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Abstract—This paper presents an overview of new-generation
technologies based on Internet of Things (IoT) and Ambient
Intelligence (AmI), which create smart environments that respond
intelligently to the presence of people, by collecting data from
sensors, aggregating measurements, and extracting knowledge to
support daily activities, perform proactive actions, and improve
the quality of life. Recent advances in miniaturized instrumenta-
tion, general-purpose computing architectures, advanced commu-
nication networks, and non-intrusive measurement procedures
are enabling the introduction of IoT and AmI technologies in
a wider range of applications. To efficiently process the large
quantities of data collected in recent AmI applications, many
architectures use remote cloud computing, either for data storage
or for faster computation. However, local data processing archi-
tectures are often preferred over cloud computing in the cases
of privacy-compliant or time-critical applications. To highlight
recent advances of AmI environments for these applications, in
this paper we focus on the technologies, challenges, and research
trends in new-generation IoT-based architectures requiring local
data processing techniques, with specific attention to smart
homes, intelligent vehicles, and healthcare.

Index Terms—IoT, AmI, Sensors, Local processing

I. INTRODUCTION

Ambient Intelligence (AmI) represents the ensemble of
technologies that enable the creation of smart environments
that respond intelligently to the presence of people, with
the purpose of supporting their daily tasks, anticipating their
needs, and improving the quality of life. Examples of AmI sce-
narios include innovative environments such as smart homes
[1], intelligent vehicles [2], smart healthcare [3], smart grid,
and smart cities [4], designed and realized to transparently
facilitate the people in performing tasks, or promptly help
them in responding to unexpected events (e.g., people in need
of medical attention).
The realization of AmI technologies is currently an interdis-

ciplinary field encompassing aspects of hardware measurement
devices, sensors networks, machine learning, and human-
computer interfaces. The recent introduction of advances in
all of these fields, such as miniaturized instrumentation, ad-
vanced communication networks, small and general-purpose
computing architectures, and non-intrusive measurement pro-
cedures, fostered the research and development of numerous
and innovative AmI environments [5].

Within AmI, the Internet of Things (IoT) paradigm is
emerging as an enabling technology to facilitate the intercon-
nection and exchange of information among heterogeneous
devices in smart environments, by realizing a communication
network between measurement sensors, embedded devices,
and human-computer interfaces. The use of IoT in AmI
environments is currently growing, with several research trends
oriented towards the design and deployment of more efficient
networking infrastructures, able to take advantage of more
accurate sensors and more powerful computing devices. Such
innovations are in turn enabling the collection and storage of
large quantities of data, sometimes referred to as big data
[6], that recent machine learning algorithms, such as Deep
Learning (DL) [7], can process to extract accurate information
about the way in which people interact with the environment.
Due to the large computational and data storage require-

ments of using DL and big data techniques, systems based
on IoT and AmI technologies often outsource computation
and data collection using remote cloud computing services
[6]. However, recent privacy-sensitive applications (e.g., smart
healthcare) or time-critical computations (e.g., vehicle safety
systems) often require the use of local data processing tech-
niques.
This paper overviews the advances in smart environments

requiring local data processing techniques, by describing re-
cent IoT-based architectures connecting novel measurement
sensors and local computing devices in AmI scenarios. The
paper is structured as follows. Section II introduces the rele-
vant definitions about AmI, IoT, and related technologies such
as cloud and fog/edge computing. Section III introduces sig-
nificant IoT-based architectures in AmI-enabled environments
such as smart homes, intelligent vehicles, and healthcare.
Section IV describes current challenges and research trends.
Finally, Section V concludes the work.

II. AMI, IOT, AND RELATED TECHNOLOGIES

AmI technologies include the sensors, procedures, and
systems used to sense the environment and the people in
them, with the features of being unobtrusive, embedded,
interconnected, adaptive, and intelligent. Devices in AmI-
enabled scenarios exchange the sensed data and aggregate
the collected information to extract personalized and context-



aware knowledge about the users’ preferences, habits, and how
to support them [5].
To provide a communication infrastructure between the dif-

ferent objects in AmI, the IoT paradigm is being increasingly
studied due to its characteristics of “allowing people and
things to be connected anytime, anyplace, with anything and
anyone, ideally using any path, network, and service”. By
using IoT, different sensors, actuators, and computing devices
can exchange commands and data using architectures and pro-
tocols that take into account different locations, transmission
media, computing capabilities, and power requirements [6].
The role of IoT in AmI-enabled smart environments is emerg-
ing as an intermediate layer between the hardware devices
and the applications that provide intelligent support to people.
IoT deals with establishing the connection between different
networked “things”, such as measurement sensors, actuators,
and displays, collecting the sensed data, and processing the
information locally by aggregating the measurements to reduce
noise and data uncertainty [8].
With the increasing deployment of IoT-based technologies,

AmI applications often require cloud computing services to
store and process large quantities of data. Cloud computing,
in fact, “enables ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources”
[9]. However, the access to cloud resources has the draw-
backs of requiring a constant connection to the internet,
being affected by network delays, and lacking a complete
control over the data. To compensate for these problems, AmI
applications that handle privacy-sensitive data, require highly-
usable low-latency responses or need time-critical operations
often perform data processing locally. To this purpose, the fog
computing paradigm has been recently proposed to combine
the advantages of local and cloud computing, by extending
computing capabilities to the local network, closer to the
sensors and the end-users, therefore processing most data
locally, before accessing the cloud [8]. In some cases, fog
computing is referred to as “edge”, when the computing
capabilities are integrated into the sensing devices themselves
[10].

III. IOT-BASED ARCHITECTURES FOR AMI

This Section reviews the most significant applications of
IoT-based architectures for sensing and local processing data
in AmI, with a focus on smart homes, intelligent vehicles, and
healthcare. To give an overview of the sensing techniques,
Table I summarizes the main sensors used by IoT in the
different AmI applications.

A. Sensors and IoT in Smart Homes

Smart homes are domestic environments that use AmI
technologies to transparently support one or more occupants
in performing their daily activities. In smart homes, sensors
are distributed throughout the rooms to measure environmental
conditions and the human presence. The information collected
by the sensors is processed by IoT-enabled computing devices
to control actuators and provide context-aware information to

Table I
MAIN SENSORS USED IN IOT-BASED ARCHITECTURES FOR AMI.

Sensor
Application

Smart home Intelligent vehicles Healthcare

Camera [11] [12, 13, 14] [15, 16]
Temperature [17, 18] - [19, 20]

Sound [11] [12] [3]
Wi-Fi [21] [22] [23]

Humidity [17, 18] - [20]
Motion [11] [12, 24] -

Accelerometer - - [19, 25]
Gyroscope - - [19, 25]
Power meter [18, 26] - -

GPS - [12] [19]
RFID - [27] [23]
ECG - [24] [19]
Radar - [12] -

Magnetometer - - [25]
Light [18] - -
EEG - [28] -
Gas [17] - -

the users [1]. Action recognition techniques have also been
studied in the context of AmI and smart homes to provide
context-aware information based on users’ activities, realize
advanced human-computer interfaces, and detect possible dan-
gerous situations.
In smart homes, IoT communication networks based on

Wi-Fi, Bluetooth Low Energy (BLE), or ZigBee collect and
process data from several sensors such as electrical meters,
surveillance cameras, microphones, light sensors, temperature
sensors, and gas sensors [1]. While complex inference systems,
for example based on big data and DL, are often performed
off-site with the help of cloud-based computing systems
[29], sensing operations and data aggregations are usually
performed locally.
The most common IoT-based applications in smart homes

include power management, indoor environmental monitor-
ing (e.g., air quality, illumination, temperature), and action
recognition. To optimize power management in smart homes,
the work presented in [26] describes the use of smart meters
based on microcontrollers to sense and aggregate the power
consumption of electrical devices over time. The method uses
the collected data to recognize the appliances drawing power
and build statistics leading to optimal use of the home devices.
Similarly, the technique proposed in [30] uses IoT-enabled
devices to aggregate such statistics of power utilization with
users’ position and habits to obtain an optimal power utiliza-
tion pattern. Such pattern is fed to a control system performing
an automatic activation or deactivation of smart sockets.
To monitor the home environment and improve the quality

of life in indoor scenarios, the technique proposed in [18]
uses a set of wireless sensors to detect environmental pa-
rameters such as temperature, light intensity, and humidity,
as well as sensors to monitor the power consumption and the
water temperature. The system aggregates the measurements
collected by the sensors and processes them to determine the
optimal balance between a solar-based water heater and an
electrical-based heater. To improve the air quality in polluted



environments, by giving indications and performing actions
about ambient conditions, the work presented in [17] uses gas
sensors to detect different possible air pollutants, processes
such information locally, and combines it with data originating
from temperature and humidity sensors to optimize the use of
air filtering systems.
To perform both action recognition and indoor location

management in smart homes, recent techniques consider the
use of general-purpose Wi-Fi-based sensors, which can pre-
cisely locate individuals in a confined space and enable
context-aware actions (e.g., turn on lights when someone
is present). Wi-Fi-enabled sensors are also proving effective
in detecting the relative position of the parts of the body,
allowing to accurately recognize people’s activities using a
non-intrusive, low-cost, and pervasive infrastructure [21].

B. Sensors and IoT in Intelligent Vehicles

Intelligent vehicles include the means of transportation,
private or public, that use IoT and AmI technologies to support
the activities of drivers, passengers, or nearby pedestrians.
In intelligent vehicles, cabled networking was traditionally

used for connections due to the fixed positions of the sensors.
However, recent technologies are increasingly considering
wireless vehicular networks based on the Internet of Vehicles
(IoV) due to their reduced weight and increased ease of
installation and maintenance [2]. Intelligent vehicles usually
perform data processing locally, due to the unreliability of
mobile internet communications while the car is moving (e.g.,
no reception inside a tunnel).
The sensors and communication technologies installed in

intelligent vehicles can be categorized into two main types,
based on the purpose of the collected information. The first
type includes sensors and devices for intra-vehicle communi-
cation, which sense and collect data relative to the vehicle. The
second type includes sensors for inter-vehicle communication,
which collect data regarding the environment surrounding the
vehicle, to determine the status of the car with respect to other
vehicles, people, or fixed structures (e.g., roads, buildings, or
traffic signs) [2].
1) Intra-Vehicle Communication: Intra-vehicle communi-

cation includes dedicated sensors for water pressure, engine
temperature, and cabin temperature, as well as vision sensors
based on cameras and image processing techniques [13, 14].
Recent research trends are also considering monitoring the
state of the driver, for example by using methods based on
Electroencephalography (EEG) sensors [28].
Based on the used sensors, recent IoT-based applications of

intra-vehicle communication include monitoring the driver’s
health and analyzing road conditions, to increase the safety
and comfort of the driver and of the other vehicles and
people present on the road. To monitor the driver’s health, the
work presented in [24] reviews the use of different wearable
sensors such as Electrocardiogram (ECG) integrated in smart
watches, smart glasses monitoring eye activity, and motion
sensors. The information originating from the different sensors
is transmitted using a wireless IoT-based network, aggregated,

and processed by a local computing device to determine
possible signs of drowsiness or distraction in the driver. The
method described in [14] proposes an alternative approach,
based on a vision-based system, to detect facial expressions
and link them to possible driver’s stress.
To monitor road conditions, the technique proposed in

[13] uses a camera mounted on the vehicle as a sensor.
Using different image processing algorithms, it is possible to
create several vision sensors by analyzing a single image. In
particular, the work describes the analysis of the road in front
of the vehicle to detect the position of the car inside the lane
as well the position of possible obstacles.
2) Inter-Vehicle Communication: Inter-vehicle communi-

cation networks exchange data collected by GPS, proximity
sensors, or vision sensors by using IoV-enabled communi-
cation devices. In some cases, complex algorithms for non-
critical applications can be executed remotely (e.g., navigation
systems with real-time traffic analysis). However, time-critical
information concerning safety (e.g., other vehicles in the close
proximity) is often processed locally to minimize the response
time [2].
Examples of applications of inter-vehicle communication

include collision detection, lane change warnings, and traffic
management. To achieve a precise location of the vehicle for
the purposes of collision detection or lane change warnings,
intelligent vehicles often use the communication between the
vehicle and external fixed structures, since GPS information
in some cases is not reliable (e.g., inside tunnels) or not
precise enough (e.g., for determining the position of the
car with respect to road borders). The work presented in
[12] reviews the combination of GPS, inertial motion units,
cameras, RADAR, LiDAR, and ultrasonic sensors to sense the
position of the vehicle in a reference map. It is also possible
to use radio-based sensors and cooperative location techniques
based on wireless IoT-enabled networks to sense the position
of the vehicle with respect to other vehicles or fixed structures
[22].
To improve traffic management, several recent applications

of intelligent vehicles deal with analyzing the real-time use of
public transportation to increase its efficiency and usefulness.
To this purpose, the work described in [31] uses a Bluetooth-
based IoT network to detect the smartphones of the users
traveling on public buses, while the architecture proposed in
[27] describes an IoT-based system to track the location of
public vehicles, identified via Radio-Frequency Identification
(RFID)

C. Sensors and IoT in Healthcare

Smart healthcare includes the smart environments that use
AmI and IoT technologies to provide intelligent support to the
health of the people in them. In particular, smart healthcare can
be an enabling technology for smart homes, which can include
intelligent healthcare mechanisms to support and provide
assistive care to occupants in need of medical attention, or
be a part of intelligent hospital structures, which use AmI



technologies to assist and support the patients during their
stay [23].
Healthcare systems usually process data collected by the

sensors at a local level, due to the need of guaranteeing a
fast and reliable response for emergency monitoring applica-
tions and ensuring secure processing of privacy-sensitive data.
The measurements are then transmitted via an IoT-enabled
network and aggregated to establish a preliminary evaluation
of the patient’s health or to detect the current activity. In
non-emergency situations, it is possible to use cloud-based
computing architectures to take advantage of higher processing
capabilities. To combine the advantages of local processing
and cloud computing, recently the fog computing paradigm
is being increasingly investigated for IoT-based healthcare
applications, with the purpose of both performing time-critical
processing locally and complex computing on the cloud [32].
It is possible to divide the sensors and networking infras-

tructures of smart healthcare applications in two categories,
based on whether they are close to the body or embedded in
the environment. The first category includes wearable sensors,
which are usually attached to the body or woven in the fabric
of the clothes [33]. The second category includes ambient
sensors embedded in the environment, connected using similar
architectures like the ones used in smart homes. The use
of ambient sensors for smart healthcare applications is often
included as one of the features of smart homes, which may
include assistive technologies to monitor health-related aspects
of daily life and respond to emergency situations [3].
1) Wearable Sensors: In the majority of the cases, wearable

sensors are connected in IoT-based Body Area Networks
(BAN) based on RFID, BLE, or ZigBee. Most wearable
sensors are small, light, and unobtrusive and include body
temperature sensors, heartbeat sensors based on ECG or
photoplethysmography (PPG), brain activity sensors based
on EEG, pressure sensors, and breathing rate monitors, for
example, capacitance-based [33]. In some cases, wearable
accelerometers and motion sensors are used to detect falls [34].
The main IoT-based applications of wearable sensors for

smart healthcare consist in continuously monitoring the vital
signs of the person, detecting falls or performing activity
recognition. To monitor vital signs as well as detect activities,
the system described in [19] uses a set of wearable sensors
to collect data related to physiological signals such as blood
pressure, body temperature, heart rate, breathing pattern, and
brain activity. The system also uses location sensors to detect
the position and accelerometers and gyroscope sensors to
detect motion. The system collects data continuously and
processes it to detect emergency situations and to provide
context-aware information based on the current activity (e.g.,
eating, walking, sleeping).
To detect falls, the method proposed in [25] describes

an IoT-based energy-efficient wearable sensor based on a
3-D accelerometer, gyroscope, and magnetometer. The data
collected by the sensor is transmitted via BLE and processed
by a local gateway, which ensure a prompt response and
quickly alerts emergency services.

To achieve an accurate activity detection, the technique
described in [35] uses a recent DL-based processing algo-
rithm. The work describes optimized neural models able to
locally process the data collected from wearable sensors.
The method performs preliminary filtering and registration
of raw data collected from accelerometers and gyroscopes,
with the purpose of enhancing local correlations. Therefore,
it is possible to train a deep neural network with a limited
number of connections between neurons, ensuring an efficient
computation even on low-power architectures. The method is
then tested by classifying each action corresponding to the
data collected from multiple users.
2) Ambient Sensors: Recently, the use of IPv6 over Low-

power Wireless Personal Area Network (6LoWPAN) is emerg-
ing as an innovative networking technology to exchange
data between ambient sensors in healthcare applications [23].
Examples of sensors include cameras, microphones, pressure
sensors, infrared motion sensors, and RFID detectors [3].
Based on the used ambient sensors, the main applications

for healthcare consist of activity analysis, fall detection, loca-
tion detection, and patient identification. To analyze health-
related activities, the work described in [16] uses several
cameras connected via IoT to capture patients’ actions, identify
them unobtrusively, and detect their emotions. The system
then analyzes the emotions to recognize possible stressful
situations. The method proposed in [32] uses an architecture
that combines wearable and ambient sensors to monitor health-
related behavior as well as environmental parameters causing
possible health issues. To analyze health issues related to
sleep activity, the work described in [20] presents a com-
bination of wearable sensors and ambient sensors for sleep
apnea monitoring. Ambient sensors include temperature and
humidity sensors embedded in the room. The system collects
data continuously from both wearable and ambient sensors and
transmits it to a processing hub via IoT-enabled 6LowPAN or
ZigBee networks to monitor the quality of the sleep cycle and
detect possible apnea situations.
To detect falls, the method proposed in [15] uses DL tech-

niques to analyze frame sequences captured by surveillance
cameras in smart home scenarios. The use of surveillance
cameras allows continuous and unobtrusive monitoring of the
patient’s activities. However, detecting possible falls in video
sequences requires more complex data processing techniques
with respect to using wearable sensors. For this reason, some-
times optimized neural models are used [36] to allow local
processing of data.
The architecture presented in [23] introduces a smart hos-

pital system that includes location sensors based on wireless
signals, as well as RFID-based identification systems, to track
the position of patients, doctors, and nurses. Smart displays
connected via IoT are then used to provide context-aware
medical records of the chosen patient to the closest doctor. To
provide an efficient and power-aware communication network,
the technique proposed in [37] describes a network for smart
hospitals based on narrowband IoT. The network is used to
exchange information between devices that measure drop rates



of intravenous infusion systems.

IV. CHALLENGES AND RESEARCH TRENDS

Numerous research trends are recently focusing on IoT
technologies and AmI environments, as shown by several
research projects [38], initiatives [39], and publications [40]
dedicated to the topics. To present an overview of current
research directions, this Section introduces recent challenges
and trends in the use of IoT-based technologies for sensing
and local processing in AmI applications. In particular, it
is possible to divide challenges and recent trends based on
whether they are related to devices, algorithms, applications,
or user acceptance.

A. Devices

The creation of smart environments where AmI technologies
are deployed requires the availability of IoT-capable high-
power computing devices with small size and low-cost, es-
pecially in private sectors such as smart homes. The higher
computing power allows running complex algorithms (e.g.,
deep neural models) at a local level, without relying on cloud-
based solutions [32, 35]. The lower cost of devices, either
computing devices or sensors, enables the installation of a
greater number of nodes to achieve more pervasive monitoring
of the environment. At the same time, sensors with limited
battery requirements or autonomous functioning (e.g., solar
power) enable longer periods of monitoring time and the
installation of sensors in places difficult to reach [41].
Recently, the research is progressing towards the use of

miniaturized sensors, to create more comfortable wearable
devices [33] that draw less power, thus reducing battery
requirements and allow an autonomous operation [25]. The
use of surveillance cameras to create vision sensors is also
increasing in recent years, due to the possibility of performing
unobtrusive continuous monitoring even at long distances [14]
and using different analyses on the same data (e.g., action
recognition, biometric identification) [11, 13, 15, 16].

B. Algorithms

Recent AmI applications require advanced algorithms able
to process data collected by the sensors and extract high-
level knowledge regarding actions, people, and situations,
with the purpose of providing context-aware information and
responding intelligently to the current activities [5]. Recently,
the use of microphones (e.g., Google Home, Amazon Echo)
and surveillance cameras is increasing to perform ubiquitous
and unobtrusive monitoring in smart environments [13, 15,
16]. To process data captured from such devices and extract
high-level knowledge, recent methods are increasingly using
algorithms and machine learning models based on DL, which
can make use of the large quantities of data captured in AmI
applications, allow to process raw data, and can adapt to
different operational environments [7, 35].
However, the adoption of DL in IoT-based architectures for

AmI is currently limited due to high computational require-
ments and the need for large quantities of labeled training data.
To adapt DL models to the computing and network limitations

in IoT, recent research trends are considering methods to
compress neural structures [42] or shift part of the computation
to edge nodes [10]. To reduce the need for labeled data, recent
methods are proposing the use of unsupervised DL techniques,
that do not require labels, or Deep Reinforcement Learning,
in which labels are assigned based on users’ feedback [7].

C. Applications

The number of application scenarios for IoT and AmI
technologies is constantly increasing, both concerning the
introduction of new smart environments and the introduction
of new functionalities in existing AmI-enabled environments.
In the first case, recent research trends are proposing intelligent
infrastructures to create smart buildings, smart grids, or even
smart cities [4]. In the second case, new-generation devices
and advanced algorithms are enabling the introduction of new
functionalities in healthcare, smart hospitals, smart homes, and
intelligent vehicles, by increasing the number of actions and
emotions recognized [11, 16], monitoring a wider range of
health conditions [3, 19, 28], and detecting a greater number
of dangerous situations [12, 13].

D. User acceptance

Numerous architectures, methods, and algorithms have been
recently proposed to include IoT and AmI technologies and
create smart environments in an increasing number of situ-
ations. However, the intake of such technologies is limited
by factors such as low user acceptance or limited technical
expertise, especially regarding smart homes applications. To
increase the adoption in smart home scenarios, IoT and AmI
technologies are progressing towards a more user-friendly in-
terface with a limited learning curve [43]. For example, recent
human-computer interfaces based on microphone sensors and
natural language processing are allowing people to interact
using vocal commands similar to the ones uttered to other indi-
viduals [1], while unobtrusive biometric identification methods
using surveillance cameras are enabling to provide context-
aware information relative to the individual without requiring
the user to perform any specific action [44].

V. CONCLUSIONS

This paper presented an overview of IoT-based architectures
for sensing and locally processing of data for AmI, focusing
on the main applications such as smart homes, intelligent vehi-
cles, and healthcare. In these applications, research trends are
considering IoT infrastructures connecting smaller dedicated
sensors with limited battery requirements, able to perform
ubiquitous and transparent monitoring with reduced human
intervention. Recent methods are also analyzing the possibility
of creating vision sensors based on general-purpose cameras,
with the advantages of performing non-obtrusive monitoring
with a low-cost infrastructure.
Local computing architectures are often used in AmI to

process data for privacy-sensitive or time-critical operations
such as healthcare and intelligent vehicles. In other cases,
cloud-based solutions are often used to take advantage of



higher computing capabilities. Recently, the fog/edge comput-
ing paradigm is emerging as an intermediate layer between
local processing and cloud computing, by enabling a part of
data processing to be performed locally, before using remote
cloud computing solutions.
To increase the technology uptake by the general population,

recent methods and systems are also focusing on increasing the
user-acceptance of IoT and AmI technologies, by using more
user-friendly interfaces and unobtrusive monitoring systems.
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[41] T. Wu, F. Wu, J. Redouté, and M. R. Yuce, “An autonomous wireless

Body Area Network implementation towards IoT connected healthcare
applications,” IEEE Access, vol. 5, pp. 11 413–11 422, 2017.

[42] S. Yao, Y. Zhao, A. Zhang, S. Hu, H. Shao, C. Zhang, L. Su, and
T. Abdelzaher, “Deep learning for the Internet of Things,” Computer,
vol. 51, no. 5, pp. 32–41, May 2018.

[43] F. I. Vázquez and W. Kastner, “Detecting user dissatisfaction in ambient
intelligence environments,” in Proc. of ETFA, Sep. 2012, pp. 1–4.

[44] A. Anand, R. Donida Labati, M. Hanmandlu, V. Piuri, and F. Scotti,
“Text-independent speaker recognition for Ambient Intelligence appli-
cations by using information set features,” in Proc. of CIVEMSA, Jun.
2017, pp. 30–35.


