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Abstract: 

The drying of biodegradable polymeric nanoparticles (NP) is mandatory to improve their physical and 

chemical stability over time. Spray- or freeze-drying can induce irreversible aggregation of NP and therefore 25 

the use of drying auxiliary agents is required. The ability of four grades of maltodextrins differing in 

dextrose equivalent (DE) (i.e. DE2, DE6, DE12 and DE38) to protect PLGA NP from stresses was studied. 

High Mw maltodextrins (DE2) was not functional for obtaining an easily resuspendable dried product, since 

it needs a prolonged time to fully hydrate. Maltodextrins at intermediate DE showed a poor ability to 

protect NP from irreversible aggregation probably because too sensitive to environmental variation. DE38, 30 

which did not alter ζ-potential of NP, allowed to obtain an easily resuspendable nanosuspension 

independently of the drying process. The effectiveness of such material was attributed to the easiness of 

spray-dry a low viscous solution and to the ability of substitute the water molecules’ hydrogen bonds with 

NP during freeze-drying.  

 35 
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1. Introduction 40 

One of the main obstacles limiting the availability of products based on hydrophobic colloidal suspensions 

is their physical and chemical instability upon long-term storage. Thus, it is mandatory to convert these 

systems into solids which can be easily and rapidly reconstituted preserving the initial physicochemical 

characteristics of the product. Among the possible drying processes, spray-drying and freeze-drying are the 

methods of choice [1-5], even if both processes present serious criticisms when applied to polymeric 45 

nanoparticles [6, 7] made of materials with a low melting point and/or glass transition temperature. As an 

example, in the case of poly(caprolactone) nanoparticles, the exposure to a high temperature during spray-

drying can be prohibitive since it can jeopardize their structural integrity, leading to degradations or 

coalescences, despite the short residence time in the drying chamber [7]. Regarding the lyophilization, 

freezing is considered the most aggressive and critical step since it can induce the nanoparticles instability. 50 

The freeze-concentration and the formation of ice-ice and ice-container interfaces caused spatial 

confinement of nanoparticles and the mechanical compression can damage the susceptible ones [8]. The 

freezing can also modify the physical state of the material constituting the nanoparticle affecting the 

integrity of the system. As an example, the freezing of a poly(D,L lactide acid-co-ethylene oxide) colloidal 

system induced the crystallization of the polymer with the formation of intra- and inter-particle bridges 55 

causing irreversible aggregation [9]. Moreover, in vivo pharmacokinetic study indicated that the particle 

size increment from 100 to 160 nm due to freeze-drying of poly(lactide-co-glycolide) (PLGA) and 

poly(caprolactone) nanoparticles induced a larger residence time and higher drug hepatic levels of CyA 

loaded as a model drug [10].  

Difficulties in drying nanoparticles made of amorphous polymers are also dependent on the chemical 60 

affinity with the water molecules which can be responsible of polymer plasticization. The consequent 

decrease of the glass transition temperature (Tg) of the system causes processing problems, namely particle 

agglomeration, caking and stickiness. As an example, the moisture content can reduce the Tg of PLGA from 

about 45 °C to about 15 °C [11, 12]. Hence, the optimization of the formulation and the experimental 

conditions of both processes is crucial to obtain a dried product with the desired qualities and preserve the 65 

original physicochemical properties of nanoparticles. Indeed, the nature of drying auxiliary agents as well as 

the concentration play an important role to mitigate thermal stresses and assure a fast resuspension [8, 

13], avoiding the use of a high-energy process to properly disperse nanoparticles, which precludes the 

practical utility in clinical settings. 

Maltodextrins (MDX) appear especially useful to this purpose due to their good aqueous solubility, low 70 

viscosity and high Tg which provide a stable glassy matrix at room temperatures [14].  

Based on these considerations, this work aims to evaluate the ability of four types of MDX differing in 

molecular weight on protecting poly(D,L lactide-co-glycolide) nanoparticles from thermal and mechanical 
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stresses induced by spray-drying or freeze-drying. In this regard, an uncapped poly(D,L lactide-co-glycolide) 

with a low Tg was selected as critical material and nanoparticles were prepared by the solvent displacement 75 

method avoiding the use of any stabilizer, which can interfere with the effect of MDX.  

 

2. Materials and method 

2.1. Materials 

Uncapped poly(lactide-co-glycolide) (PLGA) at lactide/glycolide ratio of 50:50 and having a Tg at about 36.5 80 

°C was purchased by Evonik Industries (G). MDX with a dextrose equivalent (DE) of 2, 6, 12 and glucose 

syrup with a DE38 (Glucidex) were kindly gifted by Roquette (F). All solvents were of analytical grade, 

unless specified.  

2.2. MDX characterization 

Size exclusion chromatography (SEC) was performed using an HP1100 Chemstation (Agilent, US) equipped 85 

with refractive index signal as a detector. A combination of two columns in series, Superchrome Biobasic 

SEC300 (300×7.8 mm, 5µm, 300 Å) and 120 (300×7.8 mm, 5µm, 120 Å), was operated at the flow rate of 

0.4 mL/min and temperature of 35 °C. Samples at the concentration of 5 mg/mL were eluted using a mobile 

phase constituted of a 0.05 M phosphate buffer at pH=6.8 and a 0.25 M KCl solution and the injection 

volume was 50 µL. The weight- average molecular weight (Mw) and the number-weight molecular weight 90 

(Mn) was calculated using dextrans as standards, in the range from 1-410 KDa. Dispersity index (DI) is 

reported as the ratio between Mw and Mn. 

Modulated differential scanning calorimetry experiments were performed using a DSC1 Stare System 

(Mettler Toledo, CH) equipped with a refrigerated cooling system (RCS) to determine the Tg of MDX. 

Samples of about 10-15 mg exactly weighted were transferred to pin-holed aluminium pans, sealed and 95 

subjected to heating cycles from 10 to 100 °C, 150 °C or 200 at °C at the 5 K min–1 (period = 90 s; amplitude 

= 0.5 °C). The temperature range was fixed based on preliminary DSC analysis. 

The DSC cell and RCS were purged with dry nitrogen at 80 and 120 mL/min, respectively. The system was 

calibrated using an indium standard. All data were treated with Stare System software (Mettler Toledo, CH) 

and Tg is calculated as the inflection point in the reversible curve.  100 

Dynamic light scattering analyses (section 2.7) were performed on MDX solutions at 4 and 8% w/v, 

following the sample preparation as per the compatibility study (section 2.4). Size distribution plots were 

further analysed using the high-resolution mode to resolve multimodal or broad peaks. 

2.3. Nanoparticles preparation 

PLGA nanoparticles (NP) were prepared using a solvent displacement method [15]. Briefly, PLGA was 105 

dissolved in a mixture of acetone/absolute ethanol (7:3 v/v) at the concentration of 1% w/v and 1 mL was 
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added dropwise to 10 mL of MilliQ water, using an electronic pipette (PIPETMAN M - Gilson, US). The 

system was maintained at 4 °C under magnetic stirring at 500 rpm for 15 min before increasing the 

temperature to 25 °C over a 3h period.  

2.4. Compatibility 110 

An aliquot of 1 mL of MDX solution in MilliQ® water or 0.9% NaCl solution was added to 1 mL of 

nanosuspension to get the final MDX concentration of 2, 4 or 8 % w/v. After stirring for 3 h at room 

temperature, the samples were visually observed, and the particle size was determined as reported in 

section 2.7. The zeta potential (ζ) values were measured only for samples at 2% MDX concentration to limit 

interferences on electrophoretic mobility.  115 

2.5. Spray-drying 

Nanosuspension in presence of MDX was sprayed through a two-fluid nozzle, operating in a co-current 

manner, of a Format 4 M8 (ProCepT, Belgium). The process parameters optimized according to the results 

of the Design of Experiments [16] were set as follows: inlet temperature= 130 °C; feed flow rate = 6.5 

mL/min; nozzle pressure = 1.7 atm; nozzle diameter = 0.4 mm; ∆P = 70 mbar. The dried powders were 120 

separated from the drying air in the cyclone (outlet temperature = 37–39 °C) and deposited in the collector.  

2.6. Freeze-drying 

Freeze-drying was performed using an Epsilon 2-6 LSC plus freeze dryer (Martin Christ, G).  

To tailor the experimental set-up [17], the glass transition temperature of maximally cryo-concentrated 

solution (Tg’) of a 20% w/v MDX solution was determined by DSC. Briefly, an aliquot was cooled until -40 °C 125 

at 5 K min–1, kept at -40 °C for 20 min and then heated to 25 °C at 5 K min–1. Tg’ was calculated as the 

inflection point of the specific heat increment at the glass–rubber transition on the heat scan. 

The influence of NP on ice melting enthalpy (∆H) of MDX solutions was evaluated by modulated differential 

scanning calorimetry, heating the frozen samples from -40 °C to +25 °C (period = 90 s; amplitude = 0.5 °C). 

Two different freeze-drying cycles were designed based on Tg’. In particular, samples containing DE2, DE6 130 

and DE12 were frozen at -30 °C for 2 h; then, the main drying was carried out at 10 °C and 0.22 mbar for 6 h 

and the secondary drying at 35 °C and 0.22 mbar for 4 h. In case of DE38, the experimental conditions 

were: freezing at -40 °C for 2 h; main drying at 0 °C and 0.10 mbar for 6 h; secondary drying at 35 °C and 

0.10 mbar for 6 h. Afterwards, the vacuum was broken by air injection and samples were stored at room 

temperature until reconstitution.  135 

2.7. Dynamic light scattering 

The Z-average diameter (DH) and the size distribution (PDI) of samples were evaluated by photon 

correlation spectroscopy using a dynamic light scatter (DLS, Zetasizer Nano ZS, Malvern Instrument, UK), 
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equipped with a backscattered light detector, operating at 173° and 25 °C. The results calculated using the 

Dispersion Technology Software (Malvern Instruments, UK) are reported as intensity distribution.  140 

2.8. Zeta potential 

Zeta potential (ζ) of nanosuspension was assessed by M3-PALS (Phase Analysis Light Scattering) technique, 

using Zetasizer Nano ZS (Malvern Instrument, UK) at 25 °C. 

2.9. Resuspendability 

An aliquot of 1 mL of MilliQ® water or 0.9% w/v NaCl was used to reconstitute 5 mg of the dried powders. 145 

Samples were gently shaken at 100 rpm and 25 °C in a benchtop incubation shaker (Sartorius Certomat IS, 

G) and the size distribution was evaluated by DLS after 5, 30 and 60 min.  

MDX were considered suitable drying agent if the quality of DLS measurement resulted good and DH 

(expressed as peak size) of the reconstituted NP was not significantly different with regards to the values 

from the compatibility study (α=0.05, ANOVA One-way). For this purpose, the size of the main peak was 150 

considered, accounting also for its percentage on the whole size distribution. 

The ζ of NP reconstituted in water without signs of aggregation was also evaluated after 60 min of shaking. 

 

3. Results and discussion  

3.1. Characterization of MDX and evaluation of their physical compatibility with PLGA NP 155 

Molecular weight distribution and thermal properties are two of the main parameters that can potentially 

impact the ability of MDX to act as a drying agent. The physicochemical features of the selected MDX are 

summarized in Table 1. According to the literature data, Mn and Mw of MDX decreased increasing the DE 

value [18], following an exponential relationship (R2>0.99). A similar dependence was found in the case of 

Tg: in a homologous polysaccharide series with different Mn, the decreased length of polymeric chains, 160 

namely the increased concentration of reducing sugars in MDX, determines the transition from glassy to 

rubbery state at lower temperatures, compared to high Mw products [19]. Moreover, the change in heat 

capacity associated with the Tg (∆Cp, Table 1) was related to DE [20]: the higher the Mn, the smaller the ∆Cp. 

No statistical differences between ∆Cp of DE6 and DE12 were found, in agreement with the similarity in 

terms of Tg and Mn (Table 1). 165 

PLGA NP were prepared avoiding the use of surfactants or steric stabilizers which can generally remain 

adsorbed onto NP surface [21] and cooperate to preserve NP size during drying [22]. The selected process 

conditions allowed to obtain monodispersed PLGA NP (PDI = 0.059±0.012, n=3 batches) with a mean 
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hydrodynamic diameter lower than 170 nm (DH = 157±7 nm, n=3 batches) and a ζ-potential of about -31 

mV.  170 

PLGA NP were compatible with all aqueous MDX solutions as no aggregates or phase separations were 

evident after 3h of stirring. However, for MDX concentration higher than 2%, DLS analyses evidenced a 

slight increment of NP DH as a function of the MDX grade and concentration. This was concomitant to a 

shift of ζ-potentials towards higher values and was due to the adsorption of MDX on NP surface (Table 2).  

The change of DH became more evident increasing the ionic strength of the dispersant medium. PLGA NP as 175 

such were physically stable in 0.9% NaCl solution, but adding MDX, only DE2 and DE38 at all the 

concentrations tested, were able to maintain an acceptable monodisperse distribution of NP, even if DH 

increased (Fig. 1). At intermediate DE values, the formation of aggregates was dependent on MDX 

concentration. In other words, DE6 was compatible with NP only at 2%, despite the significant increase of 

DH, and the same behaviour was evident in case of 4% DE12 solution. Furthermore, increasing the DE12 180 

concentration to 8%, DH of PLGA NP shifted to the submicron range (Fig.1).  

This data can be explained considering that the apparent persistence length of hydrated MDX linearly 

increases as a function of DE, until a maximum value is reached around DE10 and, then, it decreases by 

increasing the de-polymerization degree of MDX [23]. This would explain the relative lower ζ-potential 

values of DE6 and DE12 with respect to those measured after adding DE2 and DE38. Moreover, it is also 185 

recognized that the apparent persistence length of high-Mw polysaccharides is influenced by the increase of 

ionic strength, which modified stiffness and the conformation shape of MDX [24]. Moreover, sodium 

chloride, which it is known to compress the electrical double layer at the NP surface in a concentration 

dependent way and to reduce the ζ-potential [25, 26]. 

In other words, the PLGA NP aggregation might be related to mobility of polysaccharide chains which also 190 

exert a slight impact on ζ-potentials shielding (Table 2). . DLS analyses performed on MDX dispersion in 

water or 0.9% NaCl supported this hypothesis. Indeed, DE6 and DE12, due to their limited capacity to form 

ordered structures [28], generated clusters which underwent to reorganization at high ionic strength 

increasing their size (Fig. 2b-c). Conversely, DE2, because of the ability to form “helical coils” [24-27], 

segregated in clusters stable to environmental variations, such as ionic strength, (Fig. 2a) Finally, DE38 is 195 

too small (Mn ∼ 1500 Da) to form clusters in agreement with the lack of any populations detectable by DLS 

(data not shown).  

Considering that the irreversible aggregation of PLGA NP depended on the DE6 and DE12 concentration, 

their potentiality as drying auxiliary agent became less relevant for the purposes of this study. In general, 

PLGA NP/MDX samples, which underwent an increase of DH higher than 300 nm in water or sodium 200 

chloride solution, were not worthy of further investigation. 

3.2. Drying of nanoparticles  
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3.2.1. Spray-drying 

The performances of 2% MDX solutions were tested using the optimized conditions [16]. In all the cases, 

the yield ranged from about 50 to 75 % and the outlet temperature was around 40 °C, not exceeding the Tg 205 

of raw PLGA (Tg ∼36.5 °C). 

The data of reconstitution in water evidenced that the higher the DE value, the faster the recovery of the 

original NP DH (Fig. 3a): only DE38 allowed to obtain a monodispersed distribution after 5 min; DE12 and 

DE6 based solids required 30 min and 60 min, respectively; whilst DE2 was unable to guarantee the 

formation of a stable colloidal system.  210 

This different ability can be related to the MDX viscosity which controls the NP motion towards the surface 

of the droplets during drying. Hence, it can be assumed that DE2 slowed water evaporation and diffusion 

rate of PLGA NP within the droplets which were slowly transported by means of convection flow. Thus, the 

probability of interactions among constrained NP increased, causing the formation of irreversible 

aggregates. In case of DE38 the possibility of NP rearrangement was limited by the almost instantaneous 215 

drying which assured that NP would remain separated as in the feed. This hypothesis is in line with MDX 

Mw and the time needed for a complete NP reconstitution: DE2 promoted NP aggregation, while DE6 and 

DE12 favoured the dispersion of NP over relatively prolonged time, according to their Mw, and DE38 

allowed the fastest recovery of NP size. 

Regarding the ζ-potential, the values in presence of DE12 and DE6 were superimposable to those 220 

measured during the compatibility study (Table 2); meanwhile in presence of DE38 (ζ = -28.9±3.9 mV) the 

value was not statistically different compared to NP as such (t-test p > 0.05).  

Furthermore, DE38 was the only MDX that permitted to re-suspend NP also in 0.9% NaCl within few 

minutes (Fig. 3b). 

These results confirmed that the formation of MDX clusters had a detrimental effect on the reconstitution 225 

of spray-dried NP. Therefore, MDX at higher concentrations were not tested. 

3.2.2. Freeze-drying 

A DSC investigation was preliminary carried out to determine the thermal properties of MDX solutions and, 

consequently, to establish the optimal set-up of the freeze-drying conditions.  

For all MDX solutions at 20% w/v, two thermal events were observed scanning the sample from -40 °C to 230 

25 °C: an inflection point on heat flow signal attributed to the Tg’ of maximally cryo-concentrated solution 

and an endotherm related to the melting of frozen water (Tm’). As expected, the higher the MDX molecular 

weight, the higher the Tg’ [29, 30] and the higher Tm’ [31] (Table 3).  

Typically, Tg′ is used as a reference for designing both freezing and primary drying steps of freeze-drying 

process, since this value represents the temperature at which the system undergoes to drastic changes in 235 
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viscosity, heat capacity and molecular mobility as the glassy matrix is formed. Changes in heat capacity 

(∆Cp’) at Tg’ also permitted to evaluate the temperature dependence of MDX molecular mobility. Among all 

tested materials, the lowest ∆Cp’ of DE38 indicated the formation of the strongest glass due to the limited 

chain mobility during the transition, which also occurred at the lowest temperature (Table 3) [32].  

The influence of PLGA NP on the thermal properties of MDX solutions was relevant, despite they accounted 240 

for the minority of the formulation. Indeed, the dispersed solid caused the broadening of ice melting peaks, 

due to the possible structural heterogeneity of nucleation, with a concomitant variation of ice melting 

enthalpy values [∆(∆Hm)]. This feature can be attributed to the formation of hydrogen bonds among PLGA 

and water molecules which could increase the amount of unfreezable water [12]. Interestingly, ∆(∆Hm) 

decreased concomitantly to MDX Mw, suggesting that the colloidal system caused a great deal on instability 245 

in fragile glasses which are probably more sensitive to the variation of viscous flow generated by the 

increase of unfrozen water. This observation agreed with the appearance of cakes obtained after freeze-

drying 2% MDX solution with or without NP added. As exemplified in Fig. 4, DE2 based cakes collapsed only 

in presence of NP, while DE38 did not show visible defects.  

However, it is noteworthy that the loss of structure of the DE2, DE6 and DE12 dried products was not just a 250 

cosmetic issue, as NP massively aggregated after reconstitution in water and NaCl solution. Conversely, at 

the 2% concentration, DE38 permitted the formation of an elegant cake, but the reconstituted samples in 

water and 0.9% NaCl presented a too high polydispersity (Table 4). 

Regarding DE2 based cakes, only the increase of concentration to 8% permitted to obtain an elegant solid, 

but after 5 min of reconstitution the NP size increased up to about 350 nm and 500 nm in water or 0.9% 255 

NaCl, respectively (Table 4). DE12 matrix obtained from a 4% solution showed a good aesthetic but, again, 

the reconstituted sample was too dispersed, independently of the media and the time points considered 

(Table 4). 

Eventually, DE38 at 4% concentration was able to avoid size variation (at all the time points considered, 

p>0.05) with the respect of reference sample (Table 4). Moreover, the decrease of ζ (ζ=-47.4±1.1 mV) 260 

reflected the good stability of this reconstituted sample also in 0.9% NaCl (DH ∼ 200 nm at 5 min, p>0.05 at 

all the time points considered).  

Generally speaking, the stabilization of NP during lyophilization can be driven by two main mechanisms 

occurring concomitantly [33]. First, the “vitrification hypothesis” suggests that glassy matrices formed by 

amorphous protectants (i.e. saccharides) upon freezing allow the immobilization of NP preserving them 265 

from detrimental effects of ice crystals. Secondly, the “water replacement theory” proposes that the 

hydrogen bonds between water and NP are replaced by similar interactions occurring onto NP surface with 

the adsorbed excipient, thus avoiding particle aggregation or fusion.  

Among the selected MDX, DE38 is a glass former material which was demonstrated to remain adsorbed to 

PLGA NP despite the environmental condition as both the size and the ζ-potential values of NP slightly 270 
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increased. Hence, its ability to protect NP during lyophilization can be ascribed to the concomitant 

occurrence of both mechanisms. 

3. Conclusions 

The overall data suggest that DE38 can be proposed to maintain PLGA NP stable during spray- and freeze-

drying and to assure the aqueous stability after reconstitution. It should be underlined that such material 275 

was effective at low concentrations for both drying processes. This advantage is of relevance in spray-

drying since it was possible to limit the amount of DE38 required to obtain an easily resuspendable 

nanosuspension, using a technique which permits to reduce the time and the operation costs with respect 

to lyophilisation [34]. 

 280 
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Figure captions 

 

Fig. 1 – Compatibility of PLGA NP, expressed as hydrodynamic diameter (DH, nm) and PDI, with solutions of 290 

MDX at different concentrations (%, w/v). Compatibility results of NP with 4 and 8% of DE6 are not 

reported since macroscopic aggregates were evident, and the samples were not suitable to the DLS 

measurement. 

 

Fig. 2 – High resolution size distribution plots of (a) 4% DE2 and (b) DE6, and (c) 8% DE12 in water (dark 295 

grey lines) and 0.9% NaCl (light grey lines). 

 

Fig. 3 – Hydrodynamic diameter (DH) of PLGA NP in presence of 2% MDX before spray-drying (t = 0) and 

after 5, 30 and 60 min of gentle reconstitution in(a) water and (b) 0.9% NaCl. 

 300 

Fig. 4 – 2% MDX DE2-based freeze-dried product (a) without and (b) with PLGA NP added. 
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