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LEADeR role of miR-205 host gene as long
noncoding RNA in prostate basal cell differentiation
Valentina Profumo1, Barbara Forte 1, Stefano Percio 1, Federica Rotundo 1, Valentina Doldi 1,

Elena Ferrari1, Nicola Fenderico 2, Matteo Dugo 1, Dario Romagnoli3, Matteo Benelli3, Riccardo Valdagni4,5,6,

Diletta Dolfini 7, Nadia Zaffaroni 1 & Paolo Gandellini 1

Though miR-205 function has been largely characterized, the nature of its host gene,

MIR205HG, is still completely unknown. Here, we show that only lowly expressed alter-

natively spliced MIR205HG transcripts act as de facto pri-miRNAs, through a process that

involves Drosha to prevent unfavorable splicing and directly mediate miR-205 excision.

Notably, MIR205HG-specific processed transcripts revealed to be functional per se as nuclear

long noncoding RNA capable of regulating differentiation of human prostate basal cells

through control of the interferon pathway. At molecular level, MIR205HG directly binds the

promoters of its target genes, which have an Alu element in proximity of the Interferon-

Regulatory Factor (IRF) binding site, and represses their transcription likely buffering IRF1

activity, with the ultimate effect of preventing luminal differentiation. As MIR205HG functions

autonomously from (albeit complementing) miR-205 in preserving the basal identity of

prostate epithelial cells, it warrants reannotation as LEADeR (Long Epithelial Alu-interacting

Differentiation-related RNA).
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Normally expressed in the basal layers of epithelia1–3, miR-
205 acts as keeper of the epithelial phenotype. In mice
mammary glands, it appears implicated in normal stem

cell maintenance4. Consistent with this concept, different stu-
dies3,5 observed perinatal lethality in miR-205 knock-out mice
due to severe skin defects deriving from the impairment of stem/
progenitor cell function. In human prostate basal cells, miR-205
regulates the deposition of the basement membrane, a layer of
specialized extracellular matrix that surrounds normal glands to
ensure correct tissue polarity and morphogenesis2.

The expression of miR-205 was reported as either up or
downregulated in human cancers6, suggesting context-dependent
oncogenic or tumor-suppressive functions. In particular, we
showed that in prostate adenocarcinoma (PRAD) miR-205 is
almost invariably downmodulated and acts as a tumor suppressor
by impinging on various processes, including the repression of
epithelial–mesenchymal transition7, the disruption of
tumor–stroma interplay8 and the impairment of autophagic flux9.
An in vivo validation of miR-205 oncosuppressive function was
provided by the development of spontaneous mammary tumors
in miR-205-deficient mice10.

Human pre-miR-205 sequence is located in the last intron/exon
junction of a gene initially termed NPCA-5 (alias LOC642587),
which covers 3.7 kb on chromosome 1q32 and is transcribed into
an 899-nt long processed transcript (NM_001104548, hereafter
RefSeq) (Supplementary Fig. 1). As its biological function is still
unexplored, the gene has been recently ex officio reannotated as
miR-205 Host Gene (MIR205HG).

In this work we characterize for the first time the expression
pattern and role of MIR205HG, showing that (i) MIR205HG is
mainly expressed in the basal layer of prostate epithelium and lost
in PRAD, (ii) the Drosha-mediated processing of specific alter-
native transcripts of the gene is responsible for miR-205 pro-
duction, and (iii) MIR205HG functions independently of the
hosted miRNA as nuclear intergenic long noncoding RNA
(lincRNA) capable of regulating basal-luminal differentiation
through repression of the interferon pathway. Mechanistically,
the lincRNA directly binds the promoters of target genes, char-
acterized by the presence of an Alu element in proximity of an
interferon-regulatory factor (IRF) binding site, and buffers IRF1
transcription factor (TF) activity. Because MIR205HG processed
transcript operates autonomously from miR-205, we will refer to
it as LEADeR (LEADR).

Results
LEADR levels decrease upon basal–luminal differentiation.
Interrogation of publicly available transcriptomic data revealed
that LEADR/MIR205HG is normally expressed in epithelia such
as skin, prostate and breast, and almost absent in tissues of dif-
ferent embryonic origin (Fig. 1a). Accordingly, histone methyla-
tion/acetylation and chromatin state segmentation patterns
among ENCODE cell lines indicate active transcription in kera-
tinocytes and mammary epithelial cells compared to other cell
types (Supplementary Fig. 1). TCGA data show LEADR/
MIR205HG upregulation in tumors with basal phenotype (e.g.,
cervical and lung squamous cell cancers) and downregulation in
breast and prostate adenocarcinomas compared to their normal
counterparts, thus mirroring miR-205 modulations (Fig. 1b;
Supplementary Fig. 2a). Reduction of LEADR/MIR205HG
expression in PRAD was confirmed in one of the largest available
microarray datasets (GSE21034), where its levels tend to decrease
progressively as the tumor acquires a more undifferentiated or
metastatic phenotype (Fig. 1c). In both TCGA and GSE21034
cohorts, LEADR/MIR205HG expression alone was able to dis-
criminate tumor vs. normal samples (Fig. 1d), suggesting that

LEADR/MIR205HG loss may be an inescapable early event in
prostate carcinogenesis. By contrast, no association was found
between LEADR/MIR205HG expression in the primary tumor
and time to biochemical recurrence after surgery (Supplementary
Fig. 2b). Among the different cell types composing normal
prostate epithelium, LEADR/MIR205HG appeared more abun-
dant in basal cells than in luminal, stromal, or endothelial cells
(Fig. 1e, Supplementary Fig. 2c). This finding could explain the
gene’s invariably low expression in PRAD, which is characterized
by loss of the basal cell layer, as well as its increased expression in
basal/squamous cancers. In addition, in the available prostate cell
models, LEADR/MIR205HG expression was abundant only in
normal cells with basal features, but was reduced in normal cells
with luminal phenotype and almost negligible in all of the tested
PRAD cell lines (Fig. 1f). Interestingly, when we allowed basal
cells to differentiate by increasing calcium and serum con-
centration, LEADR/MIR205HG levels decreased as cells acquired
a luminal phenotype (Fig. 1g). Similarly, data from the GSE89050
dataset showed a linear trend in the reduction of LEADR/
MIR205HG abundance when comparing frankly basal cells,
luminal progenitors and fully differentiated luminal cells sorted
from human prostate (Fig. 1h). Altogether these data suggest an
epithelial-restricted and basal-enriched expression of LEADR/
MIR205HG, which is reduced upon luminal differentiation.

miR-205 compatible and incompatible LEADR transcripts.
Analysis of TCGA revealed LEADR/MIR205HG expression as
correlated to that of both the hosted miRNA and p63 (Supple-
mentary Fig. 3a). LEADR/MIR205HG expression also responded
to p63 modulation in both prostate basal and cervical carcinoma
cells (Supplementary Fig. 3b, c), suggesting direct regulation. In
this regard, we already demonstrated that p63 binds to sequences
at −13Kb and +2Kb from LEADR/MIR205HG transcription start
site (TSS), which we proposed as regions responsible for miR-205
regulation2. Though the peculiar genomic location of pre-miR-
205 (miR-205 in the intron and miR-205* in the exon, Fig. 2a)
could account for the existence of a miRNA-specific promoter,
experimental data undermine the hypothesis that miR-205 bio-
genesis may be independent of that of LEADR. In fact, (i) the
region immediately upstream of pre-miR-205 showed no pro-
moter activity in reporter assays11, (ii) the closest 5ʹ end of nas-
cent miR-205 transcript coincides with LEADR/MIR205HG
TSS12, (iii) CRISPR/Cas9 genomic deletion of LEADR exons 1–3,
including the TSS (Supplementary Fig. 3d), abolished expression
of both LEADR processed transcript and miR-205 in RWPE-1
cells (Fig. 2b), and (iv) transfection of the whole LEADR genomic
sequence under constitutive CMV promoter induced the
expression of both LEADR and miR-205 in p63 null DU145 cells
(Fig. 2c). All these observations suggest that LEADR/MIR205HG
and miR-205 are produced from a unique transcription unit. In
our hands, gapmer oligonucleotides designed to target introns of
LEADR/MIR205HG primary sequence ahead of pre-miR-205
(Fig. 2a, gapINT1 and gapINT2) were able to significantly abro-
gate both LEADR/MIR205HG and miR-205 expression (Fig. 2d),
confirming that the two RNAs are processed from a common
primary transcript.

Canonical LEADR/MIR205HG RefSeq configuration, however,
seems incompatible with miR-205 production, because the use of
the splice donor site immediately upstream of the final exon
would disrupt pre-miR-205 hairpin (Fig. 2a). To understand
whether alternative locus configurations could support miRNA
biogenesis, we retrieved data on transcript structures from most
recent annotations. Specifically, starting from data generated
through targeted RNA capture with third-generation long-read
sequencing technology13, we manually annotated as high-
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confidence transcripts those that had TSS confirmed by CAGE
experiments from ENCODE/RIKEN in prostate cells and were
supported by the results of a recent genome-wide high-resolution
remapping of pri-miRNAs14 and/or by Gencode v28lift37 Basic
annotation (Supplementary Fig. 3e). This led to shortlist 9
different LEADR transcripts, characterized by the alternative
assembly of 4 modules: exon-1/2 (present in all transcripts with
or without retention of the intron); exon-3 (present in all

transcripts in short or long version); exon-4 (missing in some
transcripts, including the historical RefSeq); 2 alternative terminal
exons, the canonical miR-205 incompatible exon-5.1 and the
downstream exon-5.2 (Fig. 2a). Use of the latter would be
compatible with miR-205 excision by positioning pre-miR-205
completely within an intron. Therefore, alternative splicing/
transcription termination may dictate the switch between the
canonical miRNA-unproductive configuration, which acts as
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Fig. 1 LEADR/MIR205HG expression is enriched in prostate basal cells and reduced upon luminal differentiation. a Tukey’s box plot of LEADR/MIR205HG
expression in human tissues as retrieved from GTEx data portal. b Bar plot of LEADR/MIR205HG and miR-205 fold-change (FC) in tumor vs. normal
samples from TCGA. Only tumors where LEADR/MIR205HG is significantly differentially expressed compared to normal counterpart are shown (Student’s t
test, p value threshold 0.05). Note that for all tumors where LEADR/MIR205HG is differentially expressed, also miR-205 is differentially expressed and in
the same direction, except for LIHC and STAD, where the difference is not significant (n.s.). All tumor/normal pairs together with acronym meaning are
reported in Supplementary Fig. 2a. c Tukey’s box plot of LEADR/MIR205HG expression in normal and tumor prostate samples from GSE21034 dataset.
Jonckheere–Terpstra test evidences a significant decreasing trend along tumor progression. Samples are classified as normal (N), primary tumors (ranked
based on Gleason pattern score grading system from G6 to G9), and metastatic (MET). d ROC curves of the performance of LEADR/MIR205HG in
classifying tumor and normal tissues from two independent datasets (PRAD-TCGA and GSE21034). Area under the curve (AUC) is reported. e Tukey’s box
plot of LEADR/MIR205HG expression in different cell subpopulations from human normal prostate (GSE3998, Student t test). f qRT-PCR reporting LEADR/
MIR205HG expression levels in different prostate cell lines (normal prostate total RNA used as reference). Mean+ s.d. (n= 3 qRT-PCR measurements for
each cell line) plotted. g qRT-PCR showing progressive downregulation of LEADR/MIR205HG along basal–luminal differentiation induced in RWPE-1 cells by
Ca2+ (RPMI medium) ± serum (FBS). Mean ± s.d. (n= 3) plotted. h Tukey’s box plot of LEADR/MIR205HG expression value in frankly basal, luminal
progenitor (CD38low) and fully differentiated (CD38high) luminal cells sorted from human prostate (GSE89050). Jonckheere–Terpstra test evidences a
significant decreasing trend along basal–luminal transition. ∗∗p < 0.01; ∗∗∗∗p < 0.0001. Source data are provided as a Source Data file, together with n of all
experiments
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Fig. 2 miR-205 compatible and incompatible LEADR transcripts. a LEADR/MIR205HG RefSeq transcript with indication of pre-miR-205 spanning a splice
junction, position of primers (Forward, F, and Reverse, R) generally used for LEADR qRT-PCR and target sequences of gapINT1 and gapINT2 in the introns of
LEADR/MIR205HG primary transcript (top). Table reporting bona fide LEADR/MIR205HG alternative transcripts, ranked for expression in prostate basal
cells, with indication of exon composition and compatibility with miR-205 biogenesis (bottom). b qRT-PCR showing LEADR and miR-205 expression in two
independent RWPE-1 cell clones genomically edited for LEADR gene using CRISPR/Cas9, as compared to wild-type cells. Mean+ s.d. (n= 3 qRT-PCR
measurements for each clone) plotted. gRNAs used for editing and genotyping of bulk population and single-cell clones are reported in Supplementary
Fig. 3d. c qRT-PCR showing LEADR and miR-205 expression in DU145 cells knocked-in for either the whole LEADR genomic sequence (referred to as “gene”)
or the RefSeq transcript, as compared to empty vector (EV). Mean+ s.d. (n= 4) plotted. d qRT-PCR showing repression of both LEADR and miR-205 in
RWPE-1 cells at day 3 after transfection with two different intronic gapmer oligonucleotides. Mean+ s.d. (n= 3) plotted. e Absolute (left) and relative
(right) expression of LEADR transcript isoforms as from RNA-Seq data of basal vs. luminal cells (GSE67070) or of normal vs. tumor tissues (GSE22260).
Relative expression calculated as percentage of each isoform respect to the total isoforms. f Average cumulative fraction of miR-205 incompatible and
compatible LEADR transcripts in prostate cells. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001 (Student’s t test). Source data are provided as a Source
Data file, together with n of all experiments
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source of LEADR-specific transcripts only, and the alternative
one, which acts as miR-205 primary sequence, though producing
additional LEADR-specific transcripts as byproducts.

In terms of their absolute expression, we found that all LEADR
isoforms were more abundant in basal than in luminal cells
(Fig. 2e, left), in normal than in tumor tissues (Fig. 2e, left) and in
commercially available normal than in tumor cells (Supplemen-
tary Fig. 3f), where expression of all forms approximated to zero.
The most abundant transcripts in basal cells were 7062 and 7057
(Fig. 2e), the latter having the same exon composition as the
historical NCBI RefSeq (Fig. 2a). No major differences in relative
isoform expression were observed among the analyzed samples
(Fig. 2e, right), nor between the cumulative fraction of miR-205
incompatible and compatible transcripts, which averagely
accounted for 97.6 and 2.4% (Fig. 2f).

miR-205 biogenesis is Drosha dependent. To get an insight into
miR-205 production from compatible transcripts, we assessed the
role of Drosha. Processing of intronic miRNAs can indeed be
independent of the enzyme activity (as is the case of mirtrons,
directly excised from host genes by the spliceosome15) or
dependent on it16,17. We found that miR-205 biogenesis is
Drosha-dependent, as Drosha knockdown impaired miR-205
production, together with that of intergenic miR-200b/c and
Drosha-dependent intronic miR-26b16, in a way that was pro-
portional to residual enzyme amounts, though not affecting miR-
877 mirtron18 (Fig. 3a, confirmed by GSE48160 dataset analysis,
Supplementary Fig. 3g). Strikingly, Drosha knockdown also
reduced the expression of miR-205 byproducts (lower band in
Fig. 3b, measured to assess ex-4/5.2 splicing typical of miR-205
compatible transcripts), while increasing the expression of a still
nonannotated transcript characterized by canonical ex-4/5.1 spli-
cing, retention of partial ex-5.1, and ex-5.2 as terminal exon
(upper band, Fig. 3b). These data suggest that Drosha processing
precedes the splicing of miR-205 compatible primary transcripts
and that the enzyme occupancy may itself mask the ex-4/
5.1 splice site to allow pre-miR-205 excision. Accordingly, ana-
lysis of RNA-Seq data from Drosha and DGCR8 cross-linking
immunoprecipitation (CLIP) experiments showed specific peaks
covering the ex-4/5.1 splice site (Fig. 3c).

Overall, such results indicate that though an alternative
LEADR/MIR205HG configuration can actually work as pri-miR-
205, the majority of LEADR processed transcripts are spliced in a
way that is incompatible with miR-205 production, firmly
suggesting that the gene is not merely a miRNA host but rather
an independent gene entity.

LEADR is a nuclear long intergenic noncoding RNA. Though
initially defined as a coding gene, LEADR/MIR205HG protein
product has never been isolated and NP_001098018 has recently
been dismissed. Accordingly, analysis of coding potential by
Coding Potential Assessment Tool (CPAT)19 showed that all
LEADR transcripts are characterized by relatively short open
reading frames (ORFs), with none exceeding the cut-off for being
considered coding (Supplementary Table 1). Additional inspec-
tion revealed LEADR as characterized by several features typical
of noncoding transcripts, including: (i) low conservation across
species (indicative of low-selective pressure on the gene
sequence), with human LEADR/MIR205HG conserved in pri-
mates only (Supplementary Fig. 1); (ii) marked tissue/cell-speci-
ficity (Fig. 1)20; (iii) no significant matches between the
hypothetical aminoacid sequence (read in all the possible trans-
lation frames) and known protein domains, as assessed using
BLASTP, Pfam, InterPro, SMART, or Blastx tools, and (iv)
absence of translation initiation sites, small ORFs or peptides

attributable to MIR205HG in PRIDE reprocessing database,
according to LNCiPedia repository21. In vitro transcription/
translation ultimately confirmed that LEADR is devoid of
protein-coding potential (Fig. 4a) and that it can be referred to as
a bona fide lincRNA.

Subcellular fractionation showed that LEADR transcript is
more abundant in the nucleus than in the cytoplasm of RWPE-1
cells (Fig. 4b), and specifically in the chromatin fraction than in
the nucleoplasm (Fig. 4c), indicating that LEADR behaves as a
nuclear chromatin-associated lincRNA in prostate basal cells.

LEADR regulates basal–luminal differentiation. The peculiar
expression pattern of LEADR prompted us to investigate whether
LEADR might play a role in epithelial cell differentiation. To this
purpose, a loss-of-function approach was pursued in normal
immortalized (RWPE-1) and primary prostate basal (PrEC) cells
using either a siRNA (siLEADR) or a gapmer antisense oligo-
nucleotide (gapLEADR), each designed to target ex-2/3 junction
(shared by all processed transcripts) in an attempt to abrogate the
sole expression of LEADR. The two molecules markedly reduced
LEADR levels in both cell types, without affecting the expression
of either precursor or mature miR-205 (Supplementary Fig. 4a).
Because gapmers function also in the nucleus22, gapLEADR was
more effective than siLEADR in suppressing nuclear LEADR
(Supplementary Fig. 4b).

LEADR knocked-down RWPE-1 cells shifted from a small,
rounded shape to a bigger, elongated columnar phenotype, a
transition resembling basal–luminal differentiation (Fig. 5a).
Accordingly, cells underwent the typical cytokeratin switch23,
with decrease of basal (KRT5/KRT14) and increase of luminal
cytokeratins (KRT8/KRT18) (Fig. 5b, c), and p63 nucleus-to-
cytoplasm redistribution (Fig. 5d, Supplementary Fig. 4e)24.
These findings were recapitulated in PrEC primary basal cells
(Fig. 5a, c), where LEADR silencing also increased overall
androgen receptor (AR) expression at both mRNA (Supplemen-
tary Fig. 4f) and protein level (Fig. 5e, f). Moreover, LEADR
knockdown enhanced AR nuclear translocation under dihydro-
testosterone (DHT) stimulation (Fig. 5f), which resulted in
increased prostate-specific antigen (PSA) secretion, a feature of
terminally differentiated luminal cells (Fig. 5g).

Genome-wide evidence that LEADR silencing induces luminal
differentiation was obtained by challenging basal- and luminal-
specific gene sets derived from gene expression data of frankly
luminal and basal prostate cells on the transcriptome of LEADR-
knocked down RWPE-1 cells. We found a tendency toward
positive enrichment of luminal and negative enrichment of basal
gene sets, again confirming luminal differentiation (Fig. 5h).
Notably, knockdown of miR-205 only (GSE297822) did not
induce any obvious switch to luminal phenotype, whereas
simultaneous inhibition of LEADR and miR-205 (obtained
through gapINT1) fully recapitulated the transcriptome of overt
luminal cells (Fig. 5h). Taken together, these data suggest that
LEADR exerts functions independently from miR-205, being able
per se to negatively regulate basal–luminal differentiation, but
complements miRNA activity to sustain basal features. Ultimate
evidence of LEADR repressive role on differentiation came from
the assessment of LEADR-engineered cell propensity to undergo
cytokeratin switch upon culturing in media with increasing
differentiative potential (i.e., serum gradient). The analysis
showed that, compared with wild type RWPE-1 cells, CRISPRed
cells were markedly more prone to luminal transition, whereas
ectopically overexpressing cells were more refractory (Fig. 5i).

LEADR controls genes in the interferon signaling pathway.
Upon LEADR silencing, about 64% of the genes resulted up and
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36% downregulated in RWPE-1 cells, suggesting that lincRNA
has a prevalently repressive function (Fig. 6a). These genes were
distributed across the genome, with no evidence of regulation in
cis of genes from chr1q32. As a complementary approach, we
ectopically expressed the RefSeq or 7063 (as a prototype of ex-4-
containing isoforms) transcript in DU145 cells. Gene set
enrichment analysis revealed that the gene sets most affected by
LEADR modulation in either direction were surprisingly related
to inflammation (Fig. 6b). Interferon-related pathways showed
the highest normalized enrichment score in each experiment,
including overexpression of the whole gene or its silencing by
intronic gapINT1 (Fig. 6b). Typically, interferon response is
activated as a defense mechanism against double-stranded

RNAs25. In this context, it seems instead intimately associated
with LEADR-regulated program, because it invariably occurs with
either single- or double-stranded antisense oligomers, shows an
opposite trend of regulation when the lincRNA is ectopically
induced (Fig. 6b) and is not appreciably affected by silencing of
miR-205 only (Fig. 6c). The analysis of gene-expression data of
true basal and luminal prostate cells (Fig. 6d, left) from different
datasets revealed that enrichment of interferon genes is a recur-
rent feature of luminal cells, suggesting that activation of the
pathway may invariably accompany differentiation (Fig. 6d,
right). Accordingly, treatment of basal cells with interferon-β1
induced luminal differentiation, as evidenced by morphological
changes (Fig. 6e) and cytokeratin switch (Fig. 6f, g). In PrEC cells
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it also increased AR expression (Fig. 6g, h), especially upon
concomitant DHT stimulation, with cells adopting a frank
luminal phenotype characterized by enhanced AR nuclear
translocation (Fig. 6h) and consequent PSA secretion (Fig. 6i).

Notably, interferon stimulation also significantly reduced
LEADR levels and increased those of IRF7 (Fig. 6f), one of the
genes most affected by LEADR manipulation both in basal and
tumor cells, according to microarray and western blotting
analysis shown in Fig. 6j. IRF7 was found to be heavily induced,
and LEADR was repressed, also in PrEC cells led to differentiate
by serum stimulation (Supplementary Fig. 5c), again providing
additional indirect evidence of interferon involvement in luminal
differentiation. A role for inflammatory cytokines in

differentiation has been widely reported in cancer, where it is
mainly related to the function of tumor-infiltrating immune
cells26, but only a few reports confirmed the immune-
independent role of interferon signaling in normal differentia-
tion27–30. In this regard, our data indicate that LEADR regulates
the expression of interferon signaling genes, which appear to have
an immune-independent role in the differentiation of normal
prostate epithelial cells.

LEADR binds to promoters having Alu and IRF binding site.
LincRNAs can regulate gene expression by multiple mechanisms,
mostly depending on subcellular localization and the nature of
molecular interactors (DNA, RNA, and proteins)31–33. Because
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LEADR possesses a chromatin-specific localization, it may reg-
ulate gene expression through direct DNA interaction. In search
for mechanistic insights, we focused on bona fide LEADR targets,
selected as the genes found upregulated upon LEADR silencing
and, correspondingly, downregulated upon overexpression
(referred to as “LEADR-core up”, Fig. 7a, Supplementary Data 1.
Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) validation in Supplementary Fig. 6a). De novo motif
discovery revealed significant enrichment of five motifs (Fig. 7b)
in promoters of such genes, all of which homologous to a 300-nt
region spanning ex-1/2 boundary of LEADR transcript (Fig. 7b,
Supplementary Data 2), suggesting that the lincRNA may use
such sequence to physically interact with the DNA. This region is
defined as a short-interspersed nuclear element (SINE) of the
AluJb family (Supplementary Fig. 1). The motifs showing the
highest enrichment in promoters and/or homology with LEADR
were motif-1 and -4 (Fig. 7b and Supplementary Data 2), which
proved to be essential for LEADR function. When deleted in the
portion of Alu element containing these motifs (LEADR-ΔAlu),
LEADR failed to regulate gene expression (Fig. 6b), especially of
“LEADR-core up” (Fig. 7c) and interferon genes (Fig. 6b and
Supplementary Fig. 6b), in DU145 cells. Unlike in other lincR-
NAs34, Alu depletion did not alter LEADR subcellular localiza-
tion, because the transcript invariably accumulated in the nucleus
of DU145 cells upon ectopic replacement, irrespective of Alu
presence (Fig. 7d), thus suggesting the existence of a different
intrinsic nuclear retention signal.

In view of the repetitive nature and abundance of Alu
sequences across the genome, it is reasonable to assume that
additional features are present in LEADR-regulated genes to
direct selective targeting. When prediction of TF binding sites was
run on promoters of “LEADR-core up” genes, we found a
significant enrichment in the consensus sequences of several IRF
family members (Supplementary Data 3). Accordingly, 76% of
them were characterized by the presence of at least one validated
IRF peak according to chromatin immunoprecipitation (ChIP)-
Seq data (GSE32465 and GSE31477), which is a higher fraction
compared to that found in the random genome (57%, hypergeo-
metric test p= 0.01). Strikingly, 55% of promoters showed co-
occurrence of IRF site and Alu sequence in tandem (vs. 38%
genome-wide, p= 0.02), with no substantial change in the
fraction of IRF-only promoters and a marked reduction of Alu-
only promoters in favor of Alu/IRF combination (Fig. 8a). In
contrast, promoters of genes downmodulated by LEADR
silencing (“LEADR-gene set dn” or “LEADR-core dn”, Fig. 7a,
Supplementary Data 1) were neither enriched nor depleted of

either Alu/IRF or Alu-only sites (Supplementary Fig. 6c),
suggesting such genes as possible indirect targets.

When the analysis of the Alu/IRF elements was extended to the
136 genes commonly upregulated by siLEADR and gapLEADR
(“LEADR-gene set up”, Fig. 7a and Supplementary Data 1) ranked
by average fold-induction from microarray data, results showed
that presence of Alu, and specifically of Alu+ IRF combination,
was the highest in the top-20 modulated genes (90% and 65% of
promoters, respectively) and decreased proportionally with the
fold-change (Fig. 8b). This finding indicates that Alu/IRF co-
occurrence is a distinctive trait of LEADR targets and that its
presence in a given promoter tightly correlates with the
probability of that gene being modulated by the lincRNA.
Moreover, these data indicate that genes upmodulated upon
LEADR silencing probably comprise both direct (i.e., character-
ized by the presence of Alu+ IRF site) and indirect targets. Based
on this evidence, we identified the fraction (51 of 136) of
“LEADR-gene set up” genes showing co-occurrence of Alu and
IRF sites as the bona fide “LEADR-signature” (Fig. 8c and
Supplementary Data 1).

Regarding the topological relationship between the two
elements, in most of the cases, the IRF site was more proximal
to the TSS than the Alu (median distance: 88 vs. 1095 bp), which
was located upstream of TSS in the transcription direction in 96%
of cases and upstream of the IRF site in 90% of cases (Fig. 8c).
The reciprocal distance did not correlate with the intensity of
regulation by LEADR (Supplementary Fig. 6d), indicating that a
certain degree of tolerability exists, provided that Alu/IRF spacing
falls within the range between 66 and 1973 bp (IRF7 and
HIST1H1C, respectively).

We used chromatin isolation by RNA precipitation (ChIRP) to
determine whether LEADR could physically interact with
promoter regions of direct targets in basal cells under
physiological/nonoverexpressed conditions. We found that bio-
tinylated LEADR probes efficiently pulled-down LEADR RNA,
but not GAPDH mRNA nor the nuclear lincRNA MALAT1,
whereas lacZ probes failed to precipitate any human transcript
(Fig. 8d). Analysis of LEADR-cross-linked DNA revealed that all
of the tested LEADR-signature genes (i.e., Alu+ IRF) were indeed
bound by the lincRNA in RWPE-1 cells, whereas no significant
binding was observed to promoters having different site
combinations (Fig. 8e). Interestingly, ChIRP analysis performed
on DU145 cells overexpressing the wt or Alu-deleted lincRNA
showed that deletion of motifs 1–4 of Alu element impaired at
least in part LEADR ability to bind to its targets (Supplementary
Fig. 6e, f). These data suggest that LEADR is able to directly

Fig. 6 LEADR controls genes in the interferon signaling pathway. a Dot plots and table indicating the number and percentage of up and downmodulated
genes in RWPE-1 cells upon LEADR silencing. Each dot represents 1% of genes. b Heatmap of NES values of Hallmark v.5.2 of MSigDB gene sets in RWPE-1
cells knocked-down (KD) or in DU145 cells knocked-in (KI) for LEADR, using the different approaches described in the paper. Only gene sets with
significant and coherent enrichment in at least two of either LEADR KD or KI conditions are shown. NES values of Interferon Pathway gene sets in all LEADR
modulation experiments are reported in the magnification. c Violin plot of relative interferon gene expression in cells perturbed for LEADR or miR-205,
compared to respective controls. d Heatmap (right) of NES values of Hallmark v.5.2 signatures in publicly available datasets of frankly basal or luminal cells
isolated from human prostate acini, as illustrated in the cartoon (left). Only gene sets with significant and coherent enrichment in at least two datasets are
shown. e Bright-field images showing the morphological changes occurring in RWPE-1 (left) and PrEC (right) cells upon interferon-β1 treatment. Scale bar,
50 µm. Full-size images reported in Supplementary Fig. 5a. f qRT-PCR showing changes in IRF7, basal/luminal cytokeratins and LEADR in RWPE-1 (n= 4)
and PrEC (n= 3) cells upon interferon-β1 treatment. Mean+ s.d. plotted. g Western blot showing changes in IRF7, basal/luminal cytokeratins and AR in
PrEC cells upon interferon-β1 treatment. GAPDH used as loading control. h Immunofluorescence showing AR (red) expression in PrEC cells upon
interferon-β1 treatment, in the presence or absence of simultaneous DHT stimulation. Nuclei counterstained with DAPI (blue). Scale bar, 50 µm. Full-size
images reported in Supplementary Fig. 5b. i ELISA-based quantification of PSA in the conditioned media of PrEC cells upon interferon-β1 treatment (±DHT).
Mean+ s.d. (n= 2) plotted. j Western blots showing changes in IRF7 protein abundance in RWPE-1/PrEC or DU145 cells upon LEADR KD or KI,
respectively. Vinculin used as loading control. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 (Student’s t test). Source data are provided as a Source Data file, together
with n of all experiments
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interact with the promoters of target genes, possibly through
Alu/Alu pairing, and confirm that the IRF site proximity is crucial
to secure binding and/or allow regulation.

LEADR modulates IRF1 occupancy. We found that LEADR
physically interacts with IRF1 protein (less so with IRF7) in the
nucleus, as assessed by RNA immunoprecipitation performed
either in native conditions (Fig. 9a) or upon ultraviolet (UV)
cross-linking (Fig. 9b), with the latter method indicating that the
interaction is direct. LEADR/IRF1 protein interaction was also
confirmed by effective pulldown of IRF1 by in vitro transcribed
biotinylated LEADR RNA (Fig. 9c). ChIP showed that IRF1
occupancy on LEADR target gene promoters is negligible in
RWPE-1 cells (endogenously expressing high LEADR levels)
under basal conditions but is increased upon LEADR silencing
(Fig. 9d). As expected, LEADR ectopic overexpression in DU145
cells reduced IRF1 binding, especially to promoters of genes
having Alu/IRF site combination (Fig. 9e). Altogether these data
led to speculate a model where LEADRmay somehow titrate IRF1

away from its binding site, probably by interacting with the Alu
element in the DNA and IRF1 protein.

Discussion
Dysregulation of miRNA function resulting in aberrant protein
expression in the targeted pathways is causatively associated with
numerous diseases, including cancer35. Intensive research on the
different routes of miRNA biogenesis has identified canonical and
noncanonical pathways for transcription, processing and
maturation36. Although miRNAs can be located in intergenic
regions and transcribed as independent transcription units, the
majority of human miRNA loci reside within the introns of the
so-called host genes37, with which they are generally co-
transcribed38. When miRNAs are located in the introns of non-
coding transcripts, the question arises as to whether host genes
should be viewed merely as pri-miRNAs or rather as genes with
independent, still unknown functions.

Here we report, for the first time, that human MIR205HG,
which we term LEADeR (LEADR), is a nuclear lincRNA
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functioning independently from the hosted miRNA. Although
both RNAs are enriched in the basal layers of epithelia, they
nonetheless govern different, non redundant, and essential fea-
tures of human prostate basal cells: miR-205 regulates the pro-
duction of the basement membrane2, whereas the lincRNA
preserves basal identity by regulating differentiation (Fig. 10a).

Supporting this view is the observation that only lowly abun-
dant alternative LEADR/MIR205HG transcripts are compatible
with miR-205 production (Fig. 2). Only locus-targeted RNA-
Seq39 in expressing cells would allow to precisely define the
structure and abundance of LEADR transcripts as well as to detect
unstable intermediates of miRNA/lincRNA processing, but the
above observation indicates that LEADR/MIR205HG exceeds its
role as host gene. miR-205 biogenesis indeed becomes possible
only upon selection of a downstream terminal exon, which allows
the Drosha-dependent processing of pre-miR-205 as fully intronic
(Fig. 10a). A previous study reported the example of an intron-
exon spanning pre-miRNA where either the miRNA or the
hosting mRNA can be produced depending on the prevalence of
Drosha-mediated or splicing-dependent activity40. What is
intriguing about LEADR/MIR205HG locus is, however, that (i)
Drosha activity is not completely uncoupled from splicing, and
actually influences splicing of terminal exons in LEADR primary
transcript, and (ii) the resulting byproducts may apparently retain
functionality as LEADR, because they contain whole exons from 1
to 4 (Fig. 2a), including the Alu sequence. It is known that
lincRNAs can promiscuously use alternatively spliced forms, as
their function relies prevalently on their modular architecture
rather than their sequence41. This observation gains support from

the evidence that DU145 cells overexpressing the RefSeq or 7063
transcript display nearly superimposable transcriptomes (Fig. 6b).

The study of lincRNAs is still at a preliminary stage33,42

because of the poor sequence conservation among even closely
related organisms and lack of shared biological features. Our
study documents the noncoding nature of LEADR and, for the
first time, its function as lincRNA able to regulate basal–luminal
differentiation through repression of the interferon pathway.
Examples of lincRNAs able to modulate interferon genes have
been reported, though only in the context of antiviral
response43,44. Our data suggest an interesting link between innate
immune response and the normal epithelial differentiation pro-
gram, which may be independent of immunity-related functions.
This noncanonical role of interferons has been only in part
investigated in the skin27,28 and observed in the mammary
gland29,30.

Mechanistically, we showed that LEADR regulates gene
expression in trans through a direct DNA interaction that pre-
sumably involves the Alu element in ex-2 of the lincRNA and Alu
sequences located in the promoters of target genes (Fig. 10a). The
hypothesis that exonic Alus may represent essential functional
domains of lincRNAs45 is supported by their higher frequency in
exons of lincRNAs than in those of protein-coding genes46, as
well as by the evidence that deletion of Alu elements abrogates or
even reverses gene-expression changes induced by a number of
lincRNAs, such as APTR47, ANRIL48, and LEADR.

Notably, proof of direct AluDNA/AluRNA interaction has not yet
been documented for Alu-containing lincRNAs, because this
would require sophisticated structural insights. More importantly,
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no indication on how lincRNAs bind to selected repetitive ele-
ments in the genome has been provided so far. Here, we propose
a novel mechanism of target selection by which LEADR would
preferentially regulate genes having Alu in proximity of IRF
binding site. The distance between the two elements was shown
not to be essential for function, suggesting that LEADR (and/or
chromatin) may adopt different conformations to allow
regulation.

Direct LEADR/IRF1 protein interaction as well as LEADR-
induced changes in IRF1 occupancy led to speculate a scenario
where, in basal cells, LEADR directly binds the promoters of its
targets and disables transcription by simultaneously interacting
with IRF1 (e.g., poised state), whereas its loss would release the
brake on interferon gene expression and subsequent luminal
differentiation (Fig. 10a). Mechanistically, LEADR function
appears neither associated with recruitment of repressive chro-
matin modifiers nor with H3K27 trimethylation, as instead
reported for APTR and ANRIL47,48. Indeed, the analysis of
GSE63094 ChIP-Seq data revealed that in RWPE-1 cells the
promoters of “LEADR-signature” genes are characterized by
active chromatin histone modifications (Supplementary Fig. 6g),
thus suggesting that LEADR repressive effect may be rather
associated with its ability to prevent IRF1 binding (e.g., decoy

mechanism) and/or buffer its activity (e.g., through steric hin-
drance or recruitment of additional co-factors). Further investi-
gation is required to fully understand the molecular nature of
LEADR binding to Alu elements (e.g., DNA/RNA pairing), the
exact mechanism by which the lincRNA interferes with IRF1
transcriptional activity, and the dynamics of reciprocal LEADR/
IRF1/target gene interaction. Moreover, the observation that
several “LEADR-signature genes” are histone and histone variants
(Fig. 8c) prompts the hypothesis of an additional layer of LEADR-
mediated control for gene expression, consisting of genome-wide
transcriptional reprogramming through histone modulation.

The concept of a regulation model that does not involve epi-
genetic silencing but is rather based on dynamic changes in the
LEADR/IRF1/target gene interactome underscores how important
it would be for basal cells to exploit the LEADR/interferon axis to
rapidly respond to external differentiation stimuli in a way
remindful of innate antiviral response. In this regard, LEADR
target genes proved to be biologically relevant in a number of
contexts. “LEADR-signature” genes were confirmed to be among
the most enriched in prostate luminal cells in the human setting,
where LEADR expression is low, as well as in mice (Fig. 10b),
where LEADR sequence is not conserved (Supplementary Fig. 1).
A broad relevance of the differentiation program regulated by
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LEADR, possibly emerged in primates to ensure a more robust
mechanism that regulates the control of the pathway, may be
consequently envisaged.

“LEADR-signature” is also enriched in prostate and breast
carcinomas (Fig. 10b), indicating that the aberrant function of
LEADR or of downstream mediators may play a role in tumor-
igenesis. Disruption of normal epithelial differentiation pathways
has been proposed as a cause of PRAD, based on the evidence
that many of the genes commonly altered in prostate neoplasms
are also involved in differentiation (e.g., Myc, p38MAPK, Notch,
and PI3K/PTEN)49. In addition, a role of interferon-stimulated
genes in cancer is widely documented50. In the context of prostate
cancer, it was shown that inflammation can directly promote
basal–luminal differentiation and that, when associated with
oncogenic aberrations, it can even accelerate PRAD develop-
ment51. As LEADR controls basal–luminal transition via repres-
sion of the interferon pathway, it is conceivable that defects in its
expression/function may result in aberrant differentiation and
favor tumorigenesis. Understanding of the LEADR-regulated
differentiation program would therefore help clarify the
mechanisms of tumor initiation in prostate cancer, and could be
also translated to other tumor types, such as breast cancer, where
basal–luminal transitions have been shown to be relevant
hallmarks.

Methods
Cell lines and cell-based experiments. Established human cell lines were pur-
chased from American Type Culture Collection (ATCC, Rockville, MD, USA) and
cultured in standard conditions. The normal primary prostate epithelial cells
(PrEC) were grown in PrEC basal medium (ATCC; PCS-440-030) supplemented
with PrEC growth kit (ATCC; PCS-440-040). The normal immortalized prostate
cells (RWPE-1) were maintained in K-SFM (Thermo Fisher Scientific Inc., Wal-
tham, MA, USA) culture medium supplemented with 5 ng/ml epidermal growth
factor and 0.05 mg/ml bovine pituitary extract. DU145 prostate cancer cells were
cultured in RPMI-1640 (Lonza, Basel, Switzerland) supplemented with 10% FBS
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Cell lines were authenticated
and periodically monitored by genetic profiling using short tandem repeat analysis
(AmpFISTR Identifiler PCR amplification kit, Thermo Fisher Scientific Inc.,
Waltham, MA, USA). Cells were routinely checked for possible mycoplasma
contamination through MycoAlert® Mycoplasma Detection Kit (Lonza, Basel,
Switzerland).

To induce luminal differentiation, RWPE-1 cells were grown for 72 h in RPMI-
1640 medium (characterized by high-calcium concentration as compared to K-SFM,
which is calcium-free to maintain basal features) with or without 2% FBS.
Alternatively, cells were grown in their medium supplemented with increasing
concentration of FBS. Human recombinant β-interferon (rHuIFN-B, Calbiochem,
USA and Canada) was used at the concentration of 1000 IU/ml. Dihydrotestosterone
(DHT, Sigma-Aldrich, Saint Louis, MI, USA) was used at the final concentration of 5
nM.

For transfection experiments, cells were seeded at the density of 8000 cells/cm2

in culture vessels. Twenty-four hours later, medium was removed and cells were
transfected with the molecule of interest for 4 h, using Optimem medium (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and Lipofectamine-2000 reagent
(Thermo Fisher Scientific Inc., Waltham, MA, USA) according to the
manufacturer’s protocol.

Knockdown of MIR205HG/LEADR was performed by using alternatively
siRNA (used at 30 nM final concentration) or single-stranded LNA/DNA/LNA
antisense gapmers (used at 5 nM final concentration). TP63 expression was
modulated using the expression vector and the siRNA reported in ref. 2, whereas
DROSHA was silenced using two independent siRNAs. All siRNAs were designed
by using the online tool siDESIGN (Dharmacon Inc., Chigago, IL, USA) and
purchased from Eurofins MWG-Biotech (Ebersberg, Germany). Antisense LNA™
GapmeR were custom designed and purchased from Exiqon (Vedbaek, Denmark).
A control siRNA (siCTR) and control gapmer (gapCTR) with no homology to any
known human mRNA were used for comparative purposes. The siRNA and
gapmer sequences (in sense format) used for this study are listed in Supplementary
Table 2.

Overexpression of MIR205HG/LEADR was performed by using a pCMV-6AC
plasmid vector containing alternatively the whole genomic sequence (from exon 1
to exon 5.2, including all introns), the RefSeq or 7063 transcript, as synthesized by
OriGene (Rockville, MD, USA). An empty pCMV-6AC (EV) was included as
experimental control. To create stably overexpressing cell lines, cells were
transfected as previously described with 2 µg of vector containing Neomycin
resistance and, 48 h after transfection, were selected in their culture medium

supplemented with 700 µg/ml Geneticin G418 Sulfate (Thermo Fisher Scientific
Inc., Waltham, MA, USA).

Cell morphology was evaluated usually at day 3 after transfection using an
Eclipse TE2000-S microscope (Nikon, Japan). Images were acquired by a Digital
Camera DXM100F (Nikon, Japan).

CRISPR/Cas9 genome editing. To genomically edit MIR205HG/LEADR, two
specific guide RNAs (gRNAs) flanking the sequence from exon 1 (including the
TSS) to exon 3 were designed with http://crispr.mit.edu/ and cloned into the PX459
expression vector obtained from Addgene (#48139—Cambridge, MA, USA), which
simultaneously codifies for Cas9 enzyme. The gRNA sequences are listed in Sup-
plementary Table 3.

RWPE-1 cells were transfected simultaneously with 1 µg of each gRNA, then
selected with Puromycin (700 µg/ml) for 24 h. Thus, single cell clones were derived
and genomic DNA was isolated using PureLink Genomic DNA Mini Kit (Thermo
Fisher Scientific Inc, Waltham, MA, USA). Genotyping was performed by PCR
using GoTaq Flexi DNA polymerase (Promega, Fitchburg, WI, USA) and the
primers listed in Supplementary Table 3. PCR products were cloned into pGEM-T
Easy vector system I (Promega, Fitchburg, WI, USA) and subsequently sequenced
using T7 sequencing primer.

RNA isolation and RT. Total RNA was isolated using QIAzol Lysis Reagent and
miRNeasy Mini Kit (QIAGEN, Hilden, Germany) with DNase I digestion (QIA-
GEN, Hilden, Germany) according to the manufacturer’s instructions. RNA
integrity was checked through agarose gel electrophoresis. RNA yield and A260/
280 ratio were monitored with a NanoDropND-2000c spectrophotometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA). For gene-expression profiling studies,
RNA integrity numbers were also measured using 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Normal prostate tissue RNA used as cali-
brator for qRT-PCR analysis was purchased from Thermo Fisher Scientific
(Waltham, MA, USA).

cDNA was synthesized using high-capacity cDNA Reverse Transcription Kit
with random primers (Thermo Fisher Scientific Inc., Waltham, MA, USA) for total
RNA or oligo-dT16 primers (Thermo Fisher Scientific Inc., Waltham, MA, USA)
for nuclear and cytoplasmic fraction. For miRNA detection, TaqMan MicroRNA
Reverse Transcription Kit and sequence specific primers (Thermo Fisher Scientific
Inc., Waltham, MA, USA), listed in Supplementary Table 4, were used on total
RNA.

Nucleus–cytoplasm separation for RNA extraction. For nucleus–cytoplasm
separation, all reactions were carried out on ice and centrifugations at 1000g for 3
min at 4 °C. Cells were collected and resuspended in lysis buffer A (Tris-HCl, pH
7.0 10 mM; NaCl 140 mM; MgCl2 1.5 mM; NP-40 0.50%), left on ice for 5 min and
then centrifuged. The supernatants (i.e., cytoplasms), were used for RNA extrac-
tion, while the pellets were washed three times with lysis buffer A and then
resuspended in lysis buffer B (Tris-HCl, pH 7.0 10 mM; NaCl 140 mM; MgCl2 1.5
mM; NP-40 0.50%; Tween-40 1%; deoxycholic acid 0.50%). After centrifugation,
pellets containing the nuclei were used for RNA extraction as previously described.
For subnuclear fractionation, the pellet containing the nuclei was washed with 400
µl lysis buffer A supplemented with with RNase inhibitor and protease inhibitor
and then processed as described in ref. 52.

End-point and quantitative PCR. Takara Ex Taq Kit (Takara Bio Inc., Japan) was
used to perform end-point PCR according to manufacturer’s instructions. Primers
used are listed in Supplementary Table 5.

Conventional quantification of gene or miRNA expression was assessed by
qRT-PCR using No AmpErase TaqMan Universal PCR Master Mix (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and specific TaqMan gene-expression
assays (Thermo Fisher Scientific Inc., Waltham, MA, USA), as listed in
Supplementary Table 4. Amplifications were run on the 7900HT Fast Real-Time
PCR System. Data were analyzed by SDS relative quantity (RQ) Manager
1.2.1 software (Thermo Fisher Scientific Inc., Waltham, MA, USA) and reported as
RQ or −ΔΔCt with respect to a calibrator sample using the comparative Ct (ΔΔCt)
method. GAPDH/SNORA74A and RNU48 were used as normalizers in gene and
miRNA expression studies, respectively. If not otherwise specified,
MIR205HG/LEADR expression was measured using an assay covering ex-2/3
boundary, which detects all possible transcripts.

Enrichment of DNA regions in ChIP and ChIRP experiments was evaluated
through SYBR green qPCR run on a CFX Connect Real-time PCR instrument,
using SsoAdvanced Universal Sybr Green Master mix (Bio-Rad, Hercules, CA,
USA) and primers listed in Supplementary Table 5.

Immunoblotting analysis. For total protein extraction, cell were lysed in lysis
buffer (Tris-HCl pH 7.4 10 mM; NaCl 10 mM; Triton X-100%; PMSF 1×; Apro-
tinin 5 µg/ml; Leupeptin 20 µg/ml) for 30 min on ice and then supernatant (i.e.,
proteins) was boiled at 95 °C for 5 min. Proteins were loaded onto a 4–12% precast
Bis–Tris sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
gel (NuPAGE, Thermo Fisher Scientific Inc., Waltham, MA, USA) for separation
and transferred onto Hybond nitrocellulose membranes (GE Healthcare Life
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Sciences, Buckinghamshire, UK). Filters were blocked for non-specific reactivity by
incubation for 1 h at room temperature in 5% skim milk dissolved in 1× PBS-
Tween 20 and overnight at 4 °C probed with antibodies listed in Supplementary
Data 4. After three washes with 1× PBS-Tween 20, filters were incubated with the
secondary horseradish peroxidase-conjugated anti-mouse (NA931V, GE Health-
care Life Sciences, Buckinghamshire, UK) or anti-rabbit (NA9340V, GE Healthcare
Life Sciences, Buckinghamshire, UK) antibodies for 1 h at room temperature.
Immunoreactivity was detected by the enhanced chemiluminescence (ECL)
immunodetection system (WP20005, Thermo Fisher Scientific Inc., Waltham, MA,
USA).

The Nuclear/Cytoplasm Fractionation Kit (MBL™, Woburn, MA, USA) was
used to separate proteins from the fractions, according to manufacturer’s protocol.
Immunoblotting was then conducted as described above, using the antibodies as
listed in Supplementary Data 4. Uncropped scans of all blots are reported in
Supplementary Fig. 7.

Immunofluorescence. Immunofluorescence was carried out as described in ref. 2,
except for permeabilization conducted with methanol:acetone 1:1. Antibodies are
listed in Supplementary Data 4. For p63, an Eclipse E600 microscope (Nikon,
Japan) and a Digital Camera DXM1200 (Nikon, Japan) were used to acquire
images, later processed with Adobe Photoshop Image Reader 7.0. AR imaging was
instead performed using a confocal laser scanning microscope Leica TCS SP8 X
(Leica Microsystems GmbH, Mannheim, Germany). The fluorochrome was excited
by a pulsed super continuum White Light Laser (470–670 nm; 1 nm tuning step
size). In particular, AR was excited selecting 598 nm-laser line and detected from
603 to 725 nm, whereas nuclei were visualized using DAPI excited with 405 nm
diode laser and detected from 426 to 501 nm. The images were acquired in the scan
format 1024 × 1024 using a HC PL APO 63×/1.4 oil immersion objective and a
pinhole set to 1 Airy unit. The data were analyzed using the ImageJ software.

ELISA for PSA. Conditioned media from cells seeded at the density of 10,000
cells/cm2 were collected, clarified by centrifugation and sixfold concentrated
with Concentrator Spin 5K MWCO (5185-5991; Agilent Technologies, Santa
Clara, CA, USA) at 4000g for 15 min. PSA levels in the concentrated condi-
tioned media were measured using ELISA assay (EHKLK3T; Thermo Fisher
Scientific Inc., Waltham, MA, USA), according to the procedures recommended
by the manufacturer.

In vitro transcription/translation. In vitro translation assay was performed using
the TnT Quick Coupled Transcription/Translation System (Promega, Fitchburg,
WI, USA), according to the manufacturer’s instructions. Reactions were carried out
using, alternatively, 1 mM transcend biotin-lysyl-tRNA or 10 mCi/ml [35S]-
methionine. The eventual labeled translation products were then separated on SDS-
PAGE gels, transferred onto nitrocellulose membrane and visualized by binding of
streptavidin–horseradish peroxidase, followed by chemiluminescent detection, for
the nonradioactive method, while radioactive products were visualized with
autoradiography. The assay was carried out on two MIR205HG/LEADR-specific
pCMV-6AC plasmid vectors, one containing the whole genomic sequence and one
the RefSeq transcript, and the respective empty vector as negative control. A
pcDNA3.1 vector (Thermo Fisher Scientific Inc., Waltham, MA, USA) containing
ΔNp63α cDNA2 served as positive control.

RNA immunoprecipitation. RNA immunoprecipitation (RIP) was performed on
nuclear extracts obtained from RWPE-1 cells in native conditions, as described in
ref. 53. Lysates were split into three fractions for mock and specific immunopre-
cipitations, with an aliquot frozen in liquid nitrogen for reference RNA isolation
(Input). Totally, 5 µg rabbit anti-IRF1 (sc-497, Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA) or rabbit anti-IRF7 (ab109255, Abcam, Cambridge, UK)
antibodies were added to supernatant and incubated overnight at 4 °C with gentle
rotation. IgG (Ab2410, Abcam, Cambridge, UK, rabbit) control sample was
included. Bound RNAs were precipitated with protein A- and G-agarose (GE
Healthcare Life Sciences, Buckinghamshire, UK) and then isolated using QIAzol
Lysis Reagent (QIAGEN, Hilden, Germany) reagent. RNA precipitation was
favored by adding 1 µg/µl glycogen to isopropanol. qRT-PCR was conducted as
described above.

Cross-linking immunoprecipitation. UV-CLIP experiments were performed
according to Schaukowitch et al.54. Briefly, 1 × 107 cells were cross-linked at 150
mJ/cm2 using UV-CROSSLINKER (Hoefer Scientific Instruments, San Francisco,
CA, USA) for 36 s in ice-cold PBS to preserve protein-RNA interaction. Totally, 10
µg rabbit anti-IRF1 (8478, Cell Signaling Technology Inc., Danvers, MA, USA) or
rabbit anti-IRF7 (ab109255, Abcam, Cambridge, UK) antibodies were added to
isolated lysed nuclei and incubated overnight at 4 °C with gentle rotation. IgG
(Ab2410, Abcam, Cambridge, UK, rabbit) control sample was included. Bound
RNAs were precipitated with protein A- and G-agarose (GE Healthcare Life Sci-
ences, Buckinghamshire, UK), washed with increasingly stringent buffers as
described in ref. 54 and eluted upon Proteinase K (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) treatment for 2 h at 50 °C. Eluted RNA was isolated with an
equal volume of phenol: chloroform:isoamyl 25:24:1 pH 8 (Thermo Fisher

Scientific Inc., Waltham, MA, USA) and precipitated with ethanol 75% overnight.
Isolated RNA was resuspended in nuclease-free water and qRT-PCR was per-
formed as previously described.

RNA-Seq data of DROSHA and DGCR8 CLIP experiments were retrieved from
GSE61979. Bedgraph files were then uploaded onto UCSC human assembly hg19
and visualized with UCSC Genome Browser.

RNA pulldown. For RNA pulldown experiment, pCMV-6AC-LEADR and
pCiNeo-EGFP (Addgene, # 46949, used as control as it codifies for a transcript of
length comparable to LEADR) plasmids were digested with XhoI and SpeI
restriction enzymes (New England Biolabs, Ipswich, MA, USA) respectively, and
purified with Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, USA).
Linearized plasmids were in vitro transcribed with biotin–UTP using Biotin RNA
Labeling Mix and T7 RNA Polymerase (Hoffmann-La Roche, Basel, Switzerland)
and purified with miRNeasy Mini Kit (QIAGEN, Hilden, Germany).

RNA pulldown experiment was carried out basically as described in Doron-
Mandel et al.55 with minor modifications. Totally, 50 μg of Dynabeads MyOne
Streptavidin C1 (Thermo Fisher Scientific Inc., Waltham, MA, USA) beads for each
pulldown were washed and RNase inactivated according to manufacturer’s
instruction. Three microgram of each biotinylated RNA was resuspended in RNA
Structure Buffer (20 mM Tris-HCl pH 7.5; 0.2 M KCl; 20 mM MgCl2; 2 mM DTT;
0.8 U/µl RNase inhibitor), heated at 90 °C for 2 min and put on ice for 2 min, then
shifted to room temperature for 20 min to allow proper secondary structure. RNA-
beads complex and precleared nuclear extract (as described in RIP protocol above)
from DU145 cells pre-treated for 6 h with 1000 IU/mL IFN-β1 were incubated as
described in ref. 55 and later eluted for Western Blotting as previously described.

Chromatin immunoprecipitation. ChIP experiments were conducted essentially as
described in ref. 56. Briefly, 1 × 107 cells were cross-linked using 1% formaldehyde
for 10 min, the reaction quenched with 1/20 volume of 2.5 M glycine and cen-
trifuged at 1350g for 5 min; the pellet was washed twice with PBS and resuspended
in sonication buffer, sonicated to obtain fragments of approximately 300–600 bp, as
verified on agarose gel electrophoresis. Reactions were centrifuged at 20,000g for
10 min, and the supernatants were used for incubations with antibodies overnight
at 4 °C. Totally, 5 × 106 equivalents of chromatin were immunoprecipitated with 5
μg of anti-IRF1 (sc-497, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), and
anti-FLAG (F3165, Sigma-Aldrich, Saint Louis, MI, USA) antibodies. Dnabeads
Protein G (Thermo Fisher Scientific Inc., Waltham, MA, USA) were used for
recovery of antibody-bound chromatin. Cross-linking was reversed by incubation
at 65 °C overnight. Reactions were digested with RNAse A and Proteinase K and
DNA purified by phenol–chloroform extraction and ethanol precipitation. DNA
was resuspended in TE and used in Sybr Green qPCR, as described above, to
amplify the regions of interest. An unrelated genomic region was used as internal
negative control. All primers are listed in Supplementary Table 5.

Chromatin isolation by RNA precipitation. ChIRP was essentially performed as
described in Chu et al.57. Ten 20-mer 3'-BiotinTEG modified antisense probes
tiling exons of MIR205HG/LEADR transcript were designed by using the online
probe designer tool at singlemoleculefish.com, according to the following para-
meters: number of probes= 1 probe/100 bp of RNA length; target GC%= 45;
oligonucleotide length= 20; spacing length= 60-80. Regions of repeats or exten-
sive homology (such as Alu/SINE sequence spanning exons 1 and 2) were omitted
and ten probes were generated. A symmetrical set of probes against lacZ RNA was
also generated and used as the mock control. 3'-BiotinTEG modified probes were
synthesized by Eurofin MWG Operon (Ebersberg, Germany). All probe sequences
are listed in Supplementary Table 6.

RNA was obtained from ChIRP-ed samples upon reversal of cross-linking by
proteinase K and extraction through TRIzol reagent (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) according to manufacturer’s protocol. qRT-PCR was then
carried out using Taqman assays (as in Supplementary Table 4) to check for
specific RNA retrieval.

For DNA elution samples were resuspended in DNA elution buffer and
incubated at 37 °C for 30 min with end-to-end rotation. Beads were captured by T-
1-800 Adna Mag S magnets (AdnaGen, Langenhagen, Germany). Eluted DNA
from two steps was combined. Chromatin was reverse cross-linked at 65 °C
overnight with 200 mM NaCl and treated with Proteinase K at 45 °C for 2 h. DNA
was then extracted with equal volume of phenol:chloroform:isoamyl 25:24:1 pH 8
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and precipitated with ethanol
80% overnight. Isolated DNA was resuspended in elution buffer (QIAGEN, Hilden,
Germany) and eluted DNA was subject to Sybr Green qPCR to assess enrichment
of genomic regions of interest over unrelated region. All primers are listed in
Supplementary Table 5.

In silico assessment of coding potential. The coding potential of
MIR205HG/LEADR transcripts was initially assessed using the alignment-free
CPAT version 1.2.1 (http://lilab.research.bcm.edu/cpat/19), which assigns a coding
probability on the base of the length of transcript and of the predicted ORF.

The presence of functional regions within MIR205HG/LEADR putative protein
sequence was checked by using Pfam (pfam.xfam.org/), BLASTP (blast.ncbi.nlm.
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nih.gov/), SMART (smart.embl-heidelberg.de/) and InterPro (www.ebi.ac.uk/
interpro/) tools, which analyze the putative protein sequence; whereas, for the
analysis of nucleotide sequence, Pfam and BLASTX tool were used.

Site-directed mutagenesis. Deletion of Alu portion from MIR205HG/LEADR
RefSeq transcript was obtained through site-directed mutagenesis by PCR, as
described in ref. 58. MIR205HG/LEADR vector, previously used to transform Dam-
positive in bacteria, was amplified using high fidelity DNA Polymerase Q5 (New
England Biolabs, Ipswich, MA, USA), in the presence of the deletion primers listed
in Supplementary Table 7. Dpn I restriction enzyme digestion was used to elim-
inate the wild type methylated vector, whereas remaining products were used to
transform competent JM109 cells (Promega, Fitchburg, WI, USA). Colonies were
then Sanger-sequenced to check for successful deletion.

Motif discovery. In search for mechanistic insights, we selected the genes found
upregulated upon LEADR silencing and coherently downregulated upon over-
expression (referred to as “LEADR-core up”) as bona fide LEADR targets. Such
choice was dictated by the evidence that overlap between genes modulated upon
silencing by the two different approaches (siRNA and gapmer) was greater (Fisher
test p= 6.88e−08 and p= 4.36e−12, respectively) among upmodulated (136/588
and 136/473, average fraction of 26%) than downmodulated genes (22/320 and 22/
272, average fraction of 7.4%). In addition, the overlap with genes showing opposite
trend upon LEADR overexpression was greater among upmodulated (38/136=
28%) than downmodulated (2/22= 9%) genes. Altogether, these observations
suggested that “LEADR-core up” genes could be enriched of true direct LEADR
targets.

Promoter sequences of “LEADR-core up” were thus retrieved from RefSeq
UCSC Table (hg19) and the first isoform listed for each gene was used for the
analyses. MEME Suite59 and Pscan60 were used (with standard parameters) for the
de novo motif discovery (and their alignment on LEADR transcript) and for the
inspection of TF binding sites in promoters, respectively.

Analysis of ChIP-Seq data and site frequency estimation. ChIP-Seq IRFs
binding sites were retrieved from Encode published data (GSE32465 and
GSE31477). Histone modifications in RWPE-1 cells were retrieved from GSE63094.
Comparison between genomics intervals were performed with UCSC Table
Browser. Coordinates of Alu sequences across genome were retrieved from Repeat
Mask UCSC Table. Frequency of Alu and IRF sites in selected gene lists was
estimated using the promoters of all genes present on the microarray platform as
background.

Preprocessing of publicly available gene expression data. Microarray-based
gene expression profiles were retrieved as normalized dataset matrix from the Gene
Expressed Omnibus (GEO) repository with the following accession numbers:
GSE3998, GSE86904, GSE89050, and GSE21034 (samples from patients who
received systemic treatment before surgery were excluded from the analyses),
GSE5993, GSE29782, GSE75628, and GSE48160. MIR205HG data from Genotype-
Tissue Expression (GTEx) project [https://www.ebi.ac.uk/gxa/experiments/E-
MTAB-5214/Download] were downloaded as TPM values. RNA-Seq data,
retrieved from GSE82071 and TCGA firehose (RNAseqv2 level 3 data, accession
date 2016-01-28, http://gdac.broadinstitute.org/), were normalized using the trigger
mean of M value of edgeR61 package and log2-transformed. Only TCGA cancer
types with at least 100 tumor and 3 normal samples with available MIR205HG and
miR-205 expression were considered for the analysis. All publicly available datasets
analyzed through this study are listed in Supplementary Data 5, along with details
on technique, type of samples, related publications, and reuse made in this work.

Gene-expression analysis of LEADR-modulated cells. Transcriptomic data from
prostate cells modulated for MIR205HG/LEADR expression using different stra-
tegies were generated in our laboratory using Illumina HumanHT-12 v4 arrays, as
previously described62. The silencing of MIR205HG/LEADR obtained with the
different strategies described in the paper (siLEADR, gapLEADR and gapINT1)
was conducted in triplicate (three independent biological replicates, each including
control and LEADR-specific oligomer) for subsequent gene-expression analysis.
Overexpression experiments with wild type LEADR (RefSeq, 7063 and whole
genomic sequence “gene”) were conducted in quadruplicate (each including empty
and LEADR-specific vector), whereas overexpression of Alu-deleted form in
triplicate.

Raw data were log2-transformed and normalized using the robust spline
method implemented in the lumi package63. Normalized data were filtered
removing probes with neither at least one detection p value < 0.01 across samples,
nor associated official gene symbol; for probes mapping on the same gene symbol,
the one with highest variance was selected.

Gene-expression data and processing pipeline were deposited at Gene-
Expression Omnibus, with accession number GSE104003.

Bioinformatic analyses. Differential expression was estimated both in terms of
fold change (FC) and t value, using the limma Bioconductor package64.

Significance was provided in terms of false-discovery rate (FDR) to take into
account the adjustment for multiple hypotheses testing, using a threshold of 0.05.
All these analysis were conducted in R environment.

A t value preranked gene set enrichment analysis65 was carried out using
Hallmark gene sets v5.2 of the Molecular Signature database (MSigDB) or custom
signatures. Customly defined basal or luminal-specific gene sets were obtained
selecting either the top-100 significantly down or upregulated genes in luminal vs.
basal cells, as from publicly available datasets (gene set lists reported in
Supplementary Data 6). The normalized enrichment score was visualized in
heatmaps by means of unsupervised hierarchical clustering along the signatures
(euclidean distance and ward linkage metrics); FDR q value threshold of 0.05 was
used to assess a significant enrichment.

LEADR transcript structures were retrieved from GSE93848 ([https://
public_docs.crg.es/rguigo/CLS/]13) as gtf files and hg38 fasta file from UCSC, and
shortlisted through comparison with those retrieved from SRP057660 dataset14, as
described in the Results section. RNA-Seq data from GSE67070, GSE22260,
GSE75035, and GSE25183 were retrieved as sra files with sratoolkit tool and
transformed in fastq paired files with fastq-dump –split-3 command. RSEM
package was used to construct the reference with rsem-prepare-reference –no-
polya and then to calculate expression of isoforms with rsem-calculate-expression
--paired end.

Statistical analyses. Boxplots were generated according to Tukey’s visualization,
where the box encompasses the 25th and 75th percentile, the horizontal line within
the box is the median (50th percentile) of the distribution, and the length of the
whiskers is calculated as 1.5 IQR (interquartile range). Barplots were overlaid with
dots of single values.

Two-tailed t test was generally used to evaluate different behavior between control
and treated cells in cell-based experiments. In case the difference was expected to occur
only in one direction (Fig. 3a, Fig. 5g, Supplementary Fig. 4f, Fig. 6i, Fig. 9b, and
Fig. 9d), one-tailed t test was used. Paired test was used when appropriate. To assess
differential expression of MIR205HG/LEADR in publicly available datasets,
Mann–Whitney U test was used. Jonckheere–Terpstra test was applied to assess
differences in LEADR expression across a priori ordered conditions. Hypergeometric
test was used to investigate the equality proportion of Alu/IRF binding sites in different
sets of genes. A threshold of 0.05 was considered statistically significant. Number of
replicates for each experiment is listed in the Source Data file. The Kaplan–Meier
method was employed to estimate the biochemical recurrence-free survival curves and
the log-rank test to assess the significance of the difference between the curves. A p
value threshold of 0.05 was considered.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this Article.

Data availability
Transcriptomic data from prostate cells modulated for MIR205HG/LEADR
expression generated in our laboratory were deposited at Gene Expression
Omnibus, with accession number GSE104003. Accession codes (and web links) for
publicly available datasets have been provided in the Methods section and in
Supplementary Data 5. The Source data underlying Figs. 1a–c, e–h, 2b–f, 3a, b, 4b,
c, 5b, c, e, g, i, 6f, g, i, j, 7d, 8d, e, 9a–e and Supplementary Figs. 2a, c, 3b, c, 3f, g, 4a,
b, e, f, 5c, 6a, e, f are provided as a Source Data file. A Reporting Summary for this
Article is available as a Supplementary Information file. All other relevant data are
available within the article and its Supplementary files or from the corresponding
authors upon reasonable request.
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