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Redundant and nonredundant organismal functions of
EPS15 and EPS15L1
Cinzia Milesi1, Paola Alberici1, Benedetta Pozzi1, Amanda Oldani1,2, Galina V Beznoussenko1 , Andrea Raimondi3,
Blanche Ekalle Soppo1,4, Stefania Amodio1,4, Giusi Caldieri1,4,5, Maria Grazia Malabarba1,4,5, Giovanni Bertalot4,
Stefano Confalonieri1,4, Dario Parazzoli1,2, Alexander A Mironov1, Carlo Tacchetti3,6 , Pier Paolo Di Fiore1,4,5,
Sara Sigismund1,4,5 , Nina Offenhäuser1,2

EPS15 and its homologous EPS15L1 are endocytic accessory proteins.
Studies in mammalian cell lines suggested that EPS15 and EPS15L1
regulate endocytosis in a redundant manner. However, at the or-
ganismal level, it is not known to which extent the functions of the
two proteins overlap. Here, by exploiting various constitutive and
conditional null mice, we report redundant and nonredundant
functions of the two proteins. EPS15L1 displays a unique non-
redundant role in the nervous system, whereas both proteins are
fundamental during embryo development as shown by the embry-
onic lethality of -Eps15/Eps15L1-double KOmice. At the cellular level,
the major process redundantly regulated by EPS15 and EPS15L1 is
the endocytosis of the transferrin receptor, a pathway that sustains
the development of red blood cells and controls iron homeostasis.
Consequently, hematopoietic-specific conditional Eps15/Eps15L1-
double KOmice display traits ofmicrocytic hypochromic anemia, due
to a cell-autonomous defect in iron internalization.
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Introduction

Endocytosis is a process through which cells internalize metab-
olites, plasma membrane–resident proteins, and signaling re-
ceptors, thereby influencing cellular homeostasis. The process is
achieved by a variety of entry portals and routes, among which
clathrin-mediated endocytosis (CME) is the best characterized
one (McMahon & Boucrot, 2011; Sigismund et al, 2012; Kirchhausen
et al, 2014; Robinson, 2015). In addition, endocytosis can occur
through clathrin-independent routes (non-clathrin endocytosis),
whose molecular determinants and cargo specificity are being
elucidated (Lundmark et al, 2008; Sigismund et al, 2012, 2013;
Boucrot et al, 2015; Renard et al, 2015; Elkin et al, 2016; Caldieri et al,

2017). Besides clathrin, the main actors of CME are the endocytic
adaptors, whose main function is to bridge the membrane cargo
with the coat. Endocytic adaptor proteins include the clathrin
adaptor protein 2 complex (AP2) and a plethora of accessory
adaptor proteins, among which are EPS15 (EGFR pathway substrate
15) and EPS15L1 (EGFR pathway substrate 15 like-1), which control
cargo selection and maturation of the vesicles (Mettlen et al, 2009;
Traub, 2009; Kirchhausen et al, 2014; Merrifield & Kaksonen, 2014).

EPS15 and EPS15L1 share 41% identity and 61% similarity. They
were originally discovered as substrates of the epidermal growth
factor receptor (EGFR) (Fazioli et al, 1993; Schumacher et al, 1995;
Coda et al, 1998; Salcini et al, 1999) and display features of multi-
domain scaffolding proteins, containing from N terminus to C ter-
minus: (i) three copies of the EH protein–binding module (Wong et al,
1995; Di Fiore et al, 1997; Confalonieri & Di Fiore, 2002), which can
interact with various endocytic proteins (Salcini et al, 1997; Polo et al,
2003); (ii) AP2-binding sites (Benmerah et al, 1996; Iannolo et al, 1997);
and (iii) ubiquitin-binding domains, UIMs (Polo et al, 2002). In line with
their homology, in vitro studies indicated that EPS15 and EPS15L1 are
redundant components of the endocytic machinery: they share the
same binding partners (van Bergen En Henegouwen, 2009) and en-
docytosis is redundantly affected when both proteins are functionally
impaired. In particular, RNA interference of EPS15 and EPS15L1 in HeLa
cells showed that these proteins are redundantly required for the CME
of the transferrin receptor (TfR), a prototype of constitutive endocy-
tosis, and of the EGFR, a prototype of ligand-induced endocytosis
(Huang et al, 2004). Moreover, EPS15 and EPS15L1 were found to re-
dundantly regulate also the non-clathrin endocytosis of EGFR, together
with the endocytic adaptor epsin-1 (Sigismund et al, 2005).

Finally, upon activation of the EGFR, both proteins can be post-
translationally modified, including tyrosine phosphorylation (Fazioli
et al, 1993; Coda et al, 1998) and mono-ubiquitination (van Delft
et al, 1997; Woelk et al, 2006), and these modifications are required
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(Istituti di Ricovero e Cura a Carattere Scientifico), Milan, Italy 5Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Milan, Italy
6Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
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to assist during EGFR-CME (Torrisi et al, 1999; Confalonieri et al,
2000; Savio et al, 2016).

At the organismal level, studies in Caenorhabditis elegans and
Drosophila melanogaster, where only one gene of the eps15 family
exists, indicate that EPS15 plays an essential function in the nervous
system, regulating synaptic vesicle recycling (SVR) (Salcini et al, 2001;
Koh et al, 2007). The single Eps15 KO in mice, where both Eps15 and
Eps15L1 exist, is viable and fertile. MEFs derived from thesemice didnot
display defects in TfR endocytosis (Pozzi et al, 2012), suggesting that
EPS15L1—which is expressed in this setting—possibly compensates the
lack of EPS15. Their redundancy, however, has never been demon-
strated in in vivo settings. Moreover, neither in vitro nor in vivo
studies have so far revealed nonredundant essential functions.
The present studies were undertaken to shed light on these
questions.

Results and Discussion

The Eps15L1-KO is perinatal lethal

To investigate the functions of EPS15L1 at the organismal level, we
generated Eps15L1-KO (Eps15L1-KO)mice by deleting the first coding

exon (Fig S1). Although deletion of Eps15, as previously reported, did
not affect viability (Pozzi et al, 2012), only 10% of the weaned pups
were Eps15L1-KO (instead of the expected 25%, Fig 1A), indicating
that EPS15L1 is required for neonatal viability, albeit with incom-
plete penetrance. Eps15L1-KO mice were born at the expected
Mendelian ratio and were indistinguishable from WT littermates.
Following the litters directly after birth revealed that newborn
Eps15L1-KO died within the first 2 d of birth (Fig 1B) without any
obvious morphological defects. The neonatal lethality of Eps15L1-KO
mice, at variance with Eps15-KO, indicated a unique nonredundant
function for EPS15L1.

EPS15L1 is preferentially expressed in the nervous system and the
Eps15L1-KO displays neurological deficits

The time of neonatal lethality of Eps15L1-KO mice and their normal
in utero development was not immediately consistent with a cause
of death because of failure of major organs, such as the heart,
lungs, or kidneys (Turgeon & Meloche, 2009). Thus, as an initial step
towards the understanding of the nonredundant function of
EPS15L1, we analyzed its tissue distribution versus EPS15. EPS15 was
expressed at similar levels in most of the analyzed tissues (Fig S2A).
EPS15L1, instead, displayed prominent expression in the brain and

Figure 1. Eps15L1-KO mice are neonatal lethal.
(A) Percentage of expected (black bars) and obtained
(grey bars) weaned pups of WT, heterozygous (HET),
and KO genotype born from Eps15- or Eps15L1-HET
breedings. (B) Percentage of surviving pups of WT, HET,
and KO genotype after birth. The number of mice
analyzed is shown in parentheses. (C) Percentage of
normal reaction in the tail suspension, tail flick, feeding
behavior, and respiratory behavior tests in Eps15L1-WT
and Eps15L1-KO pups. The number of mice analyzed is
shown in parentheses. n.s., not significant; ***P < 0.001
versus WT.
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cerebellum and comparatively lower levels in other tissues and
MEFs (Fig S2B).

By immunofluorescence analysis of the hippocampus in adult
mouse brain sections, both EPS15 and EPS15L1 localized to neurons,
and EPS15 also showed substantial staining in cells with astrocytic
morphology (Fig S2C). Of interest, EPS15L1 showed co-localization
with synaptophysin, a presynaptic marker, whereas EPS15 did not (Fig
S2C). This was further corroborated by a biochemical fractionation of
adult mouse brain in which we compared the total homogenate (H)
to the synaptosomal fraction and to the postsynaptic density. Of the
several endocytic proteins tested, EPS15L1 was the sole one clearly
enriched in the synaptosomal fraction (marginal enrichment was
also detected for dynamin and AP2; Fig S2D).

Based on the above results, we performed a series of neurological
tests on newborn Eps15L1-KO (Fig 1C). We observed no difference in
the tail suspension test, which assesses a reflex circuit in-
volving the brainstem (Fig 1C). Conversely, in the nociceptive
tail flick test, we scored a significant reduction of reactivity in
Eps15L1-KO versus WT controls (Fig 1C). More importantly, we
observed lack of feeding in 90% of Eps15L1-KO pups, as evi-
denced by the absence of milk in their stomach, which rep-
resents the probable cause of death of these animals (Fig 1C). In
addition, we observed difficulties in respiratory activity at the
second day after birth in most of the Eps15L1-KO pups (Fig 1C),
which might be either a primary defect or secondary to malnu-
trition. Of note, Eps15L1-KO mice that escaped perinatal death
showed reduced growth rate (Fig S2E and F), neurological deficits
(Fig S2G), and succumbed at 6–8 wk. In contrast, we have previously
published that EPS15-KO mice do not show any neurological ab-
normality (Pozzi et al, 2012).

In summary, EPS15L1—in contrast to EPS15—is required for life in
mice, possibly in conjunctionwith an essential nonredundant function
of EPS15L1 in the nervous system.

Evidence for a nonredundant role of EPS15L1 in synaptic function

The sum of the above data and the lessons learned in model or-
ganisms (Salcini et al, 2001; Koh et al, 2007) prompted us to in-
vestigate a possible role for EPS15L1 in SVR. In the Drosophilamodel
system, the ablation of eps15was accompanied by a sizable decrease
in the levels of dynamin and intersectin (Majumdar et al, 2006; Koh
et al, 2007). Thus, we initially assessed the levels of a panel of
endocytic proteins in the brain of newborn Eps15-KO and Eps15L1-KO
mice. We observed no differences in the levels of expression of
most of the proteins, including the core components of the
endocytic machinery: AP2, dynamin, and clathrin (Fig 2A). An
~50% decrease in the levels of intersectin-1 was detected in
Eps15L1-KO mice (Fig 2A and B). This reduction appears to be
specific for intersectin-1, as other presynaptic (e.g., synapsin,
synaptophysin, and VGAT) or postsynaptic (e.g., GluR1) markers
did not significantly change between Eps15L1-KO and Eps15L1-WT
mice (Fig 2A andB). We concluded that the KOof either Eps15L1 or Eps15
does not have a general impact on the expression levels of the synaptic
proteins.

Next, we performed an FM dye–based SVR assay on mature
neurons cultured for 14 d in vitro. Fluorescence was measured after
a first depolarization in the presence of the dye induced by KCl (F1,

Fig 2C, left) and then again after a second depolarization (F2, Fig 2C,
left) to measure dye release from synaptic vesicles. We did not
detect any significant difference in either F1 or F2, arguing for no
apparent defects in SVR (Fig 2C, right). However, compensatory
endocytic mechanisms might mask a defect in classical SVR (Nguyen
et al, 2014); thus, we proceeded with an ultrastructural analysis of
Eps15L1-KO neurons. We detected a reduction of synaptic vesicles
in Eps15L1-KO synapses of about 50%, although synapses from
Eps15-KO were comparable with WT (Fig 2D). The number of docked/
tethered vesicles was also significantly decreased in Eps15L1-KO
synapses (Fig 2E). This result is reminiscent of similar defects
evidenced in model organisms (Salcini et al, 2001; Koh et al, 2007)
and suggested that defective synaptic function may be respon-
sible for the neurological deficits of Eps15L1-KO mice and possibly
for neonatal lethality.

To test whether the absence of evident phenotypes in the dye
uptake assay was due to the up-regulation of compensatory bulk
endocytosis, we measured by EM the number of vesicles with a
diameter higher than 80 nm, as bulk endocytosis is typically char-
acterized by large invaginations of the plasma membrane which
then fission to form endosomal-like compartments (Cousin, 2009;
Saheki & De Camilli, 2012). Under steady state conditions, we did not
observe differences in the number of this type of vesicles (Fig 2F).
However, when we followed HRP uptake upon depolarization with
50 mM KCl (Fig 2G, left), we observed a significant increase in large
HRP-positive structures in Eps15L1-KO neurons (Fig 2G, center and
right), suggesting that bulk endocytosis is indeed more active in
these cells.

EPS15 and EPS15L1 are redundantly essential in embryonic
development

To investigate possible organismal redundant roles for EPS15 and
EPS15L1, we generated Eps15/Eps15L1-double KO (DKO) mice by
inter-crossing Eps15-KO/Eps15L1-HET. DKO embryos died shortly
after 9.5 d post coitum (dpc) (Fig 3A), and already at 9.5 dpc, they
showed severe morphological defects. Some of them presented
severe developmental delay; all embryos, instead, displayed re-
duced midbrain–hindbrain boundary, fused somites, absence of
limb bud, and delayed turning of the heart. Moreover, DKO embryos
appeared paler than their controls (Fig 3B), possibly because of
reduced vascularization or a defect in hematopoiesis, or both.
PECAM staining of the vascular system effectively evidenced a
reduced vascularization both of the embryo proper as well as of
the yolk sac (Fig 3C and D). A more detailed confocal analysis of
the PECAM staining confirmed the reduced and compromised
vascularization of the head, somites, and yolk sac (Fig 3E) of DKO
embryos.

To further characterize the vascular phenotype, we generated mice
in which Eps15L1 was constitutively deleted and Eps15 was con-
ditionally deleted under the Tie2 promoter (Eps15flp/flp/Eps15L1−/−/
Tie2-Cretg, referred to as conditional Eps15-KO/constitutive Eps15L1-
KO, c15/L1KO). These mice displayed only a mild vascular defect
(data not shown), suggesting that the severe phenotype observed
in constitutive DKO mice was not due to a cell-autonomous defect
of endothelial cells.
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Deletion of Eps15 and Eps15L1 in the hematopoietic system affects
maturation of RBCs

We sought to identify a cellular function redundantly regulated in a
cell-autonomous fashion by EPS15 and EPS15L1 at the organismal
level. We concentrated on erythrocyte maturation for a series of
reasons: (i) the pallor of the Eps15/Eps15L1-DKO mice; (ii) the re-
dundant impact of EPS15 and EPS15L1 on TfR internalization ([Huang
et al, 2004] and Fig 4A); (iii) the known role of TfR internalization in
erythrocytematuration (Levy et al, 1999; Zhu et al, 2008; Ishikawa et al,
2015; Muckenthaler et al, 2017); and (iv) the availability of c15/L1KO
mice.

First, we investigated the expression of EPS15 and EPS15L1 during
erythrocyte maturation. Mice were treated with phenylhydrazine
(PHZ) to induce hemolytic anemia and formation of immature RBCs
(Fig S3A and B). Consistent with a role in maturation of RBCs, we
observed high levels of expression of EPS15 and EPS15L1 at the peak
of immature RBCs (7–10 d after PHZ treatment), which dramatically
decreased at 16 d (Fig S3C). The same kinetics were observed for
TfR, intersectin-1, and AP2, compatible with a role for all these
proteins in determining the wave of TfR required for maturation of
RBCs (Fig S3C).

We then turned to the c15/L1KO mice. Analysis of the peripheral
blood of newborn c15/L1KO mice revealed a significant reduction

Figure 2. EPS15L1 has a nonredundant role in neurons.
(A) Western blotting of the indicated proteins in brain lysates from the indicated stains (neonatal mice). In the brain, two isoforms for intersectin-1 are present (ITSN1-l
refers to the long isoform and ITSN1-s refers to the short isoform). Clathrin HC refers to clathrin heavy chain. Reduction of synaptophysin in Eps15L1-KO mice
might be linked to a reduction in synapses, as observed in Drosophila eps15mutants (Koh et al, 2007); the reduction of intersectin-1, which directly interacts with EPS15L1,
instead, might indicate a destabilization of the protein when it is not complexed. (B) A quantitation of the results shown in A is depicted, as obtained from replica
experiments (n = 2–3). Results are the mean ± SD and are expressed as % of signal in WT sample, normalized for the loading control (vinculin). (C) Left, schematic
representation of the experimental setup for FM dye uptake and release from hippocampal neurons. Grey boxes indicate KCl pulses. Right, averaged fluorescence
intensity in WT, Eps15L1-KO, and Eps15-KO neurons after dye uptake (F1) and after depolarization with 50 mM KCl and release (F2). Differences among genotypes are not
significant. (D) Left, ultrastructural analysis of steady-state synapses from WT, Eps15L1-KO, and Eps15-KO hippocampal neurons. Bar, 100 nm. Right, quantitation of
synaptic vesicles (SV) per area by ultrastructural analysis. At least three different preparations of neurons were analyzed; ***P < 0.001 versus WT. (E) Quantitation of
docked/tethered SV per length of active zone EM. At least three different preparations of neurons were analyzed; ***P < 0.001 versus WT. (F) Quantitation of vesicles with
diameter higher than 80 nm (SV) per μm2 by EM. At least three different preparations of neurons were analyzed. Differences among genotypes are not significant.
(G) Left, schematic representation of the experimental setup for HRP uptake from hippocampal neurons. The grey box indicates the KCl pulse. Center, exemplary images by
EM of HRP-labelled synapses from WT and Eps15L1-KO hippocampal neurons. Bar, 100 nm. Right, quantitation of HRP-positive (HRP+) vesicles with diameter higher than
80 nm (SV) per μm2 by EM. ***P < 0.001 versus WT.
Source data are available for this figure.
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of the mean corpuscular volume (MCV) and an increase in RBC
distribution width, a value typically high in iron-deficient anemia
(Fig 4B). Mice in which only Eps15 was deleted under the Tie2
promoter (Eps15flp/flp/Tie2-Cretg, referred to as conditional Eps15-
KO, c15KO) displayed a minor, if any, reduction in MCV, whereas
constitutive single Eps15L1-KO (L1KO) had no phenotype. Finally,
May–Grünwald–Giemsa staining revealed the presence of an-
isotropic RBCs and a significant increase in reticulocyte number
specifically in c15/L1KO mice (Fig 4C and D).

To analyze adult hematopoiesis, we generated mice in which
both Eps15 and Eps15L1 were conditionally deleted under the Tie2
promoter (Eps15flp/flp/Eps15L1flp/flp/Tie2-Cretg, conditional Eps15/
Eps15L1-DKO, referred to as cDKO). Western blotting analysis on
major tissues (the brain, liver, and spleen) confirmed that Eps15 and
Eps15L1 were deleted in Tie2+ cells (Tang et al, 2010) of cDKO mice
(Fig S3D). Adult cDKO mice were anemic as revealed by significant
reduction of all analyzed parameters (Fig 4E). May–Grünwald–
Giemsa staining revealed a great variation in the size and shape of
cDKO RBCs (Fig 4F, top). Finally, o-dianisidine staining clearly
showed that RBCs from cDKO were hypochromic (Fig 4F, bottom;
additional characterizations of iron metabolism, in cDKO mice, are
shown in Fig S3E and F). Thus, cDKO mice suffer from microcytic
hypochromic anemia (Levy et al, 1999; Zhu et al, 2008; Ishikawa
et al, 2015).

EPS15 and EPS15L1 redundantly regulate TfR internalization
in RBCs

In search of amolecular explanation for the RBC phenotype in cDKO
mice, we concentrated on TfR endocytosis. We reasoned that the
phenotype of cDKO (impaired maturation of RBCs and increased
serum iron) could be explained by defective iron uptake through
TfR endocytosis in RBCs of these mice. To discriminate mature
RBCs from reticulocytes, we used thiazole orange (TO) to detect
the nucleic acids in immature RBCs. Consistent with defective
erythrocyte maturation, we detected twice as many reticulocytes
(TO-positive cells, TO+) in the blood of cDKO (5.5 ± 0.4 in WT versus
10.7 ± 1.5 in cDKO, P < 0.001 [Fig 4G, top]). In addition, surface TfR

expression was retained in ~50% of mature RBCs (TO-negative
cells, TO−) in cDKO mice, whereas it was virtually absent—as
expected—in WT mice (Fig 4G, bottom, and H). Finally, in cDKO mice,
a significantly higher fraction of TO+ retained TfR surface expres-
sion versus the WT counterparts (Fig 4G, bottom, and H).

Redundancy and uniqueness of EPS15 and EPS15L1

We have herein characterized a number of redundant and non-
redundant functions of EPS15 and EPS15L1 at the organismal level
in mice.

In our previous work, we showed that Eps15-KO mice are viable
and fertile and, notwithstanding extensive phenotype screening,
showed only a partial defect in B-cell lymphopoiesis (Pozzi et al,
2012). At variance, we show here that Eps15L1-KO mice show readily
detectable neurological defects, associated with reduced number
of synaptic vesicles, and neonatal lethality. We have not proved that
the neonatal phenotype is a direct consequence of the neurological
defect and of altered SVR. Neuronal-specific conditional KO will be
needed to address this issue. However, we note that the depletion
in synaptic vesicles detected in Eps15L1-KO mice is highly remi-
niscent of the phenotypes observed in the nematode and in flies,
upon deletion of the sole orthologue of Eps15 in these species. In
these latter cases, it was established that the SVR phenotype was
responsible for the neurological defects and, in the case of Dro-
sophila, for lethality (Salcini et al, 2001; Koh et al, 2007).

Our studies also allowed the identification of a number of re-
dundant functions of Eps15 and Eps15L1. These two genes are re-
quired (redundantly) for correct embryo development. The severity
and complexity of the phenotype argues for the possibility that not
a single but a multitude of signaling pathways is affected in these
mice: a possibility compatible with the role of these proteins in a
pervading process such as endocytosis. At the phenotypic level, one
major alteration, which might contribute importantly to the lethal
phenotype of DKO embryos, was subverted angiogenesis. This phe-
notype, however, was non–cell autonomous, and its exact mechanism
remains to be elucidated.

One redundant function that we were able to precisely dissect,
both cellularly andmolecularly, concerns erythropoiesis. Here, we

Figure 3. EPS15 and EPS15L1 are redundantly
essential in embryonic development.
(A) Absolute and percent numbers of live embryos of the
indicated genotypes, observed between 9.5 and 12.5 dpc.
(B) Eps15-KO and DKO fresh embryos at 9.5 dpc. Arrows
point to the limb bud (Lb), the midbrain–hindbrain
boundary (Bd) and the heart (Ht). The star and the
continuous lines indicate, respectively, the absence of
limb bud and the presence of fused somites in DKO
embryos, as compared with Eps15-KO mice where
somites are not fused (indicated with dotted line). Some
DKO embryos had a more severe phenotype and
reduced size than others. Bar, 1 mm. (C) Eps15-KO and
DKO embryos at 9.5 dpc stained with anti-PECAM. Bar,
1 mm. (D) Eps15-KO and DKO embryos and yolk sacs at
9.5 dpc stained with anti-PECAM. Bar, 1 mm. (E) Confocal
images of head, somites, and yolk sac from Eps15-KO
and DKO embryos at 9.5 dpc, stained with anti-PECAM
(red). Nuclei were counterstained with TOPRO (green).
Bar, 100 μm.
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showed that EPS15 and EPS15L1 are redundantly required for the
internalization of the TfR, which at the organismal level leads to
microcytic hypochromic anemia when lacking in the hemato-
poietic system. These results are reminiscent of those obtained in
hematopoietic-specific KO mice for PICALM, an accessory endo-
cytic adaptor and binding partner of EPS15 and EPS15L1. These mice
suffered from microcytic hypochromic anemia, displaying reduced
RBCs, haemoglobin, haematocrit, and MCV, and increased reticulocyte
number and serum iron (Ishikawa et al, 2015). Moreover, also in these
mice, anemia was caused by defective TfR internalization in RBCs.

Evolutionarily, the duplication of the ancestral Eps15 locus
must have occurred in a vertebrate ancestor, within metazoan,
because all vertebrates display two orthologues, whereas in-
vertebrates possess only one (Fig S3G). By analyzing compara-
tively the results in invertebrates (Salcini et al, 2001; Koh et al,
2007) and in mammals ([Pozzi et al, 2012] and this study), it is
likely that the essential functions of proto-EPS15 were retained
by EPS15L1, whereas EPS15 diverged to assume more fine-tuning
roles, while retaining a large (albeit not complete) spectrum of
redundancy with EPS15L1. This possibility is supported by the

Figure 4. Deletion of Eps15 and Eps15L1 in the
hematopoietic system causes microcytic hypochromic
anemia.
(A) Relative TfR endocytic constant (Ke) (top) and TfR
surface levels per cell (bottom) inWT, Eps15L1-KO (L1KO),
Eps15-KO (15KO), and DKO fibroblasts. WT value (= 1.0)
is shown by a dashed red line. (B) Values of RBCs,
hemoglobin (HGB), hematocrit (HCT), MCV, and RBC
distribution width in newborn WT, Eps15L1-KO (L1KO),
conditional Eps15-KO (c15KO), and conditional Eps15-
KO/Eps15L1-KO (c15/L1KO) mice. At least eight
animals for each genotype were analyzed. (C)
May–Grünwald–Giemsa staining of blood smears from
newborn mice of the indicated genotype. Arrows point
to reticulocytes, which retain methylene blue dye. Bar,
10 μm. (D) Quantitation of the experiments shown in (C).
Number of newborn mice analyzed: WT = 7, L1KO = 6,
c15KO = 6, c15/L1KI = 6. (E) Values of RBCs, HGB, HCT, and
MCV in adult WT and cDKO mice. At least nine animals of
each genotype were analyzed. (F) Blood smears of adult
WT and cDKO mice stained with May–Grünwald–Giemsa
(top) or o-dianisidine (bottom). Bar, 10 μm. (G)
Representative fluorescence-activated cell sorting
(FACS) analysis of peripheral blood from adult WT and
cDKO mice, stained with thiazole orange (TO) to reveal
reticulocytes (top) or with TfR (CD71) and thiazole orange
for nucleic acids (bottom). In the top panels, the
percentage of TO+ cells in one representative WT and in
one representative cDKO is shown. In the main test,
average ± SEM of TO+ cells, calculated from at least five
animals of each genotype, is indicated. (H) Percentage of
positive and negative RBCs for surface TfR (CD71) among
TO+ and TO− blood cells, in adult WT and cDKO mice. At
least five animals of each genotype were analyzed. In
(A), (B), (D), (E), and (H): *P < 0.05 versus WT; **P < 0.01
versus WT; ***P < 0.001 versus WT.
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closer similarity of vertebrate EPS15L1s with the invertebrate
orthologues and by the slower rate of divergence of this gene
versus EPS15, during vertebrate radiation (Fig S3G). The high
degree of similarity and collinearity between the two genes/
proteins should now enable structure–function experiments to
unmask the structural determinant responsible for the unique
function of EPS15L1 in neurons.

Materials and Methods

Generation and maintenance of mouse strains

The Eps15-KO was previously described (Pozzi et al, 2012). The
conditional Eps15-KO allele (Eps15tm1a(KOMP)Wtsi, in the text referred
to as Eps15flp/flp) was obtained from the Sanger Institute. The PGK-
neo cassette was removed by breeding to general deleter Flp mice
and the Flp transgene was removed in subsequent breedings. The
Eps15L1-KO was generated in a C57BL6 background by Ozgene,
through insertion of a PGK-neo cassette next to the first coding
exon. The first exon and the PGK-neo cassette were removed by
crossing with general deleter Cre mice and the Cre transgene was
removed in subsequent breedings. The conditional Eps15L1-KO
allele (Eps15L1flp/flp) was obtained from Polygene. The PGK-neo
cassette was removed by breeding to general deleter Flp mice
and the Flp transgene was removed by subsequent breedings.

For isolation of MEFs, Eps15flp/flpmice were crossed with Eps15L1+/−

and Rosa26CreERT2 mice (Ventura et al, 2007).
For hematological studies, Eps15flp/flp mice were crossed with

Eps15L1+/− or Eps15L1flp/flp and Tie2-Cretg mice (Kisanuki et al, 2001)
to obtain deletion of the floxed genes in endothelial and hema-
topoietic cells.

Mice were kept on 12 h light/dark cycle with ad libitum access to
water and food. Experiments were performed in accordance with
our institution guidelines and the Italian Laws (Project numbers:
06/12 and 222/16).

Behavioral test

Neonatal behavior tests were scored giving either a normal or ab-
normal evaluation to the observed phenotype. To evaluate neonatal
motor and nociception functions, pups were subjected to the tail
suspension and the tail flick test, respectively (Sternberg et al, 2004;
Takahashi et al, 2010).

In the tail suspension test, the pup was gently held by the tip of
the tail and the position observed recorded. A normal reaction was
scored when the pup was hanging symmetrically with all four limbs
wide open. The test was scored as abnormal if the hind limbs were
touching or clasping during the test.

In the tail flick test, the pup was held between the thumb and
forefinger in an upright position and the distal tip of the tail was
gently lowered into a water bath maintained at 50°C. The latency to
vigorous tail withdrawal was recorded, with a 15-s cutoff time. The
test was repeated after a 30-s interval and the latencies were
averaged. Tail withdrawl within 15 s was scored as normal, whereas
longer retraction times were scored as abnormal.

The feeding status was estimated at the day of birth by carefully
observing the pups for the presence of milk in the stomach, which is
visible through the thin abdominal skin of pups.

The respiration behavior was assessed by visual examination. Ap-
neas, sighs, gasps, paroxysmal, or periodic breathing were considered
as pathological. All tests were performed in blind respect to the
genotype of the animals.

Primary culture of hippocampal neurons

Primary neurons were isolated from hippocampi dissected from
P0 newborn mice and placed in cold HBSS buffer. Digestion of
the hippocampi was performed at 37°C in water bath for 10 min
using papain (20 U/ml final) in EBSS buffer with the addition of
DNase (500 U/ml final) (all from Worthington Biochemical
Corporation). After trituration of the solution, the cell pellet was
washed two times in EBSS and resuspended in Neurobasal-A
medium supplemented with B27, GlutaMAX, and antibiotics (all
from Life Technologies). The cells were plated onto glass cov-
erslips or glass bottom dishes (MatTek Corporation) coated with
1 mg/ml poly-D-lysine hydrobromide (Sigma-Aldrich). Primary
cultures from hippocampal neurons were used at 14 d from their
isolation.

Dye uptake experiments

For dye uptake experiments, FM1-43 dye (Molecular probes from
Life Technologies) was used at a concentration of 1 μm. Recovery
buffer contained 130 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2,
25 mM Hepes (pH 7.33), and 30 mM glucose. Stimulation buffer
contained as above except for 85 mM NaCl and 50 mM KCl.

DL-2-amino-5-phosphonopentanoic acid (AP-V; Sigma-Aldrich),
CNQX (Ascent Scientific), and sodium kynurenate (Ascent Scientific)
were added to all solutions, except HBSS, at the final concentration
of 50 μM, 100 μM, and 1 mM, respectively.

Dye uptake experiments of primary hippocampal neurons were
performed at room temperature as follows: the cells were incu-
bated 3 min in recovery buffer with dye and then stimulated with
stimulation buffer with dye for 90 s, following 10 min in recovery
buffer with dye. After 10 min of several washes in HBSS buffer (Life
Technologies), neurons were bathed for 2 min in HBSS with 10 mM
ADVASEPT (Sigma-Aldrich) and washed two times with HBSS alone.
For acquisition of microscope images, neurons were placed in re-
covery buffer (without dye) and stimulated with stimulation buffer
(without dye).

Fluorescence microscopy was performed on an UltraVIEW VoX
(Perkin Elmer) spinning disk confocal unit, equipped with an
Eclipse Ti inverted microscope (Nikon), a C9100-50 emCCD camera
(Hamamatsu), and driven by Volocity software (Improvision, Perkin
Elmer). Images were acquired with a 60× oil immersion objective
(NA 1.4) as Z-stacks (0.3 μm step). F1 stacks (dye uptake) were
acquired while neurons were in the recovery buffer. F2 stacks (after
dye release) were taken after 2 min from the application of the
stimulation buffer.

Images were analyzed using ImageJ software (ImageJ 1.43u) as
follows: F1 and F2 Z-stacks were transformed in single images
using the max intensity tool and subsequently concatenated.
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The resulting F1-F2 stack was aligned and the background was
subtracted. Fluorescence intensity (F1 and F2) of single punc-
tuated signals was automatically calculated using a homemade
macro.

Electron microscopy and morphometry

Conventional electron microscopy was carried out as previously
described (Polishchuk et al, 1999; Beznoussenko et al, 2007). Hip-
pocampal neuron cultures were directly fixed with 1% glutaral-
dehyde in 0.2 M Hepes (pH 7.2–7.4). The number of vesicles (i.e.,
synaptic vesicles, docked/tethered or vesicles larger than 80 nm)
was determined on electron micrographs with ImageJ software
(ImageJ 1.43u) and a homemade ImageJ script. Synaptic vesicles
were defined as the small homogenously sized vesicles (≤60 nm)
forming large clusters in the terminal. Docked/tethered vesicles
were defined as small homogenously sized vesicles (≤60 nm)
within 25 nm from the active zone PM. For bulk steady-state en-
docytosis, we measured vesicles larger than 80 nm in the terminal.
For HRP uptake experiments, peroxidase from horseradish Type
VI-A (Sigma-Aldrich) was used at concentration of 10 mg/ml. All
buffers with inhibitors were the same as for the “dye uptake ex-
periments” described above. Neurons were allowed to equilibrate
for 90 s in the recovery buffer with HRP, and then stimulated for 90 s
with the stimulation buffer with HRP. After four quick washes with
the recovery buffer, the neurons were fixed with 2.5% glutaralde-
hyde/0.1 M cacodylate, pH 7.4.

Images were analyzed using ImageJ software (ImageJ 1.43u). The
number of HRP-positive vesicles larger than 80 nmwas automatically
calculated using a homemade ImageJ Script. Statistical significance
was calculated by t test.

Whole-mount staining of Eps15/Eps15L1-DKO embryos with
anti-PECAM primary antibody

Embryos were collected at 9.5 dpc and fixed overnight at 4°C in
100% methanol. After fixation, the embryos were rehydrated and
blocked overnight at 4°C in PBS containing 5% donkey serum,
1% BSA, and 0.5% Triton-X 100. After wash, they were incubated
overnight at 4°C with anti-PECAM primary antibody (kindly provided
by E. Dejana) in PBS containing 0.5% BSA and 0.25% Triton-X 100. The
primary antibody was revealed by VECTASTAIN ABC system (Vec-
torlabs), according to the manufacturer’s instructions, and images
acquired under a Leica stereomicroscope. Alternatively, PECAMwas
revealed by immunofluorescence as follows: embryos were in-
cubated with anti-rat Alexa 488 and TOPRO (Thermo Fisher Sci-
entific) in PBS containing 0.5% BSA and 0.25% Triton-X 100 for 2 h at
room temperature. The embryos were then washed, post-fixed in
4% paraformaldehyde, and mounted with ProLong Gold. Images
were taken with a Leica TCS SP5 confocal microscope.

Isolation of MEFs

MEFs were isolated from Eps15flp/flp/Eps15L1+/+/CreERT2tg and
Eps15flp/flp/Eps15L1−/−/CreERT2tg embryo mice. Briefly, pregnant
mice were euthanized at 13.5 dpc by CO2 asphyxia. The embryos
were decapitated for genotyping and the internal organs removed.

The embryos were then dissociated with a blade, transferred to
0.05% trypsin plus 0.02% EDTA solution, and incubated for 10 min at
37°C under agitation. After addition of 100 μg/ml DNase I (Roche),
the embryos were incubated for further 10 min. Digestion was
completed by passing embryonic tissues through an 18-gauge needle.
The cells were finally isolated through a 70-μmcell strainer and plated
in 10-cm petri dishes. The cells were grown in Hepes buffered
GlutaMAX-DMEM (Gibco Invitrogen) supplemented with 10% fetal
bovine serum (HyClone), at 37°C and 9% CO2.

Radioactive internalization and saturation binding assay

Radioactive internalization and saturation binding assay were
performed as previously described (Sigismund et al, 2005). Ex-
periments were performed on WT, Eps15L1-KO, Eps15-KO, and
Eps15/Eps15L1-DKO MEFs. WT and Eps15-KO fibroblasts were
derived from Eps15flp/flp/Eps15L1+/+/CreERT2tg mice, after in vitro treat-
ment with DMSO vehicle or 250 nM (Z)-4-hydroxytamoxifen (Sigma-
Aldrich), respectively. Eps15L1-KO and Eps15/Eps15L1-DKO fibroblasts
were derived from Eps15flp/flp/Eps15L1−/−/CreERT2tg mice, after in vitro
treatment with DMSO vehicle or 250 nM (Z)-4-hydroxytamoxifen, re-
spectively. At least three different preparations of cells were analyzed.

Biochemical studies

Dissection of the brains for immunofluorescence and fractionation
of the brains for Western blotting was performed as previously
described (Offenhauser et al, 2006).

Western blotting on whole tissue extracts and RBC lysates was
performed as follows. Tissues (isolated after sacrifice of themice by
CO2 asphyxia) and peripheral RBCs (collected as explained in the
next section) were washed in PBS and homogenized in a lysis buffer
containing 50 mM Hepes, pH 7.4, 150 mM NaCl, 1% glycerol, 1% triton
X-100, 1.5 mM MgCl2, 5 mM EGTA, 1 mM PMSF, 10 mM sodium
orthovanadate, 50 mM sodium fluoride, and protease inhibitor
cocktail SetIII (Calbiochem). The lysates were then clarified at 4°C
by centrifugation at 120,000 g for 1 h (for tissues) or 10,000 g for
15 min (for RBCs). Protein concentration was measured by BCA
protein assay (Thermo Fisher Scientific), according to the manu-
facturer’s instructions. Desired amounts of proteins were dissolved
in Laemmli buffer (final concentration: 2% SDS, 50 mM Tris–HCl, pH
6.8, 100 mM DTT, 10% glycerol, and 0.001% bromophenol blue),
boiled for 5 min, separated by SDS–PAGE, and then transferred on
nitrocellulose membranes. The membranes were blocked for 1 h in
5% BSA or 5% low-fat dry milk (in TBS plus 0.1% Triton X-100) and
then incubated overnight at 4°C with the primary antibody. After
wash, the membranes were incubated with HRP-conjugated
secondary antibody (Cell Signaling) for 1 h at room tempera-
ture. The bound secondary antibody was revealed through chem-
iluminescence by photographic films (Amersham Hyperfilm ECL)
or under a ChemiDoc Imaging System, after incubation with ECL
substrate. Quantitation of the blots was performed using ImageJ
(ImageJ 1.43u). The following primary antibodies were used: anti-
α adaptin (mouse monoclonal AP6; Thermo Fisher Scientific),
anti-clathrin heavy chain (rabbit polyclonal #4796; Cell Signaling),
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anti-dynamin1/2 (mouse monoclonal #MABT188; EDM Millipore),
homemade anti-EPS15 (mouse monoclonal 3T3), homemade anti-
EPS15L1 (rabbit polyclonal #860), anti-epsin-1 (mouse monoclonal
ZZ3, kindly provided by S. Polo), anti-intersectin-1 (rabbit polyclonal
#499, kindly provided by S. Polo), anti-synapsin (rabbit polyclonal
#A6442; Thermo Fisher Scientific), anti-PSD95 (mouse mono-
clonal #MA1-046; Affinity Bioreagents), anti-synaptophysin
(mouse monoclonal #101011 and rabbit polyclonal #101002 Syn-
aptic Systems), anti-GluR1 (rabbit polyclonal, #06-306 Upstate),
anti-VGAT (rabbit polyclonal, #131013 Synaptic Systems), anti-TfR
(mouse monoclonal #H68.4; Thermo Fisher Scientific), anti-tubulin
(mouse monoclonal #T5168; Sigma-Aldrich), and anti-vinculin (mouse
monoclonal #V9131; Sigma-Aldrich).

Collection and staining of blood smears

To analyze protein expression during induced erythropoiesis, WT
mice were treated with 1% PHZ (Sigma-Aldrich) in sterile PBS at day
0 (4 ml/g) and at day 3 (6 ml/g). The animals were then monitored
daily, and blood was collected at different time points, as reported
in the text. For all hematological studies, the blood was collected
after decapitation or by tail vein puncture. During collection, blood
was transferred in an EDTA-containing solution at 100 mM final
concentration. The blood was analyzed in a hemocytometer (Beckman
Coulter) and smeared on glass slides. For determination of reticulocytes,
the blood smears were stained with reticulocyte stain (Sigma-Aldrich),
based on methylene blue dye, or with May–Grünwald–Giemsa
stain (Sigma-Aldrich), according to the manufacturer’s instructions.
For determination of intracellular hemoglobin, the blood smears
were stained with o-dianisidine (Sigma-Aldrich), as described in
Fibach & Prus (2005). After staining, the blood smears were air-
dried and examined under a Leica stereo microscope, using a 100×
oil immersion objective.

FACS staining of RBCs

After collection and dilution in an EDTA-containing solution, pe-
ripheral RBCs were washed with cold PBS and blocked for 1 h in PBS
plus 10% BSA at 4°C. The cells were then incubated overnight at 4°C
with anti-CD71 antibody conjugated to PE (BD) or APC (eBioscience)
and diluted in PBS plus 1% BSA. After wash, the cells were incubated
with thiazole orange (BD) for 1 h at room temperature. The samples
were acquired on a FACSCanto II (Becton Dickinson). Data were
analyzed with FlowJo 10.1 software.

Analysis of iron metabolism

Serum iron levels were determined by MULTIGENT Iron assay (Abbott),
according to the manufacturer’s instructions. Serum transferrin and
ferritin levels were determined with Transferrin Mouse ELISA kit
(Abcam) and Ferritin Mouse ELISA kit (Abcam), respectively, according
to the manufacturer’s instructions.

Perls’ Prussian blue staining

After sacrifice of the mice by CO2 asphyxia, the liver and spleen
were isolated, washed in PBS, and fixed overnight in 4%

paraformaldehyde. After paraffin-embedding, 3-μm sections were
cut. Staining was performed using Perls’ Prussian blue stain kit (DDK
Italia), according to the manufacturer’s instructions. Examination
was performed by digital imaging, using the Leica Aperio ScanScope
scanning system. Representative images were extrapolated at 20×
optical zoom.

Statistical analysis

For each experiment, the number of observations (number of
animals or cellular culture preparations) is specified within fig-
ures or reported in the figure legends. All values are average ±
SEM, and differences were analyzed to detect statistical signifi-
cance with a two-tailed t test (n.s., not significant; *P < 0.05; **P <
0.01; ***P < 0.001).

Study approval

All animal studies were conducted with the approval of Italian
Minister of Health (03/2008; 06/2012; 222/16) and were performed
in accordance with the Italian law (D.lgs. 26/2014), which enforces
Dir. 2010/63/EU (Directive 2010/63/EU of the European Parliament
and of the Council of 22 September 2010 on the protection of
animals used for scientific purposes).

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800273.
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