for each treatment and compared to the average of 8 DMSO controls in the same 741 

multiwell plate. Error bars represent ± SEM. Student’s t-test p-values: **p < 0.01 and ***p < 742 

0.001. (E) ATP measurements of BY-2 cells pretreated with 0.5% DMSO (white), 20 µM 743 

CCCP (black), or 20 µM or 50 µM cloxyquin (dots), niclosamide (diagonal stripes), or (+)-744 

usnic acid (horizontal stripes). ATP was measured 2, 10, 30, and 60 minutes after compound 745 

treatment. Error bars represent ± SEM. Student’s t-test p-values: *p < 0.05, **p < 0.01, and 746 

***p < 0.001. (F) Average primary root length of WT Col-0 seedlings grown for 7 days on ½ 747 

MS medium in presence of 0.1% DMSO or 20 µM niclosamide, cloxyquin, or (+)-usnic acid 748 

(grey bars) and supplemented with 100 nM 2,4-D (red bars) or 20 µM ACC (blue bars). Root 749 

lengths represent average of 12-21 roots. Error bars represent ± SEM. Student’s t-test p-750 

values: *p < 0.05, **p < 0.01, and ***p < 0.001. (G-J) Confocal microscopy images of 5-day-751 

old DR5rev::VENUS-N7 seedlings grown on 0.1% DMSO (G), 20 µM niclosamide (H), 20 µM 752 

cloxyquin (I), or 20 µM (+)-usnic acid (J). Green: DR5rev::VENUS-N7 signal; red: propidium 753 

iodide staining. The image in (G) is identical to Fig. 3F. 754 

  755 

Fig. 6. Bepridil is a potent inhibitor of auxin-induced Ca2+ signaling. (A) 2,4-D-induced 756 

Ca2+ response of YFP-apoaequorin-expressing BY-2 cells treated with 50 µM bepridil. 757 

Discharge solution was added after 200 seconds. The data represent average luminescence 758 

values of 4 individual measurements (solid lines) in comparison to the average of 4 DMSO 759 

controls (dotted lines) in the same multiwell plate. Error bars represent ± SEM. (B) 760 

Fluorescent intensity in R-GECO1-expressing Arabidopsis seedlings after IAA treatment. 761 

Seedlings were pretreated for 30 minutes with 50 µM bepridil (solid lines) or 0.1% DMSO 762 
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(dotted lines). IAA (250 nM) was added at time point 0, and R-GECO1 fluorescence intensity 763 

was monitored for 8 minutes. The data represent average fluorescence values of 4 individual 764 

measurements in comparison to the average of 3 DMSO controls. Error bars represent ± 765 

SEM. (C) Snapshot of the peak Ca2+ signal elicited in R-GECO1 seedlings by 250 nM IAA 766 

after a 30-minute pretreatment with 0.1% DMSO (left) or 50 µM bepridil (right). The 767 

snapshots were taken from Supplemental Video S1 30 seconds after IAA addition. (D) 768 

Average primary root length of WT Col-0 seedlings grown for 7 days on ½ MS medium in 769 

presence of 0.1% DMSO or 10 µM, 20 µM, or 50 µM bepridil. Root lengths represent the 770 

average of 54-60 roots. Error bars represent ± SEM. Student’s t-test p-value: ***p < 0.001. 771 

(E-F) Confocal microscopy images of 5-day-old DR5rev::VENUS-N7 seedlings grown on 772 

0.1% DMSO (E) and 20 µM bepridil (F). Green: DR5rev::VENUS-N7 signal; red: propidium 773 

iodide staining. (G) Average primary root length of WT Arabidopsis seedlings grown for 7 774 

days on ½ MS medium in presence of 20 µM bepridil or 0.1% DMSO (grey) and 775 

supplemented with 100 nM 2,4-D (red), 20 µM ACC (blue), 150 nM NAA (yellow), or 250 nM 776 

NAA (green). Root lengths represent the average of 51-61 roots. Error bars represent ± 777 

SEM. Student’s t-test p-values in comparison to DMSO: **p < 0.01 and ***p < 0.001. (H-I) 778 

The effect of bepridil on vacuolar morphology. Six-day-old pUBQ10::VAMP711-YFP 779 

seedlings were pretreated with 50 µM bepridil or solvent control for 5 h, followed by 3-h 780 

treatments with (DMSO), 250 nM IAA (IAA), 50 µM bepridil (Bepr), or 50 µM bepridil and 250 781 

nM IAA (Bepr + IAA). Tonoplast-localized VAMP711-YFP (orange) as vacuolar marker and 782 

propidium iodide stain (green) for decorating the cell wall were used for confocal imaging of 783 

atrichoblast cells (H). The quantification of the vacuolar morphology index was performed 784 

with 4 vacuoles of late meristematic atrichoblasts per root, with 10-14 roots used for each 785 

treatment (I). Statistical analysis was performed using one-way ANOVA (Kruskal-Wallis test) 786 

followed by Dunn´s multiple comparison test, b: p < 0.05, c: p < 0.001.  787 

 788 
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Fig. 7. Sucrose-induced Ca2+ signals are highly sensitive to fenamates, protonophores, 789 

and imidazoles. (A-H) Sucrose-induced Ca2+ responses of YFP-apoaequorin-expressing 790 

Arabidopsis seedlings treated with fenamates (A-C), protonophores (D-E), imidazoles (F-G), 791 

or bepridil (H). The data represent average luminescence values of 4 individual 792 

measurements (solid lines) in comparison to the average of 4 DMSO controls (dotted lines) 793 

in the same multiwell plate.  Error bars represent ± SEM. FFA, flufenamic acid; NFA, niflumic 794 

acid; TFA, tolfenamic acid; Nicl., niclosamide; U.A., (+)-usnic acid; Clot., clotrimazole; Ox. 795 

Nit., oxiconazole nitrate; Bepr., bepridil. 796 

 797 

798 
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Fig. 7. Sucrose-induced Ca2+ signals are highly sensitive to

fenamates, protonophores and imidazoles. (A-H) Sucrose-

induced Ca2+ responses of YFP-apoaequorin-expressing

Arabidopsis thaliana seedlings treated with fenamates (A-C),

protonophores (D-E), imidazoles (F-G), or bepridil (H). The data

is represented by average luminescence values of 4 individual

measurements (solid lines) in comparison to the average of 4

DMSO controls (dotted lines) in the same multi-well plate. Error

bars represent ± SEM. FFA, flufenamic acid; NFA, niflumic acid;

TFA, tolfenamic acid; Nicl., niclosamide; U.A., (+)-usnic acid;

Clot., clotrimazole; Ox. Nit., oxiconazole nitrate; Bepr., bepridil.
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