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Growing evidences have shown that particulate matter (PM) exposures during pregnancy are associated with impaired fetal
development and adverse birth outcomes, possibly as a result of an exaggerated systemic oxidative stress and inflammation.
Telomere length (TL) is strongly linked to biological age and is impacted by oxidative stress. We hypothesized that PM exposure
during different time windows in the first trimester of pregnancy influences both mitochondrial DNA copy number
(mtDNAcn), an established biomarker for oxidative stress, and TL. Maternal blood TL and mtDNAcn were analysed in 199
healthy pregnant women recruited at the 11th week of pregnancy by quantitative polymerase chain reaction. We also examined
whether maternal mtDNAcn and TL were associated with fetal growth outcomes measured at the end of the first trimester of
pregnancy (fetal heart rate, FHR; crown-rump length, CRL; and nuchal translucency, NT) and at delivery (birth weight, length,
head circumference). The possible modifying effect of prepregnancy maternal body mass index was evaluated. PM10 exposure
during the first pregnancy trimester was associated with an increased maternal mtDNAcn and a reduced TL. As regards
ultrasound fetal outcomes, both FHR and CRL were positively associated with PM2.5, whereas the association with FHR was
confirmed only when examining PM10 exposure. PM10 was also associated with a reduced birth weight. While no association
was found between mtDNAcn and CRL, we found a negative relationship between mtDNAcn and fetal CRL only in overweight
women, whereas normal-weight women exhibited a positive, albeit nonsignificant, association. As abnormalities of growth in
utero have been associated with postnatal childhood and adulthood onset diseases and as PM is a widespread pollutant relevant
to the large majority of the human population and obesity a rising risk factor, our results, if confirmed in a larger population,
might represent an important contribution towards the development of more targeted public health strategies.

1. Introduction

Numerous health studies have shown the association
between acute [1–5] and chronic [6–8] particulate matter
(PM) exposures and the increase in mortality and morbidity
risks in adults and children. In addition, growing evidences

have shown that maternal exposure to PM during pregnancy
might be associated with an impaired fetal development [9]
and adverse birth outcomes [10], such as preterm birth and
low birth weight [11] at term. The molecular mechanisms
responsible for such effects are still mostly unclear, although
studies have repeatedly evoked the role of oxidative stress
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and inflammation in mediating the effects of PM on human
health [12].

Two of the main actors in the process of oxidative stress
and inflammation are mitochondria and telomeres.

Mitochondria are cytoplasmic organelles which represent
the major intracellular source and the preferred target of
reactive oxygen species (ROS). Mitochondrial DNA copy
number (mtDNAcn) correlates with the size and number of
mitochondria within each cell [13] and is modulated by both
endogenous and environmental factors [14]. PM exposure is
a strong prooxidant stimulus that has been consistently asso-
ciated with an mtDNAcn increase, as cells exposed to oxida-
tive stress synthesize more copies of their mtDNA in order to
compensate the damage. On the basis of these observations,
alterations in mtDNAcn in various tissues, including whole
blood, have emerged as a possible biomarker of mitochon-
drial dysfunction and risk factor for diverse cardiometabolic
and neurodegenerative disorders as well as multiple cancers
[15–17]. Notably, these diverse disorders have oxidative
stress as a pathophysiological mechanism in common.

Increasing evidence that environmental exposure, such as
smoking [18], benzene [19, 20], and ambient PM [21, 22],
modifies mtDNAcn has begun to accumulate. Remarkably,
a decreased placenta mtDNAcn was observed in relation to
third trimester prenatal exposure to PM10 [23], and an
altered cord blood mtDNAcn has been associated with
adverse pregnancy outcomes, including an abnormal fetal
growth [24].

Telomeres are located at the end of each chromosome
and prevent DNA loss after each cell division in order to pre-
serve the full genomic information [25]. Telomere length
(TL) is strongly linked to biological age and is impacted by
oxidative stress [26]. PM exposure has been associated with
a modification in leukocyte TL, but this mainly concerns
occupationally exposed subjects [27–29]; indeed, only lim-
ited evidence has been caused on pregnant women. More-
over, studies that have been conducted so far cover placenta
or cord blood rather than maternal peripheral blood [30].

The aim of the present study is to determine the effects of
exposure to PM2.5 and PM10 during the first trimester of
pregnancy, on mtDNAcn and TL, in a sample of 199 healthy
pregnant women recruited at the 11th week of pregnancy.
We also evaluated the association among PM exposure, the
abovementioned markers, and fetal growth parameters. Our
hypothesis is that PM might increase maternal oxidative
stress, accelerate telomere shortening, and finally impact on
fetal growth.

2. Methods

2.1. Study Subjects. We recruited 199 healthy pregnant
women at the “Clinica Mangiagalli”, Fondazione IRCCS Ca’
Granda Ospedale Maggiore Policlinico, Milan, Italy, in the
period between June 2014 and October 2015. Women aged
18 to 51 years with singleton pregnancies who were attending
prenatal healthcare clinics in the 11th week of pregnancy
were eligible for this study. Exclusion criteria include a his-
tory of illicit drug use, diabetes, hypertension, or some other
chronic health conditions. A detailed informed consent form

was signed by all participants, and the study was approved by
the ethic committee of the Fondazione IRCCS Ca’ Granda
Ospedale Maggiore Policlinico. Information about demo-
graphics and lifestyle characteristics of the mother, such as
smoking habits or alcohol consumption, was collected.

2.2. Fetal Ultrasound Measures and Birth Outcomes. Fetal
measures were taken at the 11th week of pregnancy, as part
of the prenatal screening test, when ultrasound fetal exami-
nation and drawing of blood (both for clinical assessment
and for telomere/mtDNAcnmeasurements) were performed.
During ultrasound examination, data about crown-rump
length (CRL), nuchal translucency (NT), and fetal heart rate
(FHR) were registered. Gestational age was calculated from
the first day of the last menstrual period. At birth, we col-
lected medical records of the newborns, obtaining data about
gestational age at delivery, birth weight (BW), birth length
(BL), and birth head circumference (BHC).

2.3. Exposure Assessment. Data on PM10 and PM2.5 were pro-
vided by Lombardy’s Regional Environmental Protection
Agency (ARPA) which regularly collects daily concentration
of both pollutants using fixed monitoring stations of the Air
Quality Monitoring Network. Daily exposure was calculated
by averaging daily concentration of PM2.5 and PM10 from
the available monitoring stations covering the city of Milan.

We assigned to each study subject twelve exposure cumu-
lative intervals to pollutants obtained as cumulative mean of
each gestational age week calculated from the last menstrual
period date. The mean of gestational age week intervals
ranges from the first week of pregnancy (0–1w) to the entire
first trimester (0–12w). To account for missing data for a
specific monitor, we used the information on the same pol-
lutant and monitor on other days of the same year plus mea-
surements of the same pollutant and day on the other
available monitors [31].

2.4. Blood Collection and DNA Extraction. Blood was col-
lected in EDTA tubes and processed within 2 hr of phlebot-
omy. EDTA-treated blood was centrifuged at 1200× g for
15min at room temperature to separate the buffy coat frac-
tion from platelet-free blood plasma. The buffy coat fraction
was transferred in a Cryovial and immediately frozen at
−80°C until DNA extraction.

DNA was extracted using the Wizard Genomic DNA
Purification Kit (Promega, Madison, WI, USA) following
the manufacturer’s instructions.

2.5. Telomere Length and mtDNAcn Measurement by
Quantitative Real-Time PCR. TL and mtDNAcn were mea-
sured by using the real-time quantitative PCR method as
described by Cawthon [32, 33] and Hou et al. [21].

These assays measure relative TL and relative mtDNAcn
in DNA by determining, respectively, the ratio of telomere
repeat copy number (T) and mitochondrial (mt) copy num-
ber to a single nuclear copy gene (S), which was the human
(beta) globin (hbg). The T/S ratio and mt/S ratio are calcu-
lated in a given sample relatively to a reference pool DNA.
The reference pool DNA was prepared from 50 DNA sam-
ples (1μg DNA for each sample).

2 Oxidative Medicine and Cellular Longevity



A fresh standard curve prepared from the pooled DNA,
ranging from 30ng/μl to 0.23 ng/μl (serial dilutions 1 : 2),
was included in every “T,” “mt,” and “S” PCR runs. For each
sample, 9 ng of DNA was used as a template, and the reaction
was run in triplicate. A high-precision MICROLAB STARlet
Robot (Hamilton Life Science Robotics, Bonaduz AG, Swit-
zerland) was used for transferring a volume of 7μl reaction
mix and 3μl DNA (3ng/μl) in a 384-well format plate. All
PCRs were performed on a 7900HT Fast Real-Time PCR Sys-
tem (Applied Biosystems). Primers were previously reported
[21, 32, 33]. At the end of each real-time PCR reaction, a
melting curve was added in order to confirm the amplifica-
tion specificity and the absence of primer dimers. The aver-
age of the three T and three mt measurements was divided
by the average of the three S measurements to, respectively,
calculate the T/S or the mt/S ratio for each sample.

2.6. Statistical Analysis. Summary statistics for mother and
newborn characteristics are presented as mean± SD or fre-
quency and percentage. The correlation between mtDNAcn
and TL was examined. To investigate whether PM exposure
was associated with mtDNAcn or TL, we evaluated the asso-
ciations between daily PM concentrations in the first trimes-
ter of pregnancy (as gestational age week intervals) and
mtDNAcn or TL. A univariate exploratory analysis was per-
formed to select potential covariates associated with each
outcome (i.e., age, sex, BMI, smoking habits, ethnicity, ovula-
tion induction, parity, previous miscarriage, drug assumption
before and during pregnancy, seasonal infections measured
by the number of seasonal flu cases in Lombardy region
(https://www.cirinet.it/jm/sorveglianza-virologica/stagioni-
precedenti/clinico-epidemiologica.html), season, day and
week of enrolment, humidity, temperature, and apparent
temperature). The selection of the most appropriate model
structures was based on theminimization of the Akaike infor-
mation criterion (AIC). The best model selected was adjusted
for age, smoking habits (never, past, or current smokers),
season, maternal age, BMI (<25 kg/m2, BMI≥ 25 kg/m2),
and gestational week at examination. Dependent variables
were log-transformed to achieve normality of models’ resid-
uals. Estimated effects are reported as geometric mean
ratio (GMR) and 95% confidence intervals (CI) associated
with an increase of 10μg/m3 in each pollutant. We used sep-
arate models to estimate the effects of PM2.5 and PM10 on
each outcome.

We subsequently evaluated the association between
mtDNAcn/TL and both fetal growth measures (FHR and
CRL). All models were adjusted for the above-mentioned
selected covariates.

We performed causal mediation analysis to identify
potential pathways that could explain the observed associa-
tions between PM exposure and fetal growth. This approach
examines how a third intermediate variable, i.e., the media-
tor, is related to the observed exposure-outcome relationship.
In our study, we studied the potential mediator role of
mtDNAcn in the association between PM and FHR (Supple-
mentary Figure 2). For this analysis, we selected PM10 of the
mean of the first 5 weeks of gestation (PM10, 0-5w) as it was
the exposure associated with both FHR and mtDNAcn. To

apply mediation models, three criteria must be satisfied.
First, there must be a statistically significant association
between exposure (PM10) and outcome (FHR). Second, the
exposure (PM10) must have an effect on mediator
(mtDNAcn), and third, the mediator must be associated
with the outcome (FHR) when exposure is controlled (after
adjusting for mtDNAcn). Unfortunately, in our study, the
latter condition was not fulfilled; accordingly, we could not
calculate a significant indirect effect (Supplementary
Table 1).

In addition, we investigated (i) the association between
PM and crown-rump length (CRL) by a multivariable regres-
sionmodel adjusted for smokinghabits (never, past, or current
smokers), season (winter, spring, summer, and autumn),
maternal age, categorical BMI (<25 kg/m2, BMI≥ 25 kg/m2),
gestational week at examination, mtDNAcn, and interaction
between categorical BMI and mtDNAcn and (ii) the associa-
tion between PM and fetal hearth rate (FHR) by a multivar-
iable regression model adjusted for smoking habits, season,
maternal age, categorical BMI, gestational week at examina-
tion, TL, and interaction between categorical BMI and TL.
Complete models were graphically explored only for the
models showing the larger effects of PM on each fetal out-
come. Due to a high number of comparisons, we took into
account a correction for multiple comparisons based on the
false discovery rate (FDR) control. A threshold of 0.05 was
applied on FDR P value significance to identify the associa-
tions that remain significant after the correction. A two-
tailed value of P < 0 05 was considered statistically signifi-
cant. All statistical analyses were performed with SAS soft-
ware version 9.4. Mediation analysis was executed while
utilizing the PROCESS program (model 4) provided by
Hayes (2013).

3. Results

Table 1 shows the characteristics of the study population.
Most women were nonsmokers, with a mean age of 33 years
and an average prepregnancy BMI of 22.5 kg/cm2. A total of
190 pregnancies ended in live births: 7 miscarriages were
recorded and two mothers were lost to follow-up. Table 1
also reports newborn characteristics of the 190 live births,
including ultrasound measurements at recruitment and size
at birth.

As shown in supplementary Figure 1, the mean levels of
ambient PM10 and PM2.5 measured in Milan the days
before the examinations (0–12-week means) ranged from
10 to 90μg/m3 and from 7 to 69μg/m3, respectively.

We examined TL and mtDNAcn in DNA extracted
from maternal whole blood sample of study subjects; as
expected, age was inversely related to TL, even if not signif-
icantly (β = −0 01, P value > 0.10), but not related to
mtDNAcn (β = 0 01, P value = 0.28). Smoking and mater-
nal BMI did not show any association with the two markers
measured. As reported in Figure 1, we observed a modest
correlation between TL and mtDNAcn (Pearson correlation
coefficient: 0.16).

Considering the association between PM exposure and
mtDNAcn, we observed in all the gestational age intervals
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examined a PM-related increase in mtDNAcn for PM10
exposure, after adjusting for age, BMI, smoking habit, sea-
son, and gestational age at the examination (Figure 2(a)).
The effect was maximum for the average of the first 5
weeks of pregnancy (adjusted GMR=1.14; 95% CI: 1.08,
1.20; P < 0 001). An increase was also reported for PM2.5
exposures even though the associations were not statisti-
cally significant (Figure 2(b)).

On the contrary, we observed a negative and significant
effect of the 12-week mean PM10 on TL (adjusted
GMR=0.94; 95% CI: 0.88, 0.99; P = 0 038) (Figure 2(c)).
The effect was not observed for PM2.5 exposure (Figure 2(d)).

We further investigated the possible association between
PM exposure and fetal outcomes (i.e., fetal heart rate, crown-
lump length, and nuchal translucency) measured by ultra-
sound at the time of enrolment. PM10 was associated with

an increased FHR from the gestational age week interval 0–
2 (Figure 3(a)), ranging from an adjusted estimate of 1.16
in weeks 0–2 to an adjusted estimate of 1.61 in weeks 0–5.
A similar trend was observed for PM2.5 exposure
(Figure 3(b)). In addition, CRL was positively associated only
with PM2.5 exposure (Figures 3(c) and 3(d)).

We investigated whether mtDNAcn could represent a
mediator of the association between PM and FHR (Supple-
mentary Figure 2). However, as we tried to formally
investigate this possibility, we found that our data did not
fulfill the necessary and sufficient conditions to establish
mediation (Supplementary Table 1). This finding let us
infer that mtDNAcn is not the mediator of the association.

No association was found between mtDNAcn and fetal
outcomes (Supplementary Table 2). Nevertheless, when the
interaction between mtDNA and CRL was taken into
account, we observed a strong modifying effect of maternal
BMI in modulating association between mtDNAcn and
CRL. In Figure 4, we reported the beta estimates of each
variable included as covariate in the multivariable linear
regression model investigating the association between
mtDNAcn and CRL. An interaction test formally performed
to assess effect modification between BMI and mtDNAcn
was statistically significant (P value < 0.001), indicating a
sensibly larger association among overweight subjects.
Interestingly, in women with a prepregnancy BMI above 25
(overweight), we observed a clear inverse relationship
between mtDNAcn and CRL, whereas in normal-weight
women, mtDNAcn was not associated with CRL.

When we applied the same approach to investigate the
determinants of FHR and possible interactions among
variables (Supplementary Figure 3), the association of the
TL with FHR was not significant, and the interaction
test performed to assess effect modification between BMI
and TL was not statistically significant (P value = 0.106).
However, a diverse association was observed in normal-
weight (positive association) and overweight (negative
association) women.

Table 1: Description of study population.

Mean± SD or
range and number

Mother (n = 199)
Age (years) 33.0 (3.9)

Gestational age at examination (weeks) 11.9 (0.5)

Prepregnancy BMI (kg/m2) 22.5 (4.0)

BMI, categorical

BMI< 25 kg/m2 155 (77.9)

BMI≥ 25 kg/m2 44 (22.1)

Self-reported smoking status

Never smoker 151 (75.9)

Past smoker 30 (15.1)

Current smoker 18 (9.1)

Parity

0 121 (60.8)

1 67 (33.7)

2 10 (5.0)

3 1 (0.5)

Season of enrolment

Autumn 63 (31.7)

Winter 41 (20.6)

Spring 41 (20.6)

Summer 54 (27.1)

Newborn (n = 190∗)
Sex

Male 108 (56.8)

Female 82 (43.2)

Gestational age at delivery (weeks) 38.8 (1.4)

Birth weight (g) 3272.9 (477.9)

Birth length (cm) 49.9 (2.0)

Birth head circumference (cm) 34.2 (1.5)

Crown-rump length (CRL) (mm) 62.2 (6.9)

Nuchal translucency (NT) (cm) 1.9 (0.4)

Fetal heart rate (FHR) (bpm) 160.4 (6.1)
∗7 miscarriages and two mothers lost to follow-up.
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No associations were observed either with TL and
mtDNAcn or with nuchal translucency (NT) (data not shown).

The analysis of the association with the first trimester
PM10 exposure on birth weight, applying a model adjusted
for maternal age, smoke, season, maternal BMI, gestational
age, mtDNAcn, and TL, showed a negative association for
different time windows that reached significance at weeks
0–8 (adjusted estimate =−0.99; 95% CI: −194, −3.88; P =
0 042). Exposure was instead not associated with birth length
and birth head circumference (Figure 5). No associations
resulted between PM2.5 exposure and any of the outcomes
considered (data not shown).

4. Discussion

The main goal of the present study was to examine whether
exposure to particulate matter (PM10 and PM2.5) experienced
from the mother in the first trimester of pregnancy was
associated with oxidative stress (estimated as mtDNAcn)
and maternal TL. We also examined whether maternal
mtDNAcn and TL were associated with fetal growth out-
comes measured at the end of the first trimester of pregnancy
(FHR, CRL, and NT) and at delivery (birth weight, length,
and head circumference). The possible modifying effect of
prepregnancy maternal BMI was evaluated.
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1.25

1.20

1.15

1.10

1.05

1.00

0.95

0.90

0.85
1.25

1.20

1.15

1.10

1.05

1.00

1.95

1.90

1.85

0-1w 0-2w 0-3w 0-4w 0-5w 0-6w 0-7w 0-8w 0-9w 0-10w0-11w0-12w 0-1w 0-2w 0-3w 0-4w 0-5w 0-6w 0-7w 0-8w 0-9w 0-10w0-11w0-12w

mtDNA copy number Telomere length
(a) (c)

(b) (d)
G

M
R 

an
d 

95
%

 C
I

PM
10

PM
2.5

⁎- ⁎-
⁎- ⁎- ⁎- ⁎- ⁎- ⁎- ⁎- ⁎- ⁎- ⁎-

Figure 2: Association of mtDNA copy number and telomere length with PM at the mean of gestational age week intervals. Geometric mean
ratio (GMR) of mtDNAcn and TL for an increase of 10 μg/m3 of PM was adjusted for age, categorical BMI (<25 kg/m2, BMI≥ 25 kg/m2),
smoking habits (never, past, or current smokers), season, and gestational week at examination. The asterisk indicates a significant
association; the dotted asterisk indicates a statistically significant association with a pFDR≤ 0.05.

Mean of gestational age week inrevals

Fetal heart rate
(a) (c)

(b) (d)

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

−0.5
−1.0
−1.5

5.0

0-1w 0-2w 0-3w 0-4w 0-5w 0-6w 0-7w 0-8w 0-9w 0-10w0-11w0-12w 0-1w 0-2w 0-3w 0-4w 0-5w 0-6w 0-7w 0-8w 0-9w 0-10w0-11w0-12w

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

−0.5
−1.0
−1.5

𝛽
 an

d 
95

%
 C

I

PM
10

PM
2.5

Crown-rump length

⁎-
⁎- ⁎- ⁎- ⁎- ⁎- ⁎

⁎ ⁎ ⁎
⁎ ⁎

⁎ ⁎ ⁎ ⁎
⁎ ⁎

Figure 3: Effect of PM on FHR and CRL measured at the 11th week of pregnancy. FHR model adjusted for smoking habits (never, past, or
current smokers), season, age, categorical BMI (<25 kg/m2, BMI≥ 25 kg/m2), gestational week at examination, TL, and interaction between
categorical BMI and TL; CRL model adjusted for smoking habits, season, age, categorical BMI, gestational week at examination,
mtDNAcn, and interaction between categorical BMI and mtDNAcn. Each panel reported β coefficients and 95% CI for PM10 (a) and
PM2.5 (b) on fetal heart rate and for PM10 (c) and PM2.5 (d) on crown-rump length calculated at each week interval. βs are calculated for
a 10μg/m3 increase in PM10 and PM2.5. The asterisk indicates a significant association; the dotted asterisk indicates a statistically
significant association with a pFDR≤ 0.05.

5Oxidative Medicine and Cellular Longevity



PM10 exposure, considered in different week windows
of the first pregnancy trimester, was associated with an
increased maternal mtDNAcn and a reduced TL. As regards
ultrasound fetal outcomes, both FHR and CRL were posi-
tively associated with PM2.5, whereas only the association
with FHR was confirmed when examining PM10 exposure.
PM10 was also associated with a reduced birth weight.

Our findings let us infer that mtDNAcn is not the medi-
ator of the association between PM and FHR as our data did
not fulfill the necessary and sufficient conditions to establish

mediation. We therefore speculate that probably two inde-
pendent pathways linked to PM exposure exist.

In addition, when we examined the possible modifying
role of BMI, we found a negative relationship between
mtDNAcn and fetal CRL only in overweight women, whereas
normal-weight women exhibited a positive, albeit nonsignif-
icant, association.

Pregnancy is a physiological condition characterized by
an increased susceptibility to oxidative stress and inflamma-
tion. Placenta, in particular, has a central role in this context,
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as the high placental mitochondrial activity gives rise to an
increased ROS production [34]. Ideally, this increased con-
centration of ROS should be balanced by an increase in anti-
oxidant compounds and enzymes [35]. Increased mtDNAcn
has been associated with adverse pregnancy outcomes, such
as low and high birth weight [24], placental abruption [36],
and preeclampsia [37].

PM exposure has been previously linked to an increased
oxidative stress in occupational [21] and general environ-
ment settings [22, 38] as well as to a modification in TL
[27, 29, 39]. In pregnant women, PM exposure has been also
associated with a modification of oxidative stress measured
in the placenta and in the cord blood at delivery [30, 40].
Most of the previous investigations examined placental
mtDNAcn in relationship to PM exposure experienced dur-
ing the last period of pregnancy and showed increased oxida-
tive stress and TL shortening [23].

To the best of our knowledge, this is the first investigation
focusing on oxidative stress measured in maternal blood col-
lected at the end of the first trimester of pregnancy. Our find-
ings confirm the relationship between PM exposure and both
increased mtDNAcn as marker of oxidative stress and TL
shortening. Interestingly, examining the possible correlation
between TL and mtDNAcn, we found a correlation coeffi-
cient very similar to the ones previously reported in different
experimental settings, such as elderly women [41] and in a
female subgroup of the EPIC cohort [42].

Quite surprisingly, fetuses, whose mothers had an
increased exposure, had a faster heart rate and higher CRL
(measured at the 11th week of pregnancy), whereas in liter-
ature, PM exposure has been mostly related to smaller
fetuses measured in more advanced stages of pregnancy.
One possible explanation of this unexpected result could
be speculative: at an early gestational age PM exposure
might act with a selection mechanism that lead only stron-
ger fetuses to survive.

Although alterations of fetal heart rate have been consid-
ered a symptom of fetal distress, the very large majority of
studies investigated FHR at the third trimester of pregnancy.
Thus, the meaning of the association we found between PM
exposure and FHR is difficult to interpret and should be fur-
ther investigated.

The negative effect of PM on weight at birth is instead
coherent with current literature [43–45].

An additional comment regards the general lack of asso-
ciation with PM2.5, whereas we observe an effect associated
with PM10 exposure. This finding is somehow surprising
but it must be interpreted taking into account two factors.
First, PM10 dataset available for the Lombardy region in the
study period was more complete, and it was characterized
by a better spatial resolution; thus, this allows a better esti-
mate of exposure levels. Second, in the study area, PM10 is
mainly constituted by fine particles, and PM2.5 represents
58–94% of PM10 [46].

The present study must be interpreted taking into
account both strength and limitations. First, although the
study population is not very large compared to other stud-
ies conducted on pregnant women, we collected very
detailed information about possible confounding factors,

and we were able to consider them in statistical analyses.
Moreover, all study participants were recruited in the same
hospital, and ultrasound measurements were performed by
gynecologists after a standardized training program, using
the same instrumentation.

A limitation of the study is given by the possible inaccu-
racy in estimating gestational age. Gestational age was calcu-
lated from the first day of the last menstrual period, and,
indeed, this measurement is affected by menstrual irregular-
ities. However, the possible measurement error is supposed
to be randomly distributed, thus not affecting the relation-
ship with PM exposure. On the contrary, the possible use of
ultrasound measures to correct gestational age might have
led to a systematic error due to the possible effect of PM
exposure on fetal size. Finally, fetal ultrasound has a great
deal of measurement error, and therefore, measurement
error might drive the observed results, although such error
should cause nondifferential exposure misclassification, and
it seems unlikely to be driving the results.

The inclusion criteria of this study were very strict, as we
enrolled only healthy women, with no comorbidities.

This choice has the advantage of examining a homoge-
nous population and of limiting any possible confounders,
although it prevents from the evaluation on particularly sus-
ceptibility conditions such as diabetes or hypertension.

Although the sample size of our study is limited, we were
able to assess significant associations between PM and fetal
growth and between PM and mtDNAcn/LT; however, we
were not able to confirm a mediation role of mtDNAcn. Fur-
ther studies performed on a larger population might help to
elucidate the link between PM, mtDNAcn/LT, and fetal
growth. In conclusion, in the present work, PM exposure
was associated with an increased oxidative stress and a
reduced TLmeasured in maternal blood at the end of the first
trimester of pregnancy. The PM exposure experienced dur-
ing the first trimester was also associated with CRL, FHR,
and birth weight. As abnormalities of growth in utero has
been associated with postnatal childhood and adulthood
onset diseases, since PM is a widespread pollutant relevant
to the large majority of the human population and obesity
is a rising risk factor, our results, if confirmed in a larger pop-
ulation, might represent an important contribution towards
the development of more targeted public health strategies.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Supplementary Figure 1: box plot showing the distribution of
PM10 and PM2.5 concentrations for the exposure intervals
defined as the mean of gestational age weeks. Supplementary
Figure 2: conceptual and statistical diagram of mediation
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analysis. Supplementary Table 1: mediation analysis. Supple-
mentary Table 2: linear regression model with crown-rump
length and fetal heart rate as dependent variables and
mtDNAcn and telomere length as independent variables.
Supplementary Figure 3: complete FHR model showing the
magnitude of effect of each variable entered in the multivar-
iable linear regression model as a covariate. The P value of
interaction between BMI and TL was 0.106. (Supplementary
Materials)
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