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ABSTRACT 

The growing interest for new routes to obtain acetonitrile led to the development of catalysts active 

towards the ammoxidation of various substrates. Among these, a C2 molecule such as ethanol 

represents a good choice in terms of atom economy and, being renewable, sets the basis for a 
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long-term sustainable process. This paper describes a fully integrated, newly designed process 

for the production of acetonitrile from bioethanol, currently not present in the literature. The target 

is the production and purification of 10 kg/h of acetonitrile, unit of production used for calculations, 

obtained from ethanol, ammonia and air as raw materials. All the by-products, mainly ammonium 

bicarbonate and sodium cyanide, are considered marketable chemicals and represent an added 

value, instead of a disposal issue. Their optimized recovery is included in this flowsheet as a basis 

for the future economic assessment of the system. The process consumes CO2 without its direct 

emission. In principle, all the carbon atoms and 90% of the nitrogen atoms are turned into reaction 

products and the main loss is gaseous N2. The process design has been performed by means of 

the Aspen PLUS® process simulator, on the basis of literature data and other experimental results. 

In addition, to evaluate the potential benefits of the innovatiove bio-based route, a life cycle 

analysis was carried out including all the stages involved in the bio-acetonitrile production (from 

raw materials extraction up to the gate plant). The results were then compared with those 

achieved for the traditional fossil route (SOHIO process), showing a sensible decrease of the 

environmental burdens in terms of non-renewable resources and damages on ecosystems (e.g. 

toxicity, climate change, etc.). Finally, a simplified sensitivity analysis was carried out by 

substituting the starting raw material for the production of bio-ethanol (corn) with other 

conventionally used worldwide, such as sugarcane and wood. The latter option seems to make 

the system more competitive in terms of carbon neutrality, thanks to the usage of the residual 

lignocellulosic fraction available on market.    
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Introduction 

The 1st principle of Green Chemistry1 suggests to avoid waste by optimization of reaction 

or, when it is not possible to improve the whole process, by recovering and transforming the 

side streams into valuable added products. An interesting industrial example is represented 

by acetonitrile, which is mainly produced as byproduct from the acrylonitrile synthesis (≈6 

Mtons in 2010 2).  

The chemical importance of acetonitrile comes from its very particular polarity, affinity with 

both organic liquids and water and relatively high boiling point. Its main use is as a solvent 

for pharmaceutical and laboratory applications (nearly 70%) 3, but it is also adopted as 

extraction agent to separate butadiene from C4 alkanes 4, propylene and propane 5 and for 

cellular metabolome extraction6. 

However, acetonitrile’s yield depends on how the main acrylonitrile process is operated. This 

intrinsic dependence represents the reason for the recognized mismatch between its 

demand and availability worldwide 7. 

More recently, routes to acetonitrile as the main reaction product have been sought (tough 

important details such as the feedstock nature and consumption are anyway patented and 

undisclosed3) and an efficient atom-economy could be achieved by using C2 substrates. 

Among these, ethanol (EtOH) ammoxidation is a promising alternative, since EtOH is a 

renewable resource, readily available from established fermentation processes 8 and usable 

for this process without particular purification requirements. Another crucial aspect is EtOH 

abundance and market estimated to be over 158 × 109 L 9 and 53,105.3 million US$ by 

202510. This led to different exemples of valorisation of ethanol for chemicals 



 

 

production, such as its conversion to ethylene by dehydration over acidic 

catalysts11,12 or its conversion to 1-butanol13. 

Besides interesting attempts to develop suitable catalysts, to date, no full description of a 

plant for acetonitrile production by ethanol ammoxidation is disclosed in the literature. Novel 

production processes can take advantage, nowadays, of computational calculation tools that 

can sensibly reduce the times of a preliminary feasibility study, leaving the further stages of 

development to cope with design details, after having sorted out less favourable options. In 

addition, computational studies can easily integrate a benign-by-design approach14 by 

supporting synthetic chemists to focus the efforts on the most suitable solution. Thus, 

process simulation and life cycle analysis should accompany tightly the design of new and 

sustainable processes as tools to address decisions towards feasibility. 

The conversion of ethanol (azeotropic purity) into acetonitrile is studied in this paper 

according to the experimental data summarized in the following section. A new fully 

integrated acetonitrile production plant has been designed from the grass roots. The system 

is suitable to produce acetonitrile (10 kg/h is taken as reference basis) from ethanol, 

ammonia and air. Besides the reaction section, the full separation train for pure acetonitrile 

recovery (> 99%) has been optimized as described elsewhere 15,16, and integrated with the 

recovery of all the by-products (CO2, HCN) and unreacted ammonia. The recovery and 

valorisation of the marketable by-products (cyanide salts and NH4HCO3) is also discussed 

as one of the possible co-product recovery examples. The process consumes more CO2 

than what constitutes the reactor by-product, allowing a further sequestration of this 

greenhouse gas (GHG). Then, in order to support the design stage, a life cycle approach 

was also applied to verify the environmental performances of the whole system in terms of 

renewability and ecosystem burdens.  
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Background 

As written above, acetonitrile is the major by-product of propylene ammoxidation to 

acrylonitrile17. The global acetonitrile market has grown at Compound Annual Growth Rate 

(CAGR) ca. 5% during 2009-2016, and is now close to 6.5 Mtons/year. Acetonitrile is 

isolated by distillation, and depending on the distillation capability, different acetonitrile 

qualities are obtained3. In 2008-2009, the chemical industry experienced a severe 

acetonitrile shortage7,18, because several acrylonitrile plants were shut down, due to 

stagnation of fibers market. This made the industry aware of the fact that a dedicated 

process for the synthesis of acetonitrile is needed.  

Possible routes for the synthesis of acetonitrile include: 

(a) Reaction between CO, NH3 and H2
19,20; 

(b) Hydrocyanation of methane with HCN, at 900 °C21,22;  

(c) Ethane or ethylene ammoxidation; catalysts for ethane ammoxidation include mixed 

Nb/Sb oxides, Nb-promoted Ni oxides and Co-exchanged zeolites. Because of the better 

yields obtained, ethane ammoxidation is the preferred route18,23–28. 

Recently Alzchem claimed to have started a gas-phase ammoxidation process for the 

production of acetonitrile. 

 

Computational methods 

 

The overall process design has been carried out using the software Aspen PLUS® V. 

8.8, with the APV88 and NISTV88 components databanks for components properties. 

The thermodynamic system used is the ENRTL (Electrolyte Non Random Two 

Liquids) to compute the non-ideality in the liquid phase. It was chosen since salts are 



 

 

present overall the process and it allows to model their thermodynamic properties in 

a more reliable way than NRTL. The Redlich-Kwong equation of state was used to 

model non ideality for the gaseous phase 29. Some species were also treated as 

Henry components (properties from the same databases) to account for their 

solubility.  

The life cycle analysis was carried out using the SimaPro software (PhD version 

8.4.0.0)30 and its libraries. Among these, Ecoinvent (v.3.3)31 represents one of the 

most consolidated and used databases worldwide. It is adopted by researchers to 

cover all the background data concerning raw materials extraction and refinery, 

energy and transportation, infrastructure, an all the auxiliary substances required to 

simulate the system under study.  

In addition, several impact analysis methods were adopted. More details are reported 

in the last paragraph. 

 

Process description 

Conversion Data and Stoichiometry 

The conceptual process layout is reported in Fig. 1, whereas the PFD is sketched in 

Fig. 2.  

The alkylation of Ammonia with Ethanol (whose C-O bond is activated by the initial 

dehydrogenation or oxidation into acetaldehyde) and the further oxidation of the C-N 

into the nitrile group, has been studied by diverse groups on different catalysts32–35. 

The reaction is demonstrated at laboratory level. Nevertheless, process scale up to 

the pilot-plant or commercial scale has not been attempted yet. Furthermore, process 

design issues are still open and integrated processes are actually missing for this. 
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Plant design is here based on the data obtained by Folco et al. 36 on a Cs doped 

V2O5/TiO2 catalyst. 3 moles of ammonia per mole of ethanol are used as feed and a 

byproduct distribution dominated by light gases (carbon mono- and di-oxide, thanks 

to the pronounced oxidative conditions adopted) rather than by high-boiling 

condensates is obtained.  

The dataset is reported in Table 1. Though higher selectivities to acetonitrile were 

achieved by the same authors, the selected reaction conditions (320°C, atmospheric 

pressure, catalyst load of 0.8 g per cm3/s of gas flow) were characterized by a 

relatively low temperature, very low ethylene and polycondensate yields, a small 

undesired combustion of ammonia, almost complete oxidation of CO to CO2 and the 

complete consumption of the intermediately formed acetaldehyde. Furthermore, in 

order to simplify the already complex separation train, catalyst and conditions 

corresponding to full ethanol conversion were selected. Indeed, different operating 

conditions led to higher selectivity to acetonitrile, but with unreacted ethanol in the 

products stream. This would make the whole separation much more demanding and, 

overall, the purity of acetonitrile required by the market was not met. 

The product distribution has then been rationalized with the following stoichiometry:  

𝐶2𝐻6𝑂 +  𝑂2  +  𝑁𝐻3 →  𝐶2𝐻3𝑁 + 3𝐻2𝑂   (ethanol ammoxidation)   (R1) 

𝐶2𝐻6𝑂 →  𝐶2𝐻4 + 𝐻2𝑂         (ethanol dehydration)    (R2) 

𝐶2𝐻6𝑂 +  
5

2
𝑂2  →  𝐶𝑂 +  𝐶𝑂2 + 3𝐻2𝑂    (ethanol oxidation)     (R3) 

𝐶2𝐻3𝑁 +  
5

4
𝑂2  →  

1

2
𝐶𝑂 +  

1

2
𝐶𝑂2 + 𝐻2𝑂 + 𝐻𝐶𝑁 (acetonitrile oxidation)   (R4) 

3

4
𝑂2  +  𝑁𝐻3 →  

1

2
𝑁2 +

3

2
𝐻2𝑂       (ammonia oxidation)    (R5) 

𝐶𝑂 +  
1

2
𝑂2  →  𝐶𝑂2           (CO oxidation)      (R6) 

where it is assumed that the heavy compounds generated (and for whom a brute 

formula is not available) are re-oxidized to CO2. The molar flows were selected to 



 

 

meet a model scale production target of 10 kg/h of acetonitrile, just as a basis for 

calculation. 

The excess of oxygen needed in the adopted conditions has two drawbacks: i) the 

necessity to feed it as air, and then to design a reactor where the inert N2 volumetric 

flow is as large as the flow of the reactants; ii) the undesired oxidation of acetonitrile 

into HCN. Nevertheless, once the HCN is neutralized and recovered as cyanide salts, 

it becomes a marketable byproduct itself 37.  

On the other hand, the non-negligible N2 flow has also at least three positive 

consequences: i) it increases the thermal inertia in the reactor, convenient when 

coping with an exothermal reaction network; ii) it reduces the relative volumetric flow 

increase, at constant temperature and pressure (any reaction above, except the last, 

produces more moles than it consumes), then keeping the pressure drops nearly 

constant; iii) it reduces the relative decrease of the excess reactants (oxygen and 

ammonia) concentration, keeping the kinetic conditions nearer to the laboratory ones 

(where the inert carrier is actually in large excess and ammonia and oxygen are in 

excess with respect to ethanol), meeting nearly the conditions in which kinetic testing 

was performed, for a more reliable prevision. 

At this stage, the dataset available allows to select an appropriate operating window 

based on wide experimental design, but is not suitable to derive a robust kinetic 

model. Thus, the reactor only takes a picture of the inlet-outlet compositions, but it is 

not possible to carry out the optimisation of the process variables and reactor sizing. 

 

Ammonia – Carbon Dioxide Process integration 

The reaction, as outlined in the cited works, prescribe an excess of ammonia in the 

reactor feed. The substantial flow of this reactant still present at the reactor outlet 
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poses a serious recovery issue, due to its affinity both with nitrogen and acetonitrile 

(in the hot gas phase) and with water and acetonitrile (in the condensed liquid phase).  

The contemporary presence of CO2, on the other hand, suggests different options for 

ammonia recovery. The first trivial route would be its separation and recycle. 

However, this relies on expensive cryogenic separation. Alternatively, CO2 and NH3 

may react to form urea or can be used to produce ammonium bicarbonate 

(NH4HCO3). Both the latter can be viable alternatives, since the value of both 

chemicals is higher than that of ammonia. Ammonium bicarbonate and urea find 

application in the same fertilisers market, with cost ca. 0.18-0.22 USD/kg (with a more 

unstable quotation for urea). However, urea needs an additional plant that may be 

unfitted to the relatively small plant size typically expected for renewable-based 

processes, thus additional costs. By contrast, ammonium bicarbonate can be easily 

reacted and separated while cooling down the product mixture, envisaging lower 

capital costs.  

From a sustainability point of view, the production of ammonium bicarbonate 

consumes one mole CO2 per mole of NH3, whereas halved amount of CO2 is 

consumed to produce urea. On this basis, as will be discussed further in the following, 

the selection of ammonium bicarbonate as ammonia recovery co-product (maybe 

even the predominant one, from mass balances), allows to convert additional carbon 

dioxide with respect to the amount produced during the reaction. A rigorous 

comparison between the two routes needs the economic assessment and a further 

comparative life cycle assessment, which is out of the scope of this work. Thus in the 

following we consider only the ammonia recovery in form of ammonium bicarbonate. 

In this way, four process improvements are achieved at once: i) all the ammonia is 

converted into marketable products, rising its conversion from 30% (acetonitrile plus 

cyanides) to 96% (acetonitrile, cyanides and ammonium bicarbonate, what is left out 



 

 

is the nitrogen generated from ammonia oxidation); ii) the further purification of 

acetonitrile is made easier; iii) the CO2 emission from the reactor is fully brought to 

zero and, since additional CO2 is consumed, the process is even more sustainable 

from this point of view; iv) the cryogenic separation of ammonia from N2 (deriving 

from feeding air and produced during the reaction), preliminary to its possible recycle 

to the reactor, as alternative option, is avoided. 

This two-process integration has been designed interposing, between the reaction 

and purification stages, a salt formation and precipitation section (as in the ‘wet’ 

ammonium bicarbonate process or in several later options for CO2-NH3 absorption 

38–43) with a main washing tower discharging the oversaturated solution into a 

decanter. A first centrifuge separates the suspension, then the ammonia still present 

is further precipitated blowing into the liquid an additional amount of carbon dioxide 

and separating through a second centrifuge. 

 

Bicarbonate recovery 

The ammonium bicarbonate salt exits from the centrifuges as a hydrated solid. It has 

to be dried in order to prevent its decomposition, mediated by water,  into gaseous 

ammonia and CO2 that, even at low temperatures, results into an appreciable material 

loss 44. Moreover, the moisture discharged from the centrifuges along with the salt 

contains a small quantity of acetonitrile, which has to be recovered to improve 

process yield. Taking advantage of the salt being insoluble in alcohols 45, the slurry 

is first washed with ethanol, causing a ‘chemical separation’ of the moist salt from the 

water and so quenching the decomposition 44, allowing a safer warm-air drying. 

The air current passed over the salt in the dryer recovers then the acetonitrile still 

absorbed in the solid plus the ethanol and the oxygen needed for the reaction, so the 
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dryer exhaust flow can be directly recycled to the reactor as part of the feed mixture, 

into which ammonia is then vaporized. In this way, the dryer heat input is also fully 

recovered to the process without any additional ethanol consumption.  

In the present as for the washer and dryer, the saturation threshold of ammonium 

bicarbonate has been calculated on water as basis solvent, being this the default 

method of the software electrolyte-NRTL framework. This is a conservative approach. 

As a matter of fact, the salt solubility in a mixed solvent involving also ethanol and 

acetonitrile was lower, as confirmed experimentally in the bench-scale tests we 

carried out to find data to set these units.  

The liquid mixture discharged by the centrifuges along with the ammonium salt has 

been fixed according to a series of experiments. After dissolving the salt in pure water 

or in a water-ethanol-acetonitrile mixture, the vials have been centrifuged and the 

solid filtered and left to dry at ambient temperature. Weighting the sample just after 

the filtration and after the drying we could quantify the humidity content of the 

centrifuged salt. 

According to these tests, we could also specify the drier block as a “virtual evaporator” 

that actually eliminates all the species present as liquid in the stream, except for a 

residual mass fraction that can be set appropriately based on experiments. The 

acetonitrile recovery from the dried vapor is tuned accordingly. 

 

Acetonitrile purification 

Acetonitrile forms an azeotrope with water 46, thus, a dedicated purification strategy 

must be developed. The method chosen to purify the acetonitrile is the pressure 

swing distillation technique 47 and its application to this case is fully described 

elsewhere 16. With respect to other purification strategies 15,48,49 this has appreciable 



 

 

heat duties, but it does not require the addition of any other chemical (with their 

relative feed circuits, makeup costs and dedicated procedures).  

The entire acetonitrile purification train consists of four blocks, i.e. two main columns, 

each of them preceded by two auxiliary turrets: 

a) the first column is without condenser and discharges water excess in the bottom; 

b) the second column performs the main task: it collects the acetonitrile-water binary 

azeotrope (at the 10 bar equilibrium composition) recycled from the other main tower, 

and produces a distillate where acetonitrile and water are at the atmospheric 

azeotrope ratio dumping all the remaining excess water in the bottoms; 

c) the third turret separates hydrogen cyanide (plus residual ammonia and CO2) from 

the acetonitrile-water binary liquid; 

d) the fourth main column operates at 10 bar: at this pressure, the feed composition 

results poorer in water (33 mol%) than the equilibrium azeotrope is (48 mol%), so that 

pure acetonitrile can flow in the residues. 

The operating pressure of the columns in the pressure swing loop was optimised in 

a previous work and resulted in a better separation with respect to lower pressure 

cases. On the other hand it avoid excessively high pressure, that would not add value 

for separation in spite of increasing capital and operating costs. 

An intermediate “stabilising” column has been added just before the pump to the high 

pressure column in order to accomplish full gas recovery. In principle, this could be 

achieved with a partial condenser, but the liquid phase composition sent to the pump 

still contained dissolved gas when dealing with a simple once-through flash 

separation.  

 

Hydrogen Cyanide separation 
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Being much more soluble than ammonium bicarbonate, ammonium cyanide cannot 

be precipitated at this stage, where a relatively large volume of water is still present. 

This gas is quenched into a sodium hydroxide bath (pH ≥13), where it turns into 

solvated sodium cyanide. The vapours released from this alkaline solution contain 

the residual ammonia, which can be recycled into the bicarbonate precipitation 

section, while the carbonate residues remain in the liquid phase as sodium carbonate. 

A further development of this work will account for the stepwise separation of the 

sodium salts, relying on the sensibly different solubility of NaCN with respect to 

Na2CO3. Also in this case, this  difference is greatly enhanced by adding ethanol 45. 

The reactions set used in this section is detailed in the Supplementary Information. 

 

 

Results and discussion 

The overall process balances are reported in Table 2 and Fig. 3.  

Of 0.24 kmol/h of acetonitrile formed in the reactor according to reaction 1, 0.22 

kmol/h are recovered with 99.5% purity. The higher loss takes place in the main 

precipitation column, which is indeed the more complex block calculated. The 

process takes place at low pressure to save compression costs, anyway the gaseous 

flow through the reactor is at 1 bar-gauge, in order to obtain some volume flow 

reduction. The pressure is reduced gradually within the salt-precipitation stage to the 

atmospheric level, because the pressure-swing technique takes advantage of the 

highest differential pressure available. 

 

Mixture washing 

Several preliminary calculations of the thermodynamic conditions for this stage have 

been done, to test the possibility to start the separation of the ammonia at this point: 



 

 

the results achieved with a vapor-liquid separator indicated a low Kvl for ammonia due 

to its precipitation as NH4HCO3, but a higher Kvl for acetonitrile (Fig. 4), so the gas-

liquid contact has been extended with a multiple-stages layout substituting the single-

stage separator with a small plate column. 

Along the four-trays of the washer, several functions are carried out at once: i) outflow 

of the non-condensable gases; ii) final cooling of the reaction products; iii) first 

precipitation of ammonium bicarbonate in the recirculated bottoms. 

Most of the acetonitrile (4-5% on a molar basis) is lost at this stage, together with 1.2 

mol% of the ammonia. 

To lower the losses within a single block configuration we should have decreased the 

temperature even below this already low value. Additional stages purposely 

dedicated to the recycle of these species (e.g. intercooled compressors plus 

separators, or basic washings) may be further added on purpose, following economic 

evaluation.  

We did not increase the water amount (that would lower the ammonia loss overhead) 

to precipitate more bicarbonate. A swell, we did not lower the temperature because 

the three cryogenic cycles currently under development are at present, designed at -

15 or -20 °C.  

 

Solid precipitation and handling  

The solubility of ammonium bicarbonate depends from several equilibria besides the 

solid-liquid electrolytes distribution, plus the equilibria of repartition of ammonia and 

CO2 between the liquid and the vapor phases. Given a mixture of water, ammonia 

and CO2, the solid precipitate is coupled to the pH and depends essentially on the 

temperature: this is kept to -10 °C for the whole section (a less demanding condition 
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of 0°C is also foreseen for one block). Ice formation is neglected because of the high 

ionic strength of the solution and the presence of acetonitrile. 

To model the separation of the salt from the liquid, two centrifuges based on the 

Stokes law (either with advancing screws or rotating discs) have been placed in the 

flowsheet (Fig. 2). Anyway, rather than calculating the solid separation as a 

consequence of the detailed mechanical parameters and the particle size distribution, 

we have chosen the more generic approach of specifying an overall salt separation 

efficiency and its gross moisture content.  

The moisture content has then been specified in the block as 25% on a dry basis.  

The salt precipitated corresponds then to the equilibrium condition (at -10 °C and 

pressure of 1.0 – 1.9 bar) for the ammonia exiting the reactor (0.706 kmol/h) plus that 

recovered from the Pressure Swing section (0.072 kmol/h) within the calculated water 

flows, i.e. 0.665 kmol/h of ammonium bicarbonate. The difference of 0.041 kmol/h is 

lost chiefly as gas from the washer block, then as a liquid trace in the alkaline bath, 

while the ammonium trapped within the salt is recovered as the moisture evaporates 

in the dryer. 

 

Dryer specifications 

According to the drying experiments performed, the dryer can be specified at a 

temperature as high as 40 °C. Since this temperature is sensibly higher than the 

ambient condition, the liquid evaporation can be considered complete, but the 

decomposition into ammonia and CO2 is very slow when only little amount of water 

is present within the solid and, thus, it can be neglected. Indeed, the global block 

mass balance still takes into account all the water discharged from the centrifuges, 

but this liquid has to be thought as physically separated from the crystals by the action 

of ethanol. 15 



 

 

 

Pressure Swing distillation 

The final acetonitrile purification via this technique is fully described elsewhere15,16. 

The role of the intermediate column PS3 and its specification are also explained in 

the dedicated work on separation by pressure swing16. 

 The blocks specifications are reported in Table 3. The last column is sized so to work 

very close to the theoretical material solution of the azeotrope breaking: 

{
𝐹 × 𝑥𝑎𝑡𝑚 = 𝐷 × 𝑥10 + 𝐵 × 0.995

𝐵 ≥ 0.22                                                
                (E1) 

where B, F and D are the flows of acetonitrile in the column bottoms, feed and 

distillate, respectively, and its recovery and purity are set as process targets. xatm and 

x10 are the molar azeotropic fractions at different pressures. The first three-columns 

joint operation is rather more complex, as it involves the treatment of a 5-species non-

ideal mixture, so we refer the reader to the above cited papers for additional details. 

This plant section is the most demanding in energetic terms: it is then possible further 

and more detailed optimization and economic analysis. 

 

Alkaline salts trap 

Ammonia and CO2 in equilibrium with the precipitated salt are expelled from the 

Pressure-Swing section, but their recovery and separation from HCN via distillation 

is scarcely feasible due to the very low bubble point of ammonia. It is more convenient 

to separate ammonia from HCN exploiting their opposite acid-base behaviour, even 

if this implies to treat the carbonates alongside the cyanides. This strategy has been 

adopted because: i) ammonia is a more valuable feedstock than CO2, then its 

recovery has the priority, ii) carbonates and cyanides have quite different solubilities, 
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so their further solid-liquid separation should not be problematic, iii) the conversion of 

CO2 into carbonates improves the carbon-recycle character of the process. 

The alkaline bath pH (raised with sodium hydroxide) and temperature have been 

chosen so to maximize the recovery of ammonia while keeping all the cyanide within 

the solution.  

 

Thermal duties and integration 

The thermal needs and deliveries of the process are summarized in Table 4. The 

main issue of this design is the cryogenic temperature needed for an efficient 

ammonium bicarbonate precipitation. Several strategies are possible to meet this 

demand, as they will be developed and compared in a further work. At the moment, 

the most promising seems a simple compression-expansion cycle of a refrigerant 

mixture (it requires less heat than an adsorption cycle based upon rectification and is 

likely better suited for a possible scale up with respect to a heterogeneous-absorber 

machine). 

 

Atom and CO2 balances 

As outlined in Fig. 3, the process relies on a tight atom economy, since the losses 

are within the 10% and are due mostly to the unavoidable ammonia undesired 

oxidation in the reactor. Considering that only a part of the carbon is fed as ethanol, 

the acetonitrile and bicarbonate yields with respect to this reactant becomes more 

balanced, i.e. the 48% (instead of 33%) and the 46% (instead of the 50%) 

respectively, while the cyanide represents ca. 6%. 

The ammonium bicarbonate process is then not only effective to recover the 

ammonia, but also to turn the competitive combustion of ethanol into a still useful 

reaction with a marketable outcome. Of the total fed carbon atoms, 28% comes from 



 

 

external CO2, and this leaves the possibility to couple this process with other 

installations characterized by net positive CO2 emissions. 

 

Life cycle analysis 

Life Cycle Assessment (LCA) methodology is a standardized approach based on ISO 

14040 series50,51, used by researchers and companies to support design of innovative 

products and systems. LCA is not new in the chemical sector. In previous studies, 

LCA has been applied to evaluate the production of acrylonitrile from propylene and 

propane to ammoxidation52. However, it is quite a versatile methodology, easily 

applied at both industrial53 and laboratory scale54,55. In general, in the case of bio-

chemicals is used to support decision making and marketing procedures. In fact, 

through a life cycle analysis and its holistic approach researchers are able to identify 

environmental criticalities of the innovative pathways and to propose valuable 

alternatives to the traditional routes. Its usage within the bio-based industry is strongly 

suggested by international literature56 to estimate and compare environmental scores 

of chemicals from renewables with those achieved by fossil routes. In this case a 

cradle to gate perspective is usually recommended, since able to include in the model 

from raw materials extraction up to the synthesis of the target molecule. In the study, 

the LCA approach was used to compare the innovative bio-based acetonitrile route 

with the traditional pathway from oil (SOHIO process). Results from flowsheet 

simulation were used to fill in the inventory data for the bio-based acetonitrile. Table 

5 collects the full inventory for the production of 1 kg of bio-acetonitrile (functional 

unit). On the other hand, the default process in Ecoinvent31 library was used as a 

base to simulate the production of fossil acetonitrile from an average European plant 

based on SOHIO process (process name Acetonitrile {RER}| Sohio process | Alloc 
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Def, U). The SimaPro license30 includes several standardized analysis methods, 

among which the Cumulative Energy Demand (CED) one (v 1.09)57. CED is in general 

defined as “the entire demand, valued as primary energy, which arises in connection 

with the production, use and disposal of an economic good”58. In this case, CED was 

used to identify the whole amount of resources utilized in the entire chain (raw 

materials and energy) and their origin (fossil or renewables). Table S1 in ESI shows 

the results from CED evaluation, in which resources consumption is expressed in 

terms of MJ eq. As depicted, bio-acetonitrile route is able to reduce the total amount 

of resources up to -33% if compared to the fossil one. In addition, given that CED is 

considered a valuable screening indicator of the overall impact of products59,60, it was 

used to estimate a new and easy parameter called renewability grade of both routes 

to acetonitrile. The renewability grade represents the ratio between the renewables 

and the whole amount of resources used in the entire supply chain (from raw 

materials extraction up to the industrial gate). The scores, expressed in percentage 

of overall quantity, are reported in Fig. 5. As depicted, the renewability grade of the 

bio-based acetonitrile reaches 84%: more than four-fifths of the resources has 

renewable origin. These results seem impressive if compared with those of the fossil 

pathway for which the score is around 1% as a consequence of the lower grade of 

renewables used which are mainly concentrated in the production of energy (e.g. 

hydro-, solar- and wind-power, Table S1). This represents a further confirmation of 

the fact that the reduction in the use of fossil resources between two routes was 

evaluated around -89% (Table S1 in ESI). 

The renewability grade was introduced since it is simple to estimate and quite useful 

when the bio-based sector is under study, to identify if the innovation is able to reduce 

the fossil dependence or not.  



 

 

CED is usually considered a single-issue analysis method, since able to show the 

consumption of resources only. No information concerning negative implication on 

ecosystems are easily understandable. Therefore, in order to show these potential 

impacts the ReCiPe 2016 method was adopted61. The method expressed results in 

terms of 18 impact categories at midpoint level. Table 2 shows the trends of both 

routes using the characterization factors (e.g. kg of CO2 eq. for the climate change). 

Among these, only 10 (the more relevant after a weighting analysis) were selected to 

be translated into a single score by using a common unit (millipoints, mPt). Results 

in the form of single score (Fig. 6) represent the cumulative impacts reached by both 

pathways to estimate the worst in terms of sustainability. A greater cumulative score 

means larger environmental burdens. On the contrary, lower mPt values indicate 

potential reduction of the impacts. As disclosed, the bio-based synthesis presents an 

inferior cumulative score than the fossil pathway mainly thanks to its renewability 

grade. The usage of bio-EtOH, in fact, leads the whole system to achieve lower 

burdens in terms of fossil dependence (fossil depletion category, -78%) and climate 

change (-64%). In addition, the avoided production of ammonium bicarbonate, 

sodium cyanide and sodium carbonate (all recovered as by-products in bio-refinery 

system) produces significant improvements in terms of human toxicity and metal 

depletion. In fact, both categories achieve negative results which means avoided 

impacts and, therefore, potential benefits on ecosystems. On the contrary, the 

categories directly linked to cultivation of biomass (such as land occupation and 

transformation) present worst results for the bio-based route if compared with those 

achieved by fossil pathway. These results are in line with our expectations. In fact, as 

already discussed in a recent publication9, today the main source of EtOH is a 

dedicated crop such as corn. This scenario represents the actual situation on market 
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(default bio-based scenario) in which EtOH is 100% corn-based, derived from US 

production (worldwide leader). In order to investigate other primary sources for bio-

acetonitrile, two further EtOH raw materials were evaluated: sugarcane and 

lignocellulosic biomass. 

Results of this sensitivity analysis are collected in Fig. 7. The usage of dedicated 

sugarcane presents a dramatic increase of the environmental impacts for all the 

impact categories considered, if compared with the default bio-based scenario (Bio-

based acetonitrile, from corn EtOH). In particular, the Bio-based acetonitrile, from 

sugarcane EtOH simulates the Brazilian situation (second major producer of EtOH), 

in which the main source is sugarcane. This alternative has negative effects on 

environment (=higher scores in mPt) for the categories of natural land transformation, 

terrestrial ecotoxicty, climate change, fossil fuel usage and land occupation. The main 

reason is the depletion of the natural forest as a consequence of the intensive 

cultivation of sugarcane and usage of fertilizers. Cumulative impact of the sugarcane-

based scenario is far to be considered carbon neutral and/or comparable with the 

fossil route: +96% (see ESI, Table S2). On the other hand, second generation EtOH, 

which means ethanol from lignocellulosic fraction, seems to be more competitive. The 

Bio-based acetonitrile, from lignocellulosic EtOH, in fact, could reduce the overall 

impact of -73% if compared with the traditional process; and it seems only + 7% if 

compared with the default bio-based scenario (the main reason is the lower efficiency 

of transformation for lignocellulosic biomass  EtOH vs. corn  EtOH). However, 

the most interesting aspect is that the usage of residual lignocellulosic materials (e.g. 

bio-waste, such as residual wood fraction deriving from timber and prunes activities) 

leads the whole system to the carbon neutrality: climate change effects are negative 

(avoided impacts, see ESI Table S2).  

 



 

 

 

Conclusions 

A process for acetonitrile production through ethanol ammoxidation has been 

designed from the grass roots. This represents a fully new process, with complete 

materials recovery, that allows the independent production of acetonitrile exploiting 

renewable sources.  

The process feasibility is proven even dealing with relatively low selectivity to 

acetonitrile (e.g. as low as 50%). The large excess of ammonia, needed to enhance 

the ammoxidation kinetics against the oxidation reactions, is fully recovered as 

marketable ammonium bicarbonate. Alternatives are possible, such as ammonia 

recovery as urea, but they should be carefully evaluated from the economic point of 

view. The resolution of the acetonitrile-water azeotrope has been designed so to 

accomplish the purification of a more complex mixture. Overall, a 92% recovery of 

the produced acetonitrile (99.5% purity) is the final yield. The flue gases recovery and 

valorisation is also possible with the addition of NaOH. 

The simplified life cycle evaluation here was applied to support process development. 

LCA results confirm the reduction in the environmental burdens of the innovative bio-

based route, compared to the traditional pathway from petroleum. However, the usage 

of non-dedicated crops is strongly recommended. In fact, despite the lower yield 

conversion, the lignocellulosic fractions deriving from residual woods seems the better 

way to fight climate change and to promote a lower carbon society starting from greener 

commodities.  

 

Supplementary Information 
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The Supplementary Information file includes the reactions set for solids recovery; the 

phase diagram to describe equilibria in the washer and drier sections; Resources 

consumption and the sensitivity analysis of different routes to acetonitrile. 
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Acronyms, abbreviations and symbols 

ENRTL Electrolytes Non-Random Two 

Liquids 

  

MeCN Acetonitrile, CH3CN   

NRTL Non-Random Two Liquids   

RADFRAC Rigorous ADsorption-

FRACtioning 

  

T Temperature   

 

Flowsheets coding  

Functional coding – section number – block coding – block number 

Functional codes  Block type code  

  AA Compressor 

FR Feed of Reagents AP Pump for Pressure rising 

SB Separation of By-products CA Column with Azeotropes 

SP Separation of Products CM Column with a Mixture of more than 2 specie 

SV Separation of Wastes CV Control Valve 

TP Transformation of Products HB Heat exchanger,Boiler 

  HF Heat exchanger,Furnace 

  HX Heat eXchanger, generic 

  MJ Mixing Junction 

  PA Tube at Atmospheric pressure 

  PP Tube under Pressure 

  RK Reactor in Kinetic conditions 

  SA Separation of Azeotropes 

  SC Separation Column 

  SF Separation via Flash 

  SG Separation by Gravity 

  SJ Splitting Junction 

  SS Separation of Solids 
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TABLES 

Compound Inlet Flow (kmol/h) Conv. (%) Sel. (%) Flow (kmol/h) 

C2H6O 0.5 100 - 0.0 

H2O 0.0 - - 1.67 

CH3CN 0.0 - 48 0.24 

NH3 1.3 30 - 0.91 

HCN 0.0 - 13 0.065 

CO2 0.0 - 38 0.39 

CO 0.0 - 4 0.04 

C2H4 0.0 - 2 0.01 

N2 6.9 - 12 6.94 

O2 1.7 52 - 0.7 

Table 1: Activity data and input-output flows of the chemicals for the ethanol ammoxidation on a Cs-V/TiO2 catalyst 36.  

 

Material Inputs  Material Outputs  

Air 170 m3/h Acetonitrile 9 kg/h 

Water loss makeup < 2 l/h Ammonium 
bicarbonate 

52 kg/h 

Carbon Dioxide 16 kg/h Sodium Cyanide 3 kg/h 

Ethanol (azeotrope) 23 kg/h Sodium Carbonate 6 kg/h 

Ammonia 18 kg/h Flue gases 75 m3/h 

NaOH (solid) 13 kg/h Water drainage 7 l/h 

Table 2: Overall plant feeds and products balances. 

 

 

 

 

 

 

 

 

 



 

 

Block HEATER PS2 PS3 PS4 

Function Mixture re-
heating 

Excess water 
discharge 

Gases 
purification 

Azeotrope 
breaking 

Trays 6 15 25 18 

Feed tray 1 7 5 10 

Reflux ratio 
(mol/mol) 

- 0.77 2.9 1.8 

Bottoms rate 
(kmol/h) 

1.23 0.47 0.60 0.22 

T (head) (°C) 83 68 25 160 

T (residues) (°C) 100 100 76 175 

Pressure (bar-a) 1 1 1 10 

Condenser duty 
(kW) 

- -6.8 -7.2 -5.7 

Reboiler Duty 
(kW) 

13.3 1.2 1.5 10.5 

Split Fractions 
(B/F) 

    

Water na na 0.98 <0.01 

Acetonitrile 0.00 0.00 0.98 0.55 

volatiles 0.00 0.00 0.00 - 

Table 3: Specifications and results of the Pressure-Swing section distillation columns. Negative duties stand for 

released (rather than absorbed) heat. ‘B/F’ stands for ‘Bottoms to Feed ratio’. 
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Block AUTOHX REACTOR WASHER CO2INLET HEATER PS2  PS3  PS4  SALTBATH 

Type Heat 
Exchanger 

Reactor Washing 
column 

Flash 
mixer 

Tray 
reboiler 

Column 
reboiler 

Column 
condenser 

Column 
reboiler 

Column 
condenser 

Column 
reboiler 

Column 
condenser 

Flash tank 

Duty 
(kW) 

14.9 -97.4 -62.4 -8.2 15.1 1.2 -6.8 1.5 -9.9 10.5 -7.0 -2.0 

Notes Feed-to-
product 
exchange 

 Cryogenic 
section 

Cryogenic 
section 

Column 
without 
condenser 

      Alkaline 
bath, CN 
salification 

Table 4: Duties report for the main process blocks (refer to Figure 2). The duties of additional heaters and coolers, here not shown for simplicity, have been lumped into the 

nearest main block’s account. 



 

 

 

Table 5: Cradle to gate inventory for the production of 1kg of bio-based acetonitrile from EtOH ammoxidation. 

 

Inventory flow unit amount 

Input   

air m3 18.89 

water l 0.22 

CO2 kg 1.78 

ethanol kg 2.56 

ammonia kg 2.00 

NaOH (solid) kg 1.44 

heating power kWh 5.77 

electric power kWh 0.74 

Output   

acetonitrile 
kg 1.00 

avoided products   
ammonium bicarbonate kg 5.78 

sodium cyanide kg 0.33 

sodium carbonate kg 0.67 

air emissions   

flue gases m3 8.33 

water (gas) kg 0.05 

acetonitrile (gas) kg 0.05 

ammonia (gas) kg 0.01 

ethylene (gas) kg 0.03 

CO (gas) kg 0.08 

N2 (gas) kg 17.35 

O2 (gas) kg 1.79 

heating power kWh -22.50 

water emissions   
water drainage l 0.78 
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Table 6: Results from cradle to gate analysis in terms of characterization factors per each impact category. 

 

Impact category Unit 
Bio-based 

acetonitrile, from 
corn EtOH 

Fossil-based 
acetonitrile, from 

SOHIO process 

Climate change kg CO2 eq 1.4E+00 3.8E+00 

Ozone depletion kg CFC-11 eq 1.4E-07 2.7E-07 

Terrestrial acidification kg SO2 eq 4.7E-02 2.1E-02 

Freshwater eutrophication kg P eq -1.1E-03 4.3E-04 

Marine eutrophication kg N eq 1.2E-02 1.5E-02 

Human toxicity kg 1,4-DB eq -1.1E+01 6.1E-01 

Photochemical oxidant 
formation 

kg NMVOC 6.0E-02 8.6E-03 

Particulate matter formation kg PM10 eq 9.2E-03 5.1E-03 

Terrestrial ecotoxicity kg 1,4-DB eq -1.4E-03 2.1E-04 

Freshwater ecotoxicity kg 1,4-DB eq -1.1E+00 1.4E-02 

Marine ecotoxicity kg 1,4-DB eq -2.2E-01 1.5E-02 

Ionising radiation kBq U235 eq -5.2E-01 1.6E-01 

Agricultural land occupation m2 yr 2.6E+00 9.6E-02 

Urban land occupation m2yr 1.3E-01 7.8E-03 

Natural land transformation m2 8.9E-04 4.8E-04 

Water depletion m3 3.2E-01 6.6E-02 

Metal depletion kg Fe eq -2.8E-01 1.1E-01 

Fossil depletion kg oil eq 5.1E-01 2.4E+00 

 



 

 

FIGURES 

 

Figure 1: Process conceptual scheme. 
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Figure 2: Simplified full plant flowsheet, where the main material loops are more clearly distinguished. The feed line/reactor/solid handling loop encompasses all the blocks to the second centrifuge (starting from the left) but has no 

accumulation being always open to the ‘PROD6’ stream. The ammonia recycle is linked with the first at the key block ‘CO2INELT’, and has a potential build-up issue because the exiting flow (stream ‘SALT2’) depends not-linearly on the 

‘CO2FEED’ input. The pressure-swing recycle encloses the last three columns (on the right) and its convergence depends on the purge stream ‘GASES’. The water recycle is completely open via a (not drawn) drainage line just before the 

washer and an additional makeup line upstream the pump. 

 

 



 

 

Figure 3: Overview of the atom economy for the process. The carbon fed as CO2 instead of ethanol amounts to the 28% 

of the total moles, explaining the higher contribution of CO2 to the balance, while all the reactive nitrogen comes from 

the ammonia. 

 

Figure 4: Analysis of the acetonitrile-ammonia distribution in the liquid/vapor phases of the product mixture cooled 

down at different temperatures and pressures. The partition of ammonia is calculated as the ratio: 

𝑁𝐻3(𝑔) (𝑁𝐻3(𝑙) + 𝑁𝐻4(𝑙)
+ + 𝑁𝐻4𝐻𝐶𝑂3(𝑠))⁄  (mol/mol). 
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Figure 5: Renewability grade (green) for the bio-based and fossil routes to acetonitrile. 

 

 

Figure 6: Single score of the two alternative routes to acetonitrile, in terms of single score (i.e. cumulative impact). 
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Figure 7: Sensitivity analysis of different routes to acetonitrile, cumulative scores (Pt). 
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Table of Contents 

 

An integrated plant has been designed to produce acetonitrile by ammoxidation of ethanol. 

The sustainability of this approach is checked through life cycle assessment. 

SUPPLEMENTARY INFORMATION 

Total 3 pages. 

Page S2: reactions set for solids recovery;  

Page S3: Table S1 - Resources consumption and Table S2 - Sensitivity analysis of different 

routes to acetonitrile 

 

Reactions set for salts recovery 

 

The acid-base and salt chemistry of the involved species is based on the following 

stoichiometry, applied to any liquid-phase stream (save where differently specified), 

whereas reactions 1-6 (in the main text) are confined within the reactor block: 

𝐻2𝑂 +  𝑁𝐻3  ⇄  𝑂𝐻− +  𝑁𝐻4
+  (NH3 dissociation)          (R7) 

𝐻2𝑂 +  𝐻𝐶𝑁 ⇄  𝐻3𝑂+ +  𝐶𝑁− (HCN dissociation)          (R8) 

𝐻2𝐶𝑂3 + 𝐻2𝑂 ⇄  𝐻𝐶𝑂3
− +  𝐻3𝑂+ (first carbonic acid dissociation)     (R9) 

𝐻𝐶𝑂3
− +  𝐻2𝑂 ⇄   𝐶𝑂3

2− + 𝐻3𝑂+ (second carbonic acid dissociation)   (R10) 

𝐻𝐶𝑂3
− +  𝑁𝐻4

+  ⇄  𝑁𝐻4𝐻𝐶𝑂3(𝑠) (ammonium bicarbonate precipitation)   (R11) 



 

 

𝑁𝑎𝑂𝐻(𝑠)  →  𝑁𝑎+ +  𝑂𝐻−  (NaOH dissociation)           (R12) 

2𝐻2𝑂 ⇄  𝐻3𝑂+ +  𝑂𝐻−  (water auto-protolysis)           (R13) 

where the formation of carbamates has been neglected, at this stage of process 

development, being at least one order of magnitude less concentrated with respect 

to the ammonium and bicarbonate ions [Mathias, P. M.; Reddy, S.; Connell, J. P. O. 

Quantitative Evaluation of the Aqueous-Ammonia Process for CO 2 Capture Using 

Fundamental Data and Thermodynamic Analysis. Energy Procedia 2009, 1 (1), 

1227–1234]. 
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Type of resources consumed in MJ 
eq. 

Bio-based 
acetonitrile 

Fossil-based 
acetonitrile 

Total  74.4 111.5 

Non renewable, fossil 23.3 106.0 

Non-renewable, nuclear -11.3 4.1 

Non-renewable, biomass 0.1 0.0 

Total Non-renewable 12.1 110.1 

Renewable, biomass 64.6 0.8 

Renewable, wind, solar, geothermal -0.7 0.1 

Renewable, water -1.6 0.5 

Total Renewable 62.3 1.4 

 

Table S1 Resources consumption of both routes expressed in MJ eq. Negative values 

represent benefits from product and energy recovery of the bio-refinery system. 

 

     

Impact category 

Bio-based 
acetonitrile,  
from corn 

EtOH 

Bio-based 
acetonitrile, 

from 
sugarcane 

EtOH 

Bio-based 
acetonitrile, 

from 
lignocellulosi

c EtOH 

Fossil-
based 

acetonitrile
, from 

SOHIO 
process 

Total 1.18 E+02 9.23 E+02 1.27 E+02 4.70 E+02 

Climate Change 6.16E+01 1.80E+02 -4.70E+01 1.73E+02 

Human toxicity -1.55E+02 -1.42E+02 -1.59E+02 8.49E+00 

Particulate matter formation 4.76E+01 1.10E+02 1.29E+01 2.62E+01 

Terrestrial ecotoxicity -4.64E-01 5.38E+01 -6.89E+00 7.14E-02 

Freshwater ecotoxicity -2.16E+00 -2.17E+00 -2.21E+00 2.63E-02 

Agricultural land occupation 1.15E+02 2.23E+02 3.29E+02 2.56E+00 

Urban land occupation 6.04E+00 1.21E+00 1.28E+01 3.59E-01 

Natural land transformation 2.75E+00 5.11E+02 1.76E+00 1.43E+00 

Metal depletion -1.29E+01 -1.25E+01 -1.64E+01 5.10E+00 

Fossil depletion 5.50E+01 7.29E-01 1.61E+00 2.52E+02 

 

Table S2 Sensitivity analysis of different routes to acetonitrile, cumulative scores (Pt). 

 

 


