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Abstract

Rock-like materials like ceramic refractories, in working conditions may

be subject to large temperature variations. To simulate practical appli-

cations, bespoke constituive modelling is required. In this work a general,

thermodynamically consistent framework, able to incorporate key microme-

chanical features of the material behaviour, and applicable to a wide range

of geomaterials, is formulated and validated. Di�erent thermodynamic po-

tentials are proposed to deal with both reversibility and irreversibility. A

key advantage of this approach is the ability to freely choose the thermal

dependency interpolation functions. Extensive model validation is pro-

vided by correctly reproducing both reversible and irreversible experimen-

tal trends of di�erent materials under di�erent loading conditions. It is

found that even for simple materials, if a sample is subject to a large stress

level, its thermal and mechanical responses become unexpectedly coupled.

The proposed modelling framework is not limited to refractories and can

be easily adapted to di�erent types of rock-like materials.

Keywords: elasticity, elasto-plasticity, high temperature, refractories, porous me-
dia

1 Introduction

Several applications in manufacturing engineering imply the exposure of rock-
like materials, like refractories, to very high temperature values, and possibly
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also large temperature gradients. Although several experimental programs have
been carried out to measure relevant properties of ceramic refractories at high
temperature, and some models (e.g., [27], [1], [25], [17]) have been proposed to
reproduce the main aspects of their thermo-mechanical behaviour, few attempts
have been made to date to propose a general framework, able to incorporate key
micromechanical features of the thermo-elasto-plastic material behaviour, with a
thermodynamically consistent formulation, applicable to a wide range of di�erent
materials. Due to data availability, special focus in this work is given to ceramic
materials used in the steel production industry. Based on their di�erent behaviour
upon thermal cycling, the two categories of (i) single component materials (like
alumina) and (ii) casted or pressed composite refractories are identi�ed, and their
constitutive peculiarities are modelled with bespoke mechanisms.

Ceramic refractories are usually very sti� (with elastic sti�ness ranging be-
tween 10 and 200 GPa) and characterised by thermal expansion coe�cients usu-
ally ranging between 3× and 6 × 10−6 K−1 (e.g., see [11], [32], [10]). When
subjected to temperature variations of nearly 1500 K, the associated thermal
strain is consequently very large (0.45− 0.90 %) which, if prevented, would lead
to huge induced stresses (45 − 1800 MPa). Although refractory materials, to
allow for their inevitable, thermally induced dilative deformation, are not usually
constrained at the external boundaries, thermal gradients to which refractory
pieces are subject in working conditions (e.g. in steel making processes) may be
very large, thus possibly inducing large self-equilibrated internal stresses. Fur-
thermore, certain refractory materials typically exhibit irreversibility upon tem-
perature cycling, even at low applied stresses, which may lead to accumulated
permanent changes (i.e. degradation) of their elastic and/or strength properties
during their working life. Hence, simulating accurately the thermo-mechanical
behaviour of these materials appears of paramount importance.

Thermo-mechanical and thermo-physical properties of refractories typically
exhibit a wide variation among di�erent materials, mainly depending upon their
chemical composition, forming process and curing temperature. It has emerged
from a comprehensive literature review [8] that while the speci�c heat capacity cp
(or cv) and thermal expansion coe�cient α exhibit characteristic trends of thermal
variation that could be considered common to most ceramic material types, the
modulus of elasticity E shows a much wider variety of trends with temperature.
It appears that, somewhat counter to engineering intuition, the elastic modulus
of certain refractories (both measured with dynamic techniques or by means of
mechanical, pseudo-static testing) does not exhibit a steady decrease with increas-
ing temperature, but an initial horizontal or slightly decreasing trend, followed
by a marked nonlinear increase, sometimes followed by an abrupt drop beyond
a threshold temperature (e.g., see [17], [32], [16], [10]). Moreover, while single
component refractory materials exhibit a reversible thermal behaviour (thus if
heated at very high temperatures and then cooled, they do not show any per-
manent change of their thermo-mechanical properties), composite materials ex-
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hibit hysteresis when subjected to a heating/cooling cycle (even at low applied
stresses).

Overall, when measured in uncon�ned conditions, a general tendency is ob-
served for both α and cp to increase with increasing temperature, with a more or
less marked tendency to reach a horizontal asymptote at large temperature val-
ues. This applies to both single-component materials such as alumina or glassy
carbon (e.g. [32]) and composite materials, such as carbon-bonded refractories
(e.g. [11]). In contrast, elastic sti�ness exhibits a decreasing and mostly re-
versible trend with temperature for single component materials (e.g. [16]), while
it shows the above mentioned nonlinear alternation of increasing and decreasing
stages with increasing temperature, as well as some hysteresis upon tempera-
ture cycling, for composite (i.e., multi-component) materials (e.g. [17]). Similar
trends have been experimentally observed also in the thermal evolution of mate-
rial strength properties, such as the uniaxial tensile or compressive strength (e.g.,
[10], [24]).

Due to the above mentioned heterogeneity of thermo-mechanical properties
among di�erent refractory materials, it is not possible to formulate a general con-
stitutive model that can simulate properly all typical aspects of material response.
Any thermo-mechanical constitutive model must be formulated and calibrated for
the given composition and forming process that are peculiar of the speci�c ma-
terial at hand, resulting in a somewhat restricted range of applicability.

In this work, some typical aspects of material response are considered, that
apply to broad families of rock-like materials. Despite the main focus of this
paper being on refractory materials, for which there is a certain availability of
experimental measurements at high temperature, this work aims at proposing a
general framework that could be easily applicable in an interdisciplinary context,
to investigate the behaviour of geomaterials subjected to very high temperature.
For example the same modelling approach can be applied to the natural conun-
terparts of refractories, namely rocks, that in some contexts can be subjected to
analogous thermo-mechanical loading conditions, such as those acting in shallow
crustal phenomena (shear heating of faults and of rockslide slip planes, [29], [2]).

The limitations and implications of both basic and more complex constitutive
assumptions concerning the thermo-elastic material response are discussed. In
particular, the cases of reversible and irreversible thermo-mechanical behaviour
upon thermal cycling at low applied stresses (i.e. within the elastic domain)
are addressed. To capture irreversible response, a thermo-elastic model is also
developed in the framework of elasto-plastic coupling (i.e., coupling between ther-
mal, elastic and plastic properties is considered). A discussion follows on how
the two thermo-mechanical elastic (reversible and irreversible) frameworks can
be combined with a plastic driver to obtain a thermo-dynamically consistent,
general elasto-plastic framework for refractory materials. Finally, the proposed
framework is validated by reproducing numerically some experimentally observed
trends.
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Notation:

The following tensorial product will be used:

(A⊗B) [C] = (B ·C)A and (A⊗B) [C] =
1

2

(
ACBT +ACTBT

)
,

for every second-order tensor A, B and C.

Basic assumptions:

The usual strain decomposition into the elastic and plastic strains will be
assumed below, namely

ε = εe + εp and ε̇ = ε̇e + ε̇p (1)

where the dot stands for time derivative.
Moreover, following [27], the same decomposition is assumed to hold true for

the entropy (per unit initial volume), namely

η = ηe + ηp and η̇ = η̇e + η̇p. (2)

Thus, absolute temperature θ plays the role of a stress-like quantity (cf. [27]),
whereas the entropy plays the role of the corresponding (conjugated) strain-like
quantity.

2 Thermodynamic potentials with reversible ther-

mal behaviour

Let us �rst consider a refractory material undergoing negligible irreversible be-
haviour when subjected to a thermal loading-unloading cycle, under a small ap-
plied stress. The thermodynamic potential proposed in this Section assumes
a perfectly reversible behaviour, thus the thermo-mechanical properties are as-
sumed to remain unchanged after either a thermal, or mechanical, loading-unloading
cycle, as long as the stress state remains within the yield surface.

Under non-isothermal conditions, the free energy per unit undeformed volume
is expressed as

ψ = ψ(εe, θ), (3)

where εe is the small strain elasticity tensor and θ is the absolute temperature.
Upon time di�erentiation, we obtain

ψ̇ =
∂ψ

∂εe
· ε̇e +

∂ψ

∂θ
θ̇. (4)
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The de�nition of internal dissipation Dint involves the work done by the total
stress with the corresponding work-conjugate strain rate, thus

Dint = θη̇ + σ · ε̇− ė, (5)

where σ is the stress tensor and e is the internal energy function e = e(εe, ηe),
which is related to the free energy density through a Legendre transformation, as
follows

ψ(εe, θ) = e(εe, ηe)− ηeθ. (6)

In the case of purely thermoelastic response (ε̇ = ε̇e and η̇ = η̇e), the insertion of
eqn. (6) into eqn. (5) leads to

Dint = σ · ε̇e − ηeθ̇ − ψ̇ (7)

and the internal dissipation must vanish, Dint = 0, thus, through standard argu-
ments [3], the following constitutive assumptions are obtained

σ =
∂ψ

∂εe
, ηe = −∂ψ

∂θ
. (8)

It should be noted that the above outlined approach, at variance with the
thermoelastic theory proposed by Green and Naghdi [13] and further developed
by [20], follows classic thermoelasticity, thus involving energy dissipation due
to heat transfer. In the following, we analyse the implications of adopting the
simplest possible class of ψ that can be deduced from published experimental
results on refractory materials, namely

ψ(εe, θ) =
1

2
K(θ) (Tr(εe)− A(θ)(θ − θ0))2 +G(θ) ee · ee+

−C(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
(9)

where ee is the deviatoric elastic strain tensor, K(θ), G(θ), A(θ) and C(θ) are
suitable interpolation functions of the absolute temperature θ, evaluated from
the available experimental data, and θ0 is the initial temperature. An isotropic
response is assumed in eqn.(9) and functions K(θ) and G(θ) represent the tem-
perature dependent bulk and shear moduli. The functions A(θ) and C(θ) are
related to the temperature dependent heat volumetric expansion coe�cient and
to the constant-volume heat capacity, respectively. The choice of the most suit-
able interpolation functions is discussed hereafter.

From eqns. (8) and (9) we can deduce that

σ =
∂ψ

∂εe
= K(θ) (Tr(εe)− A(θ)(θ − θ0)) I + 2G(θ)ee, (10)
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where I the second order identity tensor, thus the resulting elastic tangent sti�-
ness matrix depends only on temperature, through

D =
∂2ψ

∂ε2e
=

(
K(θ) +

2

3
G(θ)

)
I ⊗ I + 2G(θ)I⊗I. (11)

Since non-isothermal experiments are usually performed at low applied stress
(i.e. at atmospheric pressure), the complementary potential of the free energy
density function, the so-called free enthalpy, must be found through a partial
Legendre transformation

ϕ(σ, θ) = ψ (εe(σ), θ)− σ · εe (12)

which is equal to

ϕ(σ, θ) = −Tr(σ)

K(θ)

(
Tr(σ)

2
+ A(θ)(θ − θ0)K(θ)

)
− 1

4G(θ)
σD ·σD+

−C(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
(13)

where σD is the deviatoric component of σ. The strain tensor can be immediately
deduced as

εe = −∂ϕ
∂σ

=

(
Tr(σ)

K(θ)
+ A(θ)(θ − θ0)

)
I +

1

2G(θ)
σD (14)

and its derivative with respect to temperature, representing the thermal expan-
sion coe�cient at constant stress, is obtained as

ασ =
∂ε

∂θ
= − Tr(σ)

(K(θ))2
K ′(θ)I + (A′(θ)(θ − θ0) + A(θ))I − G′(θ)

2(G(θ))2
σD. (15)

Equation (15) implies that the thermal expansion coe�cient is a tensor quan-
tity and depends on the applied stress. In usual applications, due to technical
di�culties, the thermal expansion coe�cient is evaluated at atmospheric pressure,
which is usually negligible compared to the magnitude of elastic moduli, thus the
thermal expansion coe�cient can be practically rewritten as independent of the
applied stress and isotropic

ασ ≈ (A′(θ)(θ − θ0) + A(θ))I. (16)

As a result, under negligible applied stress, the thermal expansion coe�cient
takes the usual meaning (i.e., it is equal in all directions) and depends only on
temperature.

The entropy at constant stress is given by

ησe = −∂ϕ
∂θ

= −(Tr(σ))2

(K(θ))2
K ′(θ) + Tr(σ)(A′(θ)(θ − θ0) + A(θ))
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− 1

4(G(θ))2
G′(θ)σD ·σD−C ′(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
−C(θ)Log

(
θ

θ0

)
, (17)

thus the speci�c heat capacity at constant pressure writes

cp = −θ∂η
σ
e

∂θ
= −θ (Tr(σ))2

(K(θ))2

(
2

(K ′(θ))2

K(θ)
−K ′′(θ)

)
+

−θTr(σ)(A′′(θ)(θ − θ0) + 2A′(θ))− θ0
4(G(θ))2

(
2

(G′(θ))2

G(θ)
−G′′(θ)

)
σD ·σD+

+C ′′(θ)θ

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
+ 2C ′(θ)θLog

(
θ

θ0

)
+ C(θ), (18)

which also depends on the applied stress. The experimental evaluation of cp is
typically performed at negligible applied stress, thus cp becomes

cp ≈ C ′′(θ)θ

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
+ 2C ′(θ)θLog

(
θ

θ0

)
+ C(θ). (19)

and practically depends only on temperature.
In the solution of a typical boundary value problem, the entropy at constant

strain ηe is usually employed and can be derived from the free energy (eqn. (9))
as

ηe = −∂ψ
∂θ

= −1

2
K ′(θ) (Tr(εe)− A(θ)(θ − θ0))2 +

+K(θ) (Tr(ε)− A(θ)(θ − θ0)) (A′(θ)(θ − θ0) + A(θ))+

−G′(θ)ee · ee − C ′(θ)
[
θLog

(
θ

θ0

)
− (θ − θ0)

]
− C(θ)Log

(
θ

θ0

)
. (20)

Experimental tests typically supply data concerning the thermal dependence
of elastic sti�ness, the variation of thermal expansion coe�cient and of speci�c
heat capacity with temperature, both evaluated at negligible applied stress. It
can be observed that all quantities expressed by eqns. (11), (16) and (19) are
decoupled from each other. Thus, it is possible to accurately interpolate each
experimental plot (obtained at negligible applied stress) by using suitable inter-
polation functions K(θ), G(θ), A(θ) and C(θ), which can be chosen as complex
as needed. This feature constitutes a major advantage of this simple approach.

Thus, for instance, the interpolating functions useful to simulate experimental
results about thermal dependency of sti�ness in sintered alumina (e.g., see Fig.
2 of [32], or Fig. 4 of [16]), shown in Figure 1a, can be set as follows

K(θ) = aK − bK(θ − θ0)− cKTanh
(
θ − θK
dK

)
(21)

G(θ) = K(θ)
2(1 + ν)

3(1− 2ν)
(22)
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where ν is the constant Poisson's ratio and

A(θ) = aA + bA

(
θ − θA
θ0

)eA
(23)

C(θ) = aC + bC

(
θ − θA
θ0

)eC
(24)

where θi and ai, bi and di (with i = K,A,C) are coe�cients that must be cal-
ibrated on the experimental results. The parameter values chosen to reproduce
the thermo-mechanical behaviour of sintered alumina are reported in Table 1 (Set
1). Relevant initial conditions are reported in Table 2 (Set 1). It is worth remark-
ing that there is no restriction on the choice of the most suitable interpolation
functions.

The simplicity of this approach has, however, important implications that
should be remarked. First of all, let us recall that this approach does not permit
to simulate any sort of irreversibility induced by a thermal loading-unloading cy-
cle, as long as the stress lies inside the yield surface. Although such reversible
behaviour does not apply to all refractory materials, the simplicity of this ap-
proach can be appealing in many applications involving refractory materials with
simple thermal response (i.e. with negligible hysteresis) or even materials exhibit-
ing more complex thermal behaviour, when subjected only to monotonic thermal
loading conditions.

It should also be remarked that the proposed model is calibrated along simple
loading conditions, i.e. the thermal properties are evaluated at negligible applied
stress and varying temperature, whereas the elastic sti�ness is measured at di�er-
ent temperatures, starting from initially negligible (atmospheric) pressure. This
implies that the thermal potentials described above may produce unexpected
responses, when applied to more general thermal and mechanical loading condi-
tions. Figure 1 shows the simulated temperature dependence of elastic sti�ness,
speci�c heat capacity and longitudinal deformation (whose slope represents the
thermal expansion coe�cient), for a sample subjected to thermal loading under
three di�erent, constant applied stress levels. It can be observed that, as long as
the applied load is smaller than about 100 MPa (corresponding to about 5 % of
the elasticity modulus E at room temperature), the thermo-mechanical coupling
is small, i.e. the di�erence between the plots obtained at 0.1 and at 100 MPa of
applied stress is negligible. As a result, the experimental behaviour exhibited at
atmospheric pressure is expected to be meaningful also at slightly higher applied
stresses. In contrast, the thermo-mechanical coupling may unexpectedly change
when the applied stress is large compared to the elastic sti�ness. This is evi-
dent in Figures 1b and 1c, showing that if the sample is subject to a 1000 MPa
stress level, both the thermal evolution of speci�c heat capacity and of thermal
expansion coe�cient signi�cantly change their trend in the higher temperature
range.
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Further, it can be deduced from Figure 1a that the interpolating function (eqn.
21) implies a non-negligible decrease of sti�ness (for instance due to a melting
phase) at high temperatures. Such decrease of sti�ness can re�ect, for example,
the in�uence of a glassy matrix, and is responsible for the unexpected change
in the thermally induced longitudinal deformation and speci�c heat under large
applied stress (Figures 1b and 1c). In other words, the thermal and mechanical
material responses become more deeply coupled when the sample is loaded by
a large applied stress, even though the proposed interpolation functions (eqns.
21-24) are not, apparently, mechanically coupled.

The thermodynamic potential proposed in eqn. (9) assumes a perfect re-
versible behaviour, thus plastic strains and any irreversible fraction of entropy
variation must be de�ned by the plastic �ow rule. In the case of irreversible
behaviour (ε̇p 6= 0 and η̇p 6= 0), the internal dissipation (eqn. 5) is not null and
becomes

Dint = σ · ε̇p + θη̇p. (25)

As a result, if the yield function is assumed to take the following form

F(σ, θ, κ) = 0 (26)

where κ is a set of internal variables, then, to achieve maximum dissipation,
the �ow rule must be associated [27]. Thus, the increments of plastic strain-like
quantities (i.e. εp and ηp) must be orthogonal to the yield surface F , namely

ε̇p = Λ̇
∂F(σ, θ, κ)

∂σ
and η̇p = Λ̇

∂F(σ, θ, κ)

∂θ
. (27)

where Λ̇ is the plastic multiplier.

3 Thermodynamic potentials with irreversible ther-

mal behaviour

The thermodynamic potentials discussed in Section 2 were based on the assump-
tion of a perfectly reversible behaviour under a thermal loading/unloading cycle,
performed at negligible applied stress. In other terms, a thermal cycle performed
at negligible applied stresses is assumed to leave unchanged the thermal and me-
chanical properties of the refractory material. Unfortunately, this assumption
does not always hold (especially in composite materials) and in most practical
cases, an irreversible response is observed. This is due to many reasons, such
as phase change, chemical reactions and melting of some constituents with the
consequent curing of microcracks. To describe these e�ects, the thermodynamic
potentials must account for meaningful and physically-based internal variables,
that are capable of describing the relevant micro-scale changes, such as the rel-
ative amount of the di�erent phases (if a phase change occurs), the extent of
chemical reactions or the amount of internal defects.
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Alumina Composite refractories
Param. Units Set 1 Set 2 Set 3 Set 4
aK Pa 0.73× 1010 −0.71× 1010 −0.71× 1010 −2.3× 108

bK Pa/K 1.0× 106 8.33× 106 8.33× 106 2.78× 105

cK Pa 0.18× 1010 9.03× 1010 9.03× 1010 3× 109

dK K 150 160 160 160
θK K 1900 1550 1550 1550
aA K−1 2× 10−6 0.5× 10−6 0.5× 10−6 0.5× 10−6

bA K−1 5.48× 10−6 1.37× 10−6 1.37× 10−6 1.37× 10−6

eA - 0.3 0.3 0.3 0.3
θA K 250 250 250 250
aC K−1 2.6× 106 2.6× 106 2.6× 106 2.6× 106

bC K−1 8.77× 105 8.77× 105 8.77× 105 8.77× 105

eC - 0.3 0.3 0.3 0.3
ν - 0.1 0.1 0.1 0.1
rK Pa - 1.88× 1010 4.23× 1010 6.26× 108

eK Pa - 3.75× 1010 8.44× 1010 1.25× 109

k1 K−2 - 2.25× 1010 1.13× 1010 2.25× 1010

k2 K−2 - 0.2× 1010 0.25× 1010 0.2× 1010

k3 - - 4× 103 4× 103 9.6× 103

A - - 0.8 0.8 0.8
θF K - 973 374 973
θR K - 673 200 673
θC K - 1173 1173 1173
dC K - 300 300 200
kε - - −7.2× 10−3 −3.6× 10−3 −7.2× 10−3

aRC Pa - 10× 106 5.8× 107 2.8× 107

bRC Pa - 8× 106 5.6× 107 2.5× 107

θM K - 1400 1400 1400
rRC K - 200 200 200
λ - - 0.2 - 0.03 0.2 - 0.03 0.2 - 0.03

Table 1: Summary of the main model parameters adopted for the di�erent ma-
terials.

Param. Units Set 1 Set 2 Set 3 Set 4
Pc −Nccσrc Pa - 5× 106 10× 106 10× 106

Ncf - - 0.6 0.43 0.6
σ0 Pa 105 105 105 105

θ0 K 290 290 290 290

Table 2: Initial values of key parameters adopted in the simulations.
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3.1 Choice of internal variables

To formulate suitable thermodynamic potentials, account was taken for the ex-
perimental evidence available in the literature on composite refractories (e.g.
[31], [16], [17] and [32]), where the existence of three micro-scale mechanisms
can be schematically outlined in the evolution of the (dynamically measured)
Young's modulus E versus temperature. Such mechanisms, emerging during
thermal loading starting from ambient temperature up to about 1500 oC, consist
of 1) an initial, slight decrease of E due to reducing atomic bonding sti�ness [17]
(and/or dehydration if the material at hand is a castable concrete, see [16]); 2) a
subsequent increase of E due to closing of microcracks (induced from di�erential
thermal expansion of the various constituents) and 3) a �nal reduction of E due
to (partial) melting of some constituents.

Based on the above experimental observations, the fraction of closed microc-
racks, Ncc (generally due to both di�erential thermal expansion and mechanically
induced volumetric strain), and the fraction of cured microcracks Ncf (due to the
possible melting of some phases) can be chosen as internal variables to feature
in the thermodynamic potential accounting for irreversible behaviour. In par-
ticular Ncf can vary between 0 and Ncc, because the cured microcracks are a
subset of the closed microcracks. As a result, the number of closed microcracks
Ncc ranges between Ncf and a limiting value Nlim = 1 (Figure 2). The condi-
tion Ncf = 0 represents a limiting situation of completely decemented material
(exhibiting only a frictional resistance), whereas the condition Ncc = Ncf is repre-
sentative of a situation in which all microcracks that are not cemented are open,
typically occurring at low temperature (and low applied stress). In contrast, the
case Ncc = Ncf = Nlim represents the limiting situation when the material is
completely cemented and no microscopic defect is present. Thus, subject to the
above constraints, both Ncc and Ncf can range between 0 and 1.

It is now required to de�ne the evolution laws of the newly introduced internal
variables, Ncc and Ncf . Ncc is generally expected to depend on on temperature
(the di�erent thermal expansion of the various constituents is expected to a�ect
the pore volume, thus also a�ecting Ncc) and on the the applied strain (in fact,
a compressive volume strain is expected to decrease the pore volume and conse-
quently increase Ncc). Moreover, Ncc should be rigorously represented by a tensor
quantity, to account for the fact that the normal directions to closed microcracks
might generally have a non-isotropic distribution. Both anisotropy and strain
dependency have been neglected in the formulation presented below for the sake
of simplicity, and due to a lack of experimental evidence. In particular, neglecting
the dependence on the applied strain is acceptable if the materials at hand exhibit
a high sti�ness and a non-negligible thermal expansion, and are subject to very
large temperature variations, which is typically the case of refractory materials.
On the other hand, neglecting the dependence of Ncc on the applied strain is not
acceptable in other applications, such as the analysis of isostatic pressing of a
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ceramic powder.
The following empirical law is proposed for the evolution of Ncc

Ncc =
Nlim +Ncf

2
+
Nlim −Ncf

2
Tanh

(
θ − θC
dC

)
, (28)

where θC is the temperature corresponding to the highest rate of microcracks
closing, and dC is a constitutive parameter. Note that Ncf and Nlim are the
limiting values of Ncc, and that the proposed law implies full reversibility if Ncf

is constant.
It is worth anticipating here that the closure of microcracks is assumed to

lead to an increase of elastic sti�ness. As a result, introducing a dependency of
Ncc on strain could permit a reliable simulation of the observed increase of elastic
properties induced by static compaction.

The evolution law of Ncf with temperature cannot be established along the
lines of the evolution of Ncc (eqn. 28), because the e�ects of temperature on Ncf

are assumed irreversible. Moreover, Ncf is assumed to also depend on plastic
strain, which can induce new microcracks. Hence, the following relationship is
proposed

Ṅcf = k1(Ncc −Ncf ) <
θ − θF
θ0

>< θ̇ > −k2Ncf <
θR − θ
θ0

>< −θ̇ > +

−k3Ncf

√
(1− A)Tr(ε̇p)2 + ATr(ėp · ėp), (29)

where A and k3 are constitutive parameters (with 0 ≤ A ≤ 1) governing the
increase of microcracks due to plastic strains εp (ep is the deviatoric component
of the plastic strain), θF and θR are the temperature values at which curing (due
to melting) and rupture of microcracks, respectively, mostly occurs. k1 and k2
are constitutive coe�cients (having units of 1/K) and <> denotes the Macaulay
brackets, thus the �rst term applies for θ > θF and θ̇ > 0, whereas the second
term applies for θ < θR and θ̇ < 0. As a result, the �rst term of eqn. (29)
rules microcracks curing (occurring at θ > θF and θ̇ > 0), whereas the second
term rules microcracks rupture due to the decrease of temperature (for θ < θR
and θ̇ < 0). Finally, the last term of eqn. (29) describes the formation of new
microcracks due to plastic loading. Note that Ncc and 0 are the limiting values
of Ncf .

3.2 Formulation of thermodynamic potentials

The proposed free energy density function has the following functional depen-
dency

ψ = ψ̃(εe, θ, Ncc, Ncf ) (30)
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where Ncc and Ncf could be considered to play the role of internal variables
depending on the previous thermal and mechanical loading histories. However,
since both Ncc and Ncf depend on temperature and on plastic strains through
eqns. (28) and (29), the functional dependency of ψ can equivalently, but more
consistently, be expressed as

ψ = ψ(εe, θ, εp). (31)

In any case, due to the above assumptions, a thermal loading-unloading cycle
performed at negligible applied stress a�ects the �nal properties of the material,
due to the irreversible changes of Ncc and Ncf induced by temperature variations
through eqns. (28) and (29).

The free energy density function is assumed to take the form

ψ(εe, θ, εp) =
1

2
K(θ, εp) (Tr(εe)− A(θ)(θ − θ0) + kεNcf )

2 +

+G(θ, εp) ee · ee + C(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
(32)

where kε is a constitutive parameter describing the volume deformation due to
the curing of microcracks and functions K(θ, εp) and G(θ, εp) represent the bulk
and shear moduli. These are expressed by the following extension of eqn. (21)

K(θ, εp) = aK − bK(θ − θ0)− cKTanh
(
θ − θK
dK

)
+ rKNcc + eKNcf (33)

where aK , bK , cK , dK , eK , rK and θK are constitutive parameters, and

G(θ, εp) = K(θ, εp)
2(1 + ν)

3(1− 2ν)
(34)

with a constant Poisson's ratio ν.
It is worth observing that the elastic sti�ness depends directly on tempera-

ture (thus, accounting for the experimentally observed reduction of sti�ness due
to melting of some constituents, at high temperature), on Ncc (describing the
increase of sti�ness due to closing of microcracks) and on Ncf (describing the
increase of sti�ness due to the curing of microcracks). Thus the irreversibility of
elastic sti�ness variation versus temperature is introduced in eqn. (33) through
the dependence on Ncc and Ncf . The interpolating functions A(θ) and C(θ) are
assumed the same as in eqns. (23-24).

The free enthalpy can be easily deduced along the lines of eqn. (12), as

ϕ(σ, θ, εp) = −Tr(σ)

(
Tr(σ)

2K(θ, εp)
+ A(θ)(θ − θ0)− kεNcf

)
+

13



− 1

4G(θ, εp)
σD ·σD + C(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
, (35)

from which the elastic strain tensor is derived as

εe =

(
Tr(σ)

K(θ, εp)
+ A(θ)(θ − θ0)− kεNcf

)
I +

1

2G(θ, εp)
σD, (36)

whereas from eqn. (32), the stress tensor is obtained as

σ = − ∂ψ
∂εe

= K(θ, εp) (Tr(εe)− A(θ)(θ − θ0) + kεNcf ) I+

+2G(θ, εp) ee. (37)

It is worth remarking that the dependence of elastic properties and elastic
strain on Ncf (eqns. 33, 34 and 36) implies a dependency on plastic strains, in
the form of damage, i.e. a progressive degradation of elastic sti�ness induced by
plastic strains. This sort of e�ect is denoted in the literature as elasto-plastic
coupling, and was �rst postulated by Hueckel and Maier [15].

The entropy per unit initial volume is obtained by deriving the potential ψ
with respect to temperature (see eqns. 17 and 20), namely

ηe = −∂ψ
∂θ

= −1

2

∂K(θ, εp)

∂θ
(Tr(εe)− A(θ)(θ − θ0) + kεNcf )

2 +

+K(θ, εp) (Tr(ε)− A(θ)(θ − θ0)) (A′(θ)(θ − θ0) + A(θ)) + kε
∂Ncf

∂θ

−∂G(θ, εp)

∂θ
ee · ee − C ′(θ)

[
θLog

(
θ

θ0

)
− (θ − θ0)

]
− C(θ)Log

(
θ

θ0

)
. (38)

Similarly to elastic properties, also thermal properties depend on plastic
strains through Ncf , i.e. the entropy includes an irreversible fraction, which
depends on plastic strain.

Due to the presence of internal variables in the free energy density function,
the internal dissipation (eqn. 5) writes

Dint = (σ −A) · ε̇p + θη̇p (39)

where A = ∂ψ/∂εp is the thermodynamic stress associated with εp. In order to
obtain the maximum internal dissipation, an associated �ow rule is needed with
a yield function expressed as F(σ −A, θ, κ), thus we get

ε̇p = Λ̇
∂F(σ −A, θ, κ)

∂(σ −A)
and η̇p = Λ̇

∂F(σ −A, θ, κ)

∂θ
. (40)
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3.3 Typical model response for irreversible thermal be-

haviour

Figure 3 shows the typical model response, in terms of evolution of (a) elastic
sti�ness, (b) fraction of closed and cured microcracks (Ncc and Ncf ) and (c)
longitudinal strain, along a temperature cycle. As is shown in detail in Section
7, the sample simulations of Figure 3 are consistent with the experimental trends
published in the literature on a number of composite refractory materials.

It can be observed that the irreversibility of elastic sti�ness and longitudinal
deformation induced by temperature cycling are correctly reproduced, and ther-
mal deformation leads to a small residual compressive strain. The evolution of
closed and cured microcracks in Figure 3b shows that Ncf starts increasing along
the thermal loading branch at T>800o C due to melting of some constituents,
whereas it starts decreasing, along the unloading branch, when T<400o C. Thus,
the thermal evolution of elastic sti�ness (Figure 3a) is the result of two concur-
rent e�ects: the increase of Ncc and Ncf leading to an increase of sti�ness and
the decrease of sti�ness induced by melting. It can be noticed that the pro-
posed approach has the advantage of identifying di�erent internal variables with
a clear physical meaning, characterised by evolution laws that are governed by
distinct controlling variables. The proposed relationships are, in any case, fairly
�exible, thus they can reliably reproduce di�erent irreversible thermo-mechanical
behaviours compared to those shown in Figure 3.

4 Elasto-plastic coupling for thermodynamic po-

tentials with irreversible thermal behaviour

While the thermodynamic potential formulated for reversible behaviour (eqn. 9)
can be considered fairly standard and self-explanatory, the free energy proposed
for irreversible behaviour (eqn. 32) requires further discussion, due to the involved
elasto-plastic coupling. From eqn. (37), the stress increment is equal to

σ̇ = D[ε̇e] +
∂2ψ

∂εp ∂εe
[ε̇p]−B θ̇, (41)

where D = ∂2ψ/∂ε2e and B = −∂σ/∂θ, that can be rewritten as

σ̇ = D[ε̇− ε̇i]−B θ̇, (42)

where ε̇i is the irreversible strain rate which is related to the plastic strain incre-
ment through

ε̇i =

(
S− D−1 ∂2ψ

∂εp ∂εe

)
[ε̇p], (43)
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where D is de�ned in eqn. (11), and S is the fourth-order tensor which singles out
the symmetric part of any second-order tensor. Equation (43) is well accepted
within the framework of elasto-plastic coupling (cf. [15]).

Gajo and Bigoni [7] have recently shown that the �ow rule given in eqn. (40)
featuring a yield function expressed as F(σ −A, θ, κ), is equivalent to the �ow
rule

ε̇i = λ̇
∂F̃(σ, θ, κ̃)

∂σ
and η̇p = λ̇

∂F̃(σ, θ, κ̃)

∂θ
, (44)

with respect to a yield function in the form F̃(σ, θ, κ̃).
In other terms, the �ow rule can be either expressed in terms of ε̇p which must

be normal to the yield function F(σ −A, θ, κ), or in terms of ε̇i which must be
normal to the yield function F̃(σ, θ, κ̃). The two approaches are equivalent, but
the latter is much simpler than the former, because the yield function F̃(σ, θ, κ̃)
is much easier to evaluate. This is why the latter approach will be adopted
hereafter. In this case, the plastic strain increment ε̇p must be deduced from the
irreversible strain increment ε̇i, through the �ow rule (eqn. 40), by using eqn.
(43)

ε̇p = G
−1[ε̇i] (45)

where

G =

(
S− D−1 ∂2ψ

∂εp ∂εe

)
.

5 Energy balance equation

In the absence of heat sources, the well-known local energy balance equation (e.g.,
see eqn. 4-6.14 of [14]) is expressed as

−∇ · q = ė− σ · ε̇ (46)

where the symbol ∇ denotes the divergence operator and q is the heat �ux. If
the dissipation equation (eqn. 5) is introduced in eqn. (46) and eqn. (39) is used,
we obtain

−∇ · q = θη̇ −Dint = θ (η̇ − η̇p)− (σ −A) · ε̇p. (47)

Introducing eqn. (2) and eqn. (20) (or eqn. 38) for reversible (or irreversible)
thermal behaviour, into eqn. (46), we obtain a form of the energy balance equa-
tion that does not include η̇p, namely

−∇ · q = θη̇e − (σ −A) · ε̇p. (48)

The above can be rewritten as

cvθ̇ = (σ −A) · ε̇p − θ
(
∂A

∂θ
· ε̇p −B · ε̇e

)
−∇ · q, (49)
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where cv = −θ ∂ηe/∂θ, whereasA = 0 in the case of reversible thermal behaviour.
It is worth recalling that in metal plasticity, the mechanical dissipation (σ −

A) · ε̇p is typically expressed as a fraction (equal to 0.80 ÷ 0.95) of the plastic
work Wp = σ · ε̇p (see [25]). Within the proposed framework, such an empirical
assumption is not needed, because all thermodynamic potentials are de�ned by
the selected free energy function (eqn. 32). In any case, the mechanical dissipa-
tion predicted by the constitutive model must be validated against experimental
evidence.

6 Plastic driver for thermodynamic potentials with

reversible and irreversible behaviour

In this section, the procedure aimed at incorporating the above proposed thermo-
dynamic potentials for reversible and irreversible thermal behaviour into a basic
isotropic hardening yield function is described. To this aim, the following simple
extension of the modi�ed Cam Clay model [26] is considered, along the lines of
existing approaches proposed for bonded geomaterials ([9], [22], [23]), where the
set of internal variables (denoted with κ in eqn. 26, and with κ̃ in eqn. 44) is set
equal to the plastic volumetric strain (i.e. Trεp):

F(σ, θ,Trεp) = McvKθ

((
Tr(σ)

3
− Pt

)2

+

(
Tr(σ)

3
− Ptr

)
(Pc + Pt)

)
+ 3J2

(50)
whereMcv is the critical state slope parameter, Kθ is a function of the Lode angle
describing the deviatoric section of the yield surface (in this work the function
proposed by Willam and Warnke [33] has been used), J2 is the second stress
invariant, Pt and Pc are the tensile and compressive strengths of the material. Pt
and Pc are assumed related to the number of cured fractures through

Pt = Ncfσrt and Pc = P0Exp

(
−Trεp + ε0

λ

)
+ (Ncc +Ncf )σrc, (51)

where λ is a constitutive parameter, P0 and ε0 are the reference mean pressure and
volumetric strain, and σrt(θ) and σrc(θ) are the tensile and compressive strength
at the microscopic level, depending on temperature θ. The number of closed and
cured cracks, Ncc and Ncf , is evaluated by using eqns. (28) and (29). When
the material is completely uncemented, Ncf = 0, then the tensile strength is
null Pt = 0, and Pc becomes equal to the preconsolidation pressure of a loose
(uncemented) geomaterial plus a contribution due to closed microcracks, namely

Pc = P0 Exp

(
−Trεp + ε0

λ

)
+Nccσrc. (52)
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The �rst term of the above coincides with the typical Cam Clay hardening rela-
tionship (e.g., see [21]).

As an example, the following tentative dependency of σrt and σrc on temper-
ature can be assumed

σrc = aRC − bRCTanh
(
θ − θM
rRC

)
, (53)

σrt =
σrc
rf

(54)

where aRC , bRC and rRC are constitutive parameters and rf is the ratio between
the tensile and compressive strength at microscopic level. Note that tensile and
compressive strengths at the microscopic level, following common engineering
sense, are assumed to decrease with the increase of temperature, following a
trend similar to the variation of elastic sti�ness of alumina (eqn. 21).

Figure 3d shows the simulated variation of tensile and compressive strengths
Pc and Pt versus temperature. It is worth observing that due to the irreversibility
of the thermal dependency of Ncf , if a thermal unloading branch is followed, Pc
and Pt are larger compared to the values they take at the beginning of a thermal
loading branch. In fact, upon thermal unloading Pc and Pt start decreasing at
lower temperatures, due to microcracks opening resulting from the di�erential
thermal expansion of the constituents.

For the sake of simplicity, the �ow rule is assumed associated.

6.1 Tangent operator in the case of reversible thermal be-

haviour

From the free energy density function (eqn. 9), the stress rate and the entropy
rate are obtained as

σ̇ = D[ε̇e]−B θ̇ (55)

η̇e = B · ε̇e −
cv
θ
θ̇ (56)

where cv = −θ∂ηe/∂θ and B = −∂σ/∂θ = ∂ηe/∂εe = −∂2ψ/∂εe∂θ.
Denoting the yield function gradient with Q = ∂F/∂σ, the plastic �ow di-

rection with P (P = Q in this case, due to the assumption of associated �ow
rule) and the hardening parameter with H = − (∂F/∂Trεp)TrP, the consistency
condition (Ḟ = 0) yields

Λ̇ =
< Q ·

(
D [ε̇]−B θ̇

)
+ (∂F/∂θ) θ̇ >

Q ·D[P] +H
. (57)
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Thus, in case of plastic loading (corresponding to a positive argument within the
Macaulay brackets in eqn. 57), the tangent constitutive operator results in

σ̇ =

{
D− D[P]⊗ D[Q]

Q ·D[P] +H

}
[ε̇]−

(
B− B ·Q− (∂F/∂θ)

Q ·D[P] +H
D[P]

)
θ̇ (58)

η̇e =

(
B− B ·P

Q ·D[P] +H
D[Q]

)
· ε̇+

(
B ·Q− (∂F/∂θ)
Q ·D[P] +H

B ·P− cv
θ

)
θ̇. (59)

It emerges from the above equations that the tangent operator is not symmetric
even in the case of associated �ow rule (i.e. P = Q) and of a yield surface
independent of temperature (i.e. ∂F/∂θ = 0). However, if instead of the elastic
part η̇e the total entropy rate η̇ = η̇e + η̇p was considered, the corresponding
tangent operator would be symmetric.

6.2 Tangent operator in the case of irreversible thermal

behaviour

From the free energy density function (eqn. 32), the stress and entropy rates are
obtained as

σ̇ = D[ε̇− ε̇i]−B θ̇ (60)

η̇e = B · ε̇+ (T−B)ε̇p −
cv
θ
θ̇ (61)

where T = ∂ηe/∂εp = −∂A/∂θ.
Taking account of eqn. (45), the consistency condition yields

Λ̇ =
< Q ·

(
D [ε̇]−B θ̇

)
+ (∂F/∂θ) θ̇ >

Q ·D[P] + H̃
(62)

where H̃ = − (∂F/∂Trεp)Tr
(
G
−1[P]

)
.

As a result, in case of plastic loading (corresponding to a positive argument
within the Macaulay brackets in eqn. 62), the tangent constitutive operator turns
out to be

σ̇ =

{
D− D[P]⊗ D[Q]

Q ·D[P] + H̃

}
[ε̇]−

(
B− B ·Q− (∂F/∂θ)

Q ·D[P] + H̃
D[P]

)
θ̇ (63)

η̇e =

(
B+

(T−B) ·
(
G
−1[P]

)
Q ·D[P] + H̃

D[Q]

)
· ε̇+

−
(
B ·Q− (∂F/∂θ)
Q ·D[P] + H̃

(T−B) ·
(
G
−1[P]

)
− cv

θ

)
θ̇. (64)

Note that the tangent operator is not symmetric even in the case of associated
�ow rule (i.e. P = Q), yield surface independent of temperature (i.e. ∂F/∂θ = 0)
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and absent elastoplastic coupling (i.e. G = I, where I denotes the fourth order
identity tensor, and T = 0). If instead of the elastic part η̇e the total entropy
rate η̇ was considered, the corresponding tangent operator would be symmetric.

7 Model validation

In order to validate the model capabilities to reproduce the experimental thermo-
mechanical behaviour of di�erent types of refractories, a series of experimental
loading paths were selected from the literature. Model parameters were chosen
based on the available literature information, and speci�cally calibrated on each
of the selected experimental datasets. The main adopted parameter values are
summarized in Table 1.

It should be remarked that although the total number of model parameters
may be considered rather large, the wide majority of constants reported in Table
1 are merely curve �tting parameters (as it emerges from the formulation re-
ported in Sections 2 and 3), thus they can be straightforwardly determined upon
availability of experimental data. A basic set of tests that is desirable for model
calibration is composed of measurements at atmospheric pressure of the thermal
dependency of elasitc modulus, speci�c heat and thermal expansion for thermo-
elasticity, and of uniaxial compressive and tensile tests for thermo-plasticity.

Special attention for model validation was given to the available experiments
on composite refractories, whose behaviour is known to exhibit a high degree
of nonlinearity and irreversibility. The observed experimental trends were re-
produced by numerically integrating the thermo-elasto-plastic model equations
(Sections 3-6) through an implicit backward Euler scheme.

7.1 Evolution of elastic properties under thermal cycles of

di�erent amplitude

First, the experiments carried out by Kakroudi et al. [10] on an ultra low cement
commercial Bauxite based refractory castable were considered, involving the ul-
trasonic measurement of Young's modulus of elasticty E at di�erent temperature
levels during thermal loading-unloading cycles. The main adopted parameter
values for this material are summarized in Table 1 (Set 2) and initial conditions
are reported in Table 2 (Set 2). In Figure 4a, the evolution of elastic modulus
is reproduced numerically during four thermal cycles, conducted from ambient
temperature up to four di�erent maximum temperatures, namely 700, 900, 1100
and 1500◦ C. This type of testing highlights the presence of di�erent stages in
the evolution of E, with particular reference to a threshold temperature (between
700 and 900◦C in this case) below which the heating-cooling path appears mostly
reversible. A second threshold corresponds to about 1200◦C, beyond which the
elastic modulus starts to drastically decrease with further increasing temperature,
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in correspondence with the likely appearence of low-viscosity, glassy phases. In
Figure 4b the corresponding experimental data from [10] are reported for com-
parison. In addition, in Figure 4c the simulated thermally induced axial strain
dL/L0, whose slope represents the thermal expansion coe�cient of the material,
is reported versus temperature for the four thermal cycles described above, the
wider of which reaches 1500◦C. The simulations appear to compare well with
the relevant experimental data by [10], reported in Figure 4d (only data from the
20-1500◦C experimental cycle are available).

Moreover, in Figures 5a and 5b the simulated and experimentally measured
evolution of E are respectively shown, during two whole thermal cycles between
ambient temperature and 1200◦C for the same Bauxite based refractory, tested
by Kakroudi et al. [10]. It can be observed that the model is able to capture
with reasonable accuracy the experimental trend also during the second thermal
cycle, which exhibits a fairly smaller amount of hysteresis compared to the �rst
one.

7.2 Evolution of uncon�ned compressive and tensile strength

upon thermal loading

In addition to ultrasonic measurements, Kakroudi et al. [10] also carried out high-
temperature tensile tests on the same material. These were performed always
at 800◦C, but in three di�erent points of the thermal cycling history, namely
(i) during the �rst loading branch (point A in Figure 5b), (ii) during the �rst
unloading branch (point B in Figure 5b) and (iii) during the second loading
branch (point C in Figure 5b). In Figure 5c and Figure 5d the experimental data
and corresponding numerical simulations are shown, respectively. Even though
the speci�c form of yield surface chosen typically does not allow to reproduce
particularly pronounced post-peak strain softening behaviour, it can be noticed
that both the changes in elastic sti�ness and in the maximum tensile strength
are correctly captured by the model.

The model's predictive capabilities were further tested against experimen-
tal data of uniaxial compression tests carried out at di�erent temperatures on
un�red samples of alumina-carbon refractory concrete, presented by Ouedraogo
and Prompt [24]. The parameter settings and initial conditions for this mate-
rial are listed in Table 1 (Set 3) and Table 2 (Set 3) respectively. In Figure 6a,
the simulated and measured evolution of uniaxial compressive strength (UCS)
with temperature are reported for comparison, with temperature ranging from
20 to 1500◦C. Despite the rather complex, highly nonlinear trend followed by
experimental datapoints, the model is shown to capture properly the essential
features of thermal dependency of uniaxial compressive strength of composite re-
fractory materials. The same can be also observed in terms of tensile strength, as
the Brazilian test results obtained by [24] at di�erent temperatures are properly
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reproduced by simulations, as shown in Figure 6b.

7.3 Elastic sti�ness degradation upon cyclic loading during

tensile testing

Finally, the model was employed to simulate the evolution of damage during
tensile testing at room temperature. In this case, reference is made to the ex-
periments on magnesia-spinel refractory samples reported by Grasset-Bourdel et
al. [12]. Relevant parameter settings and initial conditions correspond to Set 4
of Table 1 and Table 2 respectively. In Figure 7, simulations are compared to
experimental data of tensile tests carried out with several mechanical unloading-
reloading cycles, both before and after the peak strength. It can be observed that
the numerical simulations can adequately reproduce the overall strain-softening
trend of the stress-strain material behaviour. Moreover, although the experimen-
tally observed hysteresis during the unloading-reloading cycles is not reproduced
by the model, the mechanical damage in terms of progressive increase of slope,
i.e. a reduction in elastic sti�ness with an increase of plastic straining, is correctly
captured.

8 Conclusions

In this work a general, thermodynamically consistent constitutive framework,
able to reproduce the non isothermal behaviour of rock-like materials subjected
to very high temperature, is developed and validated against experimental data.
Particular attention is given to ceramic refractories employed in the steel making
industry, for which experimental data availability is relatively wide. However,
these materials show di�erent thermo-mechanical trends depending upon their
composition, in that single component refractories tend to exhibit reversible be-
haviour, while composite refractories usually exhibit irreversibility, upon thermal
cycling. Thus, two distinct forms of thermodynamic potentials, that constitute
the basis for subsequent derivation of constitutive relationships, are proposed to
reproduce reversible and irreversible behaviour. A key advantage of this approach
is the ability to freely choose the interpolation functions representing the thermal
dependency of thermo-elastic material parameters, hence even complex experi-
mental trends can be relatively easily captured upon calibrating the interpolation
parameters.

Firstly, to validate the model, the (reversible) experimentally measured ther-
mal dependency of elastic sti�ness, speci�c heat and thermal expansion of sin-
tered alumina are numerically reproduced. Further, the model allows exploring
loading conditions that are not usually considered, or viable, in the experimental
practice. In fact, while a sample of alumina subjected to low con�ning stress ex-
hibits negligible thermo-mechanical coupling, if it is subject to an applied stress
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level comparable to its sti�ness, the material response becomes coupled, and un-
expected trends occur in the material's speci�c heat and thermal expansion vs
temperature curves.

To reproduce the irreversible thermo-mechanical behaviour exhibited by com-
posite materials, thermodynamic potentials are set to include internal variables
representing microstructural e�ects, namely the amount of closed microcracks
due to isotropic volumetric strain and the amount of cured microcracks due to
partial melting. The constitutive framework in this case is more complex, and
is shown to imply elasto-plastic coupling. Moreover, a plastic driver incorpo-
rating both types of thermodynamic potentials is formulated, and employed for
extensive model validation against thermo-mechanical experimental datapoints
on composite refractories. The highly nonlinear and hysteretic trends exhibited
experimentally are correctly reproduced under several types of loading conditions,
including temperature cycling and uniaxial compressive and tensile testing, thus
demonstrating the robustness of the proposed approach.

A possible extension of the proposed model could be a formulation in terms of
�nite strains, to provide more accurate simulations of the irreversible phenomena
occurring in certain applications. This could be done along the lines of existing
approaches, as those proposed in (e.g.) [28], [30], [18], [19], [4], [5], and [6].

To conclude, the proposed general framework can be successfully applied to
model the key features of the behaviour of di�erent types of refractories under a
number of thermo-mechanical loading conditions. However, given its �exibility
and generality, the model should be intended as an open framework that can be
easily adapted to other geomaterial types, or to incorporate di�erent additional
e�ects.
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Figure 1: Temperature dependency of (a) elastic sti�ness, (b) speci�c heat at constant volume
and (c) longitudinal deformations, in the case of reversible thermal behaviour (alumina).

27



0 Ncf Nlim=1

NccNcc, min

Figure 2: Schematic illustrating the ranges of variation of the two internal variables Ncc and
Ncf .
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Figure 3: Temperature dependence of (a) elastic sti�ness, (b) fraction of closed and cured
cracks (Ncc andNcf ), (c) longitudinal deformations, in the case of irreversible thermal behaviour
(composite refractories), and (d) material tensile and compressive strength.
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Figure 4: Temperature dependence of elastic sti�ness and longitudinal deformation induced
by temeprature cycles of di�erent amplitude. Simulations ((a) and (c)) are compared with the
experimental results of Kakroudi et al. [10] on a composite refractory ((b) and (d))
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Figure 5: Evolution of elastic sti�ness and tensile strength along two subsequent temepra-
ture cycles of equal amplitude (0-1200◦ C). Simulations ((a) and (c)) are compared with the
experimental results of Kakroudi et al. [10] on a composite refractory ((b) and (d)).
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Figure 6: Temperature dependence of uncon�ned compression (a) and tensile (b) strengths:
comparison between simulations and experimental results on a composite refractory. Experi-
mental data are taken from [24].
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Figure 7: Comparison between simulation (solid line) and experimental results (dotted line)
of a cyclic tensile test on a composite refractory. Experimental data are taken from [12].
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