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Many complex systems are modular. Such systems can be represented as “component systems,” i.e.,
sets of elementary components, such as LEGO bricks in LEGO sets. The bricks found in a LEGO set
reflect a target architecture, which can be built following a set-specific list of instructions. In other
component systems, instead, the underlying functional design and constraints are not obvious a priori,
and their detection is often a challenge of both scientific and practical importance, requiring a clear
understanding of component statistics. Importantly, some quantitative invariants appear to be common to
many component systems, most notably a common broad distribution of component abundances, which
often resembles the well-known Zipf’s law. Such “laws” affect in a general and nontrivial way the
component statistics, potentially hindering the identification of system-specific functional constraints or
generative processes. Here, we specifically focus on the statistics of shared components, i.e., the
distribution of the number of components shared by different system realizations, such as the common
bricks found in different LEGO sets. To account for the effects of component heterogeneity, we consider
a simple null model, which builds system realizations by random draws from a universe of possible
components. Under general assumptions on abundance heterogeneity, we provide analytical estimates of
component occurrence, which quantify exhaustively the statistics of shared components. Surprisingly, this
simple null model can positively explain important features of empirical component-occurrence
distributions obtained from large-scale data on bacterial genomes, LEGO sets, and book chapters.
Specific architectural features and functional constraints can be detected from occurrence patterns as
deviations from these null predictions, as we show for the illustrative case of the “core” genome in
bacteria.

DOI: 10.1103/PhysRevX.8.021023 Subject Areas: Biological Physics, Complex Systems,
Interdisciplinary Physics

I. INTRODUCTION

A large number of complex systems in very different
contexts—ranging from biology to linguistics, social sci-
ences, and technology—can be broken down to clearly
defined basic building blocks or components. For example,
books are composed of words, genomes of genes, and many
technological systems are assemblies of simple modules.
Once components are identified, a specific realization of a
system (e.g., a specific book, a LEGO set, a genome) can
be represented by its parts list, which is the subset of the

possible elementary components (e.g., words, bricks,
genes), with their abundances, present in the realization.
We use the term “component systems” for empirical systems
to which this general representation can be applied.
Occurrence patterns of components across realizations

are expected to reveal relevant architectural constraints. For
example, the bricks present in each LEGO set clearly reflect
a target architecture that can be built with them following
the instruction booklet. While for LEGO sets the assembly
instructions are provided by the seller, in most component
systems the architectural constraints are not obvious.
Inferring such constraints from the statistics of components
may answer important questions about the nature of a
system. For example, it could reveal new clues about the
complex combination of selective pressure and random
events that shaped the functional composition of extant
genomes. Even in those cases where the architecture is
partially or even fully known and the instruction manual is
available, the statistics of components may help us distill
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some general principles characterizing a given class of
component systems, in some cases revealing basic features
of the underlying generative processes.
In order to perform detection of system-dependent

features from patterns of shared components, we need to
have a clear idea of the general behavior of component
systems even in the absence of functional constraints on the
presence or absence of specific classes of components. This
is by itself a challenging task, as such systems show a large
degree of nontrivial universal properties [1–3] that could in
principle affect the occurrence statistics. Indeed, several
notable quantitative laws can be identified in the compo-
sition of component systems of very different nature. This
is well known, e.g., in linguistics, where the notorious
“Zipf’s law” [4] describing the word frequency distribution
(or its equivalent rank plot) in a linguistic corpus has been
the subject of extensive investigations [5–9]. In this
context, the existence of quantitative “universal” laws
may in principle provide insights on the cognitive mech-
anisms of text production, and can have practical applica-
tions in data mining and data search techniques [1].
Analogously, for genomes across the whole tree of life,
the number of genes in different evolutionary families is
power-law distributed, a discovery that represents one of
the first examples of “laws” of the genome sequencing era
[2,10]. Such heterogeneous usage of the different basic
components, often resulting in an approximately power-law
distribution of their frequencies, can be seen as a hallmark
of the complexity of component systems [6].
A large body of theoretical work addresses the origins of

this heterogeneity. Several models have emerged in differ-
ent areas of science, with context-specific ingredients. For
example, stochastic processes based on gene duplication,
deletion, and innovation have been proposed as simple
evolutionary models of genome evolution at the basis of the
observed heterogeneous component usage [3,11–13]. On
the other hand, specific communication optimization prin-
ciples [14,15] and stochastic models for text generation
[5,16,17] have been invoked to explain the emergence of
Zipf’s law in natural language. In many, but not all, of these
models a preferential attachment principle is at the origin of
the emergence of the power-law distribution of component
frequencies. More importantly, the ubiquity of this emer-
gent behavior raises the question of whether (and to what
extent) empirical laws like Zipf’s law are pervasive
statistical patterns that transcend system-specific mecha-
nisms [2,18]. In this spirit, the analysis of radically different
systems can help the discovery of patterns that descend
from pure statistical effects or general principles [18,19].
Here, we analyze empirical data from three very different

component systems from linguistics (book chapters),
genomics (protein domain families in sequenced genomes),
and technology (LEGO toys) and we look for general
statistical consequences of their heterogeneous frequency
distributions. The different data sources considered here

reasonably do not share any generative mechanisms, nor
are they expected to share the same type of constraints,
selection criteria, or optimization principles. However, the
frequency of their components is heterogeneous and they
all obey laws that are similar to Zipf’s.
The marginal statistics that we concentrate on is the

fraction of components that are shared among a certain
number of realizations, for example, the fraction of
LEGO bricks with the same shape found in a given fraction
of unequal LEGO boxes. In genomics, this is the so-called
“gene-frequency distribution,” which was shown to follow
a U shape at several taxonomic levels [20–22]. A U shape
of this distribution of shared components indicates that
there is a set of “core” components that are common to
most realizations, as well as an enriched set of realization-
specific components. This histogram also decays approx-
imately as a power law for rare components, both in
genomic data and in technological systems [19]. In evolu-
tionary genomics, the origins of this pattern are the focus
of a lively debate. The pattern has been rationalized
theoretically by neutral or selective population dynamics
models [22–25], or as a consequence of functional depend-
encies among different components [19]. For compo-
nent systems outside of genomics, the distribution of
shared components remains underexplored, and is typi-
cally neglected by the current debate, for example, in
linguistics [1].
Using theoretical calculations based on random sampling

of components (with replacement) from their overall
frequencies (estimated by their total abundance across
empirical realizations), we show that a distribution of
shared components with a power-law behavior is a general
feature of component systems not only with Zipf-like
component frequency distributions, but also for general
power laws and exponential decay of the overall compo-
nent frequencies. In other words, a U-shaped distribution of
shared components can naturally emerge in component
systems with a heterogeneous component usage (which is
often the case empirically). Importantly, we quantitatively
identify the general features of the system leading to a
U-shaped distribution of shared components, a given core
size, and a specific decay of the realization-specific bulk of
this distribution.

II. DATA

A. Data sources

1. Genomes

We use the superfamily classification of protein domains
from the SUPERFAMILY database [26] considering a set
of R ¼ 1061 prokaryotic genomes (“realizations”) and a
total number of different families N ¼ 1531 (“compo-
nents”). Protein domain families are the basic modular
topologies of folded proteins [27]. Different domains of the
same family can be found in each genome in the same or
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different proteins. As a functional annotation of protein
domains in SUPERFAMILY, we considered the SCOP
annotations mapped into 7 general function categories, as
developed by Vogel and Chothia [28].

2. LEGO sets

The composition in bricks of several LEGO sets
(R ¼ 2820) can be freely downloaded [29]. We exclude
from the analysis LEGO sets belonging to the category of
“LEGO Technic” since, by construction, they share a very
small number of bricks with the classic LEGO toys.
Similarly, we do not consider LEGO sets with less than
80 components or belonging to the categories “Educational
and Dacta” and “Supplemental,” in order to exclude sets
that are actually collections of spare parts or additional
bricks for other sets.

3. Texts

The analyzed linguistic corpus is composed by R ¼
1721 book chapters (realizations) of several English books
randomly chosen from the most popular ones in the Project
Gutenberg database [30]. We define chapters as realiza-
tions, instead of entire books, to obtain a corpus with a
range of sizes (total number of components per realization)
comparable to the one of genomes and LEGO toys [Fig. S1
of Supplemental Material (SM) [31]]. The complete list of
books considered is reported in Table S1 of SM [31]. The
elementary components are defined as the words regardless
of capitalization (e.g., “We” and “we” are considered as the
same component).

B. Data structure: Matrix representation
of component systems

A set of empirical realizations of a component system
can be naturally described as a matrix fnijg defined such
that the entry nij represents the abundance of the compo-
nent i (i ¼ 1;…N) in the realization j (j ¼ 1;…; R). Thus,
each realization (a literary text, a LEGO set, or a prokar-
yotic genome) is represented as a matrix column (Fig. 1).
Some key observables can be easily defined using this
representation. First, the total abundance ai of the compo-
nent i in the whole ensemble is defined by summing over
all realizations ai ¼

P
jnij. The normalized abundance

represents the component frequency fi ¼ ðai=
P

iaiÞ. The
“component occurrence” oi is instead defined as the
fraction of realizations in which the component is found;
thus, oi ¼ ð1=RÞPjð1 − δnij;0Þ. Two other crucial quan-
tities are the total number N of different components in the
system, which is essentially the number of bricks of
different shape or the vocabulary, and the size of a
realization j, defined as the total number of its components
Mj ¼

P
inij.

III. RESULTS

A. Component frequency distribution and
distribution of shared components show

general features across systems

This section illustrates two empirical laws in the ana-
lyzed datasets (LEGO toys, bacterial genomes, and literary
texts). We first consider the component frequencies in the
whole universe of available realizations of a given system,
which is essentially the generalized Zipf’s law [6] for the
three systems. Figure 2 shows the rank plots of these
component frequencies. The three data sets share a power-
law behavior for components with high frequencies (low
rank), with an exponent close to 1 as in the classic Zipf’s
law [4], and a faster decay at higher ranks (components
with low frequency). This double-scaling behavior has
been recently observed in the context of linguistics [17]. In
evolutionary genomics, the gene frequency was previously
analyzed over single genomes and shown to be approx-
imately power-law distributed with an exponent dependent
on genome size [3,10]. Figure 2 shows that the same
distribution calculated over thousands of prokaryotic
genomes has a double scaling, with an exponential-like
decay for low ranks in its rank plot. We tested that the shape
of these component frequency distributions do not strongly
depend on the specific size or number of realizations
analyzed. The rank plots in Fig. 2 do not vary when
evaluated on different subsamples of the whole data sets
(Fig. S2 of the SM [31]). This suggests that the frequency
distributions evaluated using the available finite empirical
data sets estimate reliably the global heterogeneity of the
component usage in the systems.
We aim to also evaluate the distribution of shared

components, foig, and how much of its features can be
explained from other measurable quantities, namely, the

FIG. 1. Matrix representation of complex component systems.
(a) Each column is a realization (e.g., a LEGO set, a genome, or a
book chapter) and each row is a component type (e.g., a LEGO
brick, a protein domain family, a word). The element nij
represents the abundance of component i in realization j. The
frequency fi of component i is given by its total abundance (90
for the red brick, 8 for the tire) divided by the total number of
components in the system. The occurrence oi of component i is
the fraction of realizations (toys in the example) in which there is
at least one token of i (1 for the red brick, 1=3 for the tire).
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component frequencies, the realization sizes fMjg, and the
number of different components in the universe N. Figure 3
shows this distribution for the three data sets considered
here. For small occurrences, the plots are compatible with a
power-law decay, with a data-set-specific exponent. Only
for genomes this curve is clearly U shaped(see also Fig. S3
of SM [31]) and shows a “core” of shared components, i.e.,
protein domains shared by almost all the genomes, together
with a rich group of rare components. Book chapters do
not show this marked behavior, due to the fact that the
ubiquitous words (e.g., articles, pronouns, prepositions) are
much less than the chapter-specific words. Finally, LEGO
sets display no core of shared components, and this is
probably due to the wide range of themes using poorly
overlapping brick types.

B. Random-sampling model as a minimal model
for component systems with defined

component frequencies

In order to identify the statistical consequences of a
heterogeneous usage of components on the statistics of
shared components, a suitable model is needed. In par-
ticular, we would like to generate system realizations
starting from a fixed component frequency distribution
without any additional functional information or constraint.
To this end, we employ a random-sampling procedure
[8,17,32,33] that builds artificial realizations through an
iterative random extraction (with replacement) of compo-
nents from their frequencies ffig in the whole system. Each
realization size M is specified by the number of random
extractions.

More precisely, the following prescriptions [Fig. 3(e)]
define the random-sampling model that is used in the
following. (i) The component abundance rank distribution
is assumed to be a universal property of the component
system and well represented by the empirical overall
abundances (see Fig. S2 and the SM for a discussion of
this assumption [31]). (ii) The extraction probability of a
component is proportional to its overall abundance. (iii) A
realization of size M is generated by M independent
extractions from the pool of components. Statements (ii)
and (iii) define a multinomial process. Given a normalized
list of component frequencies ffig, i ¼ 1;…N (where N is

FIG. 2. Different empirical component systems show similar
component frequency distributions. The rank plot of the compo-
nent frequencies is reported for the three data sets (book chapters,
genomes, LEGO sets). The frequency of a component is defined
as the abundance of that component in the whole data set
normalized by the total number of components (Fig. 1). The
three curves follow similar behavior, which can be described
qualitatively as a power-law-like decay with exponent close to 1
for low ranks (high frequency), and a faster data-set-specific
decay for higher ranks.

(a)

(c)

(e)

(d)

(b)

FIG. 3. The random-sampling model captures the main features
of the empirical statistics of shared components. The plots show
the normalized distribution pðoÞ of component occurrences,
quantifying the statistics of shared components for the three
data sets: genomes (a), book chapters (b), and LEGO sets (c). The
log-log scale highlights the power-law-like decay. The black
dashed lines represent the prediction of the random-sampling
model assuming the empirical component frequencies and
realization sizes. The model reproduces very well the power-
law decay, but may differ quantitatively from the empirical laws
in the high-occurrence region. Panel (d) plots the same quantities
in log-lin scale, to highlight the quantitative differences between
systems and the presence or absence of a peak of core compo-
nents. Note that the different range of the y-axis values with
respect to previous panels is due to the different binning
procedures, logarithmic vs linear. (e) Scheme of the random-
sampling process: samples of size M are generated from
independent draws from the “universe” of all possible compo-
nents with their specific abundances. Therefore, the probability of
a component extraction is proportional to its global abundance,
i.e., the sum of its abundances over all realizations of the systems.
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the size of the available “vocabulary”), and the size M of
the realization, the probability of a specific configuration
fn1; n2;…; nNg, where ni is the number of the components
with frequency fi, is

Pðn1; n2;…; nN ;MÞ ¼ M!Q
N
i¼1 ni!

YN
i¼1

fnii ð1Þ

under the constraint that
P

N
i¼1 ni ¼ M. Note that the

expected value of ni is Mfi. Therefore, on average the
global abundance distribution is conserved in each reali-
zation. In other words, the component composition in each
realization is a sampled copy of the universe, without any of
the possible complex correlations which may follow from
architectural and functional properties of an empirical
system.
For example, in the context of bacterial genome evolu-

tion, the random-sampling model translates into a scenario
in which there is continuous and completely random
horizontal gene transfer (exchange of genetic material)
between species [34]. Thus, genome composition would
simply reflect the pan-genome abundances of protein
domains. While horizontal gene transfer is indeed a major
force in bacterial evolution [21,35,36], several additional
genome-specific functional constraints are clearly in place
in evolution [35,37–40], and these are neglected by the
model. Therefore, the random sampling can be considered
as a null model useful to disentangle the consequences of
the observed global heterogeneity in the component usage
from actual hallmarks of more complex functional
constraints.

C. Distribution of shared components is mainly
a consequence of component frequencies, number
of available components, and realization sizes

The fact that the distribution of shared components is
qualitatively very similar in systems that are so different
triggers the question of whether it may be an emergent
statistical consequence of other system properties. In
particular, we asked to what extent the statistics of shared
components could be a direct consequence of component
frequencies. As explained above, this question can be
addressed quantitatively using a random-sampling model
that generates an artificial copy of the empirical system by
drawing realizations (whose sizes are fixed by the empirical
ones) from the component frequency distribution. Figure 3
compares the empirical occurrence distributions with sim-
ulations of a random sampling. The null-model curves
(dashed lines) provide very good approximations of the
empirical laws, particularly for low component occur-
rences. Additionally, the model matches well the power-
law decay with the system-specific exponent. Finally, the
model predicts also the qualitative behavior of core
components, and specifically that only genomes show a

clear U-shaped distribution of shared components. The
relative core sizes of the three systems are also well
approximated, although there are some quantitative devia-
tions from the empirical values that are addressed in detail
in Sec. III F. These results suggest that the shape of the
distribution of shared components in the three widely
different empirical systems considered here is well
described by a random-sampling model that conserves
only the empirical component frequencies, the vocabulary
(i.e., the set of possible components), and the realization
sizes. The next section provides an analytical understand-
ing of this observation.

D. A wide range of component frequency
patterns lead to occurrence distributions

with power-law decay and U shape

Thus far we have used the model only to address the
specific statistics of component sharing of the empirical
systems under consideration. To this end, we have simu-
lated the random-sampling model fixing the component
frequencies and realization sizes as in the empirical cases.
More in general, one can ask whether a power-law
decaying and/or U-shaped distribution of component
occurrences is expected for a given distribution of compo-
nent frequencies. To address this question, we have
computed analytically the distribution of shared compo-
nents under general prescriptions for the component fre-
quency distributions within the random-sampling model.
For the sampling procedure explained in Sec. III B, the

probability qi that a component of rank i is present in a
realization of sizeMj is qiðMjÞ ¼ 1 − ð1 − fiÞMj , where fi
is the component probability of extraction. Therefore, the
expectation value for the occurrence of component i over a
set of R realizations is

oi ¼
1

R

XR
j¼1

qiðMjÞ ¼ 1 −
1

R

XR
j¼1

ð1 − fiÞMj: ð2Þ

In order to obtain the probability distribution associated
to this rank representation, one can use the fact that the
rank of a component with occurrence o is the number of
components with occurrence higher than o. In fact, these
naturally correspond to components with higher frequency
and thus lower rank. Therefore, we can write the rank
iðoÞ as

iðoÞ ¼ rankðoÞ ¼
Xo1
o0¼o

Npðo0Þ ≃ N
Z

o1

o
pðo0Þdo0; ð3Þ

where o1 is the highest possible occurrence, which corre-
sponds to the component of rank 1. The function iðoÞ is
simply the inverse function of Eq. (2). From the approxi-
mate integral representation of iðoÞ, the occurrence
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probability distribution pðoÞ is defined by the simple
relation ðdiðoÞ=doÞ ¼ −NpðoÞ.
Equation (3) provides a general relation between the

representation of the frequency distribution as a rank plot
and the representation as a probability distribution. Indeed,
the arguments we present here to introduce Eqs. (2) and (3)
have been used previously to establish the connection
between Zipf’s law as a rank plot and Zipf’s law as a
frequency distribution [41].

1. Observed versus possible vocabulary
of components and Heaps’ law

When a set of R realizations of size M is generated
through a random-sampling procedure from a pool of Ñ
possible different components with their probabilities of
extraction ffig, the expected size N of the vocabulary that
is actually sampled can be expressed as [32]

N ¼ Ñ −
X̃N
i¼1

ð1 − fiÞMR: ð4Þ

Thus, in general, N ≤ Ñ.
If the system size, defined by the total number of

extractions MR, is large enough, essentially all possible
components are expected to be sampled at least once, thus
leading to the simplification N ≃ Ñ that we implicitly
assume in Eq. (1). However, in general, the observed
vocabulary in an ensemble of realizations is an increasing
function of the system size, i.e., NðMRÞ. This functional
dependence is equivalent to Heaps’ law, which is the
empirical power-law growth of the number of distinct
components with the system size observed in linguistics
[1,17] and in genomics [3]. This distinction between the
observed and the possible vocabulary of components is
discussed in more detail in the SM [31] and is relevant in
the following sections.

2. Analytical distribution of shared components
for component frequencies with a power-law

or an exponential distribution

Explicit expressions for the occurrence distribution can
be derived assuming a simple scenario, in which all
realizations have the same size M, and the component
frequency statistics follows a prescribed function. We first
consider the empirically relevant case of a power-law
frequency rank plot (Fig. 4, left-hand panel) defined by

fi ¼
1

α
i−γ; α ¼

X̃N
i¼1

i−γ: ð5Þ

Under these assumptions and using Eqs. (2) and (3), the
exact expression of the occurrence distribution can be
calculated:

pðoÞ ¼ ð1 − oÞ1=M−1

γMNα1=γ½1 − ð1 − oÞ1=M�1=γþ1
: ð6Þ

The distribution is defined in the interval of occurrences
½oN ; o1�, where oi is computed by Eq. (2) and N is the
effective or observed component vocabulary, which can be
a function of the system size, i.e., NðMRÞ, as described by
Eq. (4)). Considering the limit of small occurrences and
large sizes, i.e., o ≪ 1 and M ≫ 1, one finds precisely the

(a)

(b) (d)

(c)

FIG. 4. Power-law decaying and U-shaped component occur-
rence distributions may descend from both power-law and
exponential distributed universe component frequencies. (a) A
power-law rank plot for the frequency (and thus for the
abundance), whose exponent is −γ (γ ¼ 1.2 in the plot), produces
a power-law decay of the component occurrence distribution with
exponent −1 − ð1=γÞ, independently of the realization sizeM and
the number of components N (for sufficiently large values of
these parameters). (b) Agreement between the theoretical pre-
diction of Eq. (6) (black line) and a simulated random sampling
with parameters R ¼ 1000, N ¼ 2000, γ ¼ 1.2, M ¼ 2000 [the
black vertical dashed line is the left boundary of the pðoÞ
domain]. Panels (c) and (d) are the counterpart of (a) and
(b) for an exponential frequency rank plot. In this case pðoÞ
always decreases with exponent −1, for every value of λ, M, and
N (sufficiently large). Parameter values are R ¼ 1000,N ¼ 2000,
λ ¼ 0.005, M ¼ 5000. Given the system sizes MR in these
examples, the number of possible different components essen-
tially coincides with the vocabulary actually sampled; i.e., Ñ ≃ N.
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empirically observed power-law decay. Specifically, in this
limit the occurrence distribution takes the form

pðoÞ ≃ M1=γ

α1=γγN
o−1=γ−1; ð7Þ

where the power-law exponent depends only on the
exponent γ of the frequency rank plot.
Analogous calculations (details in the SM [31]) can be

performed assuming a frequency distribution described by
an exponential rank plot fi ∼ e−λi (right-hand panel of
Fig. 4). In this case, the distribution of shared components,
for large enough realizations M ≫ 1, has the expression

pðoÞ ≃ ð1 − oÞ−1
Nλ log ½ð1 − oÞ−1� : ð8Þ

Interestingly, for rare families the above expression further
simplifies to a power-law decay,

pðoÞ ≃ 1

Nλ
o−1; ð9Þ

with a “universal” exponent −1. This indicates that also
systems with a heterogeneous but more compact frequency
distribution are expected to show a power-law decay in the
occurrence distribution. Figure 4 shows the agreement
between these predictions and simulations of the ran-
dom-sampling model for the two illustrative examples of
a power law and of an exponential distribution of compo-
nent frequencies. These analytical predictions have a
dependence on the sampled vocabulary N and are expected
to hold even if this is actually smaller than the total number
of possible components Ñ (Fig. S5 of SM [31]). The effects
of a dependence of the observed dictionary on system size
[i.e., Heaps’ law NðMRÞ] become relevant and has to be
taken into account when comparing statistical features of
ensembles of realizations with different sizes MR.

3. Shape of the distribution of shared components
and rescaling properties

We now turn our attention to the conditions for a
U-shaped distribution of shared components in the
random-sampling model. Figures 4(a) and 4(c) already
show that the decay of the occurrence of rare components
is set only by the exponent γ as described by Eq. (7), but
for different values ofM and N the distribution may or may
not display a significant fraction of core components.
Additionally, Figs. 4(b) and 4(d) prove that Eqs. (6) and
(8) can capture quantitatively the occurrence distributions
and thus can well describe the relative proportion of core
and specific components. In order to understand under what
conditions this distribution becomes clearly U shaped for
an underlying power-law frequency distribution, it is useful
to note a rescaling property of Eq. (6). Taking the limit of
large realizations M ≫ 1, Eq. (6) becomes

pðoÞ ¼ kðγ;M;NÞ ð1 − oÞ−1
γ( − logð1 − oÞ)1þ1=γ ; ð10Þ

which depends only on two parameters, γ, and the rescaling
parameter,

kðγ;M;NÞ ¼ M1=γ

α1=γN
: ð11Þ

This rescaling property shows that the statistics of compo-
nent sharing is actually a function of a specific combination
of realization sizes (e.g., text lengths) and of the range of
possible components (e.g., the observed vocabulary).
Specifically, the functional form of the distribution is
purely defined by the exponent γ, while the rescaling
parameter k sets the normalization factor and the range of
possible occurrences. In fact, the analytical expression of
the occurrence corresponding to the distribution minimum,
i.e., omin ¼ 1 − e−1−1=γ , is only a function of γ, while the
minimum possible occurrence value oN ≃ 1 − e−k

γ
scales

with k. Therefore, a U-shaped occurrence distribution
should be generally expected for component systems with
highly heterogeneous component frequencies since the
power-law decay and the presence of a minimum before
the core are robust features with respect to system param-
eters. This is confirmed by the analysis of component
systems with different values of k and γ (illustrative
examples in Fig. S7 of SM [31]): the system specificities
set the power-law decay of the left part of the distribution,
its support, and the relative proportion of core and rare
components, but the U shape is conserved. However, this
shape can be more or less symmetric and more or less
clearly evident depending on the actual size of the core
fraction. The following section discusses in detail the
nontrivial dependences of the core size on system
parameters.
For the case of component frequency distributions with

an exponential rank plot, the statistics of shared compo-
nents [Eq. (8)] is a function of a single effective parameter
λN, and does not depend on the realization sizesM. In other
words, the shape of the distribution, and whether it is
clearly U shaped, depends only on the decay of component
frequencies and on the total number of components. In fact,
occurrence distributions corresponding to different expo-
nential frequency rank plots collapse if λN is constant, even
if the realizations have widely different size. This is shown
in Fig. S4 of the SM [31].

4. Core size

We can estimate the “core size” by computing the
fraction of components with occurrence greater than a
given arbitrary occurrence threshold θc as a function of the
only two effective parameters γ and k. Integrating Eq. (6)
between θc and the maximum occurrence o1, and then
taking the limit M ≫ 1, this quantity reads
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c ¼ 1 if oN ≥ θc

c ¼ k½− logð1 − θcÞ�−1=γ otherwise;
ð12Þ

where oN is the left boundary of the occurrence distribution,
corresponding to the component with lowest frequency.
Starting from this estimate of the core size, Figs. 5(a)

and 5(b) show how the scaling property is verified in
simulations.
Figure 5(c) compares the analytical predictions for the

core size with simulations for different values of γ, showing
perfect agreement. Equally, one can obtain analytical esti-
mates for the fraction of rare components (occurrence below
a fixed threshold), which are tested in Fig. 5(d). Thus, with
increasing k, core families increase linearly with a γ-
dependent slope until all components are shared, and con-
currently rare components decrease linearly until they hit
zero (when the lower cutoff of occurrence exceeds the chosen
threshold value). Component number and realization size
enter only through the combination defined by the rescaling
parameter k. This phenomenology fully characterizes the
distribution of shared components with varying parameters.
The general relation [Eq. (12)] between the core size and

the rescaling parameter k translates into different depend-
ences of the core size on the typical realization size M,

depending on the relation between the system sizeMR and
the total number of accessible components Ñ.
While this issue is discussed inmore detail in the SM [31],

it is easy to intuitively understand the different regimes.
For large enough systems, all possible components Ñ are
expected to be sampled at least once, thus making the
observed vocabularyN ≃ Ñ a constant parameter. This is the
regime considered in Fig. 5(a). In this regime, Eq. (12)
simplifies to the simple scaling c ∼ ðM1=γ=ÑÞ. On the other
hand, in several empirical systems the observed vocabulary
is a function of the system size, and typicallywith the power-
law dependence NðMRÞ ∼ ðMRÞβ (with β < 1) called
Heaps’ law. Thus, in general, the core fraction is expected
to show the more complex dependences c ∼M1=γ−βR−β.
However, a random-sampling procedure starting from a
Zipf’s law described by Eq. (5) leads to the approximate
relation β ≃ 1=γ between the exponents of Zipf’s andHeaps’
laws [7,8,32]. Therefore, in this regime the core fraction
becomes only a function of the number of realizations as
c ∼ R1=γ . These different scaling relations in different
regimes are tested in Figure S6 [31].
Note that the absolute number of core components cN,

as estimated from Eqs. (11) and (12), is instead always
independent from the number of realizations, even in the
regime where Heaps’ law is expected to hold (Fig. S6 [31]).
For component frequency distributions with an expo-

nential rank plot, the sampling procedure leads to an
occurrence distribution that is independent from the reali-
zation size M [Eq. (8)]. However, the exact analytical
prediction for the core size [the counterpart of Eq. (12)] still
has a dependence on M. But this is due to the residual
dependence of the maximum occurrence values (o1) on M
and does not affect the shape of the distribution. This last
technical point is discussed in more detail in the SM [31].

E. Empirical distributions of shared components satisfy
the relations predicted by the random sampling

One can ask whether the general analytical predictions
discussed in the previous section can be applied to
empirical data. In particular, we first asked how the
power-law decay exponent of the distribution of shared
components relates to the component frequency rank plot
in empirical systems, and if this relation follows our
analytical prediction. An analytical mapping would give
a more synthetic and powerful description than the direct
simulations discussed in Fig. 3. Importantly, the analytical
formulas for the distribution of shared components are
derived under the hypothesis of a pure power-law or
exponential component frequency rank plot. However,
the three empirical data sets (as previously discussed)
show a double-scaling frequency distribution. To override
this issue, we restrict the frequency rank-plot range in
which the predictions are applicable. The procedure to
perform this comparison is described in Fig. 6.

(a)

(c) (d)

(b)

FIG. 5. Scaling of the distribution of shared components and
fraction of rare and core components. (a) The fraction of core
components (defined by the occurrence threshold o > θc ¼ 0.95)
for a power-law component frequency distribution with exponent
γ ¼ 1.2, plotted as a function of component size M for three
values of realization number N. (b) Collapse of the curves shown
in (a) when plotted as a function of the rescaled parameter k,
defined in Eq. (11). (c),(d) Fraction of core and rare (o < 0.05)
components plotted as a function of k for different values of γ.
For sufficiently large k (i.e., typically whenM dominates overN),
the fraction of core components saturates to 1. Conversely, the
fraction of rare components drops to zero for increasing k.
Symbols refer to numerical simulations of the random-sampling
model, while the lines are the theoretical predictions of Eq. (12).
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First, we choose an arbitrary threshold θr defining the
rare components and we map it to the frequency rank plot
(assuming the model), by using the inverse function of
Eq. (2). The frequency rank associated to the occurrence
threshold θr, iðθrÞ in the figure, is the rank above which the
model prediction for the decay of the distribution of shared
components should apply as long as iðθrÞ does not cross the
position of the change in scaling. In other words, since in
the model there is a monotonic relation between occurrence
and frequency [Eq. (2)], all components with rank greater
than iðθrÞ (and frequency smaller that fiðθrÞ) are assumed to
be the components with occurrence lower than θr. We then
estimate the behavior of the frequency rank plot in the high-
rank region [after iðθrÞ] as the best fit with a power-law
function or an exponential. This leads to a prediction for the
decay exponent of the distribution of shared components
[using Eq. (7) or Eq. (9) for the exponential case] in the
range ½oN; θr�. Figure 6 shows that the predicted decay
exponents correspond well with the data.
The random-sampling model also gives qualitative

analytical predictions for the expected fraction of core

components, and thus for the expected shape of the distri-
bution of shared components for a given empirical system.
While the analytical relations between exponents applied in
Fig. 6 do not depend on the realization sizes, the analytical
formulas for the fraction of core components [see, e.g.,
Eq. (12)] were derived assuming realizations of fixed size
M. The actual size distributions for the three empirical
systems are quite broad (Fig. S1 [31]), but we can still use
the analytical framework to get an estimate of the core fraction
considering the average realization size of each empirical
system. Following the same line of reasoning as for the low-
occurrence tail of the distribution of shared components, we
can use a restricted region of the frequency rank plot. In this
case, the low-rank region (with exponent around 1 for all
the data sets; see Fig. 2) is expected to contain the core
components. Therefore, the parameter γ can be fixed to 1,
implying that the fraction of core components, given by
Eq. (12), should be simply proportional to the rescaling
parameter k [Eq. (11)]. However, the normalization factor α,
which is present in the definition of k and defined in Eq. (5),
takes an approximately constant value with respect to Ñ for
large values of Ñ, as it is the case for the empirical examples
considered. As a consequence, the core fraction should be
simply proportional to ðM=NÞ. This estimate can be used to
explain why the core fraction is much larger in genomes than
in the other two empirical systems [see Fig. 2(d)]. In fact,
genome sizes are typically of the same order as the total
number of families (M ≃ 3000, N ¼ 1531; see Fig. S1 [31])
leading to a large expected core. By comparison, book
chapters have similar realization sizes but a much larger
vocabulary (N ≃ 50 000), and LEGO sets have very small
sizes (M ≃ 100) compared to vocabulary size (N ≃ 13 000).
More in general, Eqs. (11) and (12) lead to a scaling

estimate (dependent on the decay of the frequency rank
plot) as a function of the system parameters M and N,
which can be applied to data, in order to generate expect-
ations for the core components. For example, for Zipf-like
(exponent -1) frequency distributions, we expect the
absolute number of core components to be linearly depen-
dent on the average size of realizations M, and essentially
insensitive to the vocabulary size N and the total number of
realizations R. In genomics language, this would imply that
the number of core protein domains does not directly
depend on the number of sequenced genomes but only on
their sizes and on the total number of different protein
domains discovered. Note that adding new genomes to the
data set is not expected to alter the power-law exponent
γ ≃ 1 of the global frequency distribution for high-
frequency components, since it does not change if the
distribution is evaluated on subsamples of the empirical
data set (Fig. S2 [31]).
As previously discussed, the core fraction, instead of the

absolute number of core components, is expected to have a
more complex dependence on the typical realization sizeM
and on the number of realizations R. Moreover, in empirical

(a) (b)

(c) (d)

(e) (f)

θ

FIG. 6. The relation between the exponents of frequency rank
plot and occurrence distribution is satisfied in all the three data
sets. The plots consider the low occurrence region, below the
arbitrary threshold θr ¼ 0.025, which corresponds to the high-
rank region above iðθrÞ in the frequency rank plot (see main text).
Panels (a) and (b) refer to book chapters, for which the tail of rank
plot is a power law with exponent γ ¼ 1.96, which implies a
power-law decay of pðoÞ with exponent 1þ ð1=γÞ ¼ 1.51.
Panels (c) and (d) show the LEGO data set (γ ¼ 2.8,
1þ ð1=γÞ ¼ 1.36). Panels (e) and (f) correspond to protein
domains in genomes, where the best fit of the tail region is an
exponential function [note that (e) is in linear-logarithmic scale],
which implies a power-law decay with exponent −1.
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systems these relations are further complicated by the fact
that the frequency distributions cannot be described by
simple power laws (Fig. 2). Nevertheless, the relation
between the core fraction and the average realization size
predicted by a random-sampling model can be tested
numerically, as Fig. 7(a) shows for prokaryotic genomes,
and seems accurately verified and roughly linear in the
tested range of sizes. However, the predicted fraction of
core components is actually much smaller than the empiri-
cal one. This highlights the presence of additional func-
tional constraints and/or specific correlations in the
empirical system that the model cannot capture. The next
section addresses this point in more detail.

F. Deviations from the random-sampling predictions
can highlight system-specific properties

Beyond the striking agreement with null predictions for
shared components, the deviations from sampling can be

used to quantify specific functional and architectural features
of a component system. While the scope of this work is to
highlight the common trends and their origins, we discuss a
specific example, in order to show the feasibility of this
procedure. Of the three data sets considered here, the case
where the clearest deviations emerge are genomes. For
example, Fig. 7(a) illustrates how the random sampling
underestimates the empirical core size by a constant offset,
for genomes of increasing size.Generally speaking, this larger
core of components is due to the components that tend to
occur in most realizations, but in few copies. The natural
explanation is that there are specific basic functions that are
essential for all (or most) genomes, but the domains involved
in these functions are not necessarily needed in many copies
per genome, and thus their presence in all realizationsdoes not
simply correlate with high global abundances as the random
sampling would entail [42].
To test this hypothesis, we divided the domain families

in functional categories (see Sec. II for the functional
annotation), and tested if most of the deviations from
the random-sampling prediction can be ascribed to the
statistics of domains belonging to specific categories. The
result of this analysis is reported in Fig. 7(b). Different
parts of the distribution of shared components are indeed
enriched in components of different biological functions
with respect to the random-sampling expectation.
In particular, protein domains that play a functional role
in information processes—such as DNA translation,
DNA transcription, and DNA replication—are clearly
enriched in the core. At the same time, they seem
statistically underrepresented at occurrences around 0.6.
These two deviations can be explained as two sides of the
same coin if this category contains domain families that
empirically occur in all genomes but in a single copy per
genome. Indeed, the global frequency (i.e, across all
genomes) of families that are both single copy and
ubiquitous is f ¼ ðR=RMÞ ¼ 1=M. Therefore, their
occurrence predicted by the random-sampling model is
o ¼ 1 − ½1 − ð1=MÞ�M ¼ 1 − eM logð1−1=MÞ ≃ 1 − e−1 ≃ 0.6
(where the rough approximation holds for large enough
M), thus naturally leading to an excess of those families in
the core and to a depletion around o ≃ 0.6.
The observation of a strong presence of protein domains

related to basic cellular function in the core genome is not
new [21,42]. However, the random-sampling model allows
us in principle to distinguish families whose presence in the
core could be simply explained by their high abundance in
the pan-genome and thus it would be expected also in a
simple scenario of random gene exchange. Finally, the
observed correlation between biological functions and
deviations from random-sampling predictions seems coher-
ent with a picture, recently proposed [23], in which natural
selection and functional constraints have played an impor-
tant role in defining the empirical U-shaped distribution of
gene occurrences.

(a)

(c)

(b)

FIG. 7. Specific functional constraints can be detected by
deviations from the predictions of a random sampling. (a) Fraction
of common protein domain families as a function of the genome
sizes. Each point of the curves corresponds to the core families
(o > θc ¼ 0.95) given the occurrence distribution of a genome’s
subset whose sizes are inside a certain window. The average size
of the genomes within the size window defines the x axis.
(b) Enrichment analysis in the occurrence distribution for specific
functional categories. Considering domain families relative to a
single functional category, their relative component occurrence
distribution was evaluated for an ensemble of systems built with a
random sampling. From this, the average value and the standard
deviation for the expected fraction of components at each
occurrence value o can be calculated. This provides a measure
(Z score) of over- or underrepresentation of domain families
belonging to each functional category in the empirical data set. IC
and EC denote intra-cellular and extra-cellular processes respec-
tively. (c) Excluding from the analysis the domain families
associated to information processes (i.e., DNA replication, tran-
scription, and translation) significantly reduces the offset between
the random-sampling prediction and the empirical trend.
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IV. DISCUSSION AND CONCLUSIONS

This work employs a simple statistical model based on
random sampling to describe the distribution of shared
components in complex component systems. A similar
approach was employed in quantitative linguistics to
explain how the dictionary used in a text scales with text
size as measured in number of words (the so-called “Heaps’
law”) while assuming Zipf’s law for component frequen-
cies [7–9,32,43]. We extend the model to show that there is
a general link between the heterogeneity in component
frequency and the statistics of shared components, regard-
less of the mechanisms that generate heterogeneity.
Consequently, models or generative processes able to
explain the heterogeneity in component frequency implic-
itly carry predictions for the statistics of shared
components.
The striking similarities of laws governing both com-

ponent abundance and occurrence found in empirical
systems of very different origins (LEGO sets, genomes,
book chapters) support the idea that the concept of
“component system” defined in this work can capture
in a unified framework a large class of complex systems
with some common global properties. Different compo-
nent systems, besides having specific architectural con-
straints, may show convergent phenomena in terms of
global statistics. Such “universal” phenomena may be
regarded as emergent properties due to system hetero-
geneity, which transcend the specific design, generative
process, or selection criteria at the origin of a system.
Analogous phenomena occur, for example, in ecosystems,
where emergent species-abundance distributions appear
for forests, birds, or insects [44].
Beyond the examples considered here, modular systems

in a wide range of disciplines can be represented as
component systems. Developing a common theoretical
language for such systems can help the exchange of
ideas, models, and data-analysis techniques between distant
communities of researchers [45]. For example, the statistics
of component sharing considered here plays a central role
in genomics [2,23,46] but is relatively unexplored in the
context of natural languages [1]. Conversely, the random-
sampling approach used here was developed in quantitative
linguistics [8], and this work shows that it is applicable to
other systems, including the detection of functional con-
straints in prokaryotic genome evolution.
An important result of this work is a proof of the clear

link between the heterogeneity of component abundance in
a system and the statistics of shared components. This link
is consistent with data from three very different empirical
systems and well captured by the random-sampling model.
The fact that emergent patterns can be explained by largely
null models resembles again the case of biodiversity, where
neutral theories ignoring species interactions and competi-
tive exclusion appear to capture many of the emerging
trends of species abundance [44,47].

If the trends of component sharing of generic component
systems are to be regarded as largely null and due to the
heterogeneity in component usage, system-specific inves-
tigations should be informed of this general trend.
Quantitative null models, such as the one provided here,
may be crucial for identifying data-set-specific deviations
that are related to functional reasons or constraints. In the
data considered in this work, the patterns of shared
components show differences between empirical data
and the null model in some cases. This is particularly true
in the genomic context, where the differences can indeed be
traced back to functional constraints in genome composi-
tion. Therefore, the framework can be useful to pinpoint
hallmarks of functional design and distinguish them from
statistical effects, particularly for the detection of causality,
dependency, and correlation structures between compo-
nents from occurrence patterns.
Once a null model is defined, these features can emerge

as significant deviations from the null behavior, for
example, as violations of the constraints linking different
global statistics such as the abundance rank plot, the
distribution of shared components, and Heaps’ law. We
have considered here a specific example for the case of
shared protein domain families in genomes (Fig. 7), but this
question still needs to be approached systematically. In this
specific case, core components are particularly enriched by
specific functional classes of components with respect to
the random-sampling prediction. In evolutionary terms, the
random sampling defines a scenario in which the pan-
genome fully determines the overall abundance of the gene
families in each genome, while in empirical bacterial
genomes genome-specific functional constraints are clearly
in place [38,39,48]. Deviations from the null scenario can
thus highlight the role of selection for specific functions,
supporting from a different perspective the idea that the
empirical U-shaped gene occurrence distribution is affected
by selective rather than neutral processes [22–25].
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of Scaling in Human Language, Proc. Natl. Acad. Sci.
U.S.A. 100, 788 (2003).

[16] H. A. Simon, On a Class of Skew Distribution Functions,
Biometrika 42, 425 (1955).

[17] M. Gerlach and E. G. Altmann, Stochastic Model for the
Vocabulary Growth in Natural Languages, Phys. Rev. X 3,
021006 (2013).

[18] S. K. Baek, S. Bernhardsson, and P. Minnhagen, Zipf’s Law
Unzipped, New J. Phys. 13, 043004 (2011).

[19] T. Y. Pang and S. Maslov, Universal Distribution of
Component Frequencies in Biological and Technological
Systems, Proc. Natl. Acad. Sci. U.S.A. 110, 6235 (2013).

[20] M. Touchon, C. Hoede, O. Tenaillon, V. Barbe, S.
Baeriswyl, P. Bidet, E. Bingen, S. Bonacorsi, C. Bouchier,
O. Bouvet et al., Organised Genome Dynamics in the
Escherichia coli Species Results in Highly Diverse Adaptive
Paths, PLoS Genet. 5, e1000344 (2009).

[21] E. V. Koonin and Y. I. Wolf, Genomics of Bacteria and
Archaea: The Emerging Dynamic View of the Prokaryotic
World, Nucleic Acids Res. 36, 6688 (2008).

[22] B. Haegeman and J. S. Weitz, A Neutral Theory of Genome
Evolution and the Frequency Distribution of Genes, BMC
Genomics 13, 196 (2012).

[23] A. E. Lobkovsky, Y. I. Wolf, and E. V. Koonin, Gene
Frequency Distributions Reject a Neutral Model of Genome
Evolution, Genome Biol. Evol. 5, 233 (2013).

[24] F. Baumdicker, W. R. Hess, and P. Pfaffelhuber, The
Infinitely Many Genes Model for the Distributed Genome
of Bacteria, Genome Biol. Evol. 4, 443 (2012).

[25] R. E. Collins and P. G. Higgs, Testing the Infinitely Many
Genes Model for the Evolution of the Bacterial Core
Genome and Pangenome, Mol. Biol. Evol. 29, 3413 (2012).

[26] D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough,
The Superfamily Database in 2007: Families and Func-
tions, Nucleic Acids Res. 35, D308 (2007).

[27] C. A. Orengo and J. M. Thornton, Protein Families and
Their Evolution—A Structural Perspective. Annu. Rev.
Biochem. 74, 867 (2005).

[28] C. Vogel and C. Chothia, Protein Family Expansions and
Biological Complexity, PLoS Comput. Biol. 2, e48 (2006).

[29] https://rebrickable.com.
[30] http://www.gutenberg.org.
[31] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevX.8.021023 for further
details.

[32] D. C. van Leijenhorst and T. P. Van der Weide, A Formal
Derivation of Heaps’ Law, Information Sciences (NY) 170,
263 (2005).

[33] A. M. Petersen, J. N. Tenenbaum, S. Havlin, H. E. Stanley,
and M. Perc, Languages Cool as They Wxpand: Allometric
Scaling and the Decreasing Need for New Words, Sci. Rep.
2, 943 (2012).

[34] A. E. Lobkovsky, Y. I. Wolf, and E. V. Koonin, Estimation
of Prokaryotic Supergenome Size and Composition from
Gene Frequency Distributions, BMC Genomics 15, S14
(2014).

[35] S. M. Soucy, J. Huang, and J. P. Gogarten, Horizontal Gene
Transfer: Building the Web of Life, Nat. Rev. Genet. 16, 472
(2015).

[36] P. D. Dixit, T. Y. Pang, F. W. Studier, and S. Maslov,
Recombinant Transfer in the Basic Genome of Escherichia
coli, Proc. Natl. Acad. Sci. U.S.A. 112, 9070 (2015).

[37] E. van Nimwegen, Scaling Laws in the Functional Content
of Genomes, Trends Genet. 19, 479 (2003).

[38] N. Molina and E. van Nimwegen, Scaling Laws in Func-
tional Genome Content across Prokaryotic Clades and
Lifestyles, Trends Genet. 25, 243 (2009).

[39] S. Maslov, S. Krishna, T. Y. Pang, and K. Sneppen, Toolbox
Model of Evolution of Prokaryotic Metabolic Networks and
Their Regulation, Proc. Natl. Acad. Sci. U.S.A. 106, 9743
(2009).

[40] J. Grilli, B. Bassetti, S. Maslov, and M. C. Lagomarsino,
Joint Scaling Laws in Functional and Evolutionary Cat-
egories in Prokaryotic Genomes, Nucleic Acids Res. 40,
530 (2012).

[41] M. Mitzenmacher, A Brief History of Generative Models for
Power Law and Lognormal Distributions, Internet Math. 1,
226 (2004).

[42] E. V. Koonin, Comparative Genomics, Minimal Gene-Sets
and the Last Universal Common Ancestor, Nat. Rev.
Microbiol. 1, 127 (2003).

[43] H. S. Heaps, Information Retrieval: Computational and
Theoretical Aspects (Academic Press, Inc., New York, 1978).

[44] S. P. Hubbell, The Unified Neutral Theory of Biodiversity
and Biogeography (MPB-32) (Princeton University Press,
Princeton, NJ, 2001).

ANDREA MAZZOLINI et al. PHYS. REV. X 8, 021023 (2018)

021023-12

https://doi.org/10.1080/09296170500055293
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1371/journal.pone.0014139
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1093/oxfordjournals.molbev.a025959
https://doi.org/10.1006/jmbi.2001.5079
https://doi.org/10.1186/1471-2148-2-18
https://doi.org/10.1093/bioinformatics/btg351
https://doi.org/10.1093/bioinformatics/btg351
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1093/biomet/42.3-4.425
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1088/1367-2630/13/4/043004
https://doi.org/10.1073/pnas.1217795110
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1093/nar/gkn668
https://doi.org/10.1186/1471-2164-13-196
https://doi.org/10.1186/1471-2164-13-196
https://doi.org/10.1093/gbe/evt002
https://doi.org/10.1093/gbe/evs016
https://doi.org/10.1093/molbev/mss163
https://doi.org/10.1093/nar/gkl910
https://doi.org/10.1146/annurev.biochem.74.082803.133029
https://doi.org/10.1146/annurev.biochem.74.082803.133029
https://doi.org/10.1371/journal.pcbi.0020048
https://rebrickable.com
https://rebrickable.com
http://www.gutenberg.org
http://www.gutenberg.org
http://www.gutenberg.org
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
http://link.aps.org/supplemental/10.1103/PhysRevX.8.021023
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1038/srep00943
https://doi.org/10.1038/srep00943
https://doi.org/10.1186/1471-2164-15-S6-S14
https://doi.org/10.1186/1471-2164-15-S6-S14
https://doi.org/10.1038/nrg3962
https://doi.org/10.1038/nrg3962
https://doi.org/10.1073/pnas.1510839112
https://doi.org/10.1016/S0168-9525(03)00203-8
https://doi.org/10.1016/j.tig.2009.04.004
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1038/nrmicro751
https://doi.org/10.1038/nrmicro751


[45] Y. Holovatch, R. Kenna, and S. Thurner, Complex Systems:
Physics beyond Physics, Eur. J. Phys. 38, 023002 (2017).

[46] P. Lapierre and J. P. Gogarten, Estimating the Size of the
Bacterial Pan-Genome, Trends Genet. 25, 107 (2009).

[47] S. Azaele, S. Suweis, J. Grilli, I. Volkov, J. R. Banavar, and
A. Maritan, Statistical Mechanics of Ecological Systems:

Neutral Theory and Beyond, Rev. Mod. Phys. 88, 035003
(2016).

[48] J. Grilli, M. Romano, F. Bassetti, and M. C. Lagomarsino,
Cross-Species Gene-Family Fluctuations Reveal the Dy-
namics of Horizontal Transfers, Nucleic Acids Res. 42,
6850 (2014).

STATISTICS OF SHARED COMPONENTS IN COMPLEX … PHYS. REV. X 8, 021023 (2018)

021023-13

https://doi.org/10.1088/1361-6404/aa5a87
https://doi.org/10.1016/j.tig.2008.12.004
https://doi.org/10.1103/RevModPhys.88.035003
https://doi.org/10.1103/RevModPhys.88.035003
https://doi.org/10.1093/nar/gku378
https://doi.org/10.1093/nar/gku378

