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Abstract
Dihydropyrimidine dehydrogenase (DPYD) is a highly polymorphic gene and classic deficient variants (i.e., c.1236G>A/
HapB3, c.1679T>G, c.1905+1G>A and c.2846A>T) are characterized by impaired enzyme activity and risk of severe
adverse drug reactions (ADRs) in patients treated with fluoropyrimidines. The identification of poor metabolizers by pre-
emptive DPYD screening may reduce the rate of ADRs but many patients with wild-type genotype for classic variants may
still display ADRs. Therefore, the search for additional DPYD polymorphisms associated with ADRs may improve the
safety of treatment with fluoropyrimidines. This study included 1254 patients treated with fluoropyrimidine-containing
regimens and divided into cohort 1, which included 982 subjects suffering from gastrointestinal G≥2 and/or hematological
G≥3 ADRs, and cohort 2 (control group), which comprised 272 subjects not requiring dose reduction, delay or
discontinuation of treatment. Both groups were screened for DPYD variants c.496A>G, c.1236G>A/HapB3, c.1601G>A
(DPYD*4), c.1627A>G (DPYD*5), c.1679T>G (DPYD*13), c.1896T>C, c.1905+ 1G>A (DPYD*2A), c.2194G>A
(DPYD*6), and c.2846A>T to assess their association with toxicity. Genetic analysis in the two cohorts were done by Real-
Time PCR of DNA extracted from 3 ml of whole blood. DPYD c.496A>G, c.1601G>A, c.1627A>G, c.1896T>C, and
c.2194G>A variants were found in both cohort 1 and 2, while c.1905+1G>A and c.2846A>T were present only in cohort 1.
DPYD c.1679T>G and c.1236G>A/HapB3 were not found. Univariate analysis allowed the selection of c.1905+1G>A,
c.2194G>A and c.2846A>T alleles as significantly associated with gastrointestinal and hematological ADRs (p < 0.05),
while the c.496A>G variant showed a positive trend of association with neutropenia (p= 0.06). In conclusion, c.2194G>A is
associated with clinically-relevant ADRs in addition to the already known c.1905+1G>A and c.2846A>T variants and
should be evaluated pre-emptively to reduce the risk of fluoropyrimidine-associated ADRs.

Introduction

Fluoropyrimidines are the most widely used chemother-
apeutic agents for the treatment of many solid tumors,
including gastrointestinal, head and neck, pancreas, and

breast cancers [1]. Indeed, 5-fluorouracil (5-FU) and its
prodrug capecitabine are the backbone of many combination
chemotherapy regimens. Despite their clinical benefit,
fluoropyrimidines are associated with adverse drug reactions
(ADRs), including gastrointestinal and hematological toxi-
cities and hand-foot syndrome (HFS), which may also be
life-threatening [2]. ADRs may limit treatment effectiveness,
because they impose modification of treatment schedules
and/or their discontinuation. Therefore, there is a critical
need for the identification of biomarkers predictive of drug-
related toxicities, particularly in patients given adjuvant
therapy [3]. Fluoropyrimidine metabolism involves numer-
ous enzymes with many intermediate metabolites, but the
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rate-limiting step is dependent on dihydropyrimidine dehy-
drogenase (DPD), which metabolizes at least 80% of the
administered dose of 5-FU or capecitabine into 5-fluoro-5,6-
dihydrouracil (5-FDHU) [4]. If DPD is inactive or has
reduced activity, the amount of 5-FU for anabolic activation
increases, leading to 5-FU-related ADRs [4]. The major
cause of DPD deficiency is the presence of mutations within
the encoding gene DPYD, affecting splicing process, gene
transcription and enzyme activity [5]. Many DPYD variants
have been discovered [6–9], but most of them do not impair
enzyme activity or their functional effect is unclear, with the
exception of the splice site mutation in intron 14 (c.1905
+1G>A, DPYD*2A) and the non-synonymous variant
c.2846A>T (p.D949V), strongly associated with partial or
complete loss of enzymatic activity and severe ADRs
[10, 11]. Numerous efforts have been made to investigate the
best approach to assess DPD deficiency and reduce the risk
of toxicity [12] but, despite a strong laboratory rationale and
cost-effectiveness of genotyping [13], the issue is still
debated as contrasting recommendations on the imple-
mentation of DPYD analysis in clinical practice have been
issued [14–16], fueling a debate on the usefulness of this test
in the management of patients who are candidates to fluor-
opyrimidine treatment [17–19]. For these reasons, this study
was designed to provide further evidence on the role of
DPYD assessment by evaluating a large cohort of patients to
discover which mutations should be tested to reduce the risk
of ADRs and avoid unjustified costs of screening extremely
rare DPYD genotypes.

Materials and methods

Study design and patients

Recruitment of patients started in October 2011 and ended in
September 2017 and included a total of 1254 subjects. The
study evaluated the possible association of the following
DPYD variants selected on the basis of their occurrence in the
general population and/or known to be involved in treatment-
related ADRs: c.496A>G, c.1236G>A/HapB3, c.1601G>A
(DPYD*4), c.1627A>G (DPYD*5), c.1679T>G (DPYD*13),
c.1896T>C, c.1905+1G>A (DPYD*2A), c.2194G>A
(DPYD*6), and c.2846A>T with ADRs requiring dose
modifications, treatment delay or discontinuation. The popu-
lation of 1254 subjects comprised a group of 982 patients
(cohort 1) given fluoropyrimidine-based regimens to treat
gastrointestinal, pancreatic, head and neck and breast cancers
and suffering from G≥3 hematological or G≥2 gastrointestinal
ADRs (CTCAE v.4). Overall, gastrointestinal toxicity is
much less manageable than hematological ADRs, which
are short lasting with fluoropyrimidines and do not usually
require treatment with myeloid growth factors. On the

contrary, starting from G2, gastrointestinal toxicity sub-
stantially impacts on the quality of life of patients and fre-
quently requires dose modifications [20]. Patients received
their first cycle of treatment at standard dosing and regimens
as per current best practice guidelines; if irinotecan was also
indicated, UGT1A1 analysis was performed and only subjects
carrying the UGT1A1*1 or *1/*28 genotypes were included
in cohort 1. Patients carrying the UGT1A1*28/*28 were
excluded because of the high risk of developing gastro-
intestinal/hematological toxicities [21]. The same DPYD
variants examined in cohort 1 were also examined in a control
population of 272 subjects (cohort 2) displaying optimal
tolerability to treatment (no toxicity, dose reduction, treatment
delay or discontinuation) to better define which DPYD var-
iants are associated with clinically-relevant ADRs. Pharma-
cogenetic analysis was performed by real-time PCR by using
the TaqMan® SNP Genotyping Assay (Life Technologies,
Carlsbad, CA).

The study was approved by the Ethics Committee of Pisa
University Hospital and conducted in accordance with the
principles of the Declaration of Helsinki; all patients gave
their signed informed consent before blood collection and
DNA analysis.

Statistical analysis

Categorical data were described by absolute and relative
frequencies, whereas quantitative data were reported as
mean and standard deviation. The association between
DYPD variants and ADRs was evaluated by χ-2 test and
odds ratio was also calculated. To compare the relative
frequencies, z-test for two proportions was applied. Finally,
all risk factors significantly influencing ADRs in the uni-
variate analysis were assessed together in a binary logistic
regression model as multivariate analysis. The results of the
regression model were calculated by Wald test and
expressed using odds ratio. A p-value < 0.05 was con-
sidered significant. All analyses, descriptive and inferential,
were performed by the IBM SPSS statistics version 24.

Results

A total of 1254 patients were enrolled in the study; 539
(43.0%) patients were male and 715 (57.0%) female,
median age was 62 years (cohort 1 interquartile range
[IQR]: 14; cohort 2 IQR: 10). A detailed description of
patients is reported in Table 1. Since age and performance
status have a significant impact on the occurrence of ADRs
at the univariate analysis, the genotypic analysis was
adjusted for these variables.

Cohort 1 (Table 1) consisted of 982 patients (590 females
[60.1%] and 392 males [39.9%]); gastrointestinal (G≥2) and
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hematological toxicities (G≥3) were present in 69.7% and
46.6% of patients, respectively. A control group of 272
patients (147 males [54%] and 125 females [46%], cohort 2)
receiving standard doses of fluoropyrimidine-based therapies,
without dose reduction, delay or discontinuation, were also
enrolled (Table 1). The frequencies of c.496A>G,
c.1601G>A, c.1627A>G, c.1896T>C, c.1905+1G>A,
c.2194G>A and c.2846A>T alleles are reported in Table 2.
The c.1679T>G and c.1236G>A/HapB3 variants were not
found neither in cohort 1 nor in cohort 2. The comparison

between the two cohorts demonstrated that IVS14+1GA/AA,
c.2194GA/AA, c.2846AT/TT were significantly higher in
cohort 1 than in cohort 2: 6.2% vs. 0% (p < 0.0001), 19.7%
vs. 11.8% (p= 0.004) and 2.4% vs. 0% (p= 0.020),
respectively (Table 2). The statistical analysis showed that
IVS14+1GA and AA genotypes were significantly associated
with diarrhea (p= 0.001), alopecia (p= 0.007), febrile neu-
tropenia (p < 0.0001), and thrombocytopenia (p= 0.012).
c.2194GA/GG were associated with stomatitis (p= 0.053),
leucopenia (p= 0.003), and thrombocytopenia (p= 0.049).
Finally, c.2846AT/TT were associated with diarrhea (p=
0.02, Table 3). The strong association of c.1905+1G>A and
c.2846A>T with ADRs was also demonstrated by the absence
of c.1905+1A and c.2846T variant alleles in cohort 2
(Table 2). Borderline associations of c.496AG/GG (p =
0.068) and c.1905+1GA/AA (p= 0.061) with neutropenia
and of 2194GA/AA (p= 0.062) with febrile neutropenia were
found. On the contrary, c.1601G>A, c.1627A>G and
c.1896T>C played no role in fluoropyrimidine toxicities
(Table 3). At univariate analysis, the incidence of ADRs was
lower in patients treated with fluoropyrimidines alone or in
association with oxaliplatin vs. all other treatments (Table 1S).
However, at multivariate analyses, DPYD variants were
confirmed as independent factors of ADRs irrespective of
treatments received (Table 4).

Discussion

An extensive search of genetic variants of DPYD associated
with enzyme deficiency and poor-metabolizer status has been
performed and several genotypes were identified [5, 8, 22]. In
agreement with three meta-analyses [10, 23, 24], our study
confirmed the well-known role of c.1905+1G>A and
c.2846A>T in fluoropyrimidine-associated ADRs. An addi-
tional meta-analysis also found an association between severe
ADRs and the non-synonymous variant c.1679T>G

Table 1 Characteristics of patients of cohorts 1 and 2

Characteristics Statistics

Cohort 1 Cohort 2

Patients 982 272

Gender (M/F) 392/590 (39.9/
60.1)

147/125 (54/46)

Age (years) 63.9 ± 9.8 58.7 ± 7.4

Race Caucasian Caucasian

Disease

Colorectal cancer 740 (75.4) 130 (47.8)

Gastric cancer 193 (19.6) 12 (4.4)

Breast cancer 49 (5.0) 130 (47.8)

Treatmenta

FU-LV (De Gramont regimen) 170 (17.3) 0 (0)

Capecitabine 210 (21.4) 92 (33.8)

FOLFIRI 182 (18.5) 0 (0)

FOLFOX-4 190 (19.3) 130 (47.8)

FOLFOXIRI 54 (5.5) 0 (0)

CAPOX 160 (16.3) 0 (0)

TPF 0 (0) 0 (0)

XELIRI 8 (0.7) 0 (0)

EOXb 8 (0.8) 50 (18.4)

ADRs

Gastrointestinal Grade≥2

Nausea/Vomiting 16% 0 (0)

Diarrhea 39.7% 0 (0)

Stomatitis 14% 0 (0)

Dermatological Grade≥2

Hand-foot syndrome 9.3% 0 (0)

Hematological Grade≥3

Fever 2.2% 0 (0)

Leucopenia 12.3% 0 (0)

Neutropenia 17.4% 0 (0)

Febrile neutropenia 4.7% 0 (0)

Anemia 4.2% 0 (0)

Thrombocytopenia 5.8% 0 (0)

aAbbreviations listed as per NCI Thesaurus v. 16.08e (release 2016-
08-29)
bEpirubicin, oxaliplatin, capecitabine

Table 2 Type and frequencies of DPYD genotypes in cohorts 1 and 2

Heterozygous+ homozygous mutants (%)

SNPs Cohort 1 Cohort 2 p-value

c.496A>G 23.8 18 0.052

c.1601G>A 9.3 6.2 0.136

c.1627A>G 32.6 39.7 0.035a

c.1679T>G Not found Not found Not found

c.1896T>C 3.5 4.8 0.415

IVS14+1G>A 6.2 0 <0.0001

c.2194G>A 19.7 11.8 0.004

c.2846A>T 2.4 0 0.020

c.1236G>A/HapB3 Not found Not found Not found

aHigher frequency in cohort 2

DPYD*6 plays an important role in fluoropyrimidine toxicity in addition to DPYD*2A and. . .



(DPYD*13) as well as with the synonymous variant
c.1236G>A in complete linkage with HapB3 [25], a haplo-
type containing three intronic polymorphisms (IVS5
+18G>A, IVS6+139G>A and IVS9-51T>G) [26, 27].
Several other variants have been associated with fluoropyr-
imidine toxicities, including c.257C>T, c.1850C>T [28],
c.2509-2510insC, c.1801G>C, c.680G>A [29], c.85T>C
(p.R29C) [30], and c.496A>G (p.M166V) [31]; however,
due to the lack of confirmatory studies, their association with
toxicity remains unproven.

The present study found a significant association
between the non-synonymous variant c.2194G>A (p.V732I,
DPYD*6) with ADRs by fluoropyrimidines. The results of
the present work provide additional information on the
debate on this pharmacogenetic marker. Despite the
c.2194A allele seems to be relatively common, conflicting
results have been reported concerning its influence on DPD
activity and association with clinically-relevant ADRs.
Some studies did not assign a role to c.2194G>A in the
occurrence of fluoropyrimidine toxicity [32, 33] and in
silico analysis demonstrated a normal enzyme activity [8].
A study found that c.2194G>A showed weak evidence for
association with reduced DPD activity in African-American
patients; c.2194GA patients displayed a 29% reduction in
DPD activity compared to the wild-type, although the
linkage with c.557A>G (p.Y186C) may have played a
prominent role [34]. In the study by Schwab et al. [35] the
role of c.2194G>A was not considered significant, but this
result may have been affected by the small number of
carriers of this variant. Another study on the role of selected
DPYD variants on treatment tolerability showed no asso-
ciation between G≥3 toxicity and c.2194G>A, but, also in
this case, this result may have been affected by the small
group of patients [36].

On the contrary, the secondary analysis of the Pan-
European Trials in Alimentary Tract Cancer (PETACC-8)
study provided evidence of the association of c.2194G>A
variant with clinically-relevant ADRs in FOLFOX4-
treated patients [37] and the same result was observed in
the TOSCA randomized trial that enrolled colon cancer
patients given 3 or 6 months of either FOLFOX-4 or
XELOX adjuvant chemotherapy [38]. In particular, the
work by Boige et al. examined a cohort of 1545 patients
and found a significant association of ADRs with
c.2194G>A variant [37]. The statistical analysis
revealed a correlation between G≥3 ADRs by 5-FU and
c.2194G>A (OR= 1.7; p < 0.001); in more detail, G≥3
hematologic adverse events (OR= 1.9) and G≥3 neu-
tropenia (OR= 1.8) were associated with c.2194G>A
[37]. Data generated within a clinical study have the clear
advantage of being obtained in a selected, homogeneous
population with strict follow-up. Our study has the lim-
itation of having enrolled a heterogenous population butTa
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what can be viewed as a limitation turns to be an impor-
tant confirmation of PETACC-8 results in different clin-
ical settings, thus demonstrating the usefulness of
c.2194G>A screening. It should be noted that the data of
the present study are in accordance not only with the
results provided by the PETACC-8 trial but also with the
previously published biomarker analysis of TOSCA trial,
which found a significant association between c.2194G>A
and time to neutropenia [38]. A smaller study found a
relationship of c.2194G>A with leukopenia (OR= 8.17)
and neutropenia (OR= 2.78) [39] and an additional work
also positively associated this variant with diarrhea [27].
Finally, a meta-analysis conducted on seven cohort stu-
dies, with a total of 946 colorectal cancer patients
receiving 5-FU chemotherapy, found a significant asso-
ciation between the c.2194G>A polymorphism, bone
marrow suppression (p < 0.001) and gastrointestinal
ADRs (p < 0.05) [23]. Although other mutations of DPYD
may represent a risk for patients [14, 37, 40] their extre-
mely low frequency does not suggest their inclusion in
routine preemptive screening.

Recommendations are available on which variants to test
and which dose adjustement of fluoropyrimidines should be
adopted and include c.1236G>A/HapB3, c.1679T>G,
c.1905+1G>A, and c.2846A>T [41, 42]. The updated
guideline on DPYD genotyping [42] is an extremely valu-
able instrument to apply targeted genotyping in current
clinical laboratory practice. It is not surprising that it
includes only mutations (i.e., IVS14+1G>A, c.2846A>T,
HapB3, and c.1679T>G) supported by a substantial amount
of clinical data and established association with toxicities,
while it does not recommend novel variants like
c.2194G>A which still lack of clear clinical information
and/or controversial data are provided due to small groups
of patients examined in some studies. Despite the large
number of published works, the present study is one of the
few addressing the issue of DPYD variants and treatment
safety in a large population. We purposely included patients
given various protocols containing fluoropyrimidines to
assess the impact of DPYD polymorphisms in different

settings and validate the role of gene variants independently
of the drugs combined with fluoropyrimidines. A direct
comparison between the same regimens would have been
statistically more correct and this is a weakness of the
present study. However, due to the multitude of drug
combinations containing fluoropyrimidines and disease
settings, a much larger patient population should have been
enrolled. Nonetheless, the role of major variants (IVS14
+1G>A, c.2846A>T) has been confirmed in this study,
despite the heterogeneity of clinical settings, and the
importance of c.2194G>A is further documented by the
present work.

It is still a matter of debate when to screen subjects
candidate to fluoropyrimidine treatment and if the ther-
apeutic drug monitoring (TDM) has a role in optimizing
drug doses. In selected patients in whom dose adaptation is
difficult, measurement of 5-FU and of its major metabolite
5-FDHU can be performed. TDM is an extremely useful
approach but turnaround time is longer than SNP geno-
typing and pre-analytical issues may limit its widespread
use. In some centers, patients are prospectively screened
and dose reductions are made, if necessary. Unfortunately,
DPYD screening is still not universally accepted, although it
has been demonstrated to be cost-effective [43], and several
subjects are examined only after an ADR has occurred, thus
abolishing the advantage of a preemptive genotyping to
reduce the deleterious consequences of administering a
fluoropyrimidine in a poor metabolizer.

In conclusion, the present article provides evidence
that c.2194G>A should be examined in addition to well-
known deleterious variants; a dose reduction of 20% in
homozygous variant patients and a close monitoring of
heterozygous subjects for ADRs are thus advisable.
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