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Abstract Increasing evidence recognizes Alzheimer’s disease (AD) as a multifactorial and heterogeneous

disease with multiple contributors to its pathophysiology, including vascular dysfunction. The
recently updated AD Research Framework put forth by the National Institute on Aging–Alzheimer’s
Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and
neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction
is an important early event in AD pathophysiology. Next, we examined various imaging sequences
that could be easily implemented to evaluate different types of vascular dysfunction associated
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with, and/or contributing to, AD pathophysiology, including changes in blood-brain barrier integrity
and cerebral blood flow. Vascular imaging biomarkers of small vessel disease of the brain, which
is responsible for .50% of dementia worldwide, including AD, are already established, well
characterized, and easy to recognize. We suggest that these vascular biomarkers should be incorpo-
rated into the AD Research Framework to gain a better understanding of AD pathophysiology and aid
in treatment efforts.
� 2018 the Alzheimer’s Association. Published by Elsevier Inc. All rights reserved.
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1. Commentary on the “NIA-AA Research Framework:
Towards a Biological Definition of Alzheimer’s Disease”
and the need to include biomarkers of vascular
dysfunction

The recent 2018 NIA-AA Research Framework “To-
wards a Biological Definition of Alzheimer’s Disease”
(referred to below as the Research Framework) outlines a
biomarker system to classify individuals in the Alzheimer’s
disease (AD) continuum using imaging biomarkers and ce-
rebrospinal fluid (CSF) biomarkers focused on amyloid-b
(Ab) [A], tau [T], and neurodegeneration [(N)]—the
“AT(N)” biomarker system [1]. The AT(N) system has
been proposed to define a biomarker-based approach to diag-
nose AD for observational and interventional research
studies but at the same time does not imply a specific order
of events nor causality and acknowledges an uncertain rela-
tionship between the A and T biomarkers and disease symp-
toms [1]. The Research Framework defines an individual
with biomarker evidence of both Ab deposition and patho-
sease (AD) is a multifactorial and heterogeneous dis-

a unique neurodegenerative disease based on the pres-

) and tau deposits. Additional factors (red), however,

t and progression of AD pathophysiological changes

n vascular system (i.e., blood-brain barrier leakages,

and innate immune system, and neuronal health and

ntly and/or simultaneously with Ab and tau pathol-

ut is not limited to genetic risk factors, vascular fac-

ental factors including socioeconomic stress,

tyle. Aging still remains the key risk factor for AD

affects brain vasculature, innate immune responses,

s (blue).
logic tau as having AD yet acknowledges that amyloid and
tau deposits may not be causal to AD [1]. The Research
Framework distinguishes between AD that is reserved for
the pathologic entity (defined by amyloid and tau bio-
markers) and the Alzheimer’s clinical syndrome. As Alz-
heimer’s clinical syndrome has been shown to be a disease
with mixed pathologies and AD may also be multifactorial,
other factors as illustrated in Fig. 1 will likely contribute to
and/or modify onset and progression of symptoms, as dis-
cussed more in the following sections. Below we use the
term AD (not strictly defined as amyloid1 and tau1 bio-
markers), but rather more broadly inclusive of AD as a
multifactorial and heterogenous disease.

Despite the substantial evidence indicating early vascular
contributions to AD pathophysiology and dementia,
vascular disease very commonly accompanies AD and
may also be in the causal pathway. Below, we first briefly
discuss evidence that vascular dysfunction is a prominent
and early feature in prodromal AD, and, without implying
a causality, order of events, or specificity, suggest that adding
vascular biomarkers to the proposed AT(N) biomarker
system will help to better characterize and understand
contributions of vascular dysfunction to cognitive impair-
ment in patients suffering from AD. Next, we focus on
2-18F-fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography (PET), a molecular imaging biomarker for early
preclinical AD and mild cognitive impairment (MCI)
mentioned in the AT(N), and examine the evidence indi-
cating that FDG-PET should also be considered a biomarker
of vascular and/or blood-brain barrier (BBB) transport
dysfunction rather than uniquely neuronal hypometabolism
and neurodegeneration, as elaborated in recent reviews
[2,3]. Recognizing these concepts will achieve a more
balanced view of AD pathophysiology and its
multifactorial origin and provide even better tools for early
diagnosis of AD as well as pave the way for novel
therapeutic approaches.

1.1. Vascular dysfunction and vascular biomarkers in AD

Neuropathological studies have shown that cerebrovascu-
lar pathology is a major risk factor for clinically diagnosed
AD-type dementia with clinical expression associated with
low scores in most cognitive domains [4]. A large autopsy-
based neuropathological study importantly revealed that
80% of patients diagnosed with AD and no evidence of
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mixed (vascular) dementia had vascular pathology including
cortical infarcts, lacunes, cerebral microbleeds, and multiple
microinfarcts indicative of small vessel disease (SVD),
intracranial atherosclerosis, arteriolosclerosis, perivascular
spacing, and cerebral amyloid angiopathy (CAA) [5], sup-
porting the concept that cerebrovascular dysfunction is
prominent in AD and lowers the threshold for dementia for
a given AD pathology burden. Furthermore, mounting evi-
dence shows that vascular risk factors (VRFs) are associated
with lower FDG-PET [6], cerebrovascular disease as ex-
pected [7], higher cerebral Ab burden [6,8], and higher tau
burden [9] and act synergistically with Ab burden to pro-
mote cognitive decline [10]. Structural arterial changes lead-
ing to functional changes in cerebral blood flow (CBF) [11]
are associated with the rate of accumulation of cerebral Ab
over time [12] and the overlap of cerebrovascular and cere-
bral Ab pathologies in older adults [13]. The overlap of ce-
rebrovascular and traditional AD pathologies is not
exclusive to the late-onset form of AD but also present in
autosomal-dominant AD (ADAD) [14]. It is important to
extend epidemiology research beyond clinical VRFs to sub-
clinical vascular measures that point to the mechanistic path-
ways linking vascular dysfunction to the various aspects of
AD and dementia pathology in diverse cohorts.

Vascular dysfunction appears early in AD, as shown using
different imaging biomarkers of BBB integrity [15–20],
brain microbleeds [20–25], cerebrovascular reactivity
[20,26,27], resting CBF [17,20,28–41], and increased
cerebrovascular resistance [42]. BBB permeability to gado-
linium, measured by dynamic contrast-enhanced (DCE)
magnetic resonance imaging (MRI), is routinely used for
clinical diagnosis of multiple sclerosis, stroke, and brain tu-
mors [43,44]. Only recently has the DCE-MRI technique
been modified and advanced to detect subtle changes in
BBB permeability in the living human brain with a subre-
gional spatial resolution capable of detecting changes at
the level of hippocampal subfields and different gray and
white matter regions studied in parallel [15,19,20,45].
Early BBB breakdown has been shown in the
hippocampus and its CA1 and dentate gyrus subregions in
individuals with MCI [15], and in several gray and white
matter regions in early stages of AD [16–18]. In addition,
BBB failure was found to be a core mechanism in cerebral
SVD and dementia (see below) [45].

Widespread utilization of various imaging sequences
could be easily implemented to evaluate different types of
vascular dysfunction in AD pathophysiology. Fluid-
attenuated inversion recovery (FLAIR) is the most common
sequence used in aging and AD studies to define macrostruc-
tural white matter hyperintensities. Microstructural changes
at tissue-level interstitial fluid (ISF) shifts are easily detected
on diffusion tensor imaging sequences and quantified using
the mean diffusivity parameter, which several studies have
shown is highly sensitive to white matter microstructural
damage and correlates with BBB failure [46,47]. Another
vascular biomarker, microbleeds, can be measured with
short 5-minute T2*-weighted sequences [20–25]; this
would be easy to add to existing AD MRI protocols.
Cerebral microbleeds are related to vascular wall damage
by arteriosclerosis or CAA and also reflect a marker of
ischemic white matter disease [3]. In addition, the DCE
sequence to evaluate subtle, subregional BBB permeability
lasts about 15 minutes, requires intravenous injection of a
gadolinium contrast agent, and can be obtained in either cor-
onal or transverse orientations for individual input function
analysis. The DCE sequence has already been added to im-
aging protocols at several Alzheimer’s Disease Centers,
including University of Southern California (USC), Wash-
ington University in St. Louis, and Banner Alzheimer’s
Institute, and is also being used to study individuals with
ADAD at USC in addition to its frequent use in patients
with SVD (sporadic and genetic) and Binswanger’s type of
dementia. Functional changes such as impaired cerebrovas-
cular reactivity that reflects diminished vasodilation of cere-
bral vessels in response to a CO2 inhalation challenge can be
measured using either blood oxygenation level dependent
(BOLD) functional MRI [48,49] or arterial spin labeling
(ASL) [26] at the tissue level, or transcranial Doppler
(TCD) [27]. CBF reductions are detected by several different
imaging methods, including pseudo-continuous ASL-MRI
[17,28,33–37,41,50–52], four-dimensional phase contrast
angiography [53], dynamic susceptibility-contrast (DSC)
MRI [38], single-photon emission computed tomography
[30–32,54], TCD [55], perfusion computed tomography
[56], and [15O]-PET [29]. Recently, using advanced DSC
methods, it is now possible to specifically detect capillary
dysfunction that is impaired in AD [57].

Beyond the recognized microvascular dysfunction,
emerging evidence also indicates CBF reductions at large-
and medium-sized arteries in adults at risk for AD [52]
and in AD models [58], supporting that quantification of
vascular changes at all levels of the intracranial vasculature
may provide a more comprehensive and possibly more sen-
sitive marker for detecting early AD changes. New methods
of evaluating angiography of three-dimensional vascular
anatomy using time-of-flight (TOF)MRI sequences can pro-
vide several quantitative parameters such as number and or-
der of branches, branch artery lengths and volumes,
tortuosity, planarity, intensity, and so on, can be derived
[59]. TOF sequences are already used to clinically evaluate
vascular stenosis and detect aneurysms and vascular disease,
and they could easily be added to MRI protocols and applied
to cognitively normal older adults, MCI and AD for compre-
hensive analysis of angiographic data with the potential to
provide new insights into vascular contributions to AD.

In addition to imaging biomarkers, CSF and blood-based
biomarkers of vascular damage in the AD continuum are
emerging such as, for example, CSF soluble platelet-
derived growth factor receptor-b reflecting mural cell injury
[15,60] and CSF fibrinogen and standard albumin CSF/
plasma quotient reflecting BBB breakdown [15,61,62].
Biofluid (CSF and blood) biomarkers of vascular damage
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should continue to be validated by multiple independent
studies. Furthermore, the more conventional pattern of low
Ab42 in the CSF reflects a failure of drainage of Ab from
the ISF of the brain across blood vessels and by
perivascular ISF flow [63,64].

Moreover, imaging biomarkers of SVD are already estab-
lished, well characterized, and easy to recognize, including
white matter hyperintensities, lacunes (subcortical infarcts
of vascular origin), microbleeds, and so on, as well as
more subtle markers emerging now (such as microinfarcts
and perivascular spaces) [19,63]. Beyond the vascular
imaging biomarkers defined previously, further inclusion
of SVD features in the differential biological approach in
sporadic AD, ADAD [65], and other dementias would be
relatively easy to achieve and is highly relevant because
SVD of the brain contributes to .50% of all dementias
worldwide including AD [19,66–69]. Neuroimaging
techniques already used in SVD and vascular dementia
should similarly be applied to AD and other dementias
[70]. Acknowledging and further characterizing vascular
contributions to the AD and association with biomarker-
based AD pathology is important for ongoing observational
studies in diverse cohorts and to target interventional strate-
gies to prevent or slow down cognitive decline and dementia.
This may be particularly important in underrepresented mi-
nority groups including African-Americans and Latinos at
greater risk for cardiovascular disease, cerebrovascular dis-
ease, and AD.
1.2. FDG-PET

FDG, a radiolabeled form of 2-deoxy-D-glucose (2DG),
which is an analog of glucose, is frequently used as a ligand
for FDG-PET studies as a “surrogate” marker for glucose
brain uptake [20]. Impaired FDG-PET uptake is often
considered an exclusive biomarker of brain hypometabolism
or neurodegeneration as proposed in the NIA-AA Research
Fig. 2. Schematic illustrating key differences in brain metabolic fate of glucose a
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Framework [1]. However, below we examine evidence that
FDG also tracks BBB transport of glucose, and therefore
low FDG-PET uptake should also be considered as a
biomarker of vascular dysfunction.

Glucose and its 2DG and FDG analogs are transported
across the BBB via brain endothelial-specific glucose
transporter-1 (GLUT1) and then taken up by different
cell types (e.g., neurons) in the brain via their respective
glucose transporters, which does not include GLUT1
[71–73]. The ubiquitous intracellular hexokinase then
phosphorylates glucose, 2DG, and FDG to their
respective 6-phosphates (6P) [74–77]. However, after this
initial phosphorylation step by hexokinase, there are
critical differences between glucose versus 2DG/FDG
metabolic fates in brain [71,74–77] as illustrated in
Fig. 2. After phosphorylation, glucose-6P is converted to
fructose-6P that undergoes glycolysis followed by pyruvate
entry into the Krebs cycle and oxidative phosphorylation.
But, glucose analogs 2DG and FDG are not substrates
for glucose-6P isomerase and thus cannot be converted
into fructose-6P, which is the necessary step to enter the
glycolytic pathway as well as the subsequent Krebs cycle
[74–77]. Instead, 2DG-6P and FDG-6P remain trapped in
the brain in their 6P forms and are only slowly eliminated
from the brain [74–77], as has been shown by multiple
independent studies. For example, 60–90 minutes after
2DG [75] or FDG [76,78] systemic administration,
w90%–97% of 2DG or FDG was found in the mouse
brain [75,76] or rat brain [76,78] in the form of 2DG-6P
or FDG-6P, whereas ,10% remains as pure 2DG or
FDG with no other significant metabolites found in the
brain. Because of very low brain glucose-6-phosphatase ac-
tivity and poor 2DG-6P membrane permeability [74,79,80],
2DG-6P remains trapped in brain cells [78,81] and is
slowly eliminated from the brain.

Importantly, FDG-PET studies show diminished glucose
uptake in several brain regions (e.g., precuneus, posterior
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cingulate, right angular gyrus, bilateral temporal cortices)
before any detectable neurodegenerative changes, brain at-
rophy, and/or conversion to AD [82]. Reduced regional
FDG brain uptake in AD is not due to brain atrophy, as
confirmed by studies in the posterior cingulate gyrus and
parieto-temporal cortex [83]. Longitudinal FDG-PET find-
ings have suggested that reductions in hippocampal glucose
uptake during normal aging can predict cognitive decline
years in advance of clinical AD diagnosis [84]. Diminished
glucose uptake in the hippocampus, parieto-temporal cortex,
and/or posterior cingulate cortex has been repeatedly shown
by FDG-PET in early AD [85] and also in individuals at ge-
netic risk for AD [86,87], with a positive family history of
AD [88], and/or MCI or no cognitive impairment before pro-
gression to AD [89]. The patterns of FDG brain uptake can
also discriminate individuals with normal cognition from
MCI and AD patients [85], suggesting region-specific insuf-
ficiency in brain delivery and uptake of glucose to the brain.
FDG-PET changes preceding neurodegeneration are not
only found in humans [82–84,90] but also in transgenic
AD models [91].

Although FDG-PET changes in AD are typically inter-
preted as the result of neuronal glucose hypometabolism,
in vivo dynamic FDG-PET kinetic studies in humans consis-
tently show significant reductions in glucose BBB transport
in AD subjects compared to controls [92–95], consistent
with postmortem studies showing significantly reduced
GLUT1 levels in brain capillaries, a site of the BBB
in vivo [96–99]. On the other hand, a few studies that
directly measured hexokinase activity levels in AD brains
reported rather conflicting results showing a decrease
[92,94], increase [100], or no change [93,101]. In addition,
in contrast to glucose, 2DG does not proceed beyond the
initial phosphorylation step into glycolytic or Krebs
metabolic pathways as shown by rodent [74–78] and
human [92–95] studies and does not generate a single
high-energy adenosine-3-phosphate molecule to maintain
functions of neurons and nonneuronal cells in the brain.
The lack of FDG contribution to brain energy metabolism
supports the concept that FDG-PET tracks BBB transport
of glucose and an initial phosphorylation step by hexoki-
nase, but it does not dependably track all steps involved in
energy metabolism of glucose in neurons and is not metab-
olized by neurons. New tracers such as 3-O-[11C]-methyl-
glucose that exclusively track BBB transport and are not
phosphorylated by hexokinase or metabolized should be
used by future studies to specifically determine the role of
glucose transport in AD as possibly an early biomarker
[102].
1.3. Recommendations

We recommend the following extensions of the Research
Framework: (1) Incorporate biomarkers of vascular dysfunc-
tion to assess vascular contributions to AD using imaging
biomarkers such as FLAIR, diffusion tensor imaging, T2*-
weighted sequences, DCE, ASL, and DSC MRI sequences,
TCD, BOLD-fMRI, and TOF, and molecular biomarkers
of vascular damage in individuals with AD or dementia
risk or with suspected dementia; whenever and whichever
possible, vascular imaging biomarkers should be adopted
in AD research studies, large epidemiological studies, and
interventional trials [103]. Integration of vascular dysfunc-
tion biomarkers into the diagnostic process may allow for
earlier diagnosis of AD in some patient subsets. Recognizing
and including the wealth of knowledge on how to prevent
and treat vascular disease and on interventions to modify
vascular dysfunction could significantly advance research
in AD and dementia, thus ultimately helping patients. (2)
Reclassify diminished FDG brain uptake by PET not as a
unique biomarker of neuronal hypometabolism due to
diminished hexokinase activity, but also as a biomarker
tracking vascular, that is, BBB transport, abnormality. This
particularly, as a few direct studies determining hexokinase
activity in AD subjects showed mixed results including a
decrease [92,94], increase [100], or no change [93,101],
suggests that equating diminished FDG-PET uptake with
cellular hypometabolism should not be made unless both
transport and phosphorylation components are measured
simultaneously by FDG-PET kinetic studies, which should
show directly whether metabolism is affected or not, but un-
fortunately has not been done in most FDG-PET studies.
This reclassification could have profound consequences for
the diagnosis and treatment of AD patients because it would
highlight the potential of FDG uptake to identify therapeutic
windows of opportunity before the onset of irreversible neu-
rodegeneration.

Recent evidence indicates that reducing stroke incidence
also reduces dementia incidence [69,104]. Later, this
year (October 2018), a one-day satellite meeting held by
the World Health Summit will jointly discuss cerebrovascu-
lar and neurodegeneration diseases and the concept of
dementia prevention by stroke prevention: hiips://www.
worldhealthsummit.org/satellites/dementia-stroke-preventi
on.html. Similarly, managing and reducing VRFs may pro-
tect against cognitive decline because VRFs act synergisti-
cally with Ab to promote cognitive decline [10]. VRF
reduction approaches may be particularly effective in ethnic
minorities at greater risk for cardiovascular disease, cerebro-
vascular disease, and AD. Remarkably, a third of elderly in-
dividuals have considerable Alzheimer-type pathology
(plaques and tangles) in brain but no cognitive impairment
[105]. We are only beginning to understand some of the po-
tential mechanisms of brain resistance and brain resilience
[106]; just as biomarkers of disease are important, so are bio-
markers of resilience. Finally, future longitudinal studies in
individuals at genetic risk for AD should examine how
changes in vascular biomarkers relate to amyloid and tau
biomarker changes, structural and functional brain connec-
tivity, and cognitive measures over time.

The 2018 Research Framework attempts to unify lan-
guage of biomarker-based definition of AD, but it
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underrecognizes AD as a heterogeneous disease and does
not clearly define AD in the context of multifactorial and
functional systems contributing to disease pathophysiology.
Many factors can influence onset and progression of cogni-
tive dysfunction in AD, which besides aging, includes ge-
netics, VRFs, environmental factors, microbiome, and
lifestyle, to mention a few (see Fig. 1). All these factors in-
fluence aging of the vascular system, innate immunity, and
neuronal health and function directly independent of amy-
loid and tau, as well as synergistically with Ab and tau
(see Fig. 1). The Research Framework acknowledges
vascular biomarkers could be added when they are defined
but unfortunately does not fully appreciate that several
vascular biomarkers “ready-to-be-used” already exist and
are well defined. Because amyloid and tau deposits may
not be causal in AD pathogenesis, as recognized by the
Research Framework [1], it is the right time to encourage in-
clusion of biomarkers of vascular dysfunction in observa-
tional and interventional research studies. Finally, rather
than focusing only on amyloid and tau, broadening the
perspective and study of contributing factors to AD will
aid in patient-directed therapeutic efforts to apply the right
drug(s)—at the right dose—at the right time—in the right
study design—and with the right outcome measures for suc-
cessful intervention to delay, prevent, and/or reverse demen-
tia and AD. Individualized, targeted therapies for AD
patients will be successful when the complexity of AD path-
ophysiology is fully appreciated so that multidisciplinary
team efforts can be mounted to successfully address one of
the most challenging diseases in the 21st century.
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