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ABSTRACT: We consider electrically charged static nonextremal black holes in d-dimens-
ional Einstein-Maxwell-(A)dS gravity, whose horizon is a generic Einstein space in d — 2
dimensions. It is shown that for this system the Hamilton-Jacobi equation is exactly
solvable and admits two branches of solutions. One of them exhibits a non-simply connected
domain of integration constants and does not reduce to the well-known solution for the
d = 4 BPS case. The principal functions generate two first order flows that are analytically
different, but support the same general solution. One of the two sets of flow equations
corresponds to those found by Lii, Pope and Vazquez-Poritz in hep-th/0307001 and (for
d = 4 and A = 0) by Miller, Schalm and Weinberg in hep-th/0612308. This clarifies
also the reason for the very existence of first order equations for nonextremal black holes,
namely, they are just the expressions for the conjugate momenta in terms of derivatives of
the principal function in a Hamilton-Jacobi formalism. In the last part of our paper we
analyze how much of these integrability properties generalizes to matter-coupled N = 2,
d = 4 gauged supergravity.
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1 Introduction

Exact solutions to Finstein’s field equations and their supergravity generalizations have
been playing, and continue to play, a crucial role in many important developments in gen-
eral relativity, black hole physics, integrable systems, string theory and quantum gravity.
Being highly nonlinear, coupled partial differential equations, these are notoriously difficult
to solve, sometimes even in presence of a high degree of symmetry, for instance in super-
gravity where one has typically many other fields in addition to the metric. If one imposes
that some fraction of supersymmetry be preserved, the construction of solutions simplifies
considerably, since one has to solve only the first order Killing spinor equations instead of
the full higher order equations of motion.

In the last years however it was shown (see [1-17] for an (incomplete) list of references)
that sometimes also non-BPS- and even nonextremal black holes satisfy certain first order
equations, which typically arise by writing the potential of a one-dimensional mechanical
system (to which the supergravity action boils down if one has enough symmetry) in terms
of a ‘superpotential’.! The deeper reason behind this has remained rather obscure, since
these obviously have nothing to do with supersymmetry.

Here we will elaborate on results obtained in [21], shewing for the example of Einstein-
Maxwell-(A)dS gravity in arbitrary dimension that the first order flow equations satisfied
by electrically charged static nonextremal black holes (found in part for instance in [1, 2])

! An analysis of nonextremal solutions was used in [18] to study Einstein-dilaton black holes. In the most
general case with a vector and scalar this was done in [19], where the motivation was the computation of
the finite temperature/finite density effective potential in holography. Recently the zero temperature case
was analyzed in full generality in Einstein-dilaton gravity [20] in order to find the most general RG flows.



are just the expressions for the conjugate momenta in terms of derivatives of the principal
function W in a Hamilton-Jacobi formalism [22]. Moreover, we will see that the expression
for the potential in terms of a ‘superpotential’ is nothing else than the Hamilton-Jacobi
equation for zero energy. The fact that a nonextremal black hole solution arises from a
first order system via a superpotential construction is thus not surprising at all.

We will also find that (for the theory under consideration) there exist actually two
different branches of solutions to the HJ equation. This leads to two distinct sets of flow
equations, that share the same black hole solutions.

Guided by the structure of W in the Einstein-Maxwell-A case, one can try to general-
ize our analysis for instance to N = 2 gauged supergravity in four dimensions, where the
superpotential in the BPS case is known both for U(1) Fayet-Iliopoulos gauging [23] and for
coupling to hypermultiplets, when abelian isometries of the quaternionic hyperscalar tar-
get manifold are gauged [17]. Unfortunately it turns out that the principal function W for
nonextremal black holes is not straightforwardly generalizable to the matter-coupled case.
Nevertheless, we show (for the example of a particular prepotential) that there exist several
conserved charges that allow a partial separation of variables in the HJ equation. Among
these conserved charges there is the one originally introduced for ungauged supergravity
in [24] and subsequently adapted to the gauged theory in [17]. Moreover, it was recently
found [25] that N = 2, d = 4 U(1) Fayet-Iliopoulos gauged supergravity enjoys residual
symmetries that essentially involve the stabilization of the symplectic vector of gauge cou-
plings (FI parameters) under the action of the U-duality symmetry of the ungauged theory.
This provides additional conserved charges.

The remainder of this paper is organized as follows: in the next section, we consider
Einstein-Maxwell-(A)dS gravity in arbitrary dimension, adopt an ansatz for electrically
charged static black holes whose event horizon is a generic (d — 2)-dimensional Einstein
space, and determine the one-dimensional effective action from which one can derive the
equations of motion. In section 3 we integrate the Hamilton-Jacobi equation associated to
this mechanical system in full generality and show that there are two branches of solutions.
This leads to two different sets of first order flow equations, one of which coincides with
that found in [1]. In section 4 we analyze how much of these integrability properties® can
be generalized to matter-coupled N = 2, d = 4 gauged supergravity. We conclude in 5
with some final remarks.

2 Static black holes in Einstein-Maxwell-(A)dS gravity
We consider d-dimensional Einstein-Maxwell-(A)dS gravity, whose action is given by

1

d?zy/=g (R — F, F" — 2A 2.1
i, [ AoV R E, ) (21)
with d > 3. This is the simplest model that can be embedded (at least for some d) in

N = 2 gauged supergravity. The equations of motion following from (2.1) are

1 1
R, — §R9;w +Aguw = 2<Fqusz - 4guz/FcrpFJp> ) V" =0, (2.2)

Integrability in presence of a cosmological constant was studied before in [26—29].



where F' = dA. For future convenience we report the trace and the traceless part of the
Einstein equations that respectively read

2d

R—
d—2

A— ;l_;lFMVF;w:O:
) 1 (2.3)
R/“’ — 2FMO—FVO- — ﬂAgﬂV + mgp,l/Fa’pFap =0.

2.1 Electrically charged black holes

In what follows we shall consider electrically charged static black holes whose horizon is a
(d — 2)-dimensional Einstein space.® The metric and the gauge field have the form

dsj = —e 20?2 4 2U2d=Aw 2 4 2002 | o A= Audt, (2.4)

where the functions U, ¢ and A; depend only on the coordinate r. The metric in (2.4) has
the warped product structure

dsfi = gabdx“dxb + fQ(x)gijdyidyj, (2.5)

where the (d — 2)-dimensional fiber with metric g;;dy’dy’ = dQ2 , , is a generic Einstein
space, i.e., }?iij = (d — 3)kg;j. The nonvanishing components of the Ricci tensor in d
dimensions are thus given by [30]
- dp. -
Rap = Ray — —Va Vi [,
e (2.6)
Rij = Rij — §ij (fVaVf + (dp — 1)§°0a fObf) ,

where dp > 1 is the dimension of the fiber and @a denotes the covariant derivative con-
structed with the Levi-Civita connection for ggp.

2.2 Effective action

The Maxwell equations for the ansatz (2.4) are solved by
F = —Qe 203UtV gz A dr, (2.7)

where @ is an integration constant corresponding to the electric charge. Using (2.6) it
is straightforward to shew that the Einstein equations (2.3) boil down to three ordinary
differential equations that can be derived form the one-dimensional effective action

S = / drL = / dr (243U — %) — Vig) (2.8)
with the potential
2Q* —2(d—3)(U+) 2A 2(U+)
g e A - = , 2.
Vet = 1 d—3)(d—2)° d—3)(d—2)° (2.9)

3For d > 5 this does not necessarily imply that the horizon has constant curvature.



if we impose in addition the zero energy condition
BN (U — ) + Veg = 0. (2.10)

To be concrete, the equation of motion for U is proportional to the tt-component of (2.3),
while the one for ¢ is a linear combination of the tt- and rr-components. Moreover, from
the first of (2.3) and the t{-component one gets (2.10). The Einstein equations along the
fiber are automatically satisfied.

The conjugate momenta and Hamiltonian of the dynamical system (2.8) are respec-
tively given by

py = oL — 9e2(d=3)Ypy Py = oL = —2e2(d=3)vyy
ou’ ’ oy’ ’ 211
L 23y, 2 2 @11
Hesr(pu,py, U, 9h) = 1™ @=300(p2 — p2) + Vegr.-
3 Integration of the Hamilton-Jacobi equation
The Hamilton-Jacobi equation associated to (2.11) reads
oS
Heﬁ(aUS, &[,S, U, 1/)) + E =0. (3.1)
Since Hqg does not depend explicitely on r we set
S=2W(U,¢)—Er, (3.2)
such that (3.1) reduces to
eIV (WE —W2) + Veg = B, (3.3)

where Wy and W, are respectively the partial derivatives of W w.r.t. U and 1. Inspired
by [28, 29], we define a new set of coordinates

X = 6(d—3)(U+’$) , Y = 6_2(d_3)U, (34)

for which (3.3) becomes

2Q? OAX 73 .
(YWY = XWxWy) = (5= 2)(3— DX2  (d-2a-3 T BV

4(d — 3)?
X2

where E = E — k. To avoid loss of information E will be set to zero, as required by (2.10),
only at the end of the integration procedure. The reason for this is that, in order to solve
the dynamics algebraically, one needs (3.9) and (3.19), therefore we set £ = 0 only after
these equations have been obtained.



3.1 First solution
Applying the method of characteristics yields

dWy  dX
- 3.6
IIYY )? M ( )

and thus Wy = aX, where a is an integration constant. The solution of this equation boils
down to W(X,Y) = aY X + w(X) that inserted into (3.5) leads to an ODE

202 INX @ T .
~ da(d = 3)%wx ~ A—D[d—3)X° ([d=2)d—=3) = (8.7)

that can be easily integrated to give

209° 2AX

S1=2aYX + 2a(d — 3)2 <(d—2)(d—3)X B (d—1)(

d—1
d—3 ~
=3 —EX) —Er+C. (38)

This contains three integration constants C, F and a, where the latter must be different
from zero. Using

851 8Sl

-1 —c o1

OF lpg—0 " da |E=0
where ¢; and ¢y denote arbitrary constants, the dynamics can be solved algebraically, with
the result

=C2, (3.9)

X = —2a(d—3)%(r+c1),
2

ey QQ K AXd=3 (3.10)

Y=o T — )@= 3PX T 12(d =32  2a(d—D)d—d—3)"

In terms of Y and the new radial coordinate R = X dTl?», the solution (2.4) becomes

2
ds? = —vdt* + % +R%Q, ,,  F= R?_2dt Adr,
oM 209° 2A R? (3.11)
Y= k- o - .
TR T A—2d—3)R@D  [d_1)d_2)
Here we fixed a? = ;1= (which can always be achieved by rescaling the coordinates

A(d—3)?
appropriately) and defined ¢ = —4M. (3.11) is the most general solution to the equa-

tions of motion following from (2.8), and represents a generalization of the d-dimensional
Reissner-Nordstrom-(A)dS black hole to the case where the horizon is an arbitrary Einstein
space.

In the original coordinates, Hamilton’s characteristic function reads

2~ (d=3)(U+) (d-1)(U+4) (d=3)(U+)
Wi (U, ) = aeld-3w-0) | _9°¢ __ Ae + =
2a(d—2)(d—3)°  2a(d—1)(d—2)(d—3) ' 4da(d—3)2

The expressions for the conjugate momenta

oW oW,



together with (2.11), lead to the first order flow equations
U' = e 2@3090o, W (U, ), ¢ = —e 2@, W (U, ), (3.13)

that are satisfied by the nonextremal black holes (3.11). Notice also that, using (3.13),
the action (2.8) can be written as a sum of squares. This clarifies also the reason for the
very existence of first order equations for nonextremal black holes, namely they are just
the expressions for the conjugate momenta in terms of derivatives of the principal function
in a Hamilton-Jacobi formalism.

In the BPS case for d = 4, one would expect to recover the supergravity BPS flow [23],
in absence of vector multiplets, that is driven by*

Waps(U,¢) = e VQ+ eerUg, (3.14)

where ¢ is related to the cosmological constant by A = —3¢?. However, it is easy to see
that there is no limit in which (3.14) can arise from W;. We shall come back to this issue
in the next subsection.

3.2 Second solution

Similar to what was done in [24] for N = 2, d = 4 ungauged supergravity, and in [17] for
the abelian gauged case, we introduce the quantity

(a3 U + ¢/

_ 2
Q=e d—3

+W. (3.15)

Using (3.13) and the equations of motion following from the action (2.8), one easily shows
that Q' = 0, and thus Q is a constant of motion that can be used to simplify (3.5). In
phase space we have

Q=" LW = vy W (3.16)
that implies W(X,Y) = Q + /Yw(X). Plugging this into (3.5) one gets the ODE
2 3 3
—4d- 3)28% <;}(> e 2)2(3— X2 (d iA;)((oz 5~ F GBI
A final integration leads to the solution of the original differential equation (3.5)°
202y EX2Y INXTTBY
BoRm A 2\/‘4’4” Pa=@=37 -3 @-)d-Hd-3p

(3.18)
which has three arbitrary integration constants Q, F, A, but in this case the parameter
domain is the whole R3. Using

0 0% .
OF g0~ ™%’ A lp=o ~ 1

4To derive (3.14) from the results of [23], take the prepotential F' = —i(X°)? and a purely magnetic

(3.19)

gauging with FI-parameter proportional to g.
®This solution was already found in [1] and for & = 0 but with magnetic fluxes switched on in [16].



gives back (3.10), where
a:—&, c1 =c3, =" (3.20)
To complete the comparison we evaluate
d—1
kX N Q? AXd=3
(d—3)2  2a(d—2)(d—3)2X 2a(d—1)(d—2)(d—3)2%"
Plugging the solution (3.10) into the r.h.s. yields 2Q = C' — ace. In terms of U and v, Wy
reads (setting E = 0)

Qh/v1 = —aXY+ da

2Q2e—2(d-3)U rce2(d—3) 2\ 2(U+(d—2)1)
= Aeld=3)(y=U) _
W2(U,9) = Q+ \/ ¢ T A= =3p T (d=37 (d=D(d—2)(d—3)?"
(3.21)
which leads to the first order flow equations
U' = e 203009, Wh(U, ), o = —e 243V 9, Wy (U, 1)) . (3.22)

(3.22) and (3.13) have different analytic forms, but share the same general class of physical
solutions. Notice also that, contrary to Wi, there is a well-defined limit in which (3.21)
reduces to the BPS superpotential (3.14) for d = 4, by setting A = 0, A = —3¢® and
imposing the Dirac-type quantization condition 2¢gQ = k.

The authors of [1] found that the potential (2.9) can be expressed in terms of a su-
perpotential. One easily verifies that their superpotential (2.5) coincides with (3.21) and
that eq. (2.4) of [1] is just the Hamilton-Jacobi equation for zero energy. The fact that
a nonextremal black hole solution arises from a first order system via a superpotential
construction is thus not surprising at all.

4 Matter-coupled N = 2, d = 4 gauged supergravity

In this section, we shall discuss possible generalizations of our formalism to N = 2 super-
gravity in four dimensions coupled to vector multiplets and with Fayet-Iliopoulos gauging.
The analogue of the one-dimensional effective action (2.8) is then given by [17]

S = / dr (e (U — 4 + gi52"2") — Vegr) (4.1)

with the potential
Vo = k — e 2OV — eQ(U“p)Vg(z, z), (4.2)

where [17, 23]
. o 1 _ _
Vou = gD, ZD;Z + | Z|* = —§QTMQ, V, = ¢ D;LD;L — 3|L|? (4.3)

denote respectively the black hole- and scalar potential. In (4.3), D; is the K&hler-covariant
derivative, Z = (Q, V), L = (G, V), with the symplectic section V and the symplectic vectors
of charges @ and gauge couplings G. M is the matrix defined in eq. (2.7) of [17]. Moreover

(A,B) = ATQB = A\B" — A*B,. (4.4)



Note that the target space of the one-dimensional sigma model (4.1) is equipped with the
metric
do? = 2V (—dy? + dU? + g;;dz'd7) (4.5)

and is thus a Lorentzian cone over a special Kdhler manifold times a line, as can be seen
by setting 7 = e¥. The conjugate momenta and Hamiltonian read

pu =20, py =20, pi= Mg, pr= gt
Hyp=e 2 (ip% - %p?p + gi’pipg-) + Vet 0
If we set S = 2W — Er, the reduced Hamilton-Jacobi equation becomes
e <W5 — W5 +4g7 %Z g) +Vig=E. (4.7)
As was shown for ungauged [24] and gauged supergravity [17], the quantity
Q= U +¢)+ W, (4.8)

is a first integral also in presence of the scalar fields z*. Q is the Noether charge related to
the symmetry
oU=U,—-U=c¢, 0 =1 — 1 = —e, (4.9)

that leaves the potential (4.2) and the action (4.1) invariant (the latter up to boundary
terms). In fact, a function W, satisfying (4.7) with E = 0, drives a first order flow

~ —OW
U =e %Wy, Y = —e_www , 2Y = 26_%9”% , (4.10)

and therefore the variation of (4.1) for infinitesimal € can be written as

5S = S(U., ) — S(U, ) = —2¢ / dr (P (U — P + 4gyy7 7))

, OW 5 OW
— / / o/ =7
= 2e/dr<U Wy + Wy + 2 950 +z 8§7> (4.11)
dw
=—2¢ [ dr—
e/ T

which vanishes if we choose appropriate boundary conditions. Note that the transfor-
mation (4.9) is generated by the vector field 0y — 0y = Oy — 70-, which is a conformal
Killing vector of the Lorentzian cone (4.5). The fact that Q is the Noether charge related
o (4.9) follows also from the inverse Noether theorem:® if Q is a conserved charge, then
the transformation

9Q oQ

I_ I _ _ _

ég° =g ,€Q] = O, opr = [p1,€Q] = e (4.12)
where [, | denotes the Poisson bracket, is a symmetry of the action.

6See [31] for a nice review.



As before, we introduce the coordinates
X=eUt, y=¢%, (4.13)
Then the first integral (4.8) becomes
Q= -2YWy + W, (4.14)
which can be easily integrated to give

W(X,}/,Z,Z) :Q+ \/YW(szvz)a (415)

where w is an integration ‘constant’. Using (4.15), the Hamilton-Jacobi equation (4.7) boils
down to

PR S O L
X T ox?? oriom X?
A particular solution to (4.16) is the one found in [23] by squaring the action for the BPS

- X%V, Ve +rk=F. (4.16)

case,
wpps = (Z —iX?L)(Z +iX%L) = |Z)? + XY L|* —iX*(LZ - LZ). (4.17)

Imposing E' = 0, as required by Einstein’s equations, and using

Ow
0zt

= (Z+iX?L)(D:Z —iX*D;L), (4.18)
as well as the special Kahler geometry identity

1 ) - P

i(M — i) = QVVQ + QD Vg DV, (4.19)

it is only matter of some algebra to shew that (4.17) solves (4.16) if one imposes the Dirac
charge quantization condition

(G,Q) = —k. (4.20)

In the following subsection we shall consider a particular prepotential, for which the effec-
tive action (4.1) has additional symmetries, that allow a further reduction of the Hamilton-
Jacobi equation (4.16).

4.1 Prepotential F = —iX°%X!

This simple model has only one complex scalar field z parametrizing the Poincaré half-
plane, with Kéhler metric

dzdz
ds? = 4.21
T Tt (421)
which has the three Killing vectors
vy =1i(0, — 0z), vy = 20, + 205, vg = %(2285 — z26z) ) (4.22)



These are all symmetries of the ungauged theory, but in presence of a potential for the
scalars only a linear combination of them survives, as was shown in [25] using the symplectic
representation.

If we consider a configuration with only magnetic charges and purely electric gaugings,
the HJ equation (4.16) becomes for this prepotential

1 s 0w Ow 24 g2z 42 z+Zz 1 + 2z
oy 4 N x2S TG gogi(z+2) 1 pP+pPaz

_E.
X T wx?9 9z 0z itz Xz L4z F

(4.23)
The linear combination
2

90 90 90 .2
v=5v] +U3 = (— )8 —<—z>8 (4.24)
2g? 2\ g2 2\ ¢? ?

generates a symmetry of (4.1) if one imposes the BPS condition [32] p’gy = plgi. It is
straightforward to verify that this implies the existence of a further conserved charge

/2 2
i (95 9\Ow i fg; _9)O0w
C=-(% - — === - —. 4.25
2(9% z>52 2(9% Z>35 (425
By introducing the new variables

_ 9 ok (gl( 4 w)> 7= % tanh (gl (u— w)> (4.26)

g9 g1

(4.25) can easily be integrated, with the result w = 2Cv+a(u, X). Plugging this into (4.23),
the HJ equation assumes the form

2 . 2 2 2
—ax%+ (‘”) sinh(2g0u/g1) oy £4C7 o oy - L iy k=B, (4.27)

90 4X72 a+2Cv X2
where
V() = — 2L Vo) =~ g (42
g1 tanh(2gou/g1) ’ tanh(2gou/g1)

It is easy to see that (4.27) can be satisfied for all v only if C = 0,7 so that we have

o g1 sinh?(2gou/g1) o2 2 1
— Oy — OV P - —FE. 4.2
Oxx + <90> 4X2 o Vo) = 55 Ven(u) + 5 (4.29)

For the prepotential under consideration, the BPS solution (4.17) reads

(p" + "2 — X2(g0 + 912)) (p* + "2 — X*(g0 + 912))

X,2,2z) = 4.30
wBPS( ,Z,Z) 2(Z+2) ( )
Imposing gop” = g1p* and using the coordinates (4.26), this leads to
Lp0 _ 00 X2)2 4plau/p®
apps(X,u) = PP~ 9 X% (4.31)

p0(64p1u/p0 _ 1)

"This sort of ‘axion-free’ condition is probably related to the special choice of purely electric gaugings
and only magnetic charges, so we don’t expect that C vanishes in a more general setting.

~10 -



It is interesting to note that the variables X and wu separate in (4.31). This suggests to use
a product ansatz a(X,u) = {(X)u(u) in order to get something more general than (4.31).
Unfortunately, plugging this into (4.29) gives back precisely (4.31). Another possibility
is inspired by the comparison with (3.18) (for d = 4), which contains, in addition to
quartic, quadratic and X-independent terms that appear also in (4.31), a linear piece in
X proportional to the constant A that is essentially a nonextremality parameter (or black
hole mass). One may thus try

a(X,u) =) an(u) X", (4.32)

where (to be still more general) we added a cubic term as well. However, one can check
that, using this ansatz in (4.29) leads to an overdetermined system that admits a solution
only for a1 = ag = 0, namely (4.31).

It remains to be seen if there exist additional conserved charges associated to hidden
symmetries of the action (4.1), that would allow to completely separate the Hamilton-
Jacobi equation (4.7). Note in this context that the transformation (4.9) acts only on U
and v but not on the scalars 2, whereas (4.24) touches only the 2’ but not the metric
components U and 1. There might thus exist (at least for some specific models) more
complicated symmetry transformations involving all the dynamical variables. We hope to

come back to a systematic analysis of this issue in a future publication.

5 Final remarks

In this paper we considered electrically charged static nonextremal black holes in d-dim-
ensional Einstein-Maxwell-(A)dS gravity, whose horizon is a generic Einstein space in d — 2
dimensions. We have shown that for this system the Hamilton-Jacobi equation is exactly
integrable and admits two branches of solutions. One of them exhibits a non-simply con-
nected domain of integration constants and does not reduce to the well-known solution
for the d = 4 BPS case. The principal functions generate two first order flows that are
analytically different, but support the same general solution. One of the two sets of flow
equations corresponds to those found in [1] and (for d = 4 and A = 0) in [2]. We clar-
ified thus also the reason for the very existence of first order equations for nonextremal
black holes, namely, they are just the expressions for the conjugate momenta in terms of
derivatives of the principal function in a Hamilton-Jacobi formalism.

In the last part of our paper we also analyzed if these integrability properties continue
to hold for matter-coupled N = 2, d = 4 gauged supergravity. Unfortunately it turned
out that the principal function W for nonextremal black holes is not straightforwardly
generalizable to this case. Still, we showed (for the example of a particular model) that
there exist several conserved charges that allow a partial separation of variables in the HJ
equation. These conserved charges comprise the one originally introduced for ungauged
supergravity in [24] and subsequently adapted to the gauged theory in [17], as well as
those associated to the symmetries recently discovered in [25]. We pointed out the possible
existence of additional hidden symmetries of the one-dimensional effective action (4.1) that

- 11 -



involve simultaneous transformations of the dynamical variables of both the metric and the
scalar sector.

One might ask if there exist covariantly constant spinors related to the first order equa-
tions. The authors of [2] have shown that the nonextremal Reissner-Nordstrém solution
cannot admit (generalized) Killing spinors in 341 dimensions, but it is supersymmetric
in a lower-dimensional effective theory. It might be, however, that the nonextremal black
holes considered in this paper possess so-called conformal Killing spinors (CKS, cf. e.g. [33]
for a review of this topic). Note in this context that both the (nonextremal) Kerr metric
and all other type II-II vacuum spacetimes do admit a CKS [34]. We hope to come back
to this point in a future publication.
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