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BACKWARD SDES FOR OPTIMAL CONTROL OF PARTIALLY
OBSERVED PATH-DEPENDENT STOCHASTIC SYSTEMS:

A CONTROL RANDOMIZATION APPROACH

BY ELENA BANDINI∗, ANDREA COSSO†, MARCO FUHRMAN‡,1 AND

HUYÊN PHAM§,¶

LUISS Roma∗, Politecnico di Milano†, Università di Milano‡,
Université Paris Diderot§ and CREST–ENSAE¶

We introduce a suitable backward stochastic differential equation
(BSDE) to represent the value of an optimal control problem with partial
observation for a controlled stochastic equation driven by Brownian motion.
Our model is general enough to include cases with latent factors in mathemat-
ical finance. By a standard reformulation based on the reference probability
method, it also includes the classical model where the observation process is
affected by a Brownian motion (even in presence of a correlated noise), a case
where a BSDE representation of the value was not available so far. This ap-
proach based on BSDEs allows for greater generality beyond the Markovian
case, in particular our model may include path-dependence in the coefficients
(both with respect to the state and the control), and does not require any
nondegeneracy condition on the controlled equation.

We use a randomization method, previously adopted only for cases of
full observation, and consisting in a first step, in replacing the control by an
exogenous process independent of the driving noise and in formulating an
auxiliary (“randomized”) control problem where optimization is performed
over changes of equivalent probability measures affecting the characteristics
of the exogenous process. Our first main result is to prove the equivalence
between the original partially observed control problem and the randomized
problem. In a second step, we prove that the latter can be associated by duality
to a BSDE, which then characterizes the value of the original problem as well.

1. Introduction. The main aim of this paper is to prove a representation for-
mula for the value of a general class of stochastic optimal control problems with
partial observation by means of an appropriate backward stochastic differential
equation (backward SDE or BSDE).

To motivate our results, let us start with a classical optimal control problem with
partial observation, where we consider an Rn-valued controlled process X solution
to

dXt = b(Xt ,αt ) dt + σ 1(Xt , αt ) dV 1
t + σ 2(Xt , αt ) dV 2

t ,
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with initial condition X0 = x0, possibly random. The equation is driven by two
processes V 1, V 2 which are independent Wiener processes under some probability
P̄, and the coefficients depend on a control process α. The aim is to maximize a
reward functional of the form

J (α) = Ē

[∫ T

0
f (Xs,αs) ds + g(XT )

]
,

where Ē denotes the expectation under P̄. In the partial observation problem the
control α is constrained to being adapted to the filtration FW = (FW

t )t≥0 generated
by another process W , called the observation process. A standard model, widely
used in applications, consists in assuming that W is defined by the formula

dWt = h(Xt ,αt ) dt + dV 2
t , W0 = 0.

In this problem, b, σ 1, σ 2, f , g, h are given data satisfying appropriate assump-
tions. We also introduce the value

υ0 = sup
α

J (α),

where α ranges in the class of admissible control processes, that is, FW -progressive
processes with values in some set A of control actions. A very effective approach
to this problem is the so-called reference probability method, which consists in
introducing, by means of a Girsanov transformation, a probability P under which
V 1 and W are independent Wiener processes. Explicitly, one defines dP = Z−1

T dP̄

where the density process Z satisfies

dZt = Zth(Xt ,αt ) dWt , Z0 = 1.

Next, one introduces the process of unnormalized conditional distributions defined
for every test function φ :Rn →R by the formula

ρt (φ) = E
[
φ(Xt)Zt | FW

t

]
and proves that ρ is a solution to the so-called controlled Zakai equation:

(1.1) dρt (φ) = ρt

(
Lαt φ

)
dt + ρt

(
h(·, αt )φ +Mαt φ

)
dWt,

where Laφ = 1
2 Tr(σσT (·, a)D2φ) + Dφb(·, a), Maφ = Dφσ 2(·, a), σ = (σ 1,

σ 2) and initial condition ρ0 equal to the law of x0. The reward functional to be
maximized can be rewritten as

(1.2) J (α) = E

[∫ T

0
ρt

(
f (·, αt )

)
dt + ρT

(
g(·))].

Under appropriate assumptions, for every admissible control process, the equa-
tion (1.1) has a unique solution ρ in some class of FW -progressive processes with
values in the set of nonnegative Borel measures on Rn, and thus (1.1)–(1.2) can
be seen as an optimal control problem with full observation, called the separated



1636 BANDINI, COSSO, FUHRMAN AND PHAM

problem, having the same value υ0 as the original one (properly reformulated).
Often, conditions are given so that ρt (dx) admits a density ηt (x) with respect to
the Lebesgue measure on Rn and the controlled Zakai equation is then written as
an equation for η, considered as a process with values in some Hilbert space, for
instance the space L2(Rn) or some weighted L2-space. We also mention that, as
an alternative to the Zakai equation, one could use the (controlled version of the)
Kushner–Stratonovich equation and repeat similar considerations.

However, the new controlled state ρ, or equivalently η, is now an infinite-
dimensional process, which makes the separated control problem rather challeng-
ing, and the subject of intensive study. It is not possible to give here a satisfactory
description of the obtained results and we will limit ourselves to a brief sketch
of the possible approaches and refer the reader to the treatises [27] and [6] for
more complete results and references. A first method is the stochastic maximum
principle, in the sense of Pontryagin, which provides necessary conditions for the
optimality of a control process in terms of an adjoint equation and can be used
to solve successfully the problem in a number of cases; see [6] and [32]. A sec-
ond approach is the dynamic programming method to (1.1)–(1.2), which leads to
a Hamilton–Jacobi–Bellman (HJB) equation in infinite dimension, and has been
studied by viscosity methods in [26], later significantly extended in [18]. The is-
sue of existence of an optimal control is addressed for instance in [13].

It is a remarkable fact that the use of BSDEs in this context is limited to the
adjoint equations in the stochastic maximum principle cited above, in spite of the
fact that BSDEs are used extensively and successfully in many areas of stochastic
optimization to represent directly the value function. The reason for this can be
explained by looking at the simple case when σ 1 = I , σ 2 = 0, h(x, a) = h(x), that
is, we have the partially observed controlled system

dXt = b(Xt ,αt ) dt + dV 1
t , dWt = h(Xt) dt + dV 2

t ,

and the corresponding controlled Zakai equation for the density process η is the
following stochastic PDE in Rn:

(1.3) dηt (x) = 1

2
�ηt(x) dt − div

(
b(x,αt )ηt (x)

)
dt + ηt (x)h(x) dWt .

The standard method to represent the value based on BSDEs fails for such a con-
trol problem, since the diffusion coefficient is degenerate and the drift lacks the re-
quired structural condition; see for instance [14] for the infinite-dimensional case.
Roughly speaking, an associated BSDE could immediately be written for equa-
tions having the form

dηt (x) = 1

2
�ηt(x) dt + ηt (x)h(x)

[
r
(
ηt (·), t, x,αt

)
dt + dWt

]
for some coefficient r . This often implies, by an application of the Girsanov theo-
rem, that the laws of the controlled processes η (depending on the control process
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α) are all absolutely continuous with respect to the law of the uncontrolled process
corresponding to r = 0, but this property fails in general for the solutions to (1.3).
The same difficulty can also be seen at the level of the corresponding HJB equa-
tion: in the simple case, we are addressing this equation is of semilinear type, but
it does not fall into the class of PDEs whose solution can be represented by means
of an associated BSDE; see for instance [28] or [14]. The problem of representing
the value function of the classical partially observed control problem by means of
a suitable BSDE becomes even more difficult in the general case when the HJB
equation is fully nonlinear, and has remained unsolved so far.

It is the purpose of this paper to fill this gap in the existing literature, by intro-
ducing a suitable BSDE whose solution provides such a representation formula.
As a motivation, we note that methods based on BSDEs have the advantage that
they easily generalize beyond the Markovian framework. As a matter of fact, we
will be able to treat control problems where the coefficients in the state equation
and in the reward functional exhibit memory effects both with respect to state and
to control, that is, their value at some time t may depend in a rather general way on
the whole trajectory of the state and control processes on the time interval [0, t].
Various models with delay effects, or hereditary systems, are thus included in our
treatment. For these models, there is no direct application of methods which ex-
ploit Markovianity, such as the HJB equation (although the Markovian character
can be retrieved in a number of cases after an appropriate reformulation, which
requires however nontrivial efforts and often introduces additional assumptions).

Another motivation for introducing BSDEs is the fact that their solutions can
be approximated numerically. This way our result opens perspectives to finding an
effective way to approximate the value of a partially observed problem, which is
a difficult task due to the infinite-dimensional character of the Zakai equation and
its corresponding HJB equation.

To perform our program, we first formulate a general control problem of the
form

(1.4) dXα
t = bt

(
Xα,α

)
dt + σt

(
Xα,α

)
dBt , Xα

0 = x0,

for t ∈ [0, T ], with reward functional and value defined by

(1.5) J (α) = E

[∫ T

0
ft

(
Xα,α

)
dt + g

(
Xα)]

, υ0 = sup
α

J (α),

where the coefficients b, σ , f , g depend on the whole trajectories of X and α in an
nonanticipative way. The partial observation character is modeled as follows: in the
Wiener process B , we distinguish two components (possibly multidimensional)
and write it in the form B = (V ,W). We call W the observation process and we
require the control process α to be adapted to the filtration generated by W and
taking values in some set A, so that the supremum in (1.5) is taken over such
controls. In Section 2.3.2, we prove that this model includes the classical partial
observation problem described above as a special case and, moreover, that this
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formulation is general enough to include large classes of optimization models with
latent factors of interest in mathematical finance; see Section 2.3.1 below.

To tackle this problem, we will use a randomization method, introduced in [24]
for classical Markovian models, but earlier considered in [23] in connection with
impulse control and in [8, 12] on optimal switching problems. The idea of us-
ing the randomization method was inspired by the fact that it allows to represent
(or construct) viscosity solutions to some classes of fully nonlinear PDEs. Other
methods yield similar results, for instance those based on the notion of second-
order BSDEs [31] or the theory of G-expectations [29]. It is likely that they might
also be successfully applied to optimal control problems with partial observation.
We also note that the randomization method has already been applied to a variety
of situations; see [15] (compare also Remark 3.3 below), [2, 5, 9, 11, 16] in addi-
tion to the references given above. In order to present this method applied to the
problem (1.4)–(1.5), we assume for simplicity that A is a subset of a Euclidean
space and we take a finite measure λ on A with full support. Then, enlarging the
original probability space if needed, we introduce a Poisson random measure μ on
R+ ×A with intensity λ(da) and independent of the Brownian motion B . Then we
consider the stepwise process I associated with μ and replace the control process
α by I , thus arriving at the following dynamics:⎧⎨

⎩
dXt = bt (X, I ) dt + σt (X, I) dBt ,

It = a0 +
∫ t

0

∫
A
(a − Is−)μ(ds da).

Next, we consider an auxiliary optimization problem, called the randomized or
dual problem (in contrast to the starting optimal control problem with partial ob-
servation which we refer to also as primal problem), which consists in optimizing
among equivalent changes of probability measures which only affect the intensity
measure of μ but not the law of W . In the randomized problem, an admissible
control is a bounded positive map ν defined on � ×R+ × A, which is predictable
with respect to the filtration FW,μ generated by W and μ. Given ν, by means of an
absolutely continuous change of measure of Girsanov-type, we construct a proba-
bility measure Pν such that the compensator of μ is given by νt (a)λ(da) dt and B

remains a Brownian motion under Pν . Then we introduce the reward and the value
as

JR(ν) = Eν

[∫ T

0
ft (X, I) dt + g(X)

]
, υR

0 = sup
ν

JR(ν),

where Eν denotes the expectation under Pν . One of our main results (see Theo-
rem 3.1) states that the two control problems presented above are equivalent, in
the sense that

(1.6) υ0 = υR
0 .
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The reason for this construction is that, as shown in Section 5, the randomized
control problem is associated to the following BSDE with a sign constraint, which
then also characterizes the value function of the initial control problem (1.5). For
any bounded measurable functional ϕ on the space of continuous paths with values
in Rn, define

ρt (ϕ) = E
[
ϕ(X·∧t ) | FW,μ

t

]
,

and consider the BSDE:

(1.7)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = ρT (g) +
∫ T

t
ρs

(
fs(·, I )

)
ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
A

Us(a)μ(ds da),

Ut (a) ≤ 0.

In Theorem 5.1, which is another of our main results, we prove that there exists
a unique minimal solution (Y,Z,U,K) to (1.7) (i.e., among all solutions we take
the minimal one in terms of the Y -component) in a suitable space of stochastic
processes adapted to the filtration FW,μ, and moreover,

Y0 = υR
0 = υ0 and more generally

Yt = ess sup
ν

Eν

[∫ T

t
ρs

(
fs(·, I )

)
ds + ρT (g)

∣∣∣ FW,μ
t

]
.

(1.8)

The BSDE (1.7) is called the randomized equation, and corresponds to the HJB
equation of the classical Markovian framework. Note that the introduction of the
measure-valued process ρ and its occurrence in the generator and the terminal
condition of the BSDE is reminiscent of the separated problem in classical opti-
mal control with partial observation. We study in a companion paper [4] how one
can also derive such kind of HJB equation in the context of partially observed
Markovian control problems.

We note that probabilistic numerical methods have already been designed for
BSDEs with constraints similar to (1.7) in [21] and [22]. We shall postpone for a
future work the investigation, in the Markovian case, of an approximation scheme
for (1.7), and hence for the value of the partially observed control problem.

We would like to point out that in our approach the original partially observed
optimal control problem is formulated in the strong form, that is, with a fixed
probability space. This is probably a more natural setting, especially in connec-
tion with modeling applications, and it is customary for the stochastic maximum
principle and for other classes of optimization problems like optimal stopping and
switching. However, almost all applications of BSDE techniques to the search of
an optimal continuous control process are set in the weak formulation, since this
avoids some difficulties (one exception may be found for instance in [17]). In spite
of that, in the present paper we have chosen to adopt the strong formulation, at
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the expense of additional technical difficulties. Moreover, we note that our main
results are stated in a fairly general framework, allowing for locally Lipschitz co-
efficients with linear growth and without any nondegeneracy condition imposed on
the diffusion coefficient σ . In particular, when σ = 0, this includes the case of the
deterministic control problem with a path-dependent state dynamics and delay on
control. Finally, when the diffusion coefficient of the Brownian motion V is zero,
meaning that the dynamics of X is driven only by W , we are reduced to the case
of full observation control problem. Therefore, we have provided a general equiv-
alence and representation result in a unifying framework embedding several clas-
sical cases in optimal control theory and the proofs we present are almost entirely
self-contained. We end this Introduction noting that the randomization method has
already been applied to a variety of situations; see [2, 5, 9–11, 15, 16] in addition
to the references given above.

The rest of the paper is organized as follows. In Section 2, we formulate the
general optimal control problem (1.4)–(1.5) (the primal problem) with partial ob-
servation and path-dependence in the state and the control. We then present two
motivating particular cases: a general optimization model with latent factors and
uncontrolled observation process, which finds usual applications in mathematical
finance, and the classical optimal control problem with partial observation dis-
cussed above (but including also path-dependence). Then, in Section 3, we im-
plement the randomization method and formulate the randomized optimal control
problem associated with the primal problem. We state in Theorem 3.1 the basic
equivalence result between the primal and the randomized problem. Section 4 is
entirely devoted to the proof of Theorem 3.1, which requires for both inequali-
ties sharp approximation results and suitable constructions with marked point pro-
cesses. In Section 5, we show a separation principle for the randomized control
problem using nonlinear filtering arguments, and then relate by duality the sepa-
rated randomized problem to a constrained BSDE, which may be viewed conse-
quently as the randomized equation for the primal control problem.

2. General formulation and applications.

2.1. Basic notation and assumptions. In the following, we will consider con-
trolled stochastic equations of the form

(2.1) dXα
t = bt

(
Xα,α

)
dt + σt

(
Xα,α

)
dBt ,

for t ∈ [0, T ], where T > 0 is a fixed deterministic and finite terminal time, and
gain functionals

J (α) = E

[∫ T

0
ft

(
Xα,α

)
dt + g

(
Xα)]

.

The initial condition in (2.1) is Xα
0 = x0, a given random variable with law denoted

ρ0. Before formulating precise assumptions let us explain informally the meaning
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of several terms occurring in these expressions. The controlled process Xα takes
values in Rn while B is a Wiener process in Rm+d . We write B = (V ,W) when
we need to distinguish the first m components of B from the other d components.
The control process, denoted by α, takes values in a set A of control actions. The
partial observation available to the controller will be described by imposing that
the control process should be adapted to the filtration generated by the process
W alone. Our formulation includes path-dependent (or hereditary) systems, that
is, it allows for the presence of memory effects both on the state and the control.
Indeed, the coefficients b, σ , f , g depend on the whole trajectory of Xα and α. The
dependence will be nonanticipative, in the sense that their values at time t depend
on the values Xα

s and αs for s ∈ [0, t]: this is expressed below in a standard way
by requiring that they should be progressive with respect to the canonical filtration
on the space of paths.

Now let us come to precise assumptions and notation. Let us denote by Cn the
space of continuous paths from [0, T ] to Rn, equipped with the usual supremum
norm ‖x‖∞ = x∗

T , where we set x∗
t := sups∈[0,t] |x(s)|, for t ∈ [0, T ] and x ∈ Cn.

We define the filtration (Cn
t )t∈[0,T ], where Cn

t is the σ -algebra generated by the
canonical coordinate maps Cn →Rn, x(·) 
→ x(s), 0 ≤ s ≤ t :

Cn
t := σ

{
x(·) 
→ x(s) : s ∈ [0, t]},

and we denote Prog(Cn) the progressive σ -algebra on [0, T ] × Cn with respect to
(Cn

t ).
We will require that the space of control actions A is a Borel space. We recall

that a Borel space A is a topological space homeomorphic to a Borel subset of a
Polish space. When needed, A will be endowed with its Borel σ -algebra B(A). We
denote by MA the space of Borel measurable paths a : [0, T ] → A, we introduce
the filtration (MA

t )t∈[0,T ], where MA
t is the σ -algebra

MA
t := σ

{
a(·) 
→ a(s) : s ∈ [0, t]}

and we denote Prog(Cn × MA) the progressive σ -algebra on [0, T ] × Cn with
respect to the filtration (Cn

t ⊗MA
t )t∈[0,T ].

(A1)

(i) A is a Borel space.
(ii) The functions b,σ,f are defined on [0, T ] × Cn × MA with values in Rn,

Rn×(m+d) and R, respectively, are assumed to be Prog(Cn ×MA)-measurable (see
also Remark 2.1 below).

(iii) The function g is continuous on Cn, with respect to the supremum norm.
The functions b, σ and f are assumed to satisfy the following sequential continuity
condition: once xk, x ∈ Cn, ak, a ∈ MA, ‖xk − x‖∞ → 0, ak(t) → a(t) for dt-a.e.
t ∈ [0, T ] as k → ∞ we have

bt (xk, ak) → bt (x, a), σt (xk, ak) → σt (x, a),

ft (xk, ak) → ft (x, a) for dt-a.e. t ∈ [0, T ].



1642 BANDINI, COSSO, FUHRMAN AND PHAM

(iv) There exist nonnegative constants L and r such that∣∣bt (x, a) − bt

(
x′, a

)∣∣ + ∣∣σt (x, a) − σt

(
x′, a

)∣∣ ≤ L
(
x − x′)∗

t ,(2.2) ∣∣bt (0, a)
∣∣ + ∣∣σt (0, a)

∣∣ ≤ L,(2.3) ∣∣ft (x, a)
∣∣ + ∣∣g(x)

∣∣ ≤ L
(
1 + ‖x‖r∞

)
,(2.4)

for all (t, x, x′, a) ∈ [0, T ] × Cn × Cn × MA.
(v) ρ0 is a probability measure on the Borel subsets of Rn satisfying∫

Rn |x|pρ0(dx) < ∞ for some p ≥ max(2,2r).

REMARK 2.1. The measurability condition (A1)(ii) is assumed because it
guarantees the following property, which is easily deduced:

(ii)′ Whenever (�,F,P) is a probability space with a filtration F, and α and
Xα are F-progressive processes with values in A and Rn, respectively, then the
process (bt (X

α,α), σt (X
α,α), ft (X

α,α))t∈[0,T ] is also F-progressive.

All the results in this paper still hold, with the same proofs, if property (ii)′ is
assumed to hold instead of (ii). There are cases when (ii)′ is easy to be checked
directly.

REMARK 2.2. We mention that the global Lipschitz condition in (A1)(iv) can
be weakened to the case of locally Lipschitz coefficients with linear growth, which
is needed to include the motivating examples presented in Sections 2.3.1 and 2.3.2
under the scope of our results. For the sake of conciseness, we postpone this ex-
tension to the longer version [3] of our paper (see Section 4.3 in [3]). We finally
note that the function g, being continuous, is also Cn

T -measurable.

REMARK 2.3. Assumption (A1) allows us to model various memory effects
of the control on the state process, including important and usual cases of delay in
the control. For instance, suppose that A is a bounded Borel subset of a Banach
space and b̄ : A → Rn is Lipschitz continuous. Then we may consider a weighted
combination of pure delays:

bt (x, a) = b̄

( q∑
i=1

πi(t)a(t − δi)

)
,

where 0 < δ1 < · · · < δq < T , πi are bounded measurable real-valued functions
and we use the convention that αt = ᾱ (a fixed element of A) if t < 0. We may also
allow the delays δi to depend on t in an appropriate way. Alternatively, we may
have

bt (x,α) = b̄

(∫ t

0
π(t, s)a(s) ds

)
,
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with π bounded measurable and real-valued. Note that in the latter case the mea-
surability condition (A1)(ii) fails in general, since the σ -algebras MA

t are deter-
mined by a countable number of times, but the property (ii)′ in Remark 2.1 is easy
to verify.

Clearly, we may address more complicated situations which are combinations
of the two previous cases and may also include a dependence on the path x.

REMARK 2.4. We mention that no nondegeneracy assumption on the diffu-
sion coefficient σ is imposed, and in particular, some lines or columns of σ may
be equal to zero. We can then consider a priori more general model than (2.1) by
adding dependence of the coefficients b, σ on another diffusion process M , for ex-
ample, an unobserved and uncontrolled factor (see Application in Section 2.3.1).
This generality is only apparent since it can be embedded in a standard way in our
framework by considering the enlarged state process (X,M).

REMARK 2.5. The requirement that p ≥ max(2,2r) in (A1)(v) can be weak-
ened for specific results in the sequel. For instance, Theorem 3.1 below still holds
provided we only require p ≥ max(2, r).

2.2. Formulation of the partially observed control problem. We assume that
A, b, σ , f , g, ρ0 are given and satisfy the assumptions (A1). We formulate a con-
trol problem fixing a setting (�,F,P,F,V ,W,x0), where (�,F,P) is a complete
probability space with a right-continuous and P-complete filtration F = (Ft )t≥0, V
and W are processes with values in Rm and Rd , respectively, such that B = (V ,W)

is an Rm+d -valued standard Wiener process with respect to F and P, and x0 is an
Rn-valued random variable, with law ρ0 under P, which is assumed to be F0-
measurable. Note that V and W are also standard Wiener processes and that V ,
W , x0 are all independent.

Let us denote FW = (FW
t )t≥0 the right-continuous and P-complete filtration

generated by W . An admissible control process is any FW -progressive process α

with values in A. The set of admissible control processes is denoted by AW . The
controlled equation has the form

(2.5) dXα
t = bt

(
Xα,α

)
dt + σt

(
Xα,α

)
dBt

on the interval [0, T ] with initial condition Xα
0 = x0, and the gain functional is

(2.6) J (α) = E

[∫ T

0
ft

(
Xα,α

)
dt + g

(
Xα)]

.

Since we assume that (A1) holds, by standard results (see, e.g., [30], Theo-
rem V.11.2, or [20], Theorem 14.23), there exists a unique F-adapted strong solu-
tion Xα = (Xα

t )0≤t≤T to (2.5) with continuous trajectories and such that (with the
same p for which E|x0|p < ∞)

E
[

sup
t∈[0,T ]

∣∣Xα
t

∣∣p]
< ∞.
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The stochastic optimal control problem under partial observation consists in max-
imizing J (α) over all α ∈ AW :

(2.7) υ0 = sup
α∈AW

J (α).

REMARK 2.6. Let FB = (FB
t )t≥0 be the right-continuous and P-complete fil-

tration generated by B . Then B is clearly a FB -Brownian motion, the processes
α and Xα are FB -progressive and the filtration F does not play any role in deter-
mining J (α) and υ0. So we might assume from the beginning that F = FB and
even that F = FB∞ whenever convenient, but in the sequel we keep the previous
framework unless explicitly mentioned.

2.3. Two basic applications. In this paragraph, we address two classical opti-
mal control problems with partial observation, and we show that they can be recast
in the form outlined in the previous subsection.

2.3.1. Model with latent factors and uncontrolled observation process. Let
(�,F, P̄) be a complete probability space with a right-continuous and P̄-complete
filtration F = (Ft )t≥0. Let V , W̄ be independent standard Wiener processes with
respect to F, with values in Rm and Rd , respectively. We assume that a controller,
for instance a financial agent, wants to optimize her/his position, described by an
n̄-dimensional stochastic process X̄α solution on the interval [0, T ] to an equation
of the form

dX̄α
t = b̄t

(
X̄α,M,O,α

)
dt + σ̄ 1

t

(
X̄α,M,O,α

)
dVt

+ σ̄ 2
t

(
X̄α,M,O,α

)
dW̄t

(2.8)

with coefficients b̄, σ̄ 1, σ̄ 2 defined on [0, T ]×Cn̄+m̄+d ×MA valued in Rn̄, Rn̄×m,
Rn̄×d , respectively, and Prog(Cn̄+m̄+d × MA)-measurable. Here, the process M ,
valued in Rm̄, represents a latent factor that can influence the dynamics of X̄α and
is governed by a dynamics of the form

(2.9) dMt = β̄t (M)dt + γ 1
t (M)dVt + γ 2

t (M)dW̄t ,

for some coefficients β̄ , γ 1, γ 2 defined on [0, T ] × Cm̄ valued in Rm̄, Rm̄×m,
Rm̄×d , respectively, and Prog(Cm̄)-measurable. The process M is not directly ob-
served, and actually the agent takes her/his decisions based on a noisy observation
represented by a process O in Rd solution to an equation of the form

(2.10) dOt = ht (M,O)dt + kt (O)dW̄t , t ∈ [0, T ],
for some coefficients h and k defined on [0, T ] × Cm̄+d and [0, T ] × Cd ,
Prog(Cm̄+d)-measurable and Prog(Cd)-measurable, valued in Rd and Rd×d , re-



BSDES AND OPTIMAL CONTROL OF PARTIALLY OBSERVED SDES 1645

spectively. For instance, Ot may be related to the market price of financial risky
assets at time t . We denote FO = (FO

t )t≥0 the right-continuous and P̄-complete
filtration generated by O . An admissible control process, representing for instance
the agent’s investment strategy, is any FO -progressive process α with values in the
Borel space A.

The agent wishes to maximize, among all admissible control processes, a gain
functional of the form

J (α) = Ē

[∫ T

0
f̄t

(
X̄α,M,O,α

)
dt + ḡ

(
X̄α,M,O

)]
,

where Ē denotes expectation with respect to P̄, for real-valued coefficients f̄ , ḡ

defined on [0, T ]×Cn̄+m̄+d ×MA and Cn̄+m̄+d , Prog(Cn̄+m̄+d ×MA)-measurable
and Cn̄+m̄+d

T -measurable, respectively.
In order to put this problem in the form addressed in the previous subsection,

we make a change of probability measure and pass from the “physical” probability
P̄ to a “reference” probability P. Assuming that kt (y) is invertible for all t ∈ [0, T ]
and y ∈ Cd , and that the process {k−1

t (O)ht (M,O),0 ≤ t ≤ T } is bounded, we
define a process Z setting

Z−1
t = exp

(
−

∫ t

0
ks(O)−1hs(M,O)dW̄s

− 1

2

∫ t

0

∣∣ks(O)−1hs(M,O)
∣∣2 ds

)
, t ∈ [0, T ].

The process Z−1 is a martingale under P̄, and by the Girsanov theorem, under the
probability P(dω) = ZT (ω)−1P̄(dω) the pair (V ,W) is a standard Wiener process
in Rd+m with respect to F, where Wt = W̄t + ∫ t

0 ks(O)−1hs(M,O)ds, t ∈ [0, T ].
We denote by FW = (FW

t )t∈[0,T ] the right-continuous and P-complete filtration
generated by W , and see that the observation process O is a solution under P to
the equation:

(2.11) dOt = kt (O)dWt .

Assuming a Lipschitz condition on k, that is, there exists a constant K such that∣∣kt (y) − kt

(
y1)∣∣ ≤ K

(
y − y1)∗

t ,

for all (t, y, y1) ∈ [0, T ] × Cd × Cd , we deduce that O must be FW -adapted
and, therefore, that FO

t ⊂ FW
t for t ∈ [0, T ]. On the other hand, since Wt =∫ t

0 ks(O)−1 dOs , the opposite inclusion also holds and we conclude that FO = FW .
Moreover, it is easily checked that Z is a P-martingale satisfying the equation

(2.12) dZt = Ztkt (O)−1ht (M,O)dWt,
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and that the equations (2.8)–(2.9) for (X̄α,M) can be rewritten under P as

dX̄α
t = [

b̄t

(
X̄α,M,O,α

) − σ̄ 2
t

(
X̄α,M,O,α

)
kt (O)−1ht (M,O)

]
dt

(2.13)
+ σ̄ 1

t

(
X̄α,M,O,α

)
dVt + σ̄ 2

t

(
X̄α,M,O,α

)
dWt,

dMt = [
β̄t (M) − γ 2

t (M)kt (O)−1ht (M,O)
]
dt

(2.14)
+ γ 1

t (M)dVt + γ 2
t (M)dWt,

while the gain functional is rewritten as an expectation under P from the Bayes
formula:

(2.15) J (α) = E

[∫ T

0
Zt f̄t

(
X̄α,M,O,α

)
dt + ZT ḡ

(
X̄α,M,O

)]
.

Now let us define the four-component process Xα = (X̄α,M,O,Z) and note
that the equations (2.11), (2.12), (2.13), (2.14) specify a controlled stochastic equa-
tion for Xα of the form (2.5) (with the obvious choice of b and σ in that equation).
Similarly, the gain functional (2.15) can be put in the form (2.6) (with the obvious
choice of f and g).

EXAMPLE 2.1. As an example of financial application, let us mention the case
of a risky asset whose price St satisfies

dSt = St

(
ρ(Mt) dt + σt (S) dW̄t

)
for a scalar Brownian motion W̄ , a volatility which is a functional of the past values
of S, and an unobserved return process M governed by (2.9). We assume that ρ,
σt (·) and σ−1

t (·) are bounded functions. The wealth X̄α
t of an investor that invests

a fraction αt of her/his wealth in this asset (and the rest in a risk-free asset with
interest rate r) evolves according to the self-financing equation:

dX̄α
t = αtX̄

α
t

dSt

St

+ (1 − αt)X̄
α
t r dt

= X̄α
t

[
r + αt

(
ρ(Mt) − r

)]
dt + X̄α

t αtσt (S) dW̄t .

(2.16)

The investor typically observes the risky price process or equivalently the log-price
process Ot := logSt that solves the equation

dOt =
(
ρ(Mt) − σt (S)2

2

)
dt + σt (S) dW̄t ,

which can be put in the form (2.10) setting kt (y) = σt (exp(y)) and ht (z, y) =
ρ(z) − kt (y)2/2. Notice that the wealth process is FO -adapted, since it is solu-
tion to equation (2.16). Therefore, when choosing the investment strategy α the
investor gains no additional information by observing the wealth process, and so it
is reasonable to impose the condition that α should be adapted to the filtration FO

alone, rather than to the one generated by O and X̄α .
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2.3.2. A classical partially observed control problem. In the previous exam-
ple, the observed process O was not affected by the choice of the control. We next
remove this restriction, adopting a classical approach which consists in starting
with the “reference” probability P and introducing the “physical” probability later,
as presented, for example, in the book [6].

Let (�,F,P) be a complete probability space with a right-continuous and P-
complete filtration F = (Ft )t≥0. Let V , W be independent standard Wiener pro-
cesses with respect to F, with values in Rm and Rd , respectively, and consider the
observation process solution to the equation in Rd

(2.17) dOt = kt (O)dWt,

where kt (y) is defined on [0, T ] × Cd , Prog(Cd)-measurable, Lipschitz in y and
invertible with bounded inverse. Similarly, as in the previous paragraph, we see
that FW = FO , and an admissible control process is any FW -progressive process α

with values in a Borel space A.
We are given coefficients b̄, h, σ̄ 1, σ̄ 2 defined on [0, T ] × Cn̄+d × MA, valued

in Rn̄, Rd , Rn̄×m, Rn̄×d , respectively, and Prog(Cn̄+d × MA)-measurable. Then,
for any admissible control process α, let the process X̄α be defined as the solution
to the equation in Rn̄:

dX̄α
t = [

b̄t

(
X̄α,O,α

) − σ̄ 2
t

(
X̄α,O,α

)
kt (O)−1ht

(
X̄α,O,α

)]
dt

+ σ̄ 1
t

(
X̄α,O,α

)
dVt + σ̄ 2

t

(
X̄α,O,α

)
dWt .

(2.18)

We introduce the gain functional J (α) associated to a control α by means of
a change of probability in the following way. Assuming that the function k−1h is
bounded, let us define for any admissible control process α, the P-martingale:

Zα
t = exp

(∫ t

0
ks(O)−1hs

(
X̄α,O,α

)
dWs − 1

2

∫ t

0

∣∣ks(O)−1hs

(
X̄α,O,α

)∣∣2 ds

)
,

solution to the equation

(2.19) dZα
t = Zα

t kt (O)−1ht

(
X̄α,O,α

)
dWt,

and introduce the “physical” probability Pα setting Pα(dω) = Zα
T (ω)P(dω).

Given real-valued coefficients f̄ , ḡ defined on [0, T ] × Cn̄+d × MA and Cn̄+d ,
Prog(Cn̄+d × MA)-measurable and Cn̄+d

T -measurable, respectively, the gain func-
tional is then defined as

J (α) = Eα

[∫ T

0
f̄t

(
X̄α,O,α

)
dt + ḡ

(
X̄α,O

)]
.

The interpretation of this formulation is the following. By defining the process Wα

as

Wα
t = Wt −

∫ s

0
ks(O)−1hs

(
X̄α,O,α

)
ds, t ∈ [0, T ],
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for any admissible control process α, we see by the Girsanov theorem that the pair
(V ,Wα) is a standard Wiener process in Rm+d under the probability Pα and with
respect to F. Moreover, the dynamics of (X̄α,O) is written under Pα as

dX̄α
t = b̄t

(
X̄α,O,α

)
dt + σ̄ 1

t

(
X̄α,O,α

)
dVt + σ̄ 2

t

(
X̄α,O,α

)
dWα

t ,

dOt = ht

(
X̄α,O,α

)
dt + kt (O)dWα

t .

We then obtain a classical controlled state equation, and an observation process
perturbed by noise and also affected by the choice of the control.

Finally, we notice that this problem is recast in the framework of Section 2.2
by rewriting from Bayes’ formula and the P-martingale property of Zα , the gain
functional as an expectation under P:

(2.20) J (α) = E

[∫ T

0
Zα

t f̄t

(
X̄α,O,α

)
dt + Zα

T ḡ
(
X̄α,O

)]
.

Thus, by defining the three-component process Xα = (X̄α,Zα,O), we see that the
equations (2.17), (2.18), (2.19) specify a controlled stochastic equation for Xα of
the form (2.5), and the gain functional (2.20) can be put in the form (2.6).

3. The randomized stochastic optimal control problem. We still assume
that A, b, σ , f , g, ρ0 are given and satisfy the assumptions (A1). We implement
the randomization method and formulate the randomized stochastic optimal con-
trol problem associated with the control problem of Section 2.2. To this end, we
suppose we are also given λ,a0 satisfying the following conditions, which are as-
sumed to hold from now on:

(A2)

(i) λ is a finite positive measure on (A,B(A)) with full topological support.
(ii) a0 is a fixed, deterministic point in A.

We anticipate that λ will play the role of an intensity measure and a0 will be
the starting point of some auxiliary process introduced later. Notice that the initial
problem (2.7) does not depend on λ, a0, which only appear in order to give a
randomized representation of the partially observed control problem. In this sense,
(A2) is not a restriction imposed on the original problem and we have the choice
to fix a0 ∈ A and an intensity measure λ satisfying this condition.

3.1. Formulation of the randomized control problem. The randomized control
problem is formulated fixing a setting (�̂, F̂, P̂, V̂ , Ŵ , μ̂, x̂0), where (�̂, F̂, P̂)

is an arbitrary complete probability space with independent random elements V̂ ,
Ŵ , μ̂, x̂0. The random variable x̂0 is Rn-valued, with law ρ0 under P̂. The process
B̂ := (V̂ , Ŵ ) is a standard Wiener process in Rm+d under P̂. μ̂ is a Poisson random
measure on A with intensity λ(da) under P̂; thus, μ̂ is a sum of Dirac measures
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of the form μ̂ = ∑
n≥1 δ

(Ŝn,η̂n)
, where (η̂n)n≥1 is a sequence of A-valued random

variables and (Ŝn)n≥1 is a strictly increasing sequence of random variables with
values in (0,∞), and for any C ∈ B(A) the process μ̂((0, t] × C) − tλ(C), t ≥ 0,
is a P̂-martingale. We also define the A-valued process

(3.1) Ît = ∑
n≥0

η̂n1[Ŝn,Ŝn+1)
(t), t ≥ 0,

where we use the convention that Ŝ0 = 0 and Î0 = a0, the point in assumption
(A2)(ii). Notice that the formal sum in (3.1) makes sense even if there is no addi-
tion operation defined in A and that, when A is a subset of a linear space, formula
(3.1) can be written as

Ît = a0 +
∫ t

0

∫
A
(a − Îs−)μ̂(ds da), t ≥ 0.

Let X̂ be the solution to the equation

(3.2) dX̂t = bt (X̂, Î ) dt + σt (X̂, Î ) dBt ,

for t ∈ [0, T ], starting from X̂0 = x̂0. We define two filtrations FŴ ,μ̂ = (F Ŵ ,μ̂
t )t≥0

and Fx̂0,B̂,μ̂ = (F x̂0,B̂,μ̂
t )t≥0 setting

F Ŵ ,μ̂
t = σ

(
Ŵs, μ̂

(
(0, s] × C

) : s ∈ [0, t],C ∈ B(A)
) ∨N ,

F x̂0,B̂,μ̂
t = σ

(
x̂0, B̂s, μ̂

(
(0, s] × C

) : s ∈ [0, t],C ∈ B(A)
) ∨N ,

(3.3)

where N denotes the family of P̂-null sets of F̂ . We denote P(FŴ ,μ̂), P(Fx̂0,B̂,μ̂)

the corresponding predictable σ -algebras.
Under (A1) it is well known (see, e.g., Theorem 14.23 in [20]) that there exists

a unique Fx̂0,B̂,μ̂-adapted strong solution X̂ = (X̂t )0≤t≤T to (3.2), satisfying X̂0 =
x̂0, with continuous trajectories and such that (with the same p for which Ê|x̂0|p <

∞)

(3.4) Ê
[

sup
t∈[0,T ]

|X̂t |p
]
< ∞.

We can now define the randomized optimal control problem as follows: the set
V̂ of admissible controls consists of all ν̂ = ν̂t (ω̂, a) : �̂ × R+ × A → (0,∞),

which are P(FŴ ,μ̂)⊗B(A)-measurable and bounded. Then the Doléans exponen-
tial process

κν̂
t = Et

(∫ ·
0

∫
A

(
ν̂s(a) − 1

)(
μ̂(ds da) − λ(da) ds

))

= exp
(∫ t

0

∫
A

(
1 − ν̂s(a)

)
λ(da) ds

) ∏
0<Ŝn≤t

ν
Ŝn

(η̂n), t ≥ 0,
(3.5)
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is a martingale with respect to P̂ and FŴ ,μ̂, and we can define a new probability
setting P̂ν̂ (dω̂) = κν̂

T (ω̂)P̂(dω̂). From the Girsanov theorem for multivariate point
processes ([19]), it follows that under P̂ν̂ the FŴ ,μ̂-compensator of μ̂ on the set
[0, T ] × A is the random measure ν̂t (a)λ(da) dt . Notice that B̂ remains a Brow-
nian motion under P̂ν̂ , and using (2.2)–(2.3) we can generalize estimate (3.4) as
follows:

(3.6) sup
ν̂∈V

Êν̂
[

sup
t∈[0,T ]

|X̂t |p
]
< ∞,

where Êν̂ denotes the expectation with respect to P̂ν̂ . We finally introduce the gain
functional of the randomized control problem:

(3.7) JR(ν̂) = Êν̂

[∫ T

0
ft (X̂, Î ) dt + g(X̂)

]
.

The randomized stochastic optimal control problem consists in maximizing JR(ν̂)

over all ν̂ ∈ V̂ . Its value is defined as

(3.8) υR
0 = sup

ν̂∈V̂
JR(ν̂).

REMARK 3.1. Let us define V̂inf>0 = {ν̂ ∈ V̂ : inf
�̂×[0,T ]×A

ν̂ > 0}. Then

(3.9) υR
0 = sup

ν̂∈V̂inf>0

JR(ν̂).

Indeed, given ν̂ ∈ V̂ and ε > 0, define ν̂ε = ν̂ ∨ ε ∈ V̂inf>0 and write the gain (3.7)
in the form

JR(
ν̂ε) = Ê

[
κν̂ε

T

(∫ T

0
ft (X̂, Î ) dt + g(X̂)

)]
.

It is easy to see that JR(ν̂ε) → JR(ν̂) as ε → 0, which implies

υR
0 = sup

ν̂∈V̂
JR(ν̂) ≤ sup

ν̂∈V̂inf>0

JR(ν̂).

The other inequality being obvious, we obtain (3.9).

REMARK 3.2. We end this section noting that a randomized control problem
can be constructed starting from the initial control problem with partial obser-
vation. Indeed, let (�,F,P,F,V ,W,x0) be the setting for the stochastic opti-
mal control problem formulated in Section 2.2. Suppose that (�′,F ′,P′) is an-
other probability space where a Poisson random measure μ with intensity λ is
defined (for instance by a classical result, see [34], Theorem 2.3.1, we may take
�′ = [0,1], F ′ the corresponding Borel sets and P′ the Lebesgue measure). Then
we define �̄ = � × �′, we denote by F̄ the completion of F ⊗ F ′ with respect
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to P ⊗ P′ and by P̄ the extension of P ⊗ P′ to F̄ . The random elements V , W ,
x0 in � and the random measure μ in �′ have obvious extensions to �̄, that will
be denoted by the same symbols. Clearly, (�̄, F̄, P̄,V ,W,μ,x0) is a setting for a
randomized control problem as formulated before that we call product extension
of the setting (�,F,P,V ,W,x0) for the initial control problem (2.7).

We note that the initial formulation of a randomized setting (�̂, F̂, P̂, V̂ , Ŵ ,

μ̂, x̂0) was more general, since it was not required that �̂ should be a product
space � × �′ and, even if it were the case, it was not required that the process
B̂ = (V̂ , Ŵ ) should depend only on ω ∈ � while the random measure μ̂ should
depend only on ω′ ∈ �′.

3.2. The value of the randomized control problem. In this section, it is our
purpose to show that the value υR

0 of the randomized control problem defined in
(3.8) does not depend on the specific setting (�̂, F̂, P̂, V̂ , Ŵ , μ̂, x̂0), so that it is
just a functional of the (deterministic) elements A, b, σ , f , g, ρ0, λ, a0. Later on,
in Theorem 3.1, we will prove that in fact υR

0 does not depend on the choice of λ

and a0 either.
So let now (�̃, F̃, P̃, Ṽ , W̃ , μ̃, x̃0) be another setting for the randomized control

problem, as in Section 3.1, and let FW̃ ,μ̃, Fx̃0,B̃,μ̃, X̃, Ĩ , Ṽ be defined in analogy
with what was done before. So, for any ν̃ ∈ Ṽ , we also define κν̃ and the probability
dP̃ν̃ = κν̃

T dP̃ as well as the gain and the value

J̃R(ν̃) = Ẽν̃

[∫ T

0
ft (X̃, Ĩ ) dt + g(X̃)

]
, υ̃R

0 = sup
ν̃∈Ṽ

J̃R(ν̃).

We recall that the gain functional and value for the setting (�̂, F̂, P̂, V̂ , Ŵ , μ̂, x̂0)

was defined in (3.7) and (3.8) and denoted by JR and υR
0 rather than ĴR and υ̂R

0 ,
to simplify the notation.

PROPOSITION 3.1. With the previous notation, we have υR
0 = υ̃R

0 . In other
words, υR

0 only depends on the objects A, b, σ , f , g, ρ0, λ, a0 appearing in the
assumptions (A1) and (A2).

PROOF. It is enough to prove that υR
0 ≤ υ̃R

0 , since the opposite inequality is
established by the same arguments. Writing the gain JR(ν̂) defined in (3.7) in the
form

JR(ν̂) = Ê

[
κν̂
T

(∫ T

0
ft (X̂, Î ) dt + g(X̂)

)]
,

recalling the definition (3.5) of the process κν̂ and noting that the process Î is
completely determined by μ̂, we see that JR(ν̂) only depends on the (joint) law
of (X̂, μ̂, ν̂) under P̂. Since, however, X̂ is the solution to equation (3.2) with
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initial condition X̂0 = x̂0, it is easy to check that under our assumptions the law of
(X̂, μ̂, ν̂) only depends on the law of (x̂0, V̂ , Ŵ , μ̂, ν̂). Since x̂0, V̂ and (Ŵ , μ̂, ν̂)

are all independent, and the laws of x̂0 and V̂ are fixed (since V̂ is a standard
Wiener process and x̂0 has law ρ0) we conclude that JR(ν̂) only depends on the
law of (Ŵ , μ̂, ν̂) under P̂. Similarly, J̃R(ν̃) only depends on the law of (W̃ , μ̃, ν̃)

under P̃.
Next, we claim that, given ν̂ ∈ V̂ there exists ν̃ ∈ Ṽ such that the law of

(Ŵ , μ̂, ν̂) under P̂ is the same as the law of (W̃ , μ̃, ν̃) under P̃. Assuming the
claim for a moment, it follows from the previous discussion that for this choice of
ν̃ we have

JR(ν̂) = J̃R(ν̃) ≤ υ̃R
0 ,

and taking the supremum over ν̂ ∈ V̂ we deduce that υR
0 ≤ υ̃R

0 , which proves the
result.

It only remains to prove the claim. By a monotone class argument, we may sup-
pose that ν̂t (a) = k(a)φtψt , where k is a B(A)-measurable, φ is FŴ -predictable
and ψ is Fμ̂-predictable (where these filtrations are the ones generated by Ŵ and
μ̂, resp.). We may further suppose that φt = 1(t0,t1](t)φ0(Ŵs1, . . . , Ŵsh), for an in-
teger h and deterministic times 0 ≤ s1 ≤ . . . sh ≤ t0 < t1 and a Borel function φ0

on Rh, since this class of processes generates the predictable σ -algebra of FŴ ,
and that ψt = 1

(Ŝn,Ŝn+1](t)ψ0(Ŝ1, . . . , Ŝn, η̂1, . . . , η̂n, t), for an integer n ≥ 1 and a

Borel function ψ0 on R2n+1, since this class of processes generates the predictable
σ -algebra of Fμ̂ [see [19], Lemma (3.3)]. It is immediate to verify that the required
process ν̃ can be defined setting

ν̃t (a) = k(a)1(t0,t1](t)φ0(W̃s1, . . . , W̃sh)1(S̃n,S̃n+1](t)

× ψ0(S̃1, . . . , S̃n, η̃1, . . . , η̃n, t),

where (S̃n, η̃n)n≥1 are associated to the measure μ̃, that is, μ̃ = ∑
n≥1 δ

(S̃n,η̃n)
. �

3.3. Equivalence of the partially observed and the randomized control problem.
We can now state one of the main results of the paper.

THEOREM 3.1. Assume that (A1) and (A2) are satisfied. Then the values of
the partially observed control problem and of the randomized control problem are
equal:

(3.10) υ0 = υR
0 ,

where υ0 and υR
0 are defined by (2.7) and (3.8), respectively. This common value

only depends on the objects A, b, σ , f , g, ρ0 appearing in assumption (A1).
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The last sentence follows immediately from Proposition 3.1, from the equality
υ0 = υR

0 and from the obvious fact that υ0 cannot depend on λ, a0 introduced in
assumption (A2). The proof of the equality is contained in the next section.

Before giving the proof of Theorem 3.1, let us discuss the significance of this
equivalence result. The randomized control problem involves an uncontrolled state
process (X, I) solution to (3.1)–(3.2), and the optimization is done over a set of
equivalent probability measures whose effect is to change the characteristics (the
intensity) of the auxiliary randomized process I without impacting on the Brow-
nian motion B driving X. Therefore, the equivalence result (3.10) means that by
performing such optimization in the randomized problem, we achieve the same
value as in the original control problem where controls affect directly the drift and
diffusion of the state process. As explained in the Introduction, such equivalence
result has important implications that will be addressed in Section 5 where it is
shown that the randomized control problem is associated by duality to a backward
stochastic differential equation (with nonpositive jumps), called the randomized
equation, which then also characterizes the value function of the initial control
problem (2.7).

REMARK 3.3. We mention that in the article [15] an equivalence result similar
to Theorem 3.1 was proved. However, in [15] only the case of full observation was
addressed and there was no memory effect with respect to the control, whereas
path-dependence in the state variable was allowed. But the main difference with
respect to our setting is that in [15] the primal problem was formulated in a weak
form, that is, taking the supremum of the gain functional (1.5) also over all possible
choices of the probability space (�,F,P). This simplifies many arguments, and
in particular makes the inequality υ0 ≥ υR

0 trivial.

4. Proof of Theorem 3.1. The proof is split into two parts, corresponding to
the inequalities υR

0 ≤ υ0 and υ0 ≤ υR
0 . In the sequel, (A1) and (A2) are always

assumed to hold. However, instead of the inequality p ≥ max(2,2r), in (A1)(v) it
is enough to suppose that p ≥ max(2, r).

Before starting with the rigorous proof, let us have a look at the main points:

• υR
0 ≤ υ0. First, we prove that the value of the primal problem υ0 does not

change if we reformulate it on the enlarged probability space where the ran-
domized problem lives, taking the supremum over AW,μ′

, which is the set of
controls ᾱ progressively measurable with respect to the filtration generated by
W and the Poisson random measure μ′ (Lemma 4.1; actually, we take ᾱ pro-
gressively measurable with respect to an even larger filtration, denoted FW,μ′∞ ).
Second, we prove that for every ν ∈ Vinf>0 there exists ᾱν ∈ AW,μ′

such that
LPν (x0,B, I ) = LP̄(x0,B, ᾱν) (Proposition 4.2). This result is a direct conse-
quence of the key Lemma 4.3. From LPν (x0,B, I ) = LP̄(x0,B, ᾱν), we obtain
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that JR(ν) = J̄ (ᾱν), namely

υR
0 := sup

ν∈Vinf>0

JR(ν) = sup
ᾱν

ν∈Vinf>0

J̄
(
ᾱν)

.

Since υ0 = sup
ᾱ∈AW,μ′ J̄ (ᾱ) by Lemma 4.1, and every ᾱν belongs to AW,μ′

, we
easily obtain the inequality υR

0 ≤ υ0.
• υ0 ≤ υR

0 . The proof of this inequality is based on a “density” result in the spirit
of Lemma 3.2.6 in [25], which is Proposition 4.1 below. Before, we need to
introduce some notation.

We take an auxiliary probability space denoted (�′,F ′,P′), where appropri-
ate random objects are defined [see the Appendix of the longer version [3] of
our paper for the precise requirements on (�′,F ′,P′)]. Then we construct the
product space (�̂, F̂,Q):

�̂ = � × �′, F̂ = F ⊗F ′, Q= P⊗ P′.

The random variable x0 and the processes α and B = (V ,W) are extended to �̂

in a natural way. We denote x̂0 and α̂ the extensions of x0 and α. The extension
of B , denoted B̂ = (V̂ , Ŵ ), remains a Wiener process under Q. The filtration
FW can also be canonically extended to a filtration in (�̂, F̂), which coincides

with the filtration FŴ generated by Ŵ .
Following [25], for any pair α1, α2 : �̂×[0, T ] → A of measurable processes

in (�̂, F̂,Q) we define a distance ρ̃(α1, α2) setting

(4.1) ρ̃
(
α1, α2) = EQ

[∫ T

0
ρ

(
α1

t , α
2
t

)
dt

]
,

where EQ denotes the expectation under Q, and ρ is a metric in A satisfying
ρ < 1.

PROPOSITION 4.1. Let A be a Borel space, let λ and a0 satisfy (A2) and let
(�̂, F̂,Q) be the product space defined above. Then, for any FW -progressive A-
valued process α and for any δ > 0, there exists a marked point process (Ŝn, η̂n)n≥1

defined in (�̂, F̂,Q) satisfying the following conditions:

1. setting

Ŝ0 = 0, η̂0 = a0, Ît = ∑
n≥0

η̂n1[Ŝn,Ŝn+1)
(t),

the process Î satisfies

(4.2) ρ̃(Î , α̂) = EQ

[∫ T

0
ρ(Ît , α̂t ) dt

]
< δ;
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2. denoting μ̂ = ∑
n≥1 δ

(Ŝn,η̂n)
the random measure associated to (Ŝn, η̂n)n≥1,

Fμ̂ = (F μ̂
t )t≥0 the natural filtration of μ̂ and FŴ ∨ Fμ̂ = (F Ŵ

t ∨ F μ̂
t )t≥0, then

the FŴ ∨ Fμ̂-compensator of μ̂ under Q is absolutely continuous with respect to
λ(da) dt and it can be written in the form

(4.3) ν̂t (ω̂, a)λ(da) dt

for some nonnegative P(FŴ ∨ Fμ̂) ⊗B(A)-measurable function ν̂ satisfying

(4.4) inf
�̂×[0,T ]×A

ν̂ > 0, sup
�̂×[0,T ]×A

ν̂ < ∞.

Roughly speaking, we prove that the class {ᾱν : ν ∈ Vinf>0} is dense in AW,μ′
,

with respect to the metric ρ̃ defined in (4.1) (the same metric used in Lemma 3.2.6
in [25]). The proof of Proposition 4.1 is quite technical, and is postponed in the
Appendix of the longer version [3] of our paper. Then the inequality υ0 ≤ υR

0
follows from the stability Lemma 4.4, which states that, under Assumption (A1),
the gain functional is continuous with respect to the metric ρ̃.

4.1. Proof of the inequality υR
0 ≤ υ0. We note at the outset that the re-

quirement that λ has full support will not be used in the proof of the inequality
υR

0 ≤ υ0.
Let (�,F,P,F,V ,W,x0) be a setting for the stochastic optimal control prob-

lem with partial observation formulated in Section 2.2. We construct a setting for
a randomized control problem in the form of a product extension as described at
the end of Section 3.1.

Let λ be a Borel measure on A satisfying (A2). As a first step, we need to con-
struct a suitable surjective measurable map π :R → A and to introduce a properly
chosen measure λ′ on the Borel subsets of the real line such that in particular
λ = λ′ ◦ π−1. We also recall that the space of control actions A is assumed to be a
Borel space and it is known that any such space is either finite or countable (with
the discrete topology) or isomorphic, as a measurable space, to the real line [or
equivalently to the half line (0,∞)]: see, for example, [7], Corollary 7.16.1. Let us
denote by Ac the subset of A consisting of all points a ∈ A such that λ({a}) > 0,
and let Anc = A \ Ac. Since λ is finite, the set Ac is either empty or countable, and
it follows in particular that both Ac and Anc are also Borel spaces. In the construc-
tion of λ′, we distinguish three cases:

1. Ac = ∅, so that A = Anc is uncountable. Then, as recalled above, there exists
a bijection π : R → A such that π and its inverse are both Borel measurable. We
define a measure λ′ on (R,B(R)) setting λ′(B) = λ(π(B)) for B ∈ B(R). Even if
we cannot guarantee that λ′ has full support, it clearly holds that λ′({r}) = 0 for
every r ∈ R. Basically, in this case we are identifying A with R and λ with its
image measure λ′.
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2. Anc = ∅, so that A = Ac is countable, with the discrete topology. For every
j ∈ A, choose a (nontrivial) interval Ij ⊂ R in such a way that {Ij , j ∈ A} is a
partition of R. Choose an arbitrary nonatomic finite measure on (R,B(R)) with
full support (say, the standard Gaussian measure, denoted by γ ) and denote by λ′
the unique positive measure on (R,B(R)) such that

λ′(B) = λ
({j})γ (B)/γ (Ij ) for every B ⊂ Ij ,B ∈ B(R), j ∈ A.

Notice that λ′ is a finite measure (λ′(R) = λ(A)), satisfying λ′(Ij ) = λ({j}) for
every j ∈ A and λ′({r}) = 0 for every r ∈ R. We also define the projection π :
R→ A given by

(4.5) π(r) = j if r ∈ Ij for some j ∈ A.

Clearly, λ = λ′ ◦ π−1.
3. Ac �= ∅ and Anc �= ∅. For every j ∈ Ac choose a (nontrivial) interval Ij ⊂

(−∞,0] in such a way that {Ij , j ∈ Ac} is a partition of (−∞,0]. Moreover, there
exists a bijection π1 : (0,∞) → Anc such that π1 and its inverse are both Borel
measurable. Denote by λ′ the unique positive measure on (R,B(R)) such that

λ′(B) = λ
({j})γ (B)/γ (Ij ) for every B ⊂ Ij ,B ∈ B(R), j ∈ Ac,

λ′(B) = λ
(
π1(B)

)
for every B ⊂ (0,∞),B ∈ B(R).

Again, λ′ is a finite measure satisfying λ′(Ij ) = λ({j}) for every j ∈ Ac and
λ′({r}) = 0 for every r ∈ R. We also define the projection π : R→ A given by

(4.6) π(r) =
{
j if r ∈ Ij for some j ∈ Ac,

π1(r) if r ∈ (0,∞),

so that in particular λ = λ′ ◦ π−1.

Now let (�′,F ′,P′) denote the canonical probability space of a nonexplosive
Poisson point process on R+ ×R with intensity λ′. Thus, �′ is the set of sequences
ω′ = (tn, rn)n≥1 ⊂ (0,∞) × R with tn < tn+1 ↗ ∞, (Tn,Rn)n≥1 is the canonical
marked point process (i.e., Tn(ω

′) = tn, Rn(ω
′) = rn), and μ′ = ∑

n≥1 δ(Tn,Rn) is
the corresponding random measure. Let F ′ denote the smallest σ -algebra such
that all the maps Tn, Rn are measurable and P′ the unique probability on F ′ such
that μ′ is a Poisson random measure with intensity λ′ (since λ′ is a finite mea-
sure, this probability actually exists). We will also use the completion of the space
(�′,F ′,P′), still denoted by the same symbol by abuse of notation. In all the cases
considered above, setting

An = π(Rn), μ = ∑
n≥1

δ(Tn,An),



BSDES AND OPTIMAL CONTROL OF PARTIALLY OBSERVED SDES 1657

it is easy to verify that μ is a Poisson random measure on (0,∞) × A with inten-
sity λ, defined in (�′,F ′,P′). Then, following (3.1), we associate to this Poisson
random measure on (0,∞) × A, the A-valued process

It = ∑
n≥0

An1[Tn,Tn+1)(t), t ≥ 0,

where we use the convention that T0 = 0 and I0 = a0 the point in assump-
tion (A2)(ii). In (�′,F ′), we define the natural filtrations Fμ = (Fμ

t )t≥0, Fμ′ =
(Fμ′

t )t≥0 given by

Fμ
t = σ

(
μ

(
(0, s] × C

) : s ∈ [0, t],C ∈ B(A)
) ∨N ′,

Fμ′
t = σ

(
μ′((0, s] × B

) : s ∈ [0, t],B ∈ B(R)
) ∨N ′,

where N ′ denotes the family of P′-null sets of F ′. We denote by P(Fμ), P(Fμ′
)

the corresponding predictable σ -algebras. Note that Fμ
t ⊂ Fμ′

t and Fμ′
∞ =F ′.

Then we define �̄ = � × �′; we denote by F̄ the completion of F ⊗ F ′ with
respect to P ⊗ P′ and by P̄ the extension of P ⊗ P′ to F̄ . The random elements
V,W,x0 in � and the random measures μ,μ′ in �′ have obvious extensions to �̄,
that will be denoted by the same symbols. Then (�̄, F̄, P̄,V ,W,μ,x0) is a setting
for a randomized control problem as formulated in Section 3.1. Recall that FW de-
notes the P-completed filtration in (�,F) generated by the Wiener process W . All
filtrations FW , Fμ, Fμ′

can also be lifted to filtrations in (�̄, F̄), and P̄-completed.
In the sequel, it should be clear from the context whether they are considered as
filtrations in (�̄, F̄) or in their original spaces. As in Section 3.1, we define the
filtration FW,μ = (FW,μ

t )t≥0 in (�̄, F̄) by

FW,μ
t = FW

t ∨Fμ
t ∨N

(N denotes the family of P̄-null sets of F̄ ), we introduce the classes V , Vinf>0 and,
for any admissible control ν ∈ V , the corresponding martingale κν , the probability
Pν(dω dω′) = κν

T (ω,ω′)P̄(dω dω′) and the gain JR(ν). For technical purposes,
we need to introduce the set V ′ of elements ν′ = ν′

t (ω
′, a) : �′×R+×A → (0,∞),

which are P(Fμ) ⊗ B(A)-measurable and bounded. We also define another filtra-

tion FW,μ′∞ = (FW,μ′∞
t )t≥0 in (�̄, F̄) setting

FW,μ′∞
t =FW

t ∨F ′ ∨N

(here F ′ denotes a σ -algebra in (�̄, F̄), namely {� × B : B ∈ F ′}).
In order to prove the inequality υR

0 ≤ υ0, we first prove two technical lemmata.
In particular, in Lemma 4.1 we show that the primal problem is equivalent to a new
primal problem with FW,μ̄∞ -progressive controls on the enlarged space (�̄, F̄).
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LEMMA 4.1. We have υ0 = sup
ᾱ∈AW,μ′ J̄ (ᾱ), where

J̄ (ᾱ) = Ē

[∫ T

0
ft

(
Xᾱ, ᾱ

)
dt + g

(
Xᾱ)]

,

and AW,μ′
is the set of all FW,μ′∞ -progressive processes ᾱ with values in A. More-

over, Xᾱ = (Xᾱ
t )0≤t≤T is the strong solution to (2.5) (with ᾱ in place of α) satisfy-

ing Xᾱ
0 = x0, which is unique in the class of continuous processes adapted to the

filtration (FB
t ∨ σ(x0) ∨F ′ ∨N )t≥0.

PROOF. The inequality υ0 ≤ sup
ᾱ∈AW,μ′ J̄ (ᾱ) is immediate, since every con-

trol α ∈ AW also lies in AW,μ′
and J (α) = J̄ (α), whence J (α) ≤ sup

ᾱ∈AW,μ′ J̄ (ᾱ)

and so υ0 = supα∈AW J (α) ≤ sup
ᾱ∈AW,μ′ J̄ (ᾱ).

Let us prove the opposite inequality. Fix α̃ ∈ AW,μ′
and consider the (un-

completed) filtration F′′ := (FW
t ∨ F ′)t≥0. Then we can find an A-valued F′′-

progressive process ᾱ such that ᾱ = α̃ P̄(dω̄) dt-almost surely, so that in particular
J̄ (ᾱ) = J̄ (α̃). It is easy to verify that, for every ω′ ∈ �′, the process αω′

, defined
by αω′

t (ω) := ᾱt (ω,ω′), is FW -progressive. Consider now the controlled equation
on [0, T ]

Xt = x0 +
∫ t

0
bs

(
X,αω′)

ds +
∫ t

0
σs

(
X,αω′)

dBs

= x0 +
∫ t

0
bs

(
X, ᾱ

(·,ω′))ds +
∫ t

0
σs

(
X, ᾱ

(·,ω′))dBs.

(4.7)

From the first line of (4.7), we see that, under Assumption (A1), for every
ω′ there exists a unique (up to indistinguishability) continuous process Xαω′ =
(Xαω′

t )0≤t≤T strong solution to (4.7), adapted to the filtration (FB
t ∨ σ(x0) ∨

N )t≥0. On the other hand, from the second line of (4.7), it follows that the
process Xᾱ(·,ω′) = (Xᾱ

t (·,ω′))0≤t≤T solves the above equation. From the path-

wise uniqueness of strong solutions to equation (4.7), it follows that Xαω′
t (ω) =

Xᾱ
t (ω,ω′), for all t ∈ [0, T ], P(dω)-a.s. By the Fubini theorem,

J̄ (α̃) = J̄ (ᾱ) =
∫
�′
E

[∫ T

0
ft

(
Xαω′

, αω′)
dt + g

(
Xαω′ )]

P′(dω′).
Since the inner expectation equals the gain J (αω′

), it cannot exceed V and it fol-
lows that J̄ (α̃) ≤ υ0. The claim follows from the arbitrariness of α̃. �

The next result provides a decomposition of any element ν ∈ V , that is,
P(FW,μ) ⊗B(A)-measurable and bounded.
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LEMMA 4.2. (i) Let ν ∈ V , then there exists a P̄-null set N̄ ∈ N such that ν

admits the following representation:

νt

(
ω,ω′, a

) = ν
(0)
t (ω, a)1{0<t≤T1(ω

′)}

+
∞∑

n=1

ν
(n)
t

(
ω,

(
T1

(
ω′),A1

(
ω′)), . . . , (

Tn

(
ω′),An

(
ω′)), a)

× 1{Tn(ω′)<t≤Tn+1(ω
′)},

for all (ω,ω′, t,A) ∈ �̄ × R+ × A, (ω,ω′) /∈ N̄ , for some maps ν(n) : � ×
R+ × (R+ × A)n × A → (0,∞), n ≥ 1, [resp., ν(0) : � × R+ × A → (0,∞)],
which are P(FW) ⊗ B((R+ × A)n) ⊗ B(A)-measurable (resp., P(FW) ⊗ B(A)-
measurable) and uniformly bounded with respect to n. Moreover, if ν ∈ Vinf>0 then
inf�̄×[0,T ]×A ν(n) > 0 as well, for every n ≥ 0.

(ii) Let ν ∈ V , then there exists Ñ ∈ F , with P(Ñ) = 0, such that the map νω =
νω
t (ω′, a) : �′ ×R+ × A → (0,∞), defined by

νω
t

(
ω′, a

) := νt

(
ω,ω′, a

)
,

(
ω′, t, a

) ∈ �′ ×R+ × A,

belongs to V ′ whenever ω /∈ Ñ . Moreover, for every ω /∈ Ñ there exists Nω ∈ N ′
such that

νω
t

(
ω′, a

) = ν
(0)
t (ω, a)1{0<t≤T1(ω

′)}

+
∞∑

n=1

ν
(n)
t

(
ω,

(
T1

(
ω′),A1

(
ω′)), . . . , (

Tn

(
ω′),An

(
ω′)), a)

× 1{Tn(ω′)<t≤Tn+1(ω
′)},

(4.8)

for all (ω′, t, a) ∈ �′ × R+ × A, ω′ /∈ N ′
ω, where, clearly, ν

(n)· (ω, ·) [resp.,
ν

(0)· (ω, ·)] is B(R+) ⊗B((R+ × A)n) ⊗B(A)-measurable (resp. B(R+) ⊗B(A)-
measurable).

PROOF. The proof is an extension of the results in [19], Lemma 3.3; it is based
on monotone class arguments and is left to the reader. �

By Lemma 4.2(ii), given ν ∈ V , consider the process νω ∈ V ′, with correspond-
ing P-null set Ñ ∈ F . Define the Doléans exponential process κνω

by formula (3.5)
with νω in place of ν. Notice that by Lemma 4.2(ii) we have κνω

t (ω′) = κν
t (ω,ω′),

for all (ω′, t) ∈ �′ × R+, whenever ω /∈ Ñ . Moreover, for ω /∈ Ñ , (κνω

t )t≥0 is a
martingale with respect to P′ and Fμ. We claim that there exists a unique prob-
ability measure Pνω

on (�′,Fμ∞) such that Pνω
(dω′) = κνω

t (ω′)P′(dω′) on each
σ -algebra Fμ

t , and by the Girsanov theorem, the Fμ-compensator of μ under Pνω

is given by the right-hand side of (4.8).
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The verification of the claim is a standard argument: using the boundedness of
ν, one first verifies that

κνω

t∧Tn

(
ω′) ≤ ane

bTn(ω′)

for some constants an, b, which implies that (κν
t∧Tn

)t≥0 is a uniformly integrable

martingale with respect to P′ and Fμ. Then the probabilities Pνω

n defined on Fμ
Tn

setting Pνω

n (dω′) = κνω

Tn
(ω′)P′(dω′) satisfy the compatibility condition: Pνω

n+1 =
Pνω

n on Fμ
Tn

for every n. Arguing as in Theorem 3.6 in [19], by the Kolmogorov
extension theorem there exists a unique probability Pνω

on (�′,Fμ∞) such that
Pνω = Pνω

n on each Fμ
Tn

, and Pνω
has the required properties.

We can now state the following key result (Lemma 4.3) from which the re-
quired conclusion of this subsection follows readily (see Proposition 4.2). Recall
that (�′,F ′,P′) denotes the canonical probability space constructed above.

LEMMA 4.3. Given ν ∈ Vinf>0, there exist a sequence (T ν
n ,Aν

n)n≥1 on
(�̄, F̄, P̄) and a P-null set N ∈ F , with Ñ ⊂ N (Ñ is the set appearing in
Lemma 4.2(ii)), such that:

(i) for every n ≥ 1, (T ν
n ,Aν

n) takes values in (0,∞) × A and T ν
n < T ν

n+1;

(ii) for every n ≥ 1, T ν
n is an FW,μ′∞ -stopping time and Aν

n is FW,μ′∞
T ν

n
-

measurable;
(iii) limn→∞ T ν

n = ∞;
(iv) for every ω /∈ N , we have

LP′
((

T ν
n (ω, ·),Aν

n(ω, ·))n≥1

) = LPνω
(
(Tn,An)n≥1

)
.

Finally, let ᾱν
t = a01[0,T ν

1 ) + ∑∞
n=1 Aν

n1[T ν
n ,T ν

n+1)
(t) be the step process associated

with (T ν
n ,Aν

n)n≥1. Then ᾱν ∈ AW,μ′
and LP′(ᾱν(ω, ·)) = LPνω (I ), ω /∈ N .

PROOF. Suppose that we have already constructed a multivariate point process
(T ν

n ,Aν
n)n≥1 satisfying points (i)–(ii)–(iii)–(iv) of the theorem. Then, by (ii), it fol-

lows that ᾱν is càdlàg and FW,μ′∞ -adapted, hence progressive. Moreover, by (iii),
for every (ω̄, t) ∈ �̄×[0, T ] the series

∑∞
n=1 Aν

n(ω̄)1[T ν
n (ω̄),T ν

n+1)
(t) is a finite sum,

and thus ᾱν ∈ AW,μ′
. Furthermore, by (iv), we see that LP′(ᾱν(ω, ·)) = LPνω (I ),

ω /∈ N .
Let us now construct (T ν

n ,Aν
n)n≥1 satisfying points (i)–(ii)–(iii)–(iv). Fix ν ∈

Vinf>0 and let Ñ ∈ F be as in Lemma 4.2. In particular, recall that formula (4.8)
holds for some maps ν(n), n ≥ 0, satisfying 0 < infν(n) ≤ supν(n) ≤ Mν , for some
constant Mν > 0, independent of n. Next, recall the construction of the map π :
R → A and the measure λ′. Accordingly, we split the rest of the proof into two
cases.
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Case I: Ac = ∅, so that A = Anc is uncountable. In this case, π : R → A is
a Borel isomorphism, so to shorten notation we identify A with R and use the
notation A, λ, An, μ, FW,μ∞ = (FW,μ∞

t )t≥0 instead of R, λ′, Rn, μ̄, FW,μ′∞ =
(FW,μ′∞

t )t≥0. Since we are treating the case Ac = ∅, we have λ({a}) = 0 for every
a ∈ A. We construct by induction on n ≥ 1 a sequence (T ν

n ,Aν
n)n≥1 and a P-null

set N ∈ F , with Ñ ⊂ N , such that (T ν
n ,Aν

n)n≥1 satisfies properties (i) and (ii) of
the theorem, and also the following properties:

(iii)′ for every n ≥ 1, we have T ν
n ≥ Tn/M

ν ;
(iv)′ for every n ≥ 1 and ω /∈ N , we have

LP′
(
T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·),Aν
n(ω, ·))

= LPνω (T1,A1, . . . , Tn,An).
(4.9)

Notice that (iv)′ is equivalent to (iv). Moreover, since limn→∞ Tn = ∞, we see
that (iii)′ implies property (iii).

Step 1: the case n = 1. Define

(4.10) θ
(1)
t (ω) := 1

λ(A)

∫ t

0

∫
A

ν(0)
s (ω, a)λ(da) ds.

Since 0 < infν(0) ≤ supν(0) ≤ Mν , we see that, for every ω ∈ �, the map
t 
→ θ

(1)
t (ω) is continuous, strictly increasing, θ

(1)
0 (ω) = 0, θ

(1)
t (ω) ≤ Mνt , and

θ
(1)
t (ω) ↗ ∞ as t goes to infinity. Then there exists a unique T ν

1 : �̄ → R+ such
that

θ
(1)
T ν

1 (ω̄)
(ω) = T1

(
ω′).

Notice that T ν
1 ≥ T1/M

ν
1 . Moreover, since T1 > 0, we also have T ν

1 > 0.
Let ĒT1 := {(ω̄, t) ∈ �̄ × R+ : θ

(1)
t (ω) = T1(ω

′)}. Since the process (ω̄, t) 
→
(θ

(1)
t (ω), T1(ω

′)) is FW,μ∞ -adapted and continuous, ĒT1 is an FW,μ∞ -optional
set (in fact, predictable). Since T ν

1 (ω̄) = inf{t ∈ R+ : (ω̄, t) ∈ ĒT1} is the début of
ĒT1 , from Theorem 1.14 of [20] it follows that T ν

1 is an FW,μ∞ -stopping time. In
particular, T ν

1 is F̄ -measurable, therefore there exists a P-null set NT ν
1

∈ F such
that T ν

1 (ω, ·) is F ′-measurable, whenever ω /∈ NT ν
1

.
Now define

Fb := P′(A1 ≤ b) = λ((−∞, b])
λ(A)

, F
(1)
b (ω̄) :=

∫ b
−∞ ν

(0)
T ν

1 (ω̄)
(ω, a)λ(da)∫ +∞

−∞ ν
(0)
T ν

1 (ω̄)
(ω, a)λ(da)

.

Since infν(0) > 0 and λ({a}) = 0 for any a ∈ A, we see that, for every ω̄ ∈ �̄,
the map b 
→ F

(1)
b (ω̄) is continuous, strictly increasing, valued in (0,1), and
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limb→−∞ F
(1)
b (ω̄) = 0, limb→+∞ F

(1)
b (ω̄) = 1. Then there exists a unique Aν

1 :
�̄ →R such that

F
(1)
Aν

1(ω̄)
(ω̄) = FA1(ω

′).

We note that the process

(ω̄, t) 
→
∫ b
−∞ ν

(0)
t (ω, a)λ(da)∫ +∞

−∞ ν
(0)
t (ω, a)λ(da)

is predictable with respect to FW , hence it is also FW,μ∞ -progressive. Substituting
t with T ν

1 (ω̄), we conclude that F
(1)
b is (FW,μ∞

T ν
1

)-measurable. Since A1 is clearly

F ′-measurable and F ′ ⊂ FW,μ∞
0 ⊂ FW,μ∞

T ν
1

, A1 is also (FW,μ∞
T ν

1
)-measurable. Re-

calling the continuity of b 
→ F
(1)
b (ω̄), it is easy to conclude that Aν

1 is (FW,μ∞
T ν

1
)-

measurable. This implies that Aν
1 ∨ a is also FW,μ∞

T ν
1

-measurable. From the ar-

bitrariness of a, we deduce that Aν
1 is FW,μ∞

T ν
1

-measurable. In particular, Aν
1 is

F̄ -measurable, therefore, there exists a P-null set NAν
1
∈ F such that Aν

1(ω, ·) is
F ′-measurable, whenever ω /∈ NAν

1
.

In order to conclude the proof of the case n = 1, let us prove that (4.9) holds
for n = 1, whenever ω /∈ N1 := Ñ ∪ NT ν

1
∪ NAν

1
. We begin recalling that, for every

ω /∈ Ñ , the Fμ-compensator of μ under Pνω
is given by the right-hand side of (4.8),

so that in particular we have

Pνω

(T1 > t) = exp
(
−

∫ t

0

∫
A

ν(0)
s (ω, a)λ(da) ds

)

= exp
(−λ(A)θ

(1)
t (ω)

)
.

Notice that

P′(T ν
1 (ω, ·) > t

) = P′(θ(1)
T ν

1 (ω,·)(ω) > θ
(1)
t (ω)

)
= P′(T1 > θ

(1)
t (ω)

) = exp
(−λ(A)θ

(1)
t (ω)

)
,

for every ω /∈ NT ν
1

, where for the last equality we used the formula P′(T1 >

t) = exp(−λ(A)t). Therefore, LP′(T ν
1 (ω, ·)) = LPνω (T1), for every ω /∈ Ñ ∪NT ν

1
.

Now, recall that, for every ω /∈ Ñ , we have, P′-a.s.,

Pνω(
A1 ≤ b | σ(T1)

) =
∫ b
−∞ ν

(0)
T1

(ω, a)λ(da)∫ +∞
−∞ ν

(0)
T1

(ω, a)λ(da)
.

On the other hand, for every ω /∈ NT ν
1

∪ NAν
1
, P′-a.s.,

P′(Aν
1(ω, ·) ≤ b | σ (

T ν
1 (ω, ·))) = P′(F (1)

Aν
1(ω,·)(ω, ·) ≤ F

(1)
b (ω, ·) | σ (

T ν
1 (ω, ·)))

= P′(FA1 ≤ F
(1)
b (ω, ·) | σ (

T ν
1 (ω, ·))).
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Since A1 is independent of T1 under P′ and T ν
1 (ω, ·) is σ(T1)-measurable, it fol-

lows that A1 is also independent of T ν
1 (ω, ·). Moreover, by definition we see that

F
(1)
b (ω, ·) is σ(T ν

1 (ω, ·))-measurable. Therefore, for every ω /∈ NT ν
1

∪ NAν
1
, we

have, P′-a.s.,

P′(FA1 ≤ F
(1)
b (ω, ·) | σ (

T ν
1 (ω, ·))) = P′(FA1 ≤ a)|

a=F
(1)
b (ω,·) = F

(1)
b (ω, ·),

where we used the fact that FA1 is uniformly distributed in (0,1) under P′. As a
consequence, recalling that LP′(T ν

1 (ω, ·)) = LPνω (T1), for every ω /∈ Ñ ∪ NT ν
1

,
we deduce that LP′(T ν

1 (ω, ·),Aν
1(ω, ·)) = LPνω (T1,A1), whenever ω /∈ N1. This

concludes the proof of the base case n = 1.
Step 2: the inductive step. Fix n ≥ 1 and suppose we are given (T ν

1 ,Aν
1), . . . ,

(T ν
n ,Aν

n) satisfying points (i) and (ii) of the theorem. Suppose also that (4.9) holds
for the fixed n, whenever ω /∈ Nn, for some P-null set Nn ∈ F in place of N , with
Ñ ⊂ Nn.

Given θ(1) as in (4.10), we define recursively, for i = 1, . . . , n,

θ
(i+1)
t (ω̄) := θ

(i)
T ν

i (ω̄)∧t
(ω̄)

+ 1

λ(A)

∫ T ν
i (ω̄)∨t

T ν
i (ω̄)

∫
A

ν(i)
s

(
ω,

(
T ν

1 (ω̄),Aν
1(ω̄)

)
, . . . ,

(
T ν

i (ω̄),Aν
i (ω̄)

)
, a

)
λ(da) ds.

(4.11)

Since 0 < infν(i) ≤ supν(i) ≤ Mν , we see that, for every ω̄ ∈ �̄ and i =
1, . . . , n, the map t 
→ θ

(i+1)
t (ω̄) is continuous, strictly increasing, θ

(i+1)
0 (ω̄) = 0,

θ
(i+1)
t (ω) ≤ Mνt , and θ

(i+1)
t (ω̄) ↗ ∞ as t goes to infinity. Then there exists a

unique T ν
n+1 : �̄ →R+ such that

θ
(n+1)
T ν

n+1(ω̄)
(ω̄) = Tn+1

(
ω′).

Notice that T ν
n+1 ≥ Tn+1/M

ν . Moreover, since Tn+1 > Tn, we also have T ν
n+1 >

T ν
n . Indeed, arguing by contradiction, suppose that T ν

n+1(ω̄) ≤ T ν
n (ω̄) for some

ω̄ ∈ �̄. Then

θ
(n)
T ν

n (ω̄)(ω̄) = Tn

(
ω′) < Tn+1

(
ω′) = θ

(n+1)
T ν

n+1(ω̄)
(ω̄) = θ

(n)
T ν

n+1(ω̄)
(ω̄),

where the last equality follows from (4.11). From the monotonicity of θ(n), we get
T ν

n (ω̄) < T ν
n+1(ω̄), which yields a contradiction.

Reasoning in the same way as for T ν
1 , since T ν

n+1 is the début of ĒTn+1 :=
{(ω̄, t) ∈ �̄ × R+ : θ

(n+1)
t (ω̄) = Tn+1(ω

′)}, it is an FW,μ∞ -stopping time. In par-
ticular, T ν

n+1 is F̄ -measurable, so that there exists a P-null set NT ν
n+1

∈ F such that
T ν

n+1(ω, ·) is F ′-measurable, whenever ω /∈ NT ν
n+1

.
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Now define Fb = P′(A1 ≤ b) = λ((−∞, b])/λ(A) as before and

F
(n+1)
b (ω̄) :=

∫ b
−∞ ν

(n)
T ν

n+1(ω̄)
(ω, (T ν

1 (ω̄),Aν
1(ω̄)), . . . , (T ν

n (ω̄),Aν
n(ω̄)), a)λ(da)∫ +∞

−∞ ν
(n)
T ν

n+1(ω̄)
(ω, (T ν

1 (ω̄),A1(ω̄)), . . . , (T ν
n (ω̄),Aν

n(ω̄)), a)λ(da)
.

Since infν(n) > 0 and λ({a}) = 0 for any a ∈ A, we see that, for every ω̄ ∈ �̄,
the map b 
→ F

(n+1)
b (ω̄) is continuous, strictly increasing, valued in (0,1), and

limb→−∞ F
(n+1)
b (ω̄) = 0, limb→+∞ F

(n+1)
b (ω̄) = 1. Then, proceeding along the

same lines as for the construction of Aν
1, we see that there exists a unique FW,μ∞

T ν
n+1

-

measurable map Aν
n+1 : �̄ →R such that

F
(n+1)
Aν

n+1(ω̄)
(ω̄) = FAn+1(ω

′).

In particular, Aν
n+1 is F̄ -measurable, therefore, there exists a P-null set NAν

n+1
∈ F

such that Aν
n+1(ω, ·) is F ′-measurable, whenever ω /∈ NAν

n+1
.

In order to conclude the proof of the inductive step, let us prove that (4.9) holds
for n + 1, whenever ω /∈ Nn+1 := Nn ∪ NT ν

n+1
∪ NAν

n+1
. Set Sn+1 = Tn+1 − Tn and

recall that, for every ω /∈ Ñ , the Fμ-compensator of μ under Pνω
is given by the

right-hand side of (4.8), so that in particular we have, P′-a.s.,

Pνω
(
Sn+1 > t | σ(T1,A1, . . . , Tn,An)

)
= exp

(
−

∫ Tn+t

Tn

∫
A

ν(n)
s

(
ω, (T1,A1), . . . , (Tn,An), a

)
λ(da) ds

)
.

(4.12)

Define Sν
n+1 := T ν

n+1 − T ν
n and observe that, whenever ω /∈ Nn ∪ NT ν

n+1
, P′-a.s.,

P′(Sν
n+1(ω, ·) > t | σ (

T ν
1 (ω, ·),Aν

1(ω, ·), . . . , T ν
n (ω, ·),Aν

n(ω, ·)))
= P′(θ(n+1)

T ν
n+1(ω,·)(ω, ·) > θ

(n+1)
T ν

n (ω,·)+t (ω, ·) |
σ

(
T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·),Aν
n(ω, ·)))

= P′
(
Tn+1 >

1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫
A

ν(n)
s

(
ω,T ν

1 (ω, ·),Aν
1(ω, ·), . . . ,

T ν
n (ω, ·),Aν

n(ω, ·), a)
λ(da) ds

+ θ
(n)
T ν

n (ω,·)(ω, ·)
∣∣∣ σ

(
T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·),Aν
n(ω, ·)))

= P′
(
Sn+1 >

1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫
A

ν(n)
s (ω, . . . , a)λ(da) ds

∣∣∣
σ

(
T ν

1 (ω, ·), . . . ,Aν
n(ω, ·))).
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Recall now that Sn+1 is independent of (T1,A1, . . . , Tn,An) under P′, and note
that, by construction, (T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·),Aν
n(ω, ·)) is σ(T1,A1, . . . ,

Tn,An)-measurable. Therefore, Sn+1 is also independent of (T ν
1 (ω, ·),Aν

1(ω, ·),
. . . , T ν

n (ω, ·),Aν
n(ω, ·)). As a consequence, for every ω /∈ Nn ∪ NT ν

n+1
, P′-a.s.,

P′
(
Sn+1 >

1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫
A

ν(n)
s (ω, . . . , a)λ(da) ds

∣∣∣
σ

(
T ν

1 (ω, ·), . . . ,Aν
n(ω, ·)))

= P′(Sn+1 > r)
∣∣
r= 1

λ(A)

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫
A ν

(n)
s (ω,...,a)λ(da) ds

= exp
(
−

∫ T ν
n (ω,·)+t

T ν
n (ω,·)

∫
A

ν(n)
s

(
ω,

(
T ν

1 (ω, ·),Aν
1(ω, ·), . . . ,

T ν
n (ω, ·),Aν

n(ω, ·)), a)
λ(da) ds

)
,

where for the last equality we used the formula P′(Sn+1 > r) = exp(−λ(A)r).
Comparing with (4.12), we see that the conditional distribution of Sν

n+1 given
T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·),Aν
n(ω, ·) under P′ is the same as the conditional

distribution of Sn+1 given T1,A1, . . . , Tn,An under Pνω
. Together with the induc-

tive assumption (4.9) this proves that

LP′
(
T ν

1 (ω, ·), . . . , T ν
n (ω, ·),Aν

n(ω, ·), T ν
n+1(ω, ·))

= LPνω (T1, . . . , Tn,An,Tn+1),
(4.13)

for every ω /∈ Nn ∪ NT ν
n+1

. Now, recall that, for every ω /∈ Ñ , P′-a.s.,

Pνω(
An+1 ≤ b|σ(T1, . . . ,An,Tn+1)

)

=
∫ b
−∞ ν

(n)
Tn+1

(ω, (T1,A1), . . . , (Tn,An), a)λ(da)∫ +∞
−∞ ν

(n)
Tn+1

(ω, (T1,A1), . . . , (Tn,An), a)λ(da)
.

(4.14)

On the other hand, for every ω /∈ Nn+1, we have, P′-a.s.,

P′(Aν
n+1(ω, ·) ≤ b | σ (

T ν
1 (ω, ·), . . . ,Aν

n(ω, ·), T ν
n+1(ω, ·)))

= P′(F (n+1)
Aν

n+1(ω,·)(ω, ·) ≤ F
(n+1)
b (ω, ·) |

σ
(
T ν

1 (ω, ·), . . . ,Aν
n(ω, ·), T ν

n+1(ω, ·)))
= P′(FAn+1 ≤ F

(n+1)
b (ω, ·) | σ (

T ν
1 (ω, ·), . . . ,Aν

n(ω, ·), T ν
n+1(ω, ·))).

Since An+1 is independent of (T1, . . . ,An,Tn+1) under P′ and (T ν
1 (ω, ·), . . . ,

Aν
n(ω, ·), T ν

n+1(ω, ·)) is σ(T1, . . . ,An,Tn+1)-measurable, it follows that An+1
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is also independent of (T ν
1 (ω, ·), . . . ,Aν

n(ω, ·), T ν
n+1(ω, ·)). Moreover, by defini-

tion we see that F
(n+1)
b (ω, ·) is σ(T ν

1 (ω, ·), . . . ,Aν
n(ω, ·), T ν

n+1(ω, ·))-measurable.
Therefore, for every ω /∈ Nn+1, we have P′-a.s.,

P′(FAn+1 ≤ F
(n+1)
b (ω, ·) | σ (

T ν
1 (ω, ·), . . . ,Aν

n(ω, ·), T ν
n+1(ω, ·)))

= P′(FAn+1 ≤ a)|
a=F

(n+1)
b (ω,·) = F

(n+1)
b (ω, ·),

where we used the fact that FAn+1 is uniformly distributed in (0,1) under P′.
Comparing with (4.14), we see that the conditional distribution of Aν

n+1 given
T ν

1 (ω, ·),Aν
1(ω, ·), . . . , T ν

n (ω, ·), Aν
n(ω, ·), T ν

n+1(ω, ·) under P′ is the same as the
conditional distribution of An+1 given T1,A1, . . . , Tn,An,Tn+1 under Pνω

. There-
fore, by (4.13) we deduce that (4.9) holds for n + 1, whenever ω /∈ Nn+1, which
concludes the proof of the inductive step and also the proof of Case I.

Case II: Ac �= ∅. Let π : R → A be the canonical projection (4.5) or (4.6)
according whether Anc = ∅ or Anc �= ∅. The idea of the proof is to construct a
random sequence with values in (0,∞)×R using the Case I previously addressed,
and obtain the required sequence (T ν

n ,Aν
n)n≥1 by projecting the second component

onto A. The detailed construction and proof is presented below in the case Anc =
∅, the other one being simpler and entirely analogous.

Given ν ∈ Vinf>0, define ν̄ = ν̄t (ω,ω′, r) : �̄ ×R+ ×R → (0,∞) by

ν̄t

(
ω,ω′, r

) := νt

(
ω,ω′, π(r)

)
.

By a monotone class argument, we see that ν̄ is P(FW,μ′
) ⊗ B(R)-measurable.

Then we can perform the construction presented in step I, with R, λ′, ν̄, Rn, μ′,
FW,μ′∞ = (FW,μ′∞

t )t≥0 instead of A, λ, ν, An, μ, FW,μ∞ = (FW,μ∞
t )t≥0, respec-

tively. This way we obtain a P-null set N ∈ F and a sequence (T̄ ν̄
n , R̄ν̄

n)n≥1 with
values in (0,∞) × R such that T̄ ν̄

n < T̄ ν̄
n+1 ↗ ∞, T̄ ν̄

n is an FW,μ̄∞ -stopping time

and R̄ν̄
n is FW,μ̄∞

T̄ ν̄
n

-measurable, and

(4.15) LP′
((

T̄ ν̄
n (ω, ·), R̄ν̄

n(ω, ·))n≥1

) = LPν̄ω
(
(Tn,Rn)n≥1

)
for every ω /∈ N . We define the required sequence (T ν

n ,Aν
n)n≥1 setting

T ν
n := T̄ ν̄

n , Aν
n := π

(
R̄ν̄

n

)
.

Clearly, conditions (i)–(ii)–(iii) of the theorem hold true and, recalling the notation
An = π(Rn), from (4.15) it follows that

(4.16) LP′
((

T ν
n (ω, ·),Aν

n(ω, ·))n≥1

) = LPν̄ω
(
(Tn,An)n≥1

)
.
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Next, note that, by the definition of ν̄,∫
R

(
1 − ν̄t (r)

)
λ′(dr) =

∫
(0,∞)

(
1 − ν̄t (r)

)
λ′(dr) + ∑

j∈Ac

∫
Ij

(
1 − ν̄t (r)

)
λ′(dr)

=
∫
Anc

(
1 − νt (s)

)
λ(da) + ∑

j∈Ac

(
1 − νt (j)

)
λ
({j})

=
∫
A

(
1 − νs(a)

)
λ(da)

and ν̄Tn(Rn) = νTn(π(Rn)) = νTn(An), so that

κν̄
t = exp

(∫ t

0

∫
R

(
1 − ν̄s(r)

)
λ′(dr) ds

) ∏
Tn≤t

ν̄Tn(Rn)

= exp
(∫ t

0

∫
A

(
1 − νs(a)

)
λ(da) ds

) ∏
Tn≤t

νTn(An)

= κν
t .

Therefore, we have for ω /∈ N on every σ -algebra Fμ
t ,

Pν̄ω(
dω′) = κν̄

t

(
ω,ω′)P′(dω′) = κν

t

(
ω,ω′)P′(dω′) = Pνω(

dω′)
and property (iv) of the theorem follows from (4.16). The proof is completed. �

We can now prove the main result of this subsection and conclude the proof of
the inequality υR

0 ≤ υ0.

PROPOSITION 4.2. For every ν ∈ Vinf>0, there exists ᾱν ∈ AW,μ′
such that

(4.17) LPν (x0,B, I ) = LP̄

(
x0,B, ᾱν)

.

In particular, V and W are standard Wiener processes, V , W , x0 are all indepen-
dent under Pν , and we have

(4.18) LPν (X, I ) = LP̄

(
Xᾱν

, ᾱν)
, JR(ν) = J̄

(
ᾱν)

.

Finally, υR
0 := supν∈V JR(ν) ≤ sup

ᾱ∈AW,μ′ J̄ (ᾱ) = supα∈AW J (α) =: υ0.

PROOF. Suppose that (4.17) holds. Then, from equation (2.5) and Assump-
tion (A1) it is well-known that the first equality in (4.18) holds as well, and this
implies the second equality. From the arbitrariness of ν ∈ Vinf>0, we deduce that
supν∈Vinf>0

JR(ν) ≤ sup
ᾱ∈AW,μ′ J̄ (ᾱ). Since supν∈Vinf>0

JR(ν) = supν∈V JR(ν)

by (3.9), we conclude that supν∈V JR(ν) ≤ sup
ᾱ∈AW,μ′ J̄ (ᾱ) = supα∈AW J (α),

where the last equality follows from Lemma 4.1.
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Let us now prove (4.17). Fix ν ∈ Vinf>0 and consider the process ᾱν given by
Lemma 4.3. In order to prove (4.17), we have to show that

(4.19) Ē
[
κν
T χ(x0)ψ(B)φ(I )

] = Ē
[
χ(x0)ψ(B)φ

(
ᾱν)]

,

for any χ ∈ Bb(R
n) (the space of bounded Borel measurable real functions on Rn),

for any ψ ∈ Bb(Cm+d) (the space of bounded Borel measurable real functions on
Cm+d , which denotes the space of continuous paths from [0, T ] to Rm+d endowed
with the supremum norm) and any φ ∈ Bb(DA) (the space of bounded Borel mea-
surable real functions on DA, which denotes the space of càdlàg paths from [0, T ]
to A endowed with the supremum norm). By the Fubini theorem, (4.19) can be
rewritten as∫

�
χ

(
x0(ω)

)
ψ

(
B(ω)

)(∫
�′

κν
T

(
ω,ω′)φ(

I
(
ω′))P′(dω′))P(dω)

=
∫
�

χ
(
x0(ω)

)
ψ

(
B(ω)

)(∫
�′

φ
(
ᾱν(

ω,ω′))P′(dω′))P(dω).

Let Ñ ∈ F be as in Lemma 4.2. Then we have to prove that E′[κν
T (ω, ·)φ(I )] =

E′[φ(ᾱν(ω, ·))], whenever ω /∈ Ñ , or, equivalently by definition of Pνω
:

Eνω[
φ(I)

] = E′[φ(
ᾱν(ω, ·))] whenever ω /∈ Ñ .

This is a direct consequence of the last statement of Lemma 4.3. �

4.2. Proof of the inequality υ0 ≤ υR
0 . In this proof, we borrow some con-

structions from Proposition 4.1 in [15], but we need to obtain improved results and
we simplify considerably some arguments.

Suppose we are given a setting (�,F,P,F,V ,W,x0) for the optimal control
problem with partial observation, satisfying the conditions in Section 2.2, and con-
sider the controlled equation (2.5) and the gain (2.6). We fix an FW -progressive
process α with values in A. We will show how to construct a sequence of settings
(�̂, F̂, P̂k, V̂ , Ŵ , μ̂k, x̂0)k for the randomized control problem of Section 3.1, and
a sequence (ν̂k)k of corresponding admissible controls (both sequences depending
on α), such that for the corresponding gains, defined by (3.7), we have

(4.20) JR(
ν̂k) → J (α) as k → ∞.

Admitting for a moment that this has been done, the proof is easily concluded by
the following arguments. By (4.20), we can find, for any ε > 0, some k such that
JR(ν̂k) > J (α) − ε. Since JR(ν̂k) is a gain of a randomized control problem, it
can not exceed the value υR

0 defined in (3.8) which, by Proposition 3.1, does not
depend on ε nor on α. It follows that

υR
0 > J(α) − ε

and by the arbitrariness of ε and α, we obtain the required inequality υR
0 ≥ υ0.
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In order to construct the sequences (�̂, F̂, P̂k, V̂ , Ŵ , μ̂k, x̂0)k and (ν̂k)k satisfy-
ing (4.20), we apply Proposition 4.1 above. Then, for any integer k ≥ 1, there exists
a marked point process (Ŝk

n, η̂k
n)n≥1 defined in (�̂, F̂,Q) satisfying the following

conditions:

1. Setting Ŝk
0 = 0, η̂k

0 = a0, Î k
t = ∑

n≥0 η̂k
n1[Ŝk

n,Ŝk
n+1)

(t), we have ρ̃(Î k, α̂) <

1/k.
2. Denote μ̂k = ∑

n≥1 δ
(Ŝk

n,η̂k
n)

the random measure associated to (Ŝk
n, η̂k

n)n≥1

and Fμ̂k = (F μ̂k
t )t≥0 the natural filtration of μ̂k ; then the compensator of μ̂k un-

der Q with respect to the filtration (F Ŵ
t ∨ F μ̂k

t )t≥0 is absolutely continuous with
respect to λ(da) dt and it can be written in the form

ν̂k
t (ω̂, a)λ(da) dt

for some nonnegative P(FŴ ,μ̂) ⊗B(A)-measurable function ν̂k satisfying

inf
�̂×[0,T ]×A

ν̂k > 0 and sup
�̂×[0,T ]×A

ν̂k < ∞.

We note that μ̂k (and so also Î k and ν̂k) depend on α as well, but we do not make it
explicit in the notation. Let us now consider the completion of the probability space
(�̂, F̂,Q), that will be denoted by the same symbol for simplicity of notation,
and let N denote the family of Q-null sets of the completion. Then the filtration

(F Ŵ
t ∨F μ̂k

t ∨N )t≥0 coincides with the filtration previously denoted by FŴ ,μ̂k =
(F Ŵ ,μ̂k

t )t≥0 [compare with formula (3.3) in Section 3.1]. It is easy to see that

ν̂k
t (ω̂, a)λ(da) dt is the compensator of μ̂k with respect to FŴ ,μ̂k and the extended

probability Q as well.
Using the Girsanov theorem for point processes (see, e.g., [19]), we next con-

struct an equivalent probability under which μ̂k becomes a Poisson random mea-

sure with intensity λ. Since ν̂k is a strictly positive P(FŴ ,μ̂k ) ⊗B(A)-measurable
random field with bounded inverse, the Doléans exponential process

Mk
t := exp

(∫ t

0

∫
A

(
1 − ν̂k

s (a)−1)
ν̂k
t (a)λ(da) ds

)

× ∏
Ŝk

n≤t

ν̂k

Ŝk
n

(
η̂k

n

)−1
, t ∈ [0, T ],(4.21)

is a strictly positive martingale (with respect to FŴ ,μ̂k and Q), and we can define
an equivalent probability P̂k on the space (�̂, F̂) setting P̂k(dω̂) = Mk

T (ω̂)Q(dω̂).
The expectation under P̂k will be denoted Êk . By the Girsanov theorem, the re-

striction of μ̂k to (0, T ] × A has (P̂k,F
Ŵ ,μ̂k )-compensator λ(da) dt , so that in

particular it is a Poisson random measure. It can also be proved by standard argu-
ments (see, e.g., [15], p. 2155, for detailed verifications in a similar framework)
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that B̂ is a (P̂k,F
Ŵ ,μ̂k )-Wiener process and that B̂ and μ̂k are independent under

P̂k . We have thus constructed a setting (�̂, F̂, P̂k, V̂ , Ŵ , μ̂k, x̂0) for a randomized
control problem as in Section 3.1. Since ν̂k is a bounded, strictly positive and
P(FW,μ̂)⊗B(A)-measurable random field it belongs to the class V̂k of admissible
controls for the randomized control problem and we now proceed to evaluating its
gain JR(ν̂k) and to comparing it with J (α). Our aim is to show that, as a conse-
quence of the fact that ρ̃(Î k, α̂) < 1/k, we have JR(ν̂k) → J (α) as k → ∞.

We introduce the Doléans exponential process κν̂k
corresponding to ν̂k [com-

pare formula (3.5)]:

(4.22) κν̂k

t = exp
(∫ t

0

∫
A

(
1 − ν̂k

s (a)
)
λ(da) ds

) ∏
Ŝk

n≤t

νk

Ŝk
n

(
η̂k

n

)
, t ∈ [0, T ],

we define the probability dP̂ν̂k

k = κν̂k

T dP̂k and we obtain the gain

JR(ν̂) = Êν̂k
[∫ T

0
ft

(
X̂k, Î k)dt + g

(
X̂k)],

where X̂k is the solution to the equation

(4.23) dX̂k
t = bt

(
X̂k, Î k)dt + σt

(
X̂k, Î k)dB̂t , X̂k

0 = x̂0.

However, comparing (4.21) and (4.22) shows that κν̂k

T Mk
T ≡ 1, so that the Girsanov

transformation P̂k 
→ P̂ν̂k

k is the inverse to the transformation Q 
→ P̂k made above,
and changes back the probability P̂k into Q considered above. Therefore, we have
P̂ν̂k

k = Q and also

(4.24) JR(
ν̂k) = EQ

[∫ T

0
ft

(
X̂k, Î k)dt + g

(
X̂k)].

On the other hand, the gain J (α) of the initial control problem with partial obser-
vation was defined in (2.6) in terms of the solution Xα to the controlled equation
(2.5). Denoting X̂α the extension of Xα to �̂, it is easy to verify that it is the
solution to

(4.25) dX̂α
t = bt

(
X̂α, α̂

)
dt + σt

(
X̂α, α̂

)
dB̂t , X̂α

0 = x̂0,

and that

(4.26) J (α) = EQ

[∫ T

0
ft

(
X̂α, α̂

)
dt + g

(
X̂α)]

.

Equations (4.25) and (4.23) are considered in the same probability space (�̂,

F̂,Q). In (4.23), we find a solution adapted to the filtration Gk := Fx̂0,B̂,μ̂k [defined

as in (3.3)] and in (4.25) we find a solution adapted to the filtration G0 := Fx̂0,B̂
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generated by x̂0 and B̂ (since α was FW -progressive and so α̂ is progressive with

respect to FŴ ⊂ Fx̂0,B̂ ).
In order to conclude, we need the following stability lemma, where the continu-

ity condition (A1)(iii) plays a role.

LEMMA 4.4. Given a probability space (�̂, F̂,Q) with filtrations Gk =
(Gk

t )t≥0 (k ≥ 0) consider the equations

dY k
t = bt

(
Y k, γ k)dt + σt

(
Y k, γ k)dβt , Ŷ k

0 = y0,

where β is a Wiener process with respect to each Gk , EQ|y0|p < ∞, y0 is Gk
t -

measurable and γ k is Gk-progressive for every k. If ρ̃(γ k, γ 0) → 0 as k → ∞,
then

EQ sup
t∈[0,T ]

∣∣Y k
t − Y 0

t

∣∣p → 0,

EQ

[∫ T

0
ft

(
Y k, γ k)dt + g

(
Y k)] → EQ

[∫ T

0
ft

(
Y 0, γ 0)

dt + g
(
Y 0)]

.

PROOF. This stability result for control problems was first proved in [25] in
the standard diffusion case. The extension to the non-Markovian case presented
in [15], Lemma 4.1 and Remark 4.1, also holds in our case with the same proof,
using the continuity assumption (A1)(iii) and the Lipschitz and growth conditions
(2.2)–(2.4). �

Applying the lemma to β = B̂ , Y k = X̂k , γ k = Î k (for k ≥ 1) and Y 0 = X̂α ,
γ 0 = α̂, and recalling that ρ̃(Î k, α̂) < 1/k → 0 we conclude by (4.24), (4.26) that
JR(ν̂k) → J (α) as k → ∞. Therefore, relation (4.20) is satisfied for this choice of
the sequence (ν̂k)k and for the corresponding settings (�̂, F̂, P̂k, V̂ , Ŵ , μ̂k, x̂0)k .
This ends the proof of the inequality υ0 ≤ υR

0 .

5. The randomized equation. In this section, the assumptions (A1) and (A2)
are assumed to hold. We will show how the randomized formulation of the control
problem leads to a randomized equation in terms of a backward SDE. We choose a
setting for the randomized control problem (3.8) as in Remark 3.2, that is, a product
extension (�̄, F̄, P̄,V ,W,μ,x0) of the setting (�,F,P,V ,W,x0) for the initial
control problem (2.7). In view of Proposition 3.1, entirely analogous results hold
true in any setting (�̂, F̂, P̂, V̂ , Ŵ , μ̂, x̂0) for the randomized control problem as
described in Section 3.1.

5.1. The separated randomized control problem. We first consider the (path-
dependent) filtering of the randomized process X solution to (3.2), which consists
in the process of conditional distributions ρt of X·∧t given FW,μ

t . More precisely,
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let P(Cn) be the space of probability measures on Cn and let Bb(Cn) denote the
space of bounded Borel measurable real functions on Cn. We define ρ = (ρt )0≤t≤T

as an FW,μ-optional process valued in P(Cn) satisfying, for every ϕ ∈ Bb(Cn),
[we use the notation ρt (ϕ) = ∫

Cn
ϕ(x)ρt (dx)]

(5.1) ρt (ϕ) = Ē
[
ϕ(X·∧t ) | FW,μ

t

]
, t ∈ [0, T ], P̄-a.s.

The process t 
→ Ē[ϕ(X·∧t ) | FW,μ
t ] is understood as an optional projection. The

existence of such a process ρ follows, for example, from Theorem 2.24 in [1].
While (5.1) is defined for bounded ϕ, since ρt is constructed as a P(Cn)-valued
process, relation (5.1) holds for unbounded ϕ once the conditional expectation is
well-defined, that is, ρt (|ϕ|) < ∞ for all t ∈ [0, T ], P̄-a.s. (see, e.g., Remark 2.27
in [1]).

We can now express the randomized gain functional in terms of the FW,μ-
optional processes ρ and I .

LEMMA 5.1. For any ν ∈ V , we have

JR(ν) = Eν

[∫ T

0
ρt

(
ft (·, I )

)
dt + ρT (g)

]

and, more generally,

Eν

[∫ T

t
fs(X, I) ds + g(X)

∣∣∣ FW,μ
t

]

= Eν

[∫ T

t
ρs

(
fs(·, I )

)
ds + ρT (g)

∣∣∣ FW,μ
t

]
,

(5.2)

for all 0 ≤ t ≤ T .

PROOF. The result follows from the Bayes formula and the (P̄,FW,μ)-
martingale property of the density process κν . �

The above Lemma 5.1 together with Theorem 3.1 proves that the randomized
control problem, and thus the primal control problem under partial observation,
can be written in a separated form involving FW,μ-optional state processes:

(5.3) υ0 = sup
ν∈V

Eν

[∫ T

0
ρt

(
ft (·, I )

)
dt + ρT (g)

]
.

5.2. BSDE representation. The purpose of this paragraph is to show that the
separated randomized control problem, described by the right-hand side of (5.3),
admits a dual representation in terms of a constrained backward SDE, which then
characterizes both the primal control problem and the randomized control problem
(as well as the separated randomized control problem). We shall refer to it as the
randomized equation.
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On the space (�̄, F̄, P̄) equipped with the filtration FW,μ, let us consider the
following constrained BSDE on the time interval [0, T ]:

(5.4)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = ρT (g) +
∫ T

t
ρs

(
fs(·, I )

)
ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
A

Us(a)μ(ds da),

Ut (a) ≤ 0.

We look for a (minimal) solution to (5.4) in the sense of the following definition.

DEFINITION 5.1. A quadruple (Yt ,Zt ,Ut (a),Kt) (t ∈ [0, T ], a ∈ A) is called
a solution to the BSDE (5.4) if:

1. Y ∈ S2(FW,μ), the set of real-valued càdlàg FW,μ-adapted processes satis-
fying ‖Y‖2

S2 := Ē[sup0≤t≤T |Yt |2] < ∞;

2. Z ∈ L2
W(FW,μ), the set of FW,μ-predictable processes with values in Rd

satisfying ‖Z‖2
L2

W

:= Ē[∫ T
0 |Zt |2 dt] < ∞;

3. U ∈ L2
μ̃
(FW,μ), the set of real-valued P(FW,μ) ⊗ B(A)-measurable pro-

cesses satisfying ‖U‖2
L2

μ̃

:= Ē[∫ T
0

∫
A |Ut(a)|2λ(da) dt] < ∞;

4. K ∈ K2(FW,μ), the subset of S2(FW,μ) consisting of FW,μ-predictable non-
decreasing process with K0 = 0;

5. P̄-a.s. the equality in (5.4) holds for every t ∈ [0, T ] and the constraint
Ut(a) ≤ 0 is understood to hold P̄(dω̄)λ(da) dt-almost everywhere.

A minimal solution (Y,Z,U,K) is a solution to (5.4) such that for any other solu-
tion (Y ′,Z′,U ′,K ′), we have P̄-a.s., Yt ≤ Y ′

t for all t ∈ [0, T ].
We now state the main result of this section.

THEOREM 5.1. There exists a unique minimal solution (Y,Z,U,K) ∈
S2(FW,μ) × L2

W(FW,μ) × L2
μ̃
(FW,μ) × K2(FW,μ) to the randomized equation

(5.4). Moreover, we have Y0 = supν∈V JR(ν), and more generally,

(5.5) Yt = ess sup
ν∈V

Eν

[∫ T

t
ρs

(
fs(·, I )

)
ds + ρT (g)

∣∣∣ FW,μ
t

]
.

REMARK 5.1. Combining Theorems 3.1 and 5.1, we deduce the BSDE rep-
resentation for the primal problem

(5.6) Y0 = sup
α∈AW

J (α).

We refer sometimes to Y0 = supν∈V JR(ν) as duality relation, since Y0 coincides
with the infimum inf{Y ′

0 : (Y ′,Z′,U ′,K ′) ∈ S2(FW,μ)×L2
W(FW,μ)×Lμ̃(FW,μ)×

K2(FW,μ) solution to (5.4)}.
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REMARK 5.2. In the Markovian setting studied in our companion paper [4],
in addition to the probabilistic representation formula of Theorem 5.1, we are also
able to find an optimal control when the value function is regular enough; see the
verification Theorem 5.1 in [4].

PROOF OF THEOREM 5.1. Let us introduce for every n ∈ N the following
penalized BSDE on [0, T ]:

Yn
t = ρT (g) +

∫ T

t
ρs

(
fs(·, I )

)
ds + Kn

T − Kn
t

−
∫ T

t
Zn

s dWs −
∫ T

t

∫
A

Un
s (a)μ(ds da),

(5.7)

where

Kn
t = n

∫ t

0

∫
A

(
Un

s (a)
)+

λ(da) ds.

Set ξ := ρT (g) and Ft := ρt(ft (·, I )). By (2.4) and (3.6), we see that

Ē|ξ |2 < ∞, Ē

[∫ T

0
|Ft |2 dt

]
< ∞

[here we use the assumption that p ≥ 2r in (A1)(v)]. Then, from Lemma 2.4 in
[33], it follows that, for every n ∈ N, there exists a unique solution (Y n,Zn,Un) ∈
S2(FW,μ) × L2

W(FW,μ) × L2
μ̃
(FW,μ) to the above penalized BSDE.

Now, proceeding along the same lines as in the proof of Lemma 4.8 in [15], we
obtain the formula

(5.8) Yn
t = ess sup

ν∈Vn

Eν

[∫ T

t
ρs

(
fs(·, I )

)
ds + ρT (g)

∣∣∣ FW,μ
t

]
,

where Vn = {ν ∈ V : ν takes values in (0, n]}. By (5.2), together with estimates
(2.4) and (3.6), we deduce that

(5.9) sup
n

Y n
t < ∞ for all 0 ≤ t ≤ T .

Notice that equation (5.4) can be written as follows:

(5.10)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yt = ρT (g) +
∫ T

t

(
ρs

(
fs(·, I )

) −
∫
A

Us(a)λ(da)

)
ds + KT − Kt

−
∫ T

t
Zs dWs −

∫ T

t

∫
A

Us(a)μ̃(ds da),

Ut (a) ≤ 0.

Then we see that the above equation is a particular case of a backward stochas-
tic differential equation studied in a general non-Markovian framework in [24].
In particular, existence and uniqueness of the minimal solution (Y,Z,U,K) to
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equation (5.10) [or, equivalently, to equation (5.4)] follow from Theorem 2.1 in
[24]. Indeed, Assumption (H0) in [24] is clearly satisfied. Concerning Assumption
(H1), this is only used in Lemma 2.2 of [24] to prove that the sequence (Y n)n
satisfies (5.9), a property that in our setting follows directly from (2.4) and (3.6).

Finally, from Theorem 2.1 in [24] we also have that Yn
t (ω̄) converges increas-

ingly to Yt (ω̄) as n → ∞, P̄(dω̄)-a.s. Since V = ⋃
n Vn, letting n → ∞ in (5.8) we

obtain (5.5). �

We end this section proving the following generalization of formula (5.5).

THEOREM 5.2 (Randomized dynamic programming principle). For all 0 ≤
t ≤ T , we have

Yt = ess sup
ν∈V

ess sup
τ∈T

Eν

[∫ τ

t
ρr

(
fr(·, I )

)
dr + Yτ

∣∣∣ FW,μ
t

]

= ess sup
ν∈V

ess inf
τ∈T Eν

[∫ τ

t
ρr

(
fr(·, I )

)
dr + Yτ

∣∣∣ FW,μ
t

]
,

(5.11)

where T denotes the class of [0, T ]-valued FW,μ-stopping times.

PROOF. For every n, proceeding along the same lines as in the proof of
Lemma 4.8 in [15], we obtain

Yn
t = Eν

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

+
∫ τ

t

∫
A

[
n
(
Un

r (a)
)+ − νr(a)Un

r (a)
]
λ(da) dr

∣∣∣ FW,μ
t

]

≥ Eν

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
for all ν ∈ Vn, τ ∈ T .

(5.12)

Recalling that Y ≥ Yn, we find

Yt ≥ Eν

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
for all ν ∈ Vn, τ ∈ T .

Letting n → ∞, and recalling that Vn ⊂ V , we end up with

Yt ≥ Eν

[
Yτ +

∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
for all ν ∈ V, τ ∈ T .

The above inequality yields

Yt ≥ ess sup
ν∈V

ess sup
τ∈T

Eν

[∫ τ

t
ρr

(
fr(·, I )

)
dr + Yτ

∣∣∣ FW,μ
t

]
,

Yt ≥ ess sup
ν∈V

ess inf
τ∈T Eν

[∫ τ

t
ρr

(
fr(·, I )

)
dr + Yτ

∣∣∣ FW,μ
t

]
.



1676 BANDINI, COSSO, FUHRMAN AND PHAM

It remains to prove the reverse inequalities. As in the proof of Lemma 4.8 in [15],
for every n and ε ∈ (0,1), we define νε,n

r (a) = n1{Un
r (a)≥0} + ε1{−1<Un

r (a)<0} −
ε(Un

r (a))−11{Un
r (a)≤1}. Then νε,n ∈ Vn and

n
(
Un

r (a)
)+ − νε,n

r (a)Un
r (a) ≤ ε for all r ∈ [0, T ].

Therefore, from equality (5.12), we find

Yn
t = Eνε,n

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

+
∫ τ

t

∫
A

[
n
(
Un

r (a)
)+ − νr(a)Un

r (a)
]
λ(da) dr

∣∣∣ FW,μ
t

]

≤ Eνε,n
[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
+ ελ(A)T for all τ ∈ T .

Then we obtain the two following inequalities:

Yn
t ≤ ess sup

τ∈T
Eνε,n

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
+ ελ(A)T ,

Y n
t ≤ ess inf

τ∈T Eνε,n
[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
+ ελ(A)T .

As a consequence, we get (we continue the proof with “ess inf” over τ ∈ T , since
the proof with “ess sup” can be done proceeding along the same lines)

Yn
t ≤ ess sup

ν∈Vn

ess inf
τ∈T Eν

[
Yn

τ +
∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
+ ελ(A)T .

Using the arbitrariness of ε, and recalling that Vn ⊂ V and Yn ≤ Y , we obtain

Yn
t ≤ ess sup

ν∈V
ess inf

τ∈T Eν

[
Yτ +

∫ τ

t
ρr

(
fr(·, I )

)
dr

∣∣∣ FW,μ
t

]
.

The claim follows letting n → ∞. �
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