
Vol. 48 (2017) ACTA PHYSICA POLONICA B No 6

MODELING NNLO JET CORRECTIONS
WITH NEURAL NETWORKS∗ ∗∗

Stefano Carrazza

Theoretical Physics Department, CERN, 1211 Geneve 23, Switzerland

(Received March 31, 2017)

We present a preliminary strategy for modeling multidimensional distri-
butions through neural networks. We study the efficiency of the proposed
strategy by considering as input data the two-dimensional next-to-next
leading order (NNLO) jet k-factors distribution for the ATLAS 7 TeV 2011
data. We then validate the neural network model in terms of interpolation
and prediction quality by comparing its results to alternative models.

DOI:10.5506/APhysPolB.48.947

1. Introduction

The calculation of higher order corrections to QCD processes, usually
related to LHC measurements, requires intensive computing power and time.
However, higher order corrections, such as the next-to-next leading order
(NNLO), are essential in many circumstances, e.g. during the determination
of parton distribution functions (PDFs) [1, 2] where theoretical predictions
are computed several times during the minimization strategy adopted by the
PDF fitter.

Nowadays, this performance limitation is overcome by the inclusion of
NNLO corrections in PDF fits through the pre-evaluation of k-factors, de-
fined as the ratio between predictions at NNLO and NLO computed with
the same set of PDFs. In an NNLO PDF fit, the k-factors are multiplied to
the respective NLO predictions which are evaluated using high performance
techniques, such as APPLgrid [3] or APFELgrid [4], obtaining acceptable con-
volution timings for minimization algorithms.

The aim of this proceedings is to present a preliminary strategy based
on neural networks and backpropagation to build a model for the k-factors
multidimensional distribution, i.e. k-factors obtained from the ratio of differ-
ential distributions. There are two basic motivations for modeling k-factors.

∗ Presented at the Cracow Epiphany Conference “Particle Theory Meets the First Data
from LHC Run 2”, Kraków, Poland, January 9–12, 2017.

∗∗ Preprint: CERN-TH-2017-076.

(947)

948 S. Carrazza

First, the possibility to provide a reliable method to interpolate and ex-
trapolate k-factors for a specific process in a custom kinematic range. This
is particularly useful when the computation of the exact k-factor requires
several computing hours. Secondly, if the procedure is unbiased, we have
the possibility to estimate the reliability of the input k-factors, in terms
of central values and uncertainties, by looking at the fit quality. In simple
words, if an unbiased fit does not converge and produce poor statistical es-
timators, there is a high probability that the data and its uncertainties are
inconsistent.

In the next sections, we start by presenting the input data and strategy
used here. Then we discuss the model results and validation estimators.
We conclude by showing the behavior of the neural network model in an
extrapolation region and comparing its results to alternative models.

2. Building the neural network model

2.1. Data

The target data selected for our exercise is the k-factors for the fully dif-
ferential jet production at NNLO for the ATLAS 7 TeV 2011 data [8]. These
results have been recently published in Ref. [5] after preliminary studies per-
formed in Refs. [6, 7] and consist in a two-dimensional k-factors distribu-
tion binned in (pT, y), the leading jet transverse momentum and its rapidity.
Moreover, this data is reconstructed with the anti-kT algorithm with R = 0.4
and the kinematic coverage is pT = [100, 2000] GeV with |y| < 3.

2.2. Strategy

Let us consider the full ATLAS 7 TeV 2011 dataset with ndat = 140
points. In terms of notation, for each point i = 1, . . . , ndat, we represent the
corresponding k-factor as the pair {ki, δki}, where ki is the k-factor central
value and δki its uncertainty. The aim of the strategy proposed here is to
determine a neural network model ypred = N (pT, y) which minimizes the
loss function

χ2 =

ndat∑
i=1

(ki − ypred,i)σ−1
ij (kj − ypred,j) , (2.1)

where σij is the covariance matrix constructed from the δki terms, which
in our case is a simple diagonal matrix due to the lack of information on
extra sources of correlations. The fitting procedure is then summarized by
the following steps:

— We generate artificial Monte Carlo replicas from the original k-factor
input data, by following the procedure adopted in the NNPDF frame-

Modeling NNLO Jet Corrections with Neural Networks 949

work [1]. This bootstrap procedure produces data replicas where cen-
tral values are shifted following random Gaussian noise proportional
to the uncertainties stored in the covariance matrix. This mechanism
provides a simple way to propagate the input data uncertainty to the
model, so our final model will provide predictions for uncertainties.

— The data of each MC replica is then randomly divided into two groups:
training and validation. The training data is used to train the neural
network through the minimization algorithm, meanwhile the validation
data is used to control the quality of the fit, avoiding overlearning and
underlearning.

— We adopt the stochastic gradient descent controlled by backpropaga-
tion for the minimization strategy. The stopping condition is imple-
mented through the look-back algorithm which stores the weights and
biases of the neural network at the minimum of the validation error
function.

2.3. Algorithm settings

We have implemented the above strategy using Keras v1.1.1 [9] with Ten-
sorflow v1.0.0 [10] backend. This choice is motivated by the great advantages
provided by these codes such as fast prototyping and high flexibility when
testing several optimization algorithms and neural network architectures.

The final settings adopted in this exercise have been obtained through
an intensive hyperparameter grid search, where we tested the quality of the
loss function of the training and validation sets over several configurations.
Our current best setup consists in a multilayer perceptron network with
architecture 2–5–3–1 where the hidden layers have hyperbolic tangent acti-
vation functions and the last layer is linear. We have two input nodes that
take pairs of points (pT, y) and one single output node which represents the
k-factor prediction. In terms of training and validation split, we divide the
original data into 50%–50% random sets for each MC replica. We use as
optimizer the RMS propagation with learning rate of lr = 0.01 associated to
the look-back stopping algorithm on 100 k epochs. Using this setup, a single
replica fit usually takes 5 minutes to complete the minimization in a single
core.

Finally, we remove replica outliers by applying a χ2 veto condition in
which a neural network replica is accepted if its χ2 to the original dataset is
within 4σ of the average over all replicas. The results presented in the next
sections are based on a final set of nrep = 500 replicas.

950 S. Carrazza

2.4. Results and validation

In the left plot of Fig. 1, we show the distribution of the total χ2/d.o.f.
to the original input data for each neural network replica. The shape and
central value of this distribution confirm the good quality of the trained
model. In the right plot of the same figure, the distribution of stopping
epochs is presented for each replica. In the current setup, less than 25%
of the total number of replicas stops at the maximum number of iterations,
while the other replicas stop uniformly between 1 k and 90 k iterations.

1.2 1.4 1.6 1.8
2/dof

0

5

10

15

20

25

30

35

2/dof per replica

0 20000 40000 60000 80000 100000
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

(%
)

Stopping points per replica

Fig. 1. Left: the χ2/d.o.f. for the full dataset for each replica. Right: the distribu-
tion of stopping epoch for each replica.

In Fig. 2, we show the training and validation χ2/d.o.f. distributions for
all replicas. The left plot shows the histogram distribution, meanwhile on
the right we have the scatter plot of the same quantities, i.e. the gray/blue
points, and the black/red marker represents the average value for both quan-
tities. Also here, the shape and peak values of both distributions are close
to each other and in average within the χ2/d.o.f. interval [1.8, 2.5], which
suggests that the model is trained satisfactorily.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2/dof

0

10

20

30

40

50

60

Cross-validation quality
training 2/dof per replica
validation 2/dof per replica

1.0 1.5 2.0 2.5 3.0 3.5
training

1.5

2.0

2.5

3.0

3.5

4.0

va
lid

at
io

n

Cross-validation scatter

Fig. 2. (Color online) The training and validation χ2/d.o.f. distribution histogram
(left) and scatter plot (right). The average value for training and validation is
shown by the black/red marker in the scatter plot.

Modeling NNLO Jet Corrections with Neural Networks 951

The left plot in Fig. 3 shows the final results for the neural network
model. The black points are the input k-factors, following the ATLAS
7 TeV 2011 data kinematics, divided by rapidity bins. The gray/blue line
and band are, respectively, the neural network central value and uncertainty
prediction. From the plots, we conclude that the neural network model is
performing well in representing the shape variation of k-factors in the (pT, y)
bins. For comparison reasons, on the right side of the same figure, we plot
predictions for the same input data using a 2nd degree two-dimensional poly-
nomial parametrization (dashed/red line) and a bivariate cubic spline (light
gray/yellow band) both trained with generalized least-square minimization.
In Table I, we computed the total χ2/d.o.f. to the original input data for
each model.

Fig. 3. (Color online) Model results compared to the input k-factors for the AT-
LAS 7 TeV 2011 data. Left: the k-factors (black points) separated in bins of
rapidity with the neural network model central value and uncertainty predictions.
Right: similar results for the polynomial (dashed/red lines) and the spline (light
gray/yellow band and line) models.

952 S. Carrazza

TABLE I

Total χ2/d.o.f. for the neural network model (Subsec. 2.3), the bivariate cubic
spline and the 2nd degree two-dimensional polynomial.

Model χ2/d.o.f.

Neural-network 0.93
Spline 0.66
Polynomial 5.92

First of all, we conclude that the polynomial model, even if it is simpler
and faster to fit, usually requires a long period of fine tune of its degree and
configuration. We observe that with our input data, polynomial predictions
are not sufficiently compatible with data. On the other hand, the spline
model provides a good interpolation of the input data, however, as we will see
in the next section, we have to select a model which is stable over kinematics
variations, including the extrapolation region. Furthermore, it is important
to highlight that the polynomial and spline models will require special fine
tunes when generalizing the problem to higher dimensions, meanwhile for
the neural network model, we will have just to increase the number of input
nodes and perform the hyperparameter grid search.

3. Extrapolating predictions

In order to test the extrapolation of all models presented in the pre-
vious section, we have computed predictions using the kinematic settings
of ATLAS 7 TeV 2010 [11]. The only difference between this dataset and
the ATLAS 7 TeV 2011 used to train the models consists in a wider range
and binning of (pT, y), in particular |y| < 4.4 and pT = [20, 1500] GeV.
The ATLAS 7 TeV 2011 and 2010 have exactly the same theoretical setup:√
s = 7 TeV and R = 0.4 anti-kT jet reconstruction radius and algorithm.
Figure 4 illustrates the predictions for the neural network model (left

side) and the spline and polynomial (right side) for the ATLAS 7 TeV 2010 in
(pT, y) bins. As we do not have yet available the final exact k-factors for this
experiment, in order to compute the final total χ2/d.o.f. for each model, we
can judge the quality of extrapolation prediction by looking at central values
and uncertainties provided by each model. The most stable behavior among
all the three different models is the one provided by the neural network,
which simulates the typical shape steepness when increasing the rapidity and
reducing the pT. The spline model fails to predict such regions, in particular
we highlight the presence of negative predictions and large uncertainties.
We also observe that uncertainties oscillate if the requested (pT, y) bin is
too different from the original input data.

Modeling NNLO Jet Corrections with Neural Networks 953

Fig. 4. The same as Fig. 3 for ATLAS 7 TeV 2010 [11].

4. Conclusions and outlook

From this exercise, we conclude that there are at least two clear advan-
tages in using neural networks to model multidimensional distributions: no
need for a model definition, neural networks can simulate every function;
the possibility to interpolate and extrapolate multidimensional distributions
from two or higher dimensions easily.

We outlook that this model could be applied in many distributions pro-
vided by Monte Carlo generators, by at least removing the requirement of
rebinning. We also highlight that the such model could provide a quantita-
tive measurement of the input data consistency.

S.C. is supported by the HICCUP ERC Consolidator grant (614577).

954 S. Carrazza

REFERENCES

[1] R.D. Ball et al. [NNPDF Collaboration], J. High Energy Phys. 1504, 040
(2015) [arXiv:1410.8849 [hep-ph]].

[2] R.D. Ball et al., Nucl. Phys. B 867, 244 (2013)
[arXiv:1207.1303 [hep-ph]].

[3] T. Carli et al., Eur. Phys. J. C 66, 503 (2010) [arXiv:0911.2985 [hep-ph]].
[4] V. Bertone, S. Carrazza, N.P. Hartland, Comput. Phys. Commun. 212, 205

(2017) [arXiv:1605.02070 [hep-ph]].
[5] J. Currie, E.W.N. Glover, J. Pires, Phys. Rev. Lett. 118, 072002 (2017)

[arXiv:1611.01460 [hep-ph]].
[6] J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, J. High Energy

Phys. 1401, 110 (2014) [arXiv:1310.3993 [hep-ph]].
[7] S. Carrazza, J. Pires, J. High Energy Phys. 1410, 145 (2014)

[arXiv:1407.7031 [hep-ph]].
[8] G. Aad et al. [ATLAS Collaboration], J. High Energy Phys. 1502, 153

(2015) [Erratum ibid. 1509, 141 (2015)] [arXiv:1410.8857 [hep-ex]].
[9] F. Chollet, https://github.com/fchollet/keras, 2015.
[10] M. Abadi et al., “TensorFlow: Large-scale Machine Learning on

Heterogeneous Systems”, 2015, software available from
https://www.tensorflow.org/

[11] G. Aad et al. [ATLAS Collaboration], Eur. Phys. J. C 71, 1512 (2011)
[arXiv:1009.5908 [hep-ex]].

http://dx.doi.org/10.1007/JHEP04(2015)040
http://dx.doi.org/10.1007/JHEP04(2015)040
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003
http://dx.doi.org/10.1140/epjc/s10052-010-1255-0
http://dx.doi.org/10.1016/j.cpc.2016.10.006
http://dx.doi.org/10.1016/j.cpc.2016.10.006
http://dx.doi.org/10.1103/PhysRevLett.118.072002
http://dx.doi.org/10.1007/JHEP01(2014)110
http://dx.doi.org/10.1007/JHEP01(2014)110
http://dx.doi.org/10.1007/JHEP10(2014)145
http://dx.doi.org/10.1007/JHEP02(2015)153
http://dx.doi.org/10.1007/JHEP02(2015)153
http://dx.doi.org/10.1007/JHEP09(2015)141
http://dx.doi.org/10.1140/epjc/s10052-010-1512-2

	1 Introduction
	2 Building the neural network model
	2.1 Data
	2.2 Strategy
	2.3 Algorithm settings
	2.4 Results and validation

	3 Extrapolating predictions
	4 Conclusions and outlook

