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Abstract

One hundred and forty bacteria isolated from Antarctic seawater samples were
examined for their ability to inhibit the growth of indigenous isolates and their
sensitivity to antibacterial activity expressed by one another. On the basis of 16S
rRNA gene sequencing and analysis, bacterial isolates were assigned to five
phylogenetically different taxa, Actinobacteria, alpha and gamma subclasses of
Proteobacteria, Bacillaceae, and Bacteroidetes. Twenty-one isolates (15%), predo-
minantly Actinobacteria, exhibited antagonistic properties against marine bacteria
of Antarctic origin. Members of Bacteroidetes and Firmicutes did not show any
inhibitory activity. Differences were observed among inhibition patterns of single
isolates, suggesting that their activity was more likely strain-specific rather than
dependent on phylogenetic affiliation. A novel analysis based on network theory
confirmed these results, showing that the structure of this population is probably
robust to perturbations, but also that it depends strongly on the most active
strains. The determination of plasmid incidence in the bacterial strains investi-
gated revealed that there was no correlation between their presence and the
antagonistic activity. The data presented here provide evidence for the antagonistic
interactions within bacterial strains inhabiting Antarctic seawater and suggest the

potential exploitation of Antarctic bacteria as a novel source of antibiotics.

Introduction

Antagonistic interactions among bacteria represent an inter-
esting evolutionary strategy, conferring a selective advantage
in competition for food and space in the environment, and
acting as an effective control of microbial populations
inhabiting the same ecological niche (Hentschel et al.,
2001). Marine bacteria have been intensely screened for
their inhibitory effect against terrestrial microorganisms
(Isnansetyo & Kamei, 2003). Conversely, few reports have
regarded the inter-specific interactions among bacteria of
the same or related marine environments, but they certainly
demonstrate that antagonistic effects, expressed by phylo-
genetically different bacterial groups, are a widespread trait
in marine habitats (Lemos et al., 1985; Nair & Simidu, 1987;
Long & Azam, 2001; Brinkhoff et al., 2004; Grossart et al.,
2004; Bhattarai et al., 2006). Antarctic marine ecosystems
are among the less-explored environments on Earth and
offer to researchers a unique opportunity for studying
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microbial diversity and evolution (Nichols et al., 1999;
Vincent, 2000). In particular, microbiological investigations
have been mainly focused on bacterial diversity in Antarctic
sea-ice, sediments and seawater. To our knowledge, antag-
onistic interaction among Antarctic marine isolates has
never been considered and only one study was performed
on the inhibitory properties of soil Antarctic bacteria
towards food-borne microorganisms (O’Brien et al., 2004).
Bacteria inhabiting Antarctica have to cope with adverse
environmental conditions and require peculiar survival
strategies to achieve a competitive advantage. In addition
to cellular modifications, antagonistic features may contri-
bute to the adaptation of Antarctic bacteria to permanently
low temperatures by reducing the presence of competitive
microorganisms. Moreover, isolation and characterization
of bacteria able to inhibit efficiently microorganisms at low
temperatures will provide insight into the possibility to
use cold-adapted bacteria as a new source of industrially
exploitable antibiotics.
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In this context, the aim of the present study was to
investigate the antagonistic potential of Antarctic marine
bacteria against bacteria inhabiting the same environment.
Moreover, all isolates were phylogenetically characterized by
16S rRNA gene sequencing to (1) determine whether both
the inhibitory activity and sensibility to inhibition were
peculiar of a certain phylogenetic group, (2) establish the
inter-specific interactions and (3) assess whether a relation-
ship occurred between the presence of plasmid and antag-
onistic activity.

Materials and methods

Sampling area

Terra Nova Bay occupies the western coast of the Ross Sea,
being delimited north by Cape Washington and south by the
Drygalski Ice Tongue. The sea bottom reaches the greatest
depth of the Ross Sea, with a pit of about 1100 m elongated
along shore and bounded by 500 m isobaths (Buffoni et al.,
2002). At the sampling time, Terra Nova Bay was character-
ized by an evident water column stratification, resulting
from prior melting of the pack ice. The mixed layer waters,
composed of melted ice and Antarctic surface waters, ranged
from 3 to 48 m in depth and were different from the deeper
layers in terms of particulate organic matter composition
(Fabiano et al., 1996). Suspended particulate matter was
mostly composed of autochthonous material, but also
included some terrestrial components (Fabiano et al.,
1995). Seawater temperature was always above 0 °C ranging
between 0.85 and 2.76 °C (Maugeri et al., 1996).

Bacterial strains

The 140 psychrotrophic isolates used in this study were
retrieved from seawater samples collected along the water
column at two fixed stations (Mergellina, MER: 74°41'33"
S§-164°07'15"E, about 250 m from the coast; Santa Maria
Novella, SMN: 74°43’S—164°16'E, in the middle of the Terra
Nova Bay, about 10.5km from MER) in the Terra Nova Bay
(Ross Sea, Antarctica) (Bruni et al., 1995; Maugeri et al.,
1996). Samples were collected using Niskin bottles pre-
viously washed with a solution of HCI 10N. Serial dilutions
were prepared (1:10 and 1:100, using filter-sterilized sea-
water) and 100 pL of each dilution was plated on two
replicate plates of Marine Agar 2216 (MA, Difco). Inocu-
lated plates were incubated in the dark for 21 days at 4 °C.
Colonies were selected at random from the cultures on MA
and isolates were streaked at least three times before being
considered pure. All the isolates belong to the Italian
Collection of Antarctic Bacteria (CIBAN) of the National
Antarctic Museum (MNA) ‘Felice Ippolito’ kept at the
University of Messina. They are maintained on MA slopes
at 4°C and routinely streaked on agar plates from tubes
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every 6 months to control purity and viability. Antarctic
strains are also preserved by freezing cell suspensions at
— 80 °C in Marine Broth (MB, Difco) to which 20% (v/v)
glycerol is added.

PCR amplification, sequencing and analysis of
16S rRNA gene

PCR amplification, sequencing and phylogenetic analysis of
16S rRNA gene from bacterial isolates were carried out as
previously described by Michaud et al. (2004). The first half
(about 700 nucleotides) of each amplification product was
sequenced by using the primer 27f. Each sequence was then
used as a query in a BLASTN search (Altschul et al., 1997) and
further aligned using the program crusta W (Thompson
et al., 1994) to the most similar orthologous sequences
retrieved from database. The 16S rRNA gene sequences
were submitted to GenBank and assigned to the following
accession numbers: DQ646848-DQ646868, DQ652544—
DQ652563, DQ667067-DQ667136 and  DQ831958—
DQ831975.

Screening for antagonistic interactions among
isolates

Experiments were performed on a solid medium containing
(w/v): 0.2% Bacto-peptone, 0.2% casein hydrolysate, 0.2%
yeast extract, 0.1% glucose, 0.02% KH,PO, 0.005%
MgSO, x 7H,0, 0.1% CaCl,, 0.01% KBr and 1.5% Bacto-
agar (Ivanova et al., 1998). The medium was prepared in a
mixture of 75% (v/v) natural seawater and 25% (v/v)
distilled water (pH 7.8). Antibacterial activity was detected
by using a 140 x 140 array of tests (19600 tests) and the
cross-streak method. Hereinafter, bacteria tested for inhibi-
tory activity will be defined as ‘tester strains, whereas those
used as a target will be called ‘target strains’ Tester strains
were streaked across one-third of an agar plate and incu-
bated at 15°C (due to the psychrotrophic nature of the
isolates). After good growth was obtained (generally in 7-10
days, depending on growth of the test strains), target strains
were streaked perpendicular to the initial streak and plates
were further incubated at 15 °C. The antagonistic effect was
indicated by the failure of the target strain to grow in the
confluence area. Inhibition had to be observed at least twice
to be considered positive. If the first two assays showed
ambiguous results, an additional assay was performed to
re-assess inhibitory activity.

Analysis of plasmid content

Plasmid incidence in the bacterial population analyzed was
determined as previously reported (Michaud et al., 2004).
Plasmid molecules were extracted from 3-mL bacterial
cultures grown in MB using the commercial kit Plasmid
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Miniprep (Qiagen) according to the manufacturer’s instruc-
tions.

Antimicrobial susceptibility testing

Resistant Antarctic isolates were screened for susceptibility
towards eight different commercial antibiotics: ampicillin
(25 png), penicillin G (10 pg), polymixin B (30 pg), nalidixic
acid (30 pg), tobramycin (10 pg), tetracycline (30 pg), chlor-
amphenicol (30 pg), and vibriostatic agent O/129 (10 ug)
(Bauer et al., 1966). Antibiotic-impregnated disks (Oxoid)
were laid on MA plates that had been previously surface
inoculated with the test strains. Any sign of growth inhibi-
tion was scored as sensitivity to that antimicrobial com-
pound. Resistance to an antimicrobial drug was indicated if
a strain did not show any inhibition zone. This meant that
resistance was strictly defined and results are reported as
susceptible (+) or resistant ( — ).

Network analysis of the data

Data were used to derive an adjacency matrix for a network
analysis of the inhibition patterns. The network derived is
composed by nodes, representing each strain in the original
dataset, and directed links: a node A can both send and
receive a link; in the first case, it inhibits another strain,
otherwise, it is inhibited. Networks were visualized using the
free software visoNE (www.visone.info) and all the analyses
were performed using self-written java classes available from
two of the authors (contact matteo.brilli@dbag.unifi.it and
r_fani@dbag.unifi.it). We performed analyses of in- and
outdegree distributions (see text for details) (Barabasi &
Oltvai, 2004) to characterize the structure of the network
and make inferences on the population structure.

Results

Sequencing and analysis of 16S rRNA gene of
Antarctic isolates

The phylogenetic affiliation of our isolates was obtained by
sequencing and analysis of 16S rRNA gene sequence. The
140 isolates were placed within five different taxa: (1) most
isolates (56%) fell in the Actinobacteria; (2) 10% and (3)
21% of them were affiliated with alpha and gamma sub-
classes of Proteobacteria, respectively; (4) 12% belonged
to the Bacillaceae of Firmicutes and, finally, (5) 1% of the
bacteria to Bacteroidetes. Among Actinobacteria, six isolates
shared the highest degree of sequence identity with unde-
scribed glacial ice bacteria.

All the isolates of the Gammaproteobacteria and the
Actinobacteria belonged to six and five different families,
respectively. Isolates from the Firmicutes clustered into two
families, whereas members of both Alphaproteobacteria and
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CFB group of Bacteroidetes belonged to a single family
(Rhodobacteraceae and Crenotrichaceae, respectively).

The highest diversity of isolates was found within the
Actinobacteria (with Rhodococcus spp. and Arthrobacter spp.
as the dominant representatives) and the Gammaproteobac-
teria (with Pseudoalteromonas spp. as the most abundant).
Paracoccus spp. and Planococcus spp. were the most frequent
isolates within Alphaproteobacteria and Firmicutes, respec-
tively. Most genera were represented by only one or two
isolates.

The phylogenetic affiliation of all isolates tested is
reported in Table 1.

Antagonistic interactions among isolates

Based on data obtained from the preliminary screening,
isolates were operationally grouped into three different
interactivity clusters (active, sensitive or resistant). A num-
ber of active isolates was also among sensitive or resistant
ones. The screening made it possible to select 21 active
Antarctic isolates (final detection rate of 15%), generally
isolated from depths of 5-25m. Inhibition patterns vary
greatly for different isolates (see below), even though they
were affiliated to the same phylogenetic group. As previously
reported by Grossart et al. (2004), closely related isolates
sharing a degree of 16S rRNA gene sequence similarity
> 99% showed large differences in inhibitory activities.
Thus, in our experiments all isolates were treated as distinct
entities, even though they were often closely related accord-
ing to their 16S rRNA gene sequences.

Data analysis revealed that no great difference between
the numbers of active isolates was observed when SMN and
MER samples were compared, as they yielded 12 (out of 81)
and nine (out of 59) producers, respectively. Members of
three different phylogenetic groups showed inhibitory activ-
ities: 16 Actinobacteria, three Gammaproteobacteria and two
Alphaproteobacteria (Table 2). No member of both Bacter-
oidetes and Firmicutes showed a detectable antagonistic
activity.

Overall, the mean number of the inhibited isolates was
19.9, but the number of sensitive target isolates was generally
highest for members of the Actinobacteria. For example, five
strains belonging to the genus Arthrobacter (isolates D27,
D70, E49, F15 and F40) and one identified as Corynebacter-
ium (isolate H22) inhibited 30 or more of all other isolates.
In particular, a broad spectrum of antibacterial activity was
observed for the strain F40, able to inhibit the growth of 82
isolates used as a target.

Inhibition occurred between strains belonging to both
different and the same bacterial species. Within the same
taxon, different isolates showed different inhibitory
activity. Isolates inhibited the growth of both closely related
and taxonomically distant bacteria (Table 3). Members of
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Actinobacteria generally inhibited isolates clustered in all five
phylogenetic groups detected. In particular, Arthrobacter
and Corynebacterium isolates tended to be predominantly
active against members belonging to the same class. Active
Alphaproteobacteria were represented by two members of the
genus Paracoccus, showing highly different inhibition pat-
terns; neither expressed inhibitory activity against isolate of
Firmicutes. Among Gammaproteobacteria the only Pseudoal-
teromonas isolate (G24) showed antibiotic activity exclu-
sively against bacteria grouped in the Firmicutes, whereas
members of the Marinomonas genus (isolates A14 and E12)
were able to inhibit Gammaproteobacteria and Actinobacter-
ia, too. The auto-inhibition phenomenon was never ob-
served.

Antagonism assays demonstrated that each producer
generally inhibited the growth of the other producers as well
as of some nonproducer strains. Active isolates were gen-

Table 2. Total number of isolates belonging to the different phyloge-
netic groups and the percentage showing inhibitory activity

Phylogenetic affiliation Number of isolates Active isolates (%)

Actinobacteria 78 20.5
Alphaproteobacteria 14 14.3
Gammaproteobacteria 30 10
Bacteroidetes 1 0
Firmicutes 17 0

Table 3. Antagonistic interactions among phylogenetic groups

A. Lo Giudice et al.

erally sensitive to one to eight Antarctic strains; strains D70,
F15, G61 and G75 (Arthrobacter) and G3 (Rhodococcus) were
the most inhibited. Among active strains, A14 and E12 (both
identified as member of the genus Marinomonas), E36
(Arthrobacter) and G24 (Pseudoalteromonas) were resistant.
Isolates of the genera Janibacter (B7 and 144), Rhodococcus
(G3 and B21), Paracoccus (B22) and Pseudoalteromonas
(G24), as well as only one member of the genus Arthrobacter
(G75), lacked activity towards all other antagonistic strains.

All the sensitive isolates (nearly 82%) were inhibited by
1-10 active strains, with the 51% (58 out of 114) susceptible
to only one or two producers. Sensitive strains belonged to
all phylogenetic clusters detected by sequencing the 16S
rRNA gene, with the majority of them (65%) falling into
the Actinobacteria phylum.

Only 26 isolates (18.6% of total isolates) were resistant to
the inhibitory activity of other Antarctic bacteria. Most of
them belonged to the Gammaproteobacteria and, in parti-
cular, to the genus Pseudoalteromonas. Four active strains,
affiliated with the Gammaproteobacteria (isolates Al4, E12
and G24) and Actinobacteria (isolate E36), were among
resistant bacteria, too.

Network analysis of data

The interrelationships existing between the 140 bacterial
isolates are visualized in Figs 1 and 2. In the inhibitory
networks, constructed as described in ‘Materials and

Affiliation™®
Genus Isolate ALF GAM FIR ACT BAC
Actinobacteria Arthrobacter D27 1 3 - 25 1
Arthrobacter D61 1 2 - 22 -
Arthrobacter D70 1 1 1 27 1
Arthrobacter D72 - - - 23 -
Arthrobacter E36 - 2 - 23 -
Arthrobacter E49 - 3 - 29 -
Arthrobacter F15 - 1 6 42 1
Arthrobacter F40 5 4 8 64 1
Arthrobacter G61 - - 1 1" -
Arthrobacter G75 1 2 3 1 -
Corynebacterium H22 - 4 13 24 1
Janibacter B8 4 1 3 3 -
Janibacter 144 1 2 1 1 -
Rhodococcus B7 3 2 4 2 -
Rhodococcus B21 - - - 1 -
Rhodococcus G3 - - 1 - -
Alphaproteobacteria Paracoccus B22 - 1 - - -
Paracoccus F12 1 - - 7 1
Gammaproteobacteria Marinomonas Al4 - 1 - 3 -
Marinomonas E12 - 4 2 4 -
Pseudoalteromonas G24 - - 5 - -

*ALF, Alphaproteobacteria; GAM, Gammaproteobacteria; ACT, Actinobacteria; FIR, Firmicutes; BAC, Bacteroidetes.
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Fig. 1. Original output of ‘ecoNetwork’. The three networks showed the interactions existing bewteen strains isolated from (i) Mergellina (MER) station
(left panel), (ii) Santa Maria Novella (SMN) (middle panel), and (iii) between all of the 140 strains (right panel). The arrows are directed towards the
inhibited strains.

25m Arthrobacter F40

20m Anhrohacier FI15

(a)
25m Corynehacteriem aguaticam H22
10 Anbrobacies parietes DT Arthrobacter paretes
Sm Arthrobacter purietes [ T P72 (unid-y i
Em Marimomonas primaoryensis E12 = : Sm Janibacier thuringensis B
é A O e Prrane Fli Sm Rhadococeus fascins B7
E 1 HUs £
sendanl [ L=
. i 1|]).rgl’suu]m Leromonas 24, e o o b
25m Anhrobacter E28
O Peendoaliermmonas 148 m Rhodococcus G513 .1-“1" Planococcus E18 O Risoddococes fscians D13 1005 Planoeocts FS3
i Arthrolbacter D6 T Paracocens 1512 U Arthrobacier 133
0 Salaadteriom B ”.l‘nl Cilucial jee bacterium E27 . 25m Rhodococeus B46 0m Bacillus G2
15m Glaciceola punicgsy D94 == - . -
. t')ﬂm Anheobacier G42 15m Paracoccus B22 . (:D IF{ITIm Arthrobacter parictes E49
.. . 20m Frigosibacterium F13 .
[ ] o0 9] @ QO 15m Glacial ice bacterinom B24 ® {b}
o 2 @ o L]
o o0 L Lo 8] o
® QCED o0 * e1s o] o0 L
- [0 =+ o9 LE L} LT L] L
ey oo - ouoTo e @

Fig. 2. Schematic representation of strains stratification. Each strain is represented by a circle (node) whose size (score) is proportional to the number of
inhibited isolates (a), or inhibitor strains (b). The nodes are stratified from highest (up) to lowest size (down). The name of the top strains for each panel is
indicated. In (a), the top strain is the best inhibitor, while the top strains in (b) are the most inhibited ones. (a) shows that isolates with the highest
inhibiting activity belong to Actinobacteria, while no taxonomic group emerges as top inhibited, the number of inhibitions being more or less constant
for different taxonomic groups.
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methods’, nodes represent bacterial isolates, whereas the
inhibitory action of a strain (A) against another one (B) is
shown as an arrow pointing from node A to node B. The
global inhibitory pattern is shown in Fig. 1, which gives a
general view of the inhibitory relationships existing between
the 140 isolates. A stratification of nodes based on the
number of inhibited strains (outdegree analysis) or the
number of inhibitor strains (indegree analysis) for each
isolate is reported in Fig. 2a and b, respectively. As shown
in Fig. 2a, isolates possessing the highest inhibitory activity
belong to the Actinobacteria, while strains from other
taxonomic groups have only mild inhibitory ability. No
taxonomic group or strain emerges as the most inhibited
one in the indegree panel (Fig. 2b), where the bacterial
isolates are homogeneously distributed over the entire
taxonomic dataset.

Analysis of plasmid content

Plasmid molecules of different size (ranging from 1.7 to
about 10 kb) were found in 18 isolates; in just a few bacterial
isolates, two different plasmids coexist within the same cell.
Most of the isolates belonged to the 7y-subdivision of
Proteobacteria, represented by Pseudoalteromonas (isolates
F43, F46, F48, G19, H17 and M4) and Psychrobacter (isolates

Table 4. Susceptibility to different antibiotics of resistant Antarctic isolates

A. Lo Giudice et al.

B26, C1, C11, C16 and H2). The other seven plasmids were
detected in bacteria belonging to the Alphaproteobacteria
subclass: Paracoccus (isolates D38, D67, D71, G29 and G30)
and Loktanella (isolates D40 and G65). It is worth noting
that some Pseudoalteromonas strains harboured the same
very little plasmid of about 1.7 kb. Another plasmid of larger
size (about 3kb) was found in Pseudoalteromonas isolate
F46. Apparently, no plasmid sharing occurred between
isolates belonging to different species, suggesting the trans-
fer of these molecules between different species might be
difficult.

Plasmids were found in seven and 11 isolates which were
resistant or susceptible, respectively, to the antibacterial
activity of other cold-adapted bacteria. Conversely, plasmids
were not detected in antagonistic isolates.

Antimicrobial susceptibility testing

Results from the susceptibility tests to antibiotics of resistant
Antarctic isolates are displayed in Table 4. Isolates were
sensitive to at least three of the antibiotics tested. All strains
were susceptible to chloramphenicol and ampicillin (except
for G4), whereas only three of them (Janibacter spp. G4
and G5, and Pseudomonas sp. 145) were inhibited by the
vibriostatic agent O/129. Susceptibility to the remaining

Antibiotic tested™"

Phylum or class Isolate Amp

(@)
=

Tob Tet Pol B Pen G N.A. 0/129

Actinobacteria Frigoribacterium sp. D21 +
Janibacter sp. G4
Janibacter sp. G5
Paracoccus sp. D39
Paracoccus sp. D71
Paracoccus sp. F38
Pseudoalteromonas sp. B1
Pseudoalteromonas sp. D48
Pseudoalteromonas sp. F26
Pseudoalteromonas sp. F43
Pseudoalteromonas sp. F46
Pseudoalteromonas sp. F47
Pseudoalteromonas sp. F48
Pseudoalteromonas sp. F53
Pseudoalteromonas sp. G19
Pseudoalteromonas sp. H17
Pseudoalteromonas sp. M4
Pseudomonas sp. 145
Shewanella sp. A7
Shewanella sp. B6
Shewanella sp. D64
Planococcus sp. 150

Alphaproteobacteria

Gammaproteobacteria

+++++2 +++++++5 5 +++ + 2

Firmicutes

+
|
|

Il
I
I

+ =

Il

+ +

+ 4+ +
|

|
T N
+ o+

+ +

B S S S S T T T
+
+

s T i S St S S S S RS
\

+ o+ o+ o+

|
+

|
+ 4+ + + |
i S S S i T S S
+ 4+ + + + |

+ + + +
+ + + o+
+ 4+ + o+

Grey boxes indicate strains harbouring plasmid molecules.

Amp, ampicillin; Tob, tobramycin; Tet, tetracycline; Pol B, polymixin B; Chl, chloramphenicol; Pen G, penicillin G; N.A., nalidixic acid; O/129, vibriostatic

0/129; w, weak activity.
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antibiotics was rather variable: tobramycin and nalidixic
acid > polymixin B > penicillin G > tetracycline. Acti-
nobacteria were among more resistant isolates, being
susceptible to three or four antibiotics, whereas both Alpha-
proteobacteria and the sole representative of Firmicutes were
among more sensitive ones. Within Gammaproteobacteria,
members of the genus Pseudoalteromonas showed different
inhibition patterns, whereas all Shewanella isolates were
sensitive to the same antibiotics.

Discussion

Identification of Antarctic isolates

Altogether, 16S rRNA gene sequencing revealed that the
68% of total isolates were Gram-positive bacteria (i.e.
Actinobacteria and Firmicutes). Even though this finding
might be considered unusual for marine water column,
similar data have been previously reported also by Grossart
et al. (2004) for bacteria isolates from organic aggregates of
the Wadden Sea. Most Gram-positive analyzed in this work
were affiliated to Actinobacteria. Although evidence exists
supporting their physiological adaptation and growth in
seawater, it has been frequently assumed that Actinomycetes
isolates from marine samples are merely of terrestrial origin
and their inclusion within autochthonous marine micro-
biota has not been widely accepted (Mincer et al., 2002). The
high percentage of Actinobacteria detected in this study
might be due to the environmental features of the marine
area investigated: Terra Nova Bay is a semi-enclosed area
and, therefore, it is strongly influenced by continental
inputs, mainly deriving from frequent katabatic wind events
or from the extension of both Campbell glacier tongue and
pack-ice; furthermore, in the sampling period a continental
input, even though limited, was detected (Fabiano et al.,
1995).

Additionally, as previously observed by Grossart et al.
(2004), our Gram-positive isolates generally grew at high
salt concentrations (up to 11% NaCl; data not shown),
suggesting their strong adaptation to marine environment
and the capability to compete efficiently with strictly marine
bacteria.

As a consequence of the high percentage of Actinobacteria
and Firmicutes, Gram-negative bacteria constituted only a
small fraction of our isolates, with Gammaproteobacteria
predominating.

Antagonistic interaction among Antarctic
isolates

Each of the 140 bacterial isolates analyzed in this work was
examined for its ability to inhibit the growth of indigenous
isolates and its sensitivity to antibacterial activity expressed
by one another. The finding that just 15% of isolates showed

FEMS Microbiol Ecol 60 (2007) 383-396
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an inhibitory activity suggests that it was not a common
feature of our isolates. Similar results (nearly 17%) for
epiphytic marine bacteria were reported by Lemos et al.
(1985), whereas other studies found lower (Nair & Simidu,
1987, 5-8%) or much higher percentages of bacterial
antagonisms (Long & Azam, 2001; Grossart et al., 2004;
more than 50%). However, it has to be underlined that
bacteria used in this study were probably free-living as they
were isolated from unfiltered seawater that contained no
visible particles (although microparticles could be present),
whereas previous studies mainly report on particle-attached
or epibiotic bacteria. As observed by Long & Azam (2001)
and Nair & Simidu (1987), attached bacteria were more
likely prone to produce inhibitory compounds than their
free-living counterparts, suggesting that bacterial antagon-
ism is more common on particles than in the surrounding
waters. Strains analyzed in this study were isolated from
seawater at different depths, and it could be assumed that
they were not likely to share exactly the same environment.
Nevertheless, marine bacteria probably spend most of their
time freely swimming in the water while searching for
particles to colonize. Thus, in the free-living stage the
production of antimicrobial compounds may involve an
unnecessary energy waste, whereas antagonistic interactions
may become a key factor in regulating bacterial populations
when high bacterial densities occur in an ecological niche
(Long & Azam, 2001; Gram et al., 2002).

Isolation procedure never reflects the real marine bacter-
ial community due to biases linked to the media utilized or
to the intrinsic microbial cultivability. Nevertheless, some
ecological interpretations about the in situ effects of the
bacterial inhibitory activity occurring in Antarctic seawater
can be extrapolated from data reported in this work.
Inhibition activity was predominantly expressed by yellow-
or orange-pigmented isolates (14 out of 21: all Actinobacter-
ia). This finding strengthened the assumption that antibio-
tic production is often linked to the presence of pigments
(Lemos et al., 1985; Sobolevskaya et al., 2005). Holmstrom
et al. (1998) observed the production and release in the
culture medium by Pseudoalteromonas tunicata of a dark
pigment at the same time as antibiotic components. In that
case, the pigment lacked inhibitory action, but it was
probably involved in the same pathway (or in one of its
branches) leading to the production of active components.

Hentschel et al. (2001), assessing sponge isolates for
antimicrobial interactions against each other, observed that
Gram-positive strains were generally active against Gram-
positive bacteria and Gram-negative strains were generally
active against Gram-negative bacteria, with the exception of
an Alphaproteobacterium isolate which was able to inhibit
both types of target strains. As observed also by Grossart
et al. (2004), this general pattern was not so noticeable for
our Antarctic isolates.
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Differences recorded among the inhibition patterns
of the active strains, together with the sensitivity of nearly
80% of all isolates to one or more producers, suggested
that antagonistic activity was probably due to several
environmental factors, such as the alteration of pH and
nutrient availability (because live bacteria were used in the
bioassays) in the culture medium or the production of
multiple inhibitory compounds by a single species. More-
over, the possibility that the production of secondary
metabolites was induced or enhanced by the presence of
other bacteria or by the growth on a solid surface cannot be
excluded a priori.

Antagonism in relation to affiliation

The main purpose of the present investigation was to
establish the antagonistic interactions among Antarctic
isolates, representing five classes of cultivable marine bacter-
ia. Unlike Actinobacteria and both Alpha- and Gammapro-
teobacteria, members of Bacteroidetes and Firmicutes were
not able to inhibit the growth of other isolates. Our results
are quite different from those previously reported by other
authors. Long & Azam (2001) reported Gammaproteobac-
teria as dominant producers, followed by Alphaproteobacter-
ia and, at a lesser extent, by Bacteroidetes. In the same study,
Actinobacteria were surprisingly absent among active iso-
lates. Grossart et al. (2004), studying isolates belonging to
the same five phylogenetic groups we recognized, found the
highest antagonistic activity in Actinobacteria and Alphapro-
teobacteria. Comparing antagonism among bacteria from
additional marine environments will probably afford a
deeper understanding of this ecological process.

Altogether, no correlation seemed to exist between the
inhibitory effect or sensitivity of the isolates screened and
their phylogenetic affiliations. All groups included isolates
which did not show antagonistic activity at all. Differences
were observed between inhibition patterns of single isolates,
suggesting that antagonistic activity was more likely strain-
specific rather than dependent on phylogenetic affiliation.

As reported in the section above, active isolates were
mainly affiliated with Actinobacteria. Arthrobacter spp. are
generally isolated from soil, but they were also recovered
from marine samples (Bowman et al., 1997a; Junge et al.,
1998; Hentschel et al., 2001). Although Actinobacteria are
well known microorganisms producing antimicrobial
agents, inhibitory properties of Arthrobacter members have
been seldom reported (Kamigiri et al., 1996; Hentschel et al.,
2001; O’Brien et al., 2004). Conversely, in this study nine
Arthrobacter isolates were among the most active producers
detected. Moreover, their inhibitory effect against closely
related bacteria, as well as the only Corynebacterium isolate,
suggests the potential production of bacteriocin-like com-
pounds. This finding is in disagreement with observations
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made by Grossart et al. (2004) as their closely related isolates
never inhibited each other. Rhodococcus and Janibacter
isolates were much less active than other Actinobacteria:
they inhibited few target bacteria (1-11) in a mean number
comparable with that recorded for both Alpha- and Gam-
maproteobacteria.

The antimicrobial activity of these two latter bacterial
classes has been frequently reported. Among Alphaproteo-
bacteria, members of the Roseobacter clade seem to be
promising antibiotic producers and their ecological signifi-
cance has been investigated (Hentschel et al., 2001; Long &
Azam, 2001; Gram et al., 2002; Brinkhoff et al., 2004;
Grossart et al., 2004; Bruhn et al., 2005). In our study, two
Paracoccus isolates were active and characterized by strongly
different inhibition spectra. Among Gammaproteobacteria,
the dominant cultivable marine bacteria, members of the
genus Pseudoalteromonas are frequently found in seawater
and in association with living surfaces, such as algae and
sponges (Holmstrom et al., 1998; Hentschel et al., 2001).
Although several Pseudoalteromonas species are known to
produce bioactive metabolites with antimicrobial and anti-
algal properties (Ivanova et al., 1998; Egan et al., 2001;
Isnansetyo & Kamei, 2003; Sobolevskaya et al., 2005),
antagonistic activity was observed only for the isolate G24.
Conversely, the majority of Pseudoalteromonas affiliates were
among resistant isolates.

As well as Pseudoalteromonas species, Marinomonas
members have been isolated from different Antarctic envir-
onments (Bowman et al., 1997b; Bozal et al., 2003; Praba-
garan et al., 2005; Shivaji et al., 2005; Gupta et al., 2006).
Because their antibacterial activity has, to our knowledge,
not been reported previously, these bacteria could be a novel
source of antimicrobial compounds.

Analysis of plasmid content and antibiotic
susceptibility

Plasmids often contain genes encoding for antibiotic pro-
duction, as well as for antibiotic resistance, conferring a
selective advantage to the bacterium bearing them (Martin
& Liras, 1989). A plasmid extraction method was used to
determine plasmid incidence in the bacterial populations
investigated. The percentage of plasmid-harbouring isolates
varied between interactivity clusters. In fact, plasmid mole-
cules were not detected in bacteria expressing antagonistic
effects, whereas they were extracted from seven resistant
strains. Thus, in the present case, plasmid presence seemed
to be mainly linked to antibiotic resistance rather than to
antibiotic production. On the other hand, both results from
susceptibility tests carried out using commercial antibiotics
and plasmid detection in sensitive isolates suggest that
plasmids were probably not involved in the antagonistic
activity observed.
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Concluding remarks

The aim of this work was to study the antagonistic interac-
tions among psychrotrophic bacteria isolated from Antarc-
tic seawater. On the basis of 16S rRNA gene sequencing and
analysis, isolates were assigned to five phylogenetically
different taxa, Actinobacteria predominating. This finding
does not reflect the typical bacterial community in marine
environments and might be a specific feature of the two sites
during the sampling period.

The results establish that (1) antagonistic activity was not
a common feature of all the phylogenetic groups detected
through the study, being Firmicutes and Bacillaceae mem-
bers unable to inhibit the growth of other isolates, and,
further, strain-specific rather than dependent on bacterial
affiliation; (2) inter-specific interactions can occur among
Antarctic bacteria; and (3) plasmid molecules were not
involved in the inhibition process.

Data presented here enlarge our knowledge of bacter-
ium-bacterium interactions, extending it from marine tem-
perate regions to the Southern Ocean. It could be argued
that the antimicrobial activity observed may constitute a
particular advantage in reducing inter-species competition
in a severe environment such as Antarctica. In addition to
their ecological significance, results from this study highlight
the potential exploitation of the Antarctic marine bacteria as
a source of new compounds with antibacterial properties.
Further studies are in progress to elucidate the nature of the
antagonistic activities observed that could derive from
changes in nutrient availability or alteration of the pH in
the environment, as well as from the production of inhibitor
compounds involved in bacterial communication.
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