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Abstract 

A newly developed kinetic model for the steam reforming of bioethanol has been used to simulate a fully 

integrated bioethanol-to-power plant. The detailed geometrical model of a tube-bundle reformer has been 

designed, allowing for a reliable rescaling from a molar-scale hydrogen yield to the selected target of 0.45-

0.50 kg/h. This hydrogen output is suitable to grant electrical (up to 5 kW) and thermal (from 5 to 10 kW) 

power supply for distributed micro-generation.  

The feedstock cost for this cogeneration plant has been sensibly reduced with respect to other available 

ethanol reformers proposed in the literature, as the alcohol can be used already mixed with water, i.e. using 

only partially purified bioethanol. With respect to our previous feasibility studies, the system layout has been 

further simplified, and a qualitative analysis of the system stability has been performed in relation to a 

chosen control parameter (i.e. the reformer heat input): the reformer outlet temperature stabilizes at 650 °C 

and the fuel cell power at 10.0 ± 0.5 kW around a working point that minimizes the oxygen inlet. 

 

Keywords: Bioethanol; Steam reforming; Hydrogen production; Heat and power cogeneration; Process 

simulation. 
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List of Acronyms and symbols used 

CAPEX Capital Expenses �� Constant pressure heat capacity 
FC Fuel Cell � Catalyst mass 

MCHP Micro Cogeneration of Heat and Power � Enthalpy 

OPEX Operative Expenses � Mass flow 

PEM Proton-Exchange Membrane � Axial velocity 

WGS Water-Gas Shift � Thermal power 

  r Reaction rate 
  T Temperature 
  U Overall heat-exchange coefficient 
  x FC utilization factor 
  y Gas-phase molar fraction 
 

Introduction 

Hydrogen production via steam reforming is of growing interest to valorize biomass-derived feedstocks, 

increasing the number of processes operable with renewable resources 1–6. 

Besides the hydrogen production processes based on methane 7,8 and methanol 9,10, those starting from 

ethanol 11 can take the advantage of a liquid (easily handled) and non-toxic reactant. In the context of the 

ethanol-based processes, that range from its direct use as fuel 12,13 to the production of ethylene 14,15, the 

steam reforming process has two interesting features: i) it is very flexible in terms of final products, since the 

produced hydrogen can be used either as a fuel and as a chemical (in case exploited directly as syngas) 16; ii) 

its material yield and energetic input can be tuned varying the water/ethanol ratio in the reacting mixture 17  

and iii) ethanol can be used at low purity levels 2,18, thus limiting the reactant cost. Indeed, one of the main 

costs in ethanol production is its purification through azeotropic distillation and molecular sieves. 

Conventionally, the raw beer is first concentrated through a flash, then rectified to the azeotrope and further 

dehydrated. The present application allows to exploit directly the mixture outflowing from the first flash 

distillation, which is by far less expensive than the azeotrope. An economic assessment has quantified the 

raw material price for first generation ethanol ca. half than the pure 99.9% ethanol 19–21. We have recently 

addressed the cost estimation of a centralized hydrogen production plant, converting by steam reforming 

40,000 ton/year of bioethanol. The minimum selling price of hydrogen (including 10% rate of return) was 

calculated as 2.39 €/kg. Concerning the 1st generation bioethanol, the use of 90% purity led to a selling price 

decreased by 8% compared to the pure substrate, whereas the use of a 50 wt% solution led to a 42% lower 

price with respect to absolute ethanol 22,23. Hydrogen produced from second generation bioethanol has a 
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higher minimum selling price, 3.70 €/kg, due to more expensive biomass treatment. These figures should be 

compared with other renewable based options for renewable hydrogen, such as nuclear-based water splitting 

(3.8-5.4 €/kg), hydropower electrolysis (5.4–7.9 €/kg). A further comparison can be the current hydrogen 

price from methane steam reforming, not minimum, which is 3-5 €/kg. 

Moreover, other two aspects contribute to the importance of this raw material. First, the catalysts for ethanol 

reforming are today an established commercial technology 24,25. In addition, this alcohol is particularly well 

posed to meet the large market of distributed consumption, such as the civil and the residential power co-

generation 26,27, which nowadays is still based on conventional fuels as natural gas 28 (even when coupled to 

the FC technology). A mobile ethanol reformer fuel cell system for off-grid power production has been 

proposed, based on an autothermal reformer, high and low temperature shift reactors, a selective methanation 

reactor and a tail gas combustor, with size was 250 W 29. A slightly bigger size, 1 kW, was addressed 

elsewhere30. The control of an integrated system is a very critical point due to the different time response of 

the catalytic fuel processor stage and the electrochemical fuel cell part of the plant31, as well as the dynamic 

behaviour32. A micro-combined heat and power generation system based on a 10 kW PEM fuel cell is 

proposed by Beniasadi et al. 33, but using natural gas, with consequently higher environmental impact than 

bioethanol. The efficiency and emissions analysis of a microchip system based on a diesel-fuelled Stirling 

engine is available27, as a comparison with a fuel cells-based system34,35.  

In this context, we hereby propose an integrated plant for the joint electrical and thermal power production 

from diluted bioethanol, at the residential scale of 8 – 11 kW (with Pelectical ≥ 4 kW), by routing the produced 

hydrogen to a fuel cell working at a sufficiently high temperature (not lower than 80 °C) to allow significant 

heat recovery and valorization. This power output distribution is in line with the performance granted 

nowadays by MCHP systems based on PEM FCs and other primary fuels 36. The process diagram has been 

adapted and modified from the schemes of an already existing unit 37,38, in order to feed the system with a 

hydro-alcoholic mixture rather than with the separate pure liquids. This allows the direct use of diluted (less 

expensive) bioethanol. This point is crucial to improve the whole economy of the system and make ethanol 

competitive with higher power-density fuels such as gasoline: comparative studies suggest, moreover, that 

only a careful catalyst selection and reactor sizing can overcome potential conversion and selectivity under-

performances of alcohols 39. On the other hand, the use of part of the reformate to sustain the reforming 
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reaction has also been studied for FC working with conventional fuels 40. To obtain a more detailed model on 

the reformer heat consumption and a more realistic product / byproducts distribution, the reforming reactions 

have been modeled in detail after extensive kinetic tests on a proprietary catalysts 41,42, based on Ni as active 

phase 43. 

The importance of a detailed kinetic model does not stem only from the interest of loading the reactor with 

the lowest possible catalyst amount, but also from the need of quantifying precisely un-eliminable 

byproducts such as methane and CO, that have an impact on the sizing of the water-gas shift and 

methanation units downstream the steam reformer 44.  

Moreover, steam reforming is run under endothermal conditions (and without oxygen) to maximize 

hydrogen yield: if the only feedstock to be used is already diluted ethanol, then the reformer must be 

sustained with part of the produced hydrogen 44. Such a process layout is more compact, but has less degrees 

of freedom than the options based on separate fuel and water feeds 34,29. In this way, the intrinsic interplay 

between the reformer heat consumption (affecting the hydrogen yield) and its heat supply (deriving from that 

produced hydrogen itself) can be tackled only relying on a sufficiently detailed reaction kinetics, being 

otherwise impossible to optimize the heat-exchange inside the reformer. 

On this basis, the system presented in this paper has been sized via gross material and heat balances for the 

auxiliary sections (WGS reactors, fuel cell operation, feed preheating, burner), but with more details at the 

reformer level. Process simulation has been carried out with Aspen PLUS® V8.8, retrieving the 

thermodynamic data from the PURE32 databank. The thermodynamic model used is the Peng-Robinson 

Equation of State, except for several heat exchangers dealing with a substantial liquid fraction of the highly 

non-ideal ethanol-water mixture, better described by the NRTL method, implementing the Wilson mixing 

rules. These models showed adequate in predictions, at least in the ranges of compositions here tested.  

 

Models and Methods 

Overall layout 

The general system flow diagram and energy balance are shown in Figures 1 and 2.  
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Figure 1: General layout of the ethanol steam reforming system: the blue line represents the hydroalcoholic 

mixture, the red line the reformate. The heat recovery between the hot products and the cold feed is 

represented by the dotted heat-connections.  

Figure 2: Block scheme of the energy balance. The purification section (HT- and LT-WGS reactors, 

methanator, and relative pre-coolers) is omitted and can be considered as summed in the first feed heater 

shown. The oxygen feeds to the cell and burner are not shown.  

 

With respect to other different reforming schemes 34 this layout has the following main differences: 

a) there is no separate pure fuel input into the system besides the reforming mixture itself: all the heat 

required to bring the feed up to the reforming temperature and to maintain it through the reactor is 

derived from the enthalpy content of the feed; 

b) the fuel cell efficiency has been reassessed considering two aspects: the partial split of hydrogen to 

feed the burner (as heat supply to the reformer),  the fuel cell efficiency and the fuel utilization 

factor; 

c) the reaction kinetics is as detailed as up-to-date models allow it to be (41 and references therein). It is 

based on a rigorous modelling and includes important, often neglected byproducts, such as ethylene 

and acetaldehyde; 

d) the partition of the burnt hydrogen into two flue gas currents, one of whom enters the reformer 

jacket, is explicitly modeled, because this parameter has been chosen as a degree of freedom to tune 

the system performance. Since the air currents fed to the cell and to the burner are calculated 

automatically from the relative hydrogen inlets, the only remaining adjustable variables are the 

ethanol and water contents in the feed. 

 

The fuel cell (FC) 

This component has been modeled as a ‘STOICHIOMETRIC REACTOR’ block, where only the oxidation 

of hydrogen is considered and the reaction extent is fixed so to consume part of it. Utilization factors x = 

0.65 and 0.8 were tested, based on best and worst cases found in polymer electrolyte membrane fuel cells 

reports. No other reactions work in this block, because the cell catalysts are supposed as highly selective 
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towards hydrogen. All the other chemical species in the reformate are considered as inert (except CO, which 

is conveniently converted beforehand).  

The duty released from this block represents then the useful electric work of the cell, plus the thermal energy 

removed by a service fluid, according to an efficiency value (η): this ranges typically from 0.3 to 0.5, so a 

value of 0.4 has been considered to quantify the electrical power produced. We refer this value to the electric 

power produced with respect to the oxidation enthalpy of the hydrogen  35,45–48. The oxygen needed is fed as 

air. Its flow was automatically calculated through a ‘CALCULATOR’ block based upon the ‘import-export’ 

variables sequencing as the 110% of the stoichiometric amount to fully convert the hydrogen at the cell inlet. 

This means that, being the utilization factor < 1 and the amount of air overstoichiometric, some oxygen is 

left unused. 

 

Reformate purification 

Before entering the cell, the reformate composition needs to be enriched in hydrogen and above all purified 

from CO This is accomplished by pushing further the water-gas shift equilibrium thanks to more specific 

catalysts working in the 250 – 350 °C temperature range  49. The high and low temperature water-gas shift 

stages have been modeled as ‘EQUILIBRIUM’ type reactors, more appropriate than Gibbs reactors to 

describe a chemical equilibrium when only some species are involved. This means that the catalysts are 

considered not only active, but also selective enough to preferentially accomplish the desired reaction. This 

is reasonable, being water gas shift (and methanation) very well assessed reactions in the industrial practice 

and using industrial catalysts under optimized working conditions. The system may for instance rely on a 

commercial Fe2O3/Cr2O3/CuO catalyst for the high temperature step and on Cu/ZnO/Al2O3 for the LT one. 

We modelled these reactors by setting only the desired reversible reaction stoichiometries, with the relative 

thermodynamic data, and typical operating temperatures as in commercial units. Of course, this prevents the 

possibility to size these units and to evaluate their cost, but these technologies are sufficiently mature to cope 

with this purification issues.  

The residual CO present in the reformate at the low-temperature equilibrium condition is further selectively 

reduced to CH4 in a methanation reactor, where the following reaction takes place 38:  

��	 
 	�	�� 	
 		��� 	
 		���        (R1) 
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This reaction typically goes to completion and the block type used is then the ‘STOICHIOMETRIC’ one 29. 

A typical commercial catalyst for this step is Ni/Al2O3. The residual CO concentration is below 20 ppmv, as 

experimentally verified 50. This step is mandatory due to the poisoning effect of CO on the fuel cell catalyst 

51–53. The methane so formed is burnt downstream in the burner to supply heat to the reformer, together with 

the unconverted H2. 

The small heat duties of all these reactors, being the WGS and methanation reactions exothermal, are 

transferred to the feeding mixture. Downstream the methanator, the reformate is cooled below its dew-point 

to condense and discharge water. The target temperature of the condenser is 50 °C. 

 

 

Reformer 

Being the core of the process, the reformer has been modeled rigorously, both from the chemical and the 

thermal points of view, via a ‘PLUG-FLOW’ block. The reactions are listed in Table 1 and are kinetically 

modelled following a Langmuir-Hinshelwood-Hougen-Watson approach (LHHW), i.e. their rate takes into 

account the reactants/products adsorption/desorption on the catalyst. The data used to derive this reaction set, 

its validation and the kinetic parameters estimation are extensively reported in our previous papers 38,41,50.  

The catalytic system41–43 is composed of a Ni-based catalyst, 10 wt%, supported over zirconia and promoted 

with K2O. This catalyst revealed among the most active and stable samples in own expertise and compared 

with the literature. Ni/ZrO2 catalysts were characterized by strong metal support interaction, which allows to 

keep the metal dispersed even during high temperature operation. This usually prevents the formation of 

carbon nanotubes over Ni particles. Furthermore, doping the support with a basic promoter allows to prevent 

coking due to the acidity of the support, which may promote ethanol dehydration to ethylene and the 

subsequent polymerization of the latter. The catalyst was stable and active even at very low operating 

temperature, where the coke accumulation was negligible. Nevertheless, using a conservative approach, 

kinetic data were derived at relatively high temperature (T > 550°C), where coke deposition was essentially 

nil. 

The reaction rates are based upon the species molar fraction ‘y’ in the gas phase. Capital K letters represent 

thermodynamic equilibrium constants, lower case ones (k) represent kinetic constants. The denominator term 
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is expressed as, where any i-eth term accounts for a reaction intermediate adsorbed on the catalyst, which in 

turn is related to the gas-species fractions yj via exponents derived from the mechanism. Details on the 

kinetic data collected are reported elsewhere41,42. Briefly, a K-promoted Ni/ZrO2 sample prepared by flame 

pyrolysis was tested for ethanol steam reforming at T = 550-650°C, water/ethanol = 3-5 mol/mol and GHSV 

= 25,000 – 125,000 h-1. These conditions were on purpose very stressing, so to evidence the formation rate of 

byproducts, such as acetaldehyde and ethylene, which are usually not accounted for in other kinetic models. 

Data regression was done according with the model summarised in Table 1. The full details on the regressed 

parameters is reported elsewhere41. 

 

Table 1: Reactions set used to calculate the mass balances along the reformer axis 41. 

 

Here we point out that, since the reaction rates are derived through a micro-kinetic model (where the reactant 

of each step is a moiety adsorbed on the catalyst), their dependence from the gas-phase concentrations does 

not strictly follow the stoichiometry and the adaptation of such models into the ASPEN Plus calculation  

schemes may result in several simulation warnings. Within this block, the reaction rates r are used directly to 

obtain the molar concentrations y, for every species, from the simplified steady-state continuity equation: 

� ��
�� 
∑ ����� � ��         (E1) 

where g is the reactor axial length multiplied by the catalyst linear density, v is the relative axial mean 

velocity (in units coherent with those of g and r) and the sum is extended every j-th  reaction relevant for a 

given chemical, whose rate is calculated for a differential dg quantity automatically selected by the algorithm 

through the simulation. This corresponds to neglect at this stage the axial and radial diffusions in the gas 

phase (not important if a fully turbulent flow is developed), and the diffusion of an adsorbed species within 

the solid phase (not important if the active surface is nearly all exposed).  

The above material balance is coupled to the steady-state heat balance (for the reformate): 

�� �����
�� 
 ∑ ������ 
  !"�#$% & �'()* � ��      (E2) 
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where the mixture heat capacity, reaction heats, fluids temperatures and dU = udA are re-calculated at every 

step of the dg coordinate. The large reaction set, together with the complex rate expressions, required to 

increase the maximum refinement of the integration coordinate up to 104 steps. 

The catalyst loading (180 g of active material) has been chosen rescaling the above cited reaction data 

(obtained in a test reactor 9 mm wide, 40 cm total length) to the presently adopted geometry. Based on the 

selected reactor geometry, this amount of catalyst can be loaded as wash coated layer on reactor tubes. It 

should be stressed that this catalyst amount is much lower than what reported in the literature, which led to 

similar power output with a catalyst loading between 1 and 5 kg depending on the operating conditions 17.  

The present reactor has been here designed to ensure suitable heat-exchange surface between the reacting 

mixture and the service hot fluid. Assuming a heat exchange coefficient of 17 W×m-2×K-1 38, we opted for a 

layout of 100 tubes, 1 meter long and 7 mm wide (for an overall surface of 2.2 m2, capable of transferring 3.7 

kW every 100 K of thermal gradient). The catalyst was designed as a thin coating (few µm) on the inner 

walls of the tubes, while the hot flue gases are fed in the shell-side. 

The detailed kinetic model employed takes into account also the possible carbon losses as coke, but this 

species does not leave the reactor, except with a gasification step (not included). Thus, a separator with 

100% efficiency is placed afterwards to achieve congruent mass balances across the reactor and to predict 

catalyst regeneration steps.  

The coke is modeled as a pseudo-component to handle more easily its separation without resorting to 

separate stream classes or solid substreams. It has the same thermodynamic properties of graphite to account 

for all reaction enthalpies. Preliminary characterization of the nature of the coke deposed on real catalysts 

support this choice. 

At this stage of process development and due to the fact that the tubes are practically empty, the pressure 

drops are neglected. The reactor (and the entire line with it) is kept at a pressure of ca. 1 bar(g) to avoid 

oxygen leaking and to reduce the volumetric flows without important compression costs. 

 

Heat exchangers and balance 

The heat integration of the system has been designed taking advantage of progressively decreasing 

temperature from the reformer to the fuel cell. The heat removed downstream the reformer is used to heat up 
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and vaporize the feed. All the heat exchangers are specified imposing an outlet temperature for the reformate 

and the resulting heat duties are transferred to their counterparts upstream the reformer, whose outlet 

conditions are then automatically determined (Figure 1). Therefore, the couples constituted by the WGS and 

methanator reactors and a linked heat exchanger represent the sides of a real heat exchanger (or of a cooled 

reactor). At this stage, the heat exchange surfaces have not been assessed, since the thermal gradients 

available are always very large (> 100 °C). 

The last heat recovery before the feed enters into the reactor has been instead modeled as a two-side 

exchanger through the ‘shortcut’ options, i.e. the surface calculation is neglected, but the fluid temperatures 

are modelled rigorously in a counterflow arrangement. 

The reformer geometry derives from a compromise between the heat exchange requirements and the catalyst 

loading. The hot fluid flow in the shell side is adjusted consequently and it is constituted by a fraction of the 

exhaust exiting from the burner. This exchanger, instead, is fed with all the remixed flue flow, which carries 

all the thermal energy derived from hydrogen combustion, excluded the duty to the reformer.  

Since the role of this heat exchanger is to stabilize the reaction inlet temperature, its exchange surface varies 

according to the operating conditions and feed dilution. In Figure 3a a first esteem has been reported when 

selecting a given U value. A final heat exchanger is added, since it represents the degree of freedom to set 

the final reformer temperature: in this phase, we are only considering steady state simulation, but this latter 

unit is the key for reliable and stable temperature setting. 

 

Figure 3a-b: Exchanger area needed at constant feed pre-heating condition (567 °C) with different hot fluid 

moleflow (a, left), with respect to the area calculated for the base case; (b, right) gross fuel cell power as a 

function of the hot fumes flow to the reformer. 

 

In symbols, denoting with F the species flow before the fuel cell, the energy balance of main blocks reads 

(Figure 2): 

�+,'- . �/ & 0��12�$3�12 
 �415�$3�415 		      (E3) 

�6(77 � 0�12�$3�12          (E4) 

�18 �	�+,'- &	�'(96%$' &	�)�)7,(       (E5) 
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where the suffix HX denotes this particularly important heat recovery (the above balance is valid if the 

enthalpy of the hot gases exiting the heat exchanger is calculated with respect to that of the burner feed) and 

the reformer duty can be approximated by the enthalpy yield of at least the following reactions for a known 

product distribution: 

  

:;�� 
	�	���	 
 	<	��� 
	=	��       (R2) 

:;��	 
 	��� 
 	�� 
	��        (R3)  

:;��	 
 	���� 
	���        (R4) 

 

but it is actually calculated rigorously by the PFR block kinetic. 

For the overall system: 

�)�)7,( 
	�6(77 
	�6$-> �	�?%@1�$3�?%@1      (E6) 

Notice that in Figure 2, the reactor feed and outlet (tube side) carry the same enthalpy since the reforming 

heat of reaction is provided by the hot shell-side gases, so the only chemical reaction providing heat to the 

system is the oxidation of hydrogen, which in this framework is formally equivalent to the oxidation of a 

stoichiometric equivalent of ethanol. Then the only three power outputs must sum up to this value. 

 

Results 

According to our previous simulations, we have demonstrated the feasibility of using diluted bioethanol 

solutions to feed a cogeneration unit of the current size 17. During that investigation we observed a sensitive 

dependence of system performance and efficiency on the reformer temperature and on the water/ethanol ratio 

in the feed (see also 54). Both these points are correlated with the heat supply to the system, so that this 

critical point has been addressed here through a detailed assessment of the heat exchange network and heat 

recovery throughout the system. 

 

Material and Heat balances 
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The material balances for the first chosen operating point (H2 utilization factor x=0.65) are reported in Table 

S1 (Supplementary Information), while the block heat duties follow in Table 2 (refer to Figures 1 and 2). 

This condition corresponds to a feed dilution water / ethanol = 5 mol/mol (i.e. 2 kg of water/kg of ethanol). 

 

Table S1: Stream report (abridged) for the first selected operation point of the power cogeneration plant 

(stream names in Figure 1). 

 

Table 2: Duties report for the different process blocks as labeled in Figure 1 (negative values stand for 

released heat). CU = Cold Utility. 

 

The hydroalcholic feed enthalpy content, calculated as its oxidation took place at the same working 

temperature of the fuel cell, is ca. 19 kW, so under this assumption the global energetic yield of the 

reformer-cell system is about the 53% (the pumping and compression duties are neglected since their sum 

represent a bare 5% of the cell power). With a fuel cell efficiency of 40% 45–48,35, the electric power yielded 

and the thermal power recoverable at 80 °C amount respectively to 4 and 6 kW.  

Due to the critical role of the thermal power extracted from the reformate and employed in the reactor jacket, 

the hot combustion gas flow in the reformer has been chosen as the parameter to evaluate the fuel cell power 

(Figure 3b; see also analysis in the sections below). The trend is weakly increasing from 350 mol/h onward, 

with the cell operating between 9.3 and 10.8 kW (± 0.7 around the 10 kW nominal point), while worse 

system performance is appreciable below 300 mol/h. The nominal conditions are given for the 35% of the 

hot gases produced by the burner going to the reformer (ca. 450 mol/h).  

 

H2 utilization factor x=0.65 

The hydrogen balance along the system lines is reported in Figure 4a. The relatively little increase after the 

water-gas shift section is due to the fact that the CO partial pressure in the reformate is already 10 times 

smaller than the hydrogen one, so the equilibrium value is reached converting very small absolute quantities. 

The hydrogen exiting from the fuel cell and going to the burner depends straightforwardly on the imposed 

utilization factor of the fuel cell x.  
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Figure 4a-b: Hydrogen flow within the system, traced at the various blocks exit (a, left), and power 

extracted (b, right) as fuel cell total power, water-separator heat duty and enthalpy carried by the effluents 

heat (Exhaust). In every case, 35% of the combustion gases flow to the reactor. 

 

As for the power output, there are only three relevant outlet points: the overall cell duty (all useful), the duty 

of the water condenser (to be discharged to a cold utility, but still potentially usable) and the residual heat 

carried away from the burner effluents after heating the regenerative exchanger. Notice that, to make these 

outlets sum match the gross calorific power of the fed ethanol, the heat still possessed by the exhausts has 

been calculated as the difference between their enthalpy flow and that of the hydro-alcoholic feed (treated as 

the zero-level). These flue gases can be also cooled in a useful way, so improving the power extraction from 

the system. 

The coupling of the cold feed stream with the hot reformate and the burner effluents allows to transfer 

internally ca. 8 kW, of whom 4.4 are used as latent heat to vaporize the mixture. This latter quantity is 

divided in varying proportions (according to the adjusted flue-split opening, that influences the reformate 

molar-flow and temperatures) between the flue-feed heat exchanger (boiling section) and the HTWGS 

reactor pre-conditioner (Figure 1). If one includes in this balance also the reactor duty, then the total internal 

heat transfer amounts to 11.3 kW. 

 

H2 utilization factor x=0.8 

The key system outputs are reported (Figure 4b) also for a higher cell utilization factor of 0.8 48; this 

additional working point has been tested to check the system stability when the burner is left short of 

hydrogen because a high performance fuel cell is installed. As the hydrogen available to sustain the reactor 

duty is decreased, the burner temperature decreases from more than 1300 °C to less than 1200 °C, but the 

poorer reactor performance is more than compensated by the supposed increase of the cell capacity (Figure 

4b). Moreover, provided that the ethanol full conversion is anyway accomplished, the reduced hydrogen 

yield results mostly in an increased methane flow (recycled as fuel in the burner), from 209.2 g/h (x=0.65) to 

331.1 g/h (x=0.80), so the gross flow exiting the burner undergoes a variation of the 1.3% only.   
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In summary, as the condenser duty is, more or less, equal, in this case one can achieve a better output 

distribution between the cell and the residual heat of the (now colder) exhaust gases outflowing the 

regenerative heat-exchanger. 

 

Computational details 

Though there are no proper material recycles, the internal heat exchange taking place all along the 

feed/product lines determine an energetic loop that has to be solved via the convergence algorithm.  

When the 35% of the reformate going to the burner changes its hydrogen content, both the molar flow and 

temperature of the flue gases vary appreciably and, considering the relatively low heat capacity of the gases, 

plus the highly non-linear temperature dependence of the Arrhenius kinetics inside the reactor, the energy 

recycle of this block becomes critical.  

To set the flowsheet convergence on a firmer basis, a preliminary analysis has been carried out. We set an 

exact copy of the reactor block, with fixed feed temperature and composition, heated by a combustion 

effluent representative of our system (H2O:CO2:N2 = 0.24:0.11:0.64 moles/moles) with freely adjustable 

flow and temperature. The temperature profiles of the reactor have been analyzed for some significant cases, 

as shown in Figures 5a-c. From these graphs it is possible to check the threshold beyond which the reactor 

temperature increases too much, leading to an outlet mixture that cannot be treated by the downstream 

purification section, fuel cell and burner, and to the failing of the flowsheet calculation. Still the different 

effect of temperature on each reaction rate and the contemporary presence of endothermal and exothermal 

reactions, in some conditions let the incipient divergence of the kinetic model be stopped (isolated spikes in 

Figure 5b), as the reformate outlet temperature realigns toward the optimal value of ca. 650 °C. On the other 

hand, if the flue gases are so cold that the reforming mixture cannot be heated up to at least 600 °C, the 

calculation can converge, but the system is actually not working. From this analysis, one gets the preliminary 

information that high flue flows (≥600 mol/h) and temperatures (≥1500 °C) should be avoided.  

 

Figure 5a-b-c: Thermal profiles of the reactor along the axial coordinate at different flue flowrate. Solid 

line: tube-side, reacting mixture (cold fluid); dotted line: shell-side, service flue gas (hot fluid). Numbers in 

the legend indicates the hot fluid inlet temperature. In every case, the ∆T between the fluids at the exit is ≥ 
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15 °C. A too high heat transfer determines inconsistent outlet conditions (the spikes mark the onset of 

thermal crossover). In all these open-tear simulation, the fuel cell utilization factor is 0.65. 

 

Even when the reactor block is stable, the overall calculation may still be not: this happens if the burnt gas 

flows and temperatures (derived by a certain reactor output) keep increasing (or decreasing) steadily at every 

convergence cycle. Figure 6 shows the flowsheet ‘convergence map’ based upon the feedback that the 

purification-cell-burner section provides to the reactor, for a fixed flues-split set to the 35% value, which 

helps to identify in advance the region of stable operation of the system and hydrogen yield in those 

conditions.  

 

Figure 6: Open-tear analysis of the flowsheet based on the reactor hydrogen yield (color scale bar), as 

function of the fractional enthalpy difference, represented as temperature (dT), and moleflow contributions 

between the flue gases fed to the reformer and those yielded back after splitting the burned gas. The 

convergence point is at the (0,0) coordinate. The points shown are obtained for flue flows of 400, 500 and 

600 mol/h. Tests lying the I (IV) quadrant let foresee an enthalpy build-up (depletion) within the flue recycle 

once the tear is closed.  

 

Figure 7 reports an analysis of the additional air needed to oxidize the hydrogen not used by the fuel cell plus 

the methane (derived from the CO reduction), on which the burner flow and final temperature depend 

directly. 

 

Figure 7: Air feed to the burner (calculated so that the oxygen flow is 110% of the stoichiometric quantity). 

The zone around 400 mol/h is a shallow minimum good for operating purposes. 

 

A code fragment embedded into a ‘CALCULATOR’ block, provides a dynamic and customized assistance to 

the convergence algorithm (exploiting the automatic feature of the ‘import/export’ variables definition in the 

tear block sequencing): choosing the ‘Direct’ tear algorithm to rule out any overshooting of the system 

parameters between successive steps (possibly yielded by the Broyden or un-damped Wittig methods), the 
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flue flow to the reactor jacket is reduced if their hydrogen produced is deemed too high and viceversa. This 

greatly improved the reliability and speed of the calculation procedure, allowing the system to wind up to a 

stable working point in 5 – 10 tear passes starting just from a reasonable reformate mixture content. 

The open-tear foreseen reactor conditions and the actual closed-loop system working points are shown in 

Figures 8 and 9, each one obtained varying the flue split at fixed fuel cell utilization factor (65%). It can be 

noticed that the convergence region extended, closing the recycle, beyond the threshold of 500 mol/h flue 

flow: this is due to the increasing flow of air needed in the burner from 400 mol/h up, which causes a 

dilution of the hot gases with a consequent reduction of the temperature. In this way, the critical condition of 

having back-flue gases hotter than 1450-1500 °C is avoided.  

 

Figure 8a-b: Reformer hydrogen yield (a, top) traced at open flue recycle (lines) and then at different 

convergence conditions. Bottom, b: reformer heat duty at open flue recycle (lines) and then at different 

convergence conditions. 

 

Figure 9: Outlet temperature from the reformer; lines: open recycle, tube side (solid) and shell side (dashed); 

points: closed loop, tube (filled) and shell (empty) sides. The ethanol-water inlet temperature is fixed at 567 

°C. 

 

The large quantity of combusting agent needed at low reactor shell-side flows is due, instead, to the higher 

methane and ethylene contents in the products under ‘colder’ and less efficient reforming conditions. Further 

tests confirm that the closed system is chemically stable for split fractions as high as 50%, yet this block 

undergoes a mass unbalance of the percent order for split fractions higher than 46%. The above described 

convergence recovery code makes the calculation converge reproducibly to a split fraction of 43%. 

At this point, the selected working condition for the flowsheet has been chosen after the following criteria: i) 

the hydrogen fraction in the reformate is not far from the maximum achievable, ii) the selected control 

parameter are slowly (and roughly linearly) varying as the split is open/closed, iii) there still exist operational 

margins for this blocks (in either direction) and, iv) the air fed to the burner is approaching a minimum. 
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Economic considerations 

A full economic assessment of the system is still in progress and substantially needs a reliable evaluation of 

the fuel cell costs. This is the main weakness since fuel cells are still in a semi-commercial stage to allow a 

reliable estimation of their costs. A simplified yet indicative analysis of different hydrogen-production 

options (aimed to provide a FC feed) seem to indicate ethanol as a more promising option than electrolytic 

methods 55. 

On the ethanol production side, it is reported that the cost of integrated processes starting from biomasses is 

much more sensitive to the distillation stage (both from the economic and technological point of view) than 

to the final purification strategies or the type of fermentation substrate 56,57. Thus, circumventing this problem 

using a slightly pre-concentrated ethanol is a definitely promising route. 

An interesting study links directly the CHP generation at the FC level with the upstream energy consumption 

of ethanol distillation, indicating that the direct integration between these power outputs/inputs (which is 

ultimately the key concept behind our proposed layout) can lead to an electrical efficiency of 41% and an 

overall efficiency of 54%, in good agreement with our calculations 58.  

As for the fuel processor side, an economic evaluation of a large scale hydrogen production plant has been 

carried out recently by our group 22. A system was designed and simulated in Aspen Plus essentially relying 

on the same process layout. The main difference was the absence of the fuel cell, since it was conceived for 

large scale production of pure hydrogen from diluted, second generation bioethanol (40,000 ton/year). The 

plant was constituted by a steam reformer, two WGS reactors as in the present case, while final hydrogen 

purification was achieved by pressure swing adsorption rather than methanation. In that case, indeed, high 

pressure of the produced H2 was desirable to be included in a refueling station, and, hence, also given the 

plant size, the PSA option revealed more suitable. 

Based on these assumptions, the process revealed OPEX sensitive, i.e. its economic sustainability was 

mainly depending on the operating costs. In particular, the most sensitive parameters were the hydrogen 

selling prince and bioethanol cost. Such results further underline the importance of the present investigation, 

which proposes the use of a less expensive bioethanol source. Indeed, when considering the cost of 1st 

generation bioethanol, the use of 90% purity led to a selling price decreased by 8% compared to the 99.9% 

purity one, whereas the use of 50 % purity led to a 42% lower price (data referred to a total production of 
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7,793 ton/year of H2 starting from 40,000 ton/year of bioethanol). The economic analysis was repeated 

considering the 2nd generation bioethanol. The 3.70 €/kg of hydrogen selling price, when produced from 2nd 

generation bioethanol with 40 % purity, represents a promising result, although in this case the application 

would be more complex because of the more concerning and less controllable impurities remaining after the 

fermentation of 2nd generation biomass. 

A larger scale hydrogen production (>7000 normal cubic meter/day), when coupled to optimized biomass-

ethanol facilities, can decrease the hydrogen cost to 0.1 $/m3, making ethanol an automotive primary source 

even cheaper than methane 59.  

 

Conclusions 

The original kinetic model here adopted proved robust enough, under the operating temperatures within the 

range covered during parameter regression carried out in a previous investigation. Indeed, it provided 

consistent results as the steam-reforming heat input was varied. This is a crucial issue to assess the energy 

balance of this process, because high hydrogen yields require high heat supply.  

The calculation presented shows that the thermal input of an ethanol steam reformer can be provided by a 

controlled withdraw of the produced hydrogen, without impairing the electricity generation: in this context, 

ethanol can be effectively used at dilution levels well below the azeotropic threshold, whereas it would not 

be possible to exploit diluted bioethanol directly as fuels for the burner. This opens the way to the use of less 

expensive raw materials, thus improving the economic sustainability of the process. 

The selected working point for the system foresee the consumption of 3.2 kg/h of ethanol and 6.3 kg/h of 

water to obtain a power of 5 kWel and not less than 5 kWth, loading a multi-tubular 1 meter-long reformer 

with 180 g of active material. This amount of catalyst is well below the literature values for similar sized 

systems. 

The stability of the working conditions relies on two main chemical aspects: 

a) in the first section of the reformer the (exothermal) oxidation of ethanol to acetaldehyde takes place, 

actually introducing an additional pre-heating to the feed and helping the mixture to remain hot 

enough until the exit; 
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b) the temperature and flow after the auxiliary burner (and then the quality of the reforming conditions) 

depend not only on the hydrogen draw-off, but also on the residual methane combustion, which 

makes the overall system less sensitive to the hydrogen fraction in the reformate. 

Choosing the partition of the hot utility between the feed pre-heating and the reformer itself as the main 

adjustable parameter, a wide range of working points has been spanned systematically. The system has 

proven stable both from the physical and the computational points of view.  

Moreover, the fuel cell power never decreased significantly for any tested condition. A utilization factor as 

low as 65% has been selected in order to meet the less efficient systems nowadays available on the market, 

from a conservative point of view, while better results were achieved with higher utilization factor (x = 0.8), 

which however could have induced feeding problems with the burner. Different values of this parameter can 

in perspective be easily accommodated because: i) a sufficient margin (from 0.35 to at least 0.5) exists for 

the fraction of the hot utility flow to the reformer, that can compensate a lower burner fuel feed; ii) an even 

larger operative margin exists for the feed pre-heating, since the presently calculated regenerator lets out 

exhaust gases over 200 °C hotter than the target cold stream temperature; iii) a suitable working point, with a 

cell duty increase of 10% (and a 16% more air feed to the burner), has already been calculated for a fuel cell 

with x=0.80 without changing the hot flues distribution. 

The heat exchange network has been carefully analysed to make the process as much efficient as possible. 

 

Supplementary Information 

Tables are reported including the material balances for a selected operating point (H2 utilization factor 

x=0.65). 
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TABLES 

Table 1: Reactions set used to calculate the mass balances along the reformer axis 41. 
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Table 2: Duties report for the different process blocks as labeled in Figure 1 (negative values stand for released heat). 

CU = Cold Utility. 
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FIGURES 

�

Figure 1: General layout of the ethanol steam reforming system: the blue line represents the hydroalcoholic mixture, the red line the reformate. The heat recovery between the 

hot products and the cold feed is represented by the dotted heat-connections.  
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Figure 2: Block scheme of the energy balance. The purification section (HT- and LT-WGS reactors, methanator, and relative pre-coolers) is omitted and can be considered as 

summed in the first feed heater shown. The oxygen feeds to the cell and burner are not shown. 

Page 27 of 34

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



a)           b) 

  

Figure 3a-b: Exchanger area needed at constant feed pre-heating condition (567 °C) with different hot fluid moleflow (a, left), with respect to the area calculated for the base 

case; (b, right) gross fuel cell power as a function of the hot fumes flow to the reformer.  
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a)           b) 

   

Figure 4a-b: Hydrogen flow within the system, traced at the various blocks exit (a, left), and power extracted (b, right) as fuel cell total power, water-separator heat duty and 

enthalpy carried by the effluents heat (Exhaust). In every case, 35% of the combustion gases flow to the reactor. 
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a) 

 

b) 

 

c) 

 

Figure 5a-b-c: Thermal profiles of the reactor along the axial coordinate at different flue flowrate. Solid line: tube-side, 

reacting mixture (cold fluid); dotted line: shell-side, service flue gas (hot fluid). Numbers in the legend indicates the hot 

fluid inlet temperature. In every case, the ∆T between the fluids at the exit is ≥ 15 °C. A too high heat transfer 

determines inconsistent outlet conditions (the spikes mark the onset of thermal crossover). In all these open-tear 

simulation, the fuel cell utilization factor is 0.65. 
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Figure 6: Open-tear analysis of the flowsheet based on the reactor hydrogen yield (color scale bar), as function of the 

fractional enthalpy difference, represented as temperature (dT), and moleflow contributions between the flue gases fed 

to the reformer and those yielded back after splitting the burned gas. The convergence point is at the (0,0) coordinate. 

The points shown are obtained for flue flows of 400, 500 and 600 mol/h. Tests lying the I (IV) quadrant let foresee an 

enthalpy build-up (depletion) within the flue recycle once the tear is closed.  

 

Figure 7: Air feed to the burner (calculated so that the oxygen flow is 110% of the stoichiometric quantity). The zone 

around 400 mol/h is a shallow minimum good for operating purposes.
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a) 

  

b) 

 

Figure 8a-b: Reformer hydrogen yield (a, top) traced at open flue recycle (lines) and then at different convergence 

conditions. Bottom, b: reformer heat duty at open flue recycle (lines) and then at different convergence conditions. 
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Figure 9: Outlet temperature from the reformer; lines: open recycle, tube side (solid) and shell side (dashed); points: 

closed loop, tube (filled) and shell (empty) sides. The ethanol-water inlet temperature is fixed at 567 °C. 
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