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Arrhythmogenic cardiomyopathy: what blood can
reveal?
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Blood, serum and plasma represent accessible sources of data about
physiological and pathologic status. In arrhythmogenic cardiomy-
opathy (ACM), circulating nucleated cells are routinely used for
detection of germinal genetic mutations. In addition, different bio-
markers have been proposed for diagnostic purposes and for moni-
toring disease progression, including inflammatory cytokines,
markers of myocardial dysfunction and damage, and microRNAs.
This review summarizes the current information that can be
retrieved from the blood of ACM patients and considers the future
prospects. Improvements in current knowledge of circulating
factors may provide noninvasive means to simplify and improve
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the diagnosis, prognosis prediction, and management of ACM
patients.
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Introduction
Blood is an easily accessible tissue, widely exploited in med-
icine to obtain clinical information at different levels. It
serves as a window to monitor health or disease states
because of its complex and “flexible” composition. Indeed,
the whole set of molecules present in the blood originates
from all body tissues, thus reflecting their fitness. In partic-
ular, several blood-based tests are routinely used to diagnose
a wide number of pathologies, to understand their possible
causes, to monitor the state of progression/remission and out-
comes after treatment, and to help the choice of appropriate
specific therapies as tools for theranostics.

Thus, research is continuously making remarkable efforts
to improve the quantity and quality of information retrieved
from this tissue. Blood complexity can be unraveled using
different approaches, either omics- or hypothesis-driven,
the latter usually originating from known molecular mecha-
nisms involved in a specific disease.
Biomarkers are defined as disease indicators that can be
measured accurately and reproducibly.1 In particular, circu-
lating biomarkers have the unquestionable advantage of
being noninvasive and usually inexpensive. Despite these ad-
vantages, the number of clinical-grade biomarkers is limited,
and the validation path of biomarkers possessing high sensi-
tivity and/or specificity for a defined disease is challenging.
This issue may be overcome by using a combination of
different molecules.

In this review, we applied a structured literature search
(Supplementary Methods and Supplemental Figure S1) to
summarize the most up-to-date information retrievable
from blood samples with regard to arrhythmogenic cardio-
myopathy (ACM) patients (Figure 1). Because of their ge-
netic basis, germinal mutations are routinely assessed in
blood cells. However, much more information can be poten-
tially unraveled. ACM inflammatory components can be
studied through circulating lymphocytes–monocytes and cy-
tokines, as well as possible systemic concomitant infective
agents. Cardiac damage can be monitored by detecting
released factors as well as circulatingmicroRNAs (miRNAs).
Sex prevalence is reflected in blood hormonal modulation.
To date, no validated circulating biomarkers are available
for ACM, and the few new candidates that have been pro-
posed mainly provide indications about disease progression
rather than onset. We speculate that advances beyond the
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Figure 1 Graphic representation of a blood vessel and circulating cells and molecules that have been studied in blood, plasma, and serum from patients with
arrhythmogenic cardiomyopathy. The main topics addressed in this review are highlighted in the boxes.
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current knowledge will translate into future extensive exploi-
tation of noninvasive blood tests in ACM.
ACM
ACM is a genetic and relatively rare cardiac disease character-
ized by ventricular fibrofatty substitution and arrhythmias.2 In
the majority of cases, involvement of the right ventricle (RV)
is predominant, with a lesser representation of left dominant
and biventricular forms.3

It mostly affects youngmen, particularly athletes, as intense
physical exercise worsens the disease phenotype.4 Sustained
myocardium workload provokes a training-induced heart re-
modeling that, despite being generally considered as physio-
logical, can induce adverse alterations in predisposed subjects.

ACM onset usually occurs during adolescence and early
adulthood.4 In many cases, nonspecific symptoms, such as
syncope and palpitations, arise before the manifestation of
overt myocardial dysfunction. Even in the context of well-
preserved morphology, histology, and ventricular function,
ACM patients may die of sudden cardiac death.5 As the dis-
ease progresses, the myocardial damage becomes evident,
and structural anomalies such as regional wall-motion abnor-
malities, increased myocardial trabeculation, ventricular dila-
tion, and dysfunction appear. At the histologic level,
cardiomyocyte death, inflammation, and fibro-adipose sub-
stitution are observed.6

Currently there is no single gold standard diagnostic test
for ACM. The diagnosis is based on a scoring system of
“major” and “minor” criteria that include structural and
electrocardiographic alterations, tissue characterization,
previous arrhythmic events, and family history. In selected
cases, a genetic test is recommended.7
Genetics
Genetic tests are increasingly performed in the diagnostic
process for inherited cardiovascular diseases. The opportu-
nity to confirm diagnostic suspects or to identify at-risk rela-
tives using blood samples is widely used in ACM, allowing
etiologically based differential diagnosis if clinical presenta-
tion is not specific.8 Since 2000, molecular genetic analysis
led to the discovery of many genes associated with ACM.
To date, it is known that ACM has mostly a familial occur-
rence with an autosomal dominant inheritance.3 Recessive
forms are also present, namely, Naxos and Carvajal syn-
dromes, and are associated with a cutaneous phenotype.9

The most frequently mutated genes encode for desmo-
somal proteins, but mutations in nondesmosomal genes are
also known.3 Desmosomes are intercellular junctions that
provide cell-to-cell adhesion and influence intracellular trans-
duction signals, through the Wnt pathway, which is impaired
in ACM patients.10 These mutations lead to electrical and
mechanical dysfunction of the myocardium. For a list of
genes associated with ACM, see Supplemental Table S1.

Genetic testing is initially recommended in 1 proband per
family.11 For each screened individual, cardiomyopathy gene
panels could be used when clinical features overlap with
other cardiac diseases or, when the phenotype is indisputable,
a selected ACM-specific panel could be used.11When a caus-
ative mutation is identified, predictive genetic testing is
applied to ascertain the presence of the disease in apparently
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healthy relatives, in order to adopt preventive/follow-up stra-
tegies in individuals at risk.

Unfortunately, the genetic cause remains unknown in
approximately 50% of probands with routine screening.12

The success rate of genotyping could depend on several vari-
ables, such as cohort ethnicity, proband selection criteria, and
the standards applied to understand the pathogenicity of the
detected variants. Negative results could be due to the use
of techniques that do not allow the detection of copy number
variations.13,14 Moreover, phenotype misclassification could
represent a considerable limit of this analysis.15 Furthermore,
the presence of mutations in genes not yet associated with
ACM could be an additional reason for low efficiency.12

Notably, compound or digenic heterozygosity is present
in up to 18% of ACM patients, indicating that more than 1
pathogenic allele may be involved.16,17 Even if the value of
genetics in risk stratification is poorly understood, multiple
mutations18 and, possibly, mutations in the PKP2 gene19,20

are predictors of more severe prognoses.
Because of this variability, even after genetic tests, ACM

diagnosis and risk stratification are still challenging. Recently,
different variants previously linked to ACM have been reclas-
sified as variants of uncertain pathogenicity because they have
been found also in large screenings of healthy subjects (see
the ARVD/C Genetic Variants Database at http://www.
arvcdatabase.info for indications on variant pathoge-
nicity).21,22 The possible false-positive rate seems to be partic-
ularly high.23 However, when a causal mutation is not
detected, the complete exclusion of the disease is not possible.

Genetic and phenotypic overlap between ACM and other
types of cardiomyopathy have been reported, particularly
with dilated cardiomyopathy, Brugada syndrome, and hyper-
trophic cardiomyopathy (Supplemental Table S1).24 In these
cases, differential diagnosis is challenging even with the help
of blood genetic tests.

The amount of implicated variables clearly defines how
complex it is to obtain useful information on ACM genetics.
Therefore, a great effort in the interpretation of the results is
necessary to define their clinical significance, in addition to
constant technical progresses. The advent of low-cost next-
generation sequencing, the development of sophisticated
analytics tools and models to test the pathogenicity of
ACM mutations, and the increased knowledge about
disease-associated genes represent significant steps forward
in providing genetic diagnosis to patients.
Infections, inflammation, and immunity
An inflammatory milieu with patchy infiltrates in the RV has
been observed in ACM hearts.25 Thus, an inflammation theory
was formulated to explain ACM etiology. In particular, it has
been proposed that genetic mutations could induce immune al-
terations contributing to heart-specific inflammatory condi-
tions.26 The inflammatory process could provoke myocardial
injury, followed by a genetically determined aberrant fibro-
adipose repair. However, whether inflammation is a primary
mechanism or a consequence of mutation-dependent
cardiomyocyte death is still unknown.25 Indeed, inflammation
related to necrosis and apoptosis has been reported, involving a
feed-forward loop.27

Most of the studies investigating ACM cardiac inflamma-
tion are based on invasive endomyocardial biopsy analysis to
evaluate the presence of macrophages, neutrophils, and mast
cells in the RV of ACM patients.25 Also, the presence of car-
diotropic viruses has been reported in the ACMmyocardium,
possibly contributing to the inflammatory environment.28 In
fact, a correlation between genetic predisposition and viral
susceptibility has been proposed.29 Because the use of
cardiac biopsy is limited by its invasiveness, noninvasive
techniques based on blood analysis to monitor cardiac
inflammation are desirable. The detection of viruses and bac-
teria in the blood of ACM patients could reflect a cardiac
infection. Chronic infections with Bartonella henselae, a
bacterial agent associated with endocarditis detected in serum
samples, have been proposed to be linked to ACM as a
possible cause of nonfamilial ACM cases.30

To date, circulating inflammatory mediators in ACM pa-
tients have been tested measuring different parameters. The
plasmatic levels of the inflammatory marker C-reactive pro-
tein (CRP) are higher in the blood of patients with ACM
than in those with idiopathic ventricular tachycardia (IVT),
often in differential diagnosis. The association of an inflam-
matory status with the occurrence of arrhythmic events has
been postulated because CRP levels significantly increase
just after ventricular arrhythmia (VA) occurrence in ACMpa-
tients.31 However, because the CRP values of nonarrhythmic
ACM patient subgroups have not been shown as well as those
of the IVT cohort immediately after VA, CRP increase might
be associated with VA and not with ACM. In addition, higher
levels of circulating proinflammatory cytokines have been
found in ACM patients compared to healthy controls.32,33

Although the inflammatory status of the heart has been
associated with disease severity,25 no studies have correlated
circulating cytokine levels to myocardial damage degree.

Myocarditis is often in the differential diagnosis with
ACM. However, it has been postulated that myocarditis is
a superimposed phenomenon during the natural history of
ACM, being associated with an active progression phase.34

To date, no study has addressed the role of circulating factors
in the differential diagnosis between these 2 diseases.

Recently, anautoimmuneetiologyhasbeenproposed35; how-
ever, the presence of autoantibodies against desmosomal compo-
nents in ACM plasma needs to be confirmed in larger cohorts.

Thus, to date, a complete characterization of circulating
inflammatory/immune response in ACM is still lacking. A
large analysis of inflammatory cell mediators, antibodies,
and cytokines may help define an ACM-specific inflamma-
tory cascade36 and improve diagnostic and prognostic pro-
cesses along with pathogenic mechanisms.
Circulating biomarkers of damage
Heart failure (HF) in ACM is a severe consequence of an
advanced cardiac remodeling process. Thus, the exploitation
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of different HF biomarkers are proposed for the characteriza-
tion of ACM late phases. Circulating brain natriuretic peptide
(BNP) is routinely used to evaluate the presence and progres-
sion of HF and has been shown to be a useful indicator of RV
dysfunction in ACM patients due to the reported negative
correlation with RV ejection fraction.37 Of note, BNP is
higher in the plasma of ACM vs IVT patients, which aids dif-
ferential diagnosis. Accordingly, immunohistochemistry per-
formed on endomyocardial biopsies showed no detectable
BNP in the RV of IVT patients, whereas positive results
were obtained in ACM patients.37 Similar experiments using
the N-terminal fragment of BNP, NT-proBNP, showed its as-
sociation with RV dysfunction and volumes in ACM.38 This
observation has been confirmed in other studies.39 The major
limitation of the use of BNP and NT-proBNP in association
with ACM is its low specificity due to the well-known asso-
ciation with a large number of HF-related cardiac conditions.

In 2009, the chaperone heat shock protein 70 (HSP70) was
found to be differentially expressed in failing hearts of ACM
patients in comparison to nonfailing hearts, with similar results
at the systemic level.40 Based on in vitro results, circulating
HSP70 was proposed to originate from damaged myocardial
cells. Other evidences associated HSP70 with inflammation
and apoptosis.41 Similarly to BNP, HSP70 usage is limited
by its lack of ACM specificity because it is elevated in patients
with dilated cardiomyopathy and ischemic cardiomyopathy.

Likewise, cardiac troponin I (cTnI), a structural protein
released into circulation after cardiomyocyte death and a
well-established marker of cardiac muscle injury, has been
proposed to be associated with ACM.42 The first evidence
was observed in ACM boxer dogs, in which a correlation be-
tween cTnI levels and premature ventricular contractions was
demonstrated.43 This was confirmed in humans, highlighting
a correlation of cTnI with major arrhythmic events.39 How-
ever, its use in ACM is questionable because troponin in-
crease also has been observed in athletes with ischemia44

or myocarditis45 and in agonist athletes after strenuous phys-
ical activity.46

In 2012, Hong et al47 proposed bridging integrator 1
(BIN1) as a marker of cardiac functional status and for pre-
dicting the risk of development of ventricular arrhythmias
in ACM patients with HF. Decreased levels of BIN1 (a regu-
lator of calcium transients and contractility) were found in the
blood of ACM patients with HF, suggesting its possible use
as biomarker.47 However, this hypothesis is limited by the
observation that BIN1 levels in ACM patients without HF
are comparable to those found in healthy controls, thus
limiting its usefulness to advanced stages of the disease.48

In 2017, Broch et al49 analyzed the plasmatic levels of
interleukin-33 receptor ST2, which was previously associ-
ated with cardiac remodeling and fibrosis.50 They observed
a correlation between circulating ST2, right and left ventric-
ular function, and arrhythmia occurrence in ACM. They pro-
posed ST2 as a possible biomarker of disease severity upon
validation in prospective studies.

Another described marker of fibrotic substitution in ACM
patients, galectin-3 (GAL-3), was found increased in ACM
plasmatic samples compared to controls. Strikingly, GAL-3
differential levels between patients with and those without
arrhythmic events during the follow-up period were assessed,
indicating a GAL-3 predictive value for VA in these pa-
tients.51

Because ST2 and GAL-3, beside fibrosis, were also associ-
ated with inflammation,52 future investigations should eval-
uate the correlation with the extent of fibrosis inACMpatients.

Thus, the introduction of the described biomarkers in
the clinical scenario for diagnostic, prognostic, or severity
evaluation purposes still needs refinements. Many of these
circulating biomarkers are used for other cardiac diseases in
which HF is a common underlying hallmark. As mentioned,
however, ACM patients only show HF signs in the later stage
of the disease, so the impact of HF-related biomarker is
limited. Similarly, the arrhythmic phenotype of ACM has
been associated with other circulating biomarkers, but the
lack of specificity for ACM does not allow the use of a single
biomarker for diagnosis and patient management.
Sex hormones
Because males are more frequently affected by ACM than fe-
males, sex hormones and their correlation to disease severity
have been tested.39 A general increase of testosterone serum
levels was found in male and female ACM patients with ma-
jor adverse cardiac events compared to those without. This is
in line with previous results that showed the role of testos-
terone in the stimulation of arrhythmias.53 Accordingly, in
female patients with arrhythmic events, estradiol levels
were lower, indicating a possible cardioprotective role of
this sex hormone.54

A direct role for sex hormones in ACM cellular patho-
genic changes has been proposed using induced pluripotent
stem cell-derived cardiomyocytes. In this model, testosterone
administration increased apoptosis and lipogenesis whereas
estradiol ameliorated these phenotypes,39 possibly through
already described mechanisms.55 However, hormones are
not stable, and several factors could affect their levels.
Thus, the clinical use of sex hormone dosage/therapy in cor-
relation with ACM severity remains challenging.
miRNAs
miRNAs are short (22–24 nucleotides) noncoding RNAs
involved in several biological and pathologic processes. As a
consequence of their regulatory role, expression levels of miR-
NAs are prone to frequent variations in response to several
stimuli, including pathologies such as cancer, cardiovascular
diseases, inflammation, and neurological disorders.56,57

In the last few years, miRNAs have attracted the attention
of researchers and clinicians because of their potential utility
as biomarkers in relation to their presence in almost all bio-
logical fluids, including plasma and serum.58 Notably, with
regard to cardiac diseases, several reports have described
the diagnostic potential of circulating miRNAs.59–61 Few
studies have evaluated circulating miRNAs in ACM. We
were the first, in 2017, to find a correlation between ACM



Table 1 Summary of circulating factors studied in ACM

Circulating factors
Regulation
in ACM

In clinical
use

Possible clinical application
in ACM Proposed pathophysiology Reference

Genetics
DNA from blood cells Yes � Diagnosis

� Differential diagnosis
Causative genes Table S1

Inflammation
Viruses and bacteria [ Yes � Severity (HF and arrhythmias) Cardiac infection enhancing

cardiac remodeling
30

Inflammatory cytokines [ Yes � Severity Cause and/or consequence of
cardiac injury

32, 33

C-reactive protein [ Yes � Differential diagnosis with
IVT or myocarditis

Consequence of cardiac injury 31

Biomarkers of damage
Brain natriuretic peptide
(BNP)

[ Yes � Severity (HF)
� Prognosis (arrhythmias)
� Differential diagnosis with

IVT

Consequence of cardiac injury
Response to stretch

37, 39

Heat shock protein 70
(HSP70)

[ No � Severity (HF) Consequence of cardiac injury
Associated to inflammation and

apoptosis

40

Cardiac troponin I (cTnI) [ Yes � Severity (HF)
� Prognosis (arrhythmias)

Consequence of cardiac injury
and cardiomyocyte death

39

Bridging integrator 1 (BIN1) [ No � Prognosis (arrhythmias) Consequence of cardiac injury 47

ST2 [ Yes � Severity (HF and arrhythmias) Associated to inflammation and
cardiac fibrotic remodeling

49

Galectin-3 [ Yes � Prognosis (arrhythmias)
� Severity (HF)

Associated to inflammation and
cardiac fibrotic remodeling

51

Hormones
Sex hormones Y [ Yes � Prognosis (arrhythmias)

� Severity (HF)
Direct effect on cardiomyocyte

lipogenesis and apoptosis
39

MicroRNAs
miR-320a Y No � Differential diagnosis with

IVT
Targets Wnt pathway, regulates

apoptosis and adipogenesis
62

miR-144-3p, 145-5p, 185-5p,
and 494

[ No � Differential diagnosis with
IVT

� Prognosis (arrhythmias)

Associated to apoptosis 65

For each circulating factor, regulation in arrhythmogenic cardiomyopathy (ACM), current general clinical use, possible application of each factor in ACM, and
proposed pathophysiology are indicated.

HF 5 heart failure; IVT 5 idiopathic ventricular tachycardia.
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and low plasma levels of miR-320a.62 These levels were
unaffected by physical activity, a recognized ACM-
precipitating factor, suggesting that its modulation in ACM
is independent of training-induced heart remodeling. Further-
more, miR-320a was valuable in distinguishing ACM sub-
jects from IVT patients. Interestingly, miR-320a seemed to
have mechanistic implications in ACM pathogenesis. It
was increased during adipogenic differentiation of human
mesenchymal bone marrow cells63 and in regulating the
Wnt pathway in human colon cancer cells.64 Thus, it can
be expected that deregulated miR-320a expression is related
to cardiac cell apoptosis and adipogenesis. The diagnostic
value of miR-320a needs to be validated in larger cohorts
of ACM patients.
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A similar study on circulating miRNAs in ACM patients
with VA was published.65 Yamada et al65 observed higher
expressions of miR-144-3p, 145-5p, 185-5p, and 494 in
ACM patients with VA compared to healthy controls, IVT
patients, and subjects with suspected ACM. Among them,
miR-494 seemed to have a central prognostic value because
it was linked to recurrent VA after ablation. Moreover, based
on in vitro results, a possible correlation between the high
expression of miR-494 and the apoptotic process occurring
in ACM hearts was proposed despite the role of miR-494
in apoptosis being unclear due to its dual modulation of
both anti- and proapoptotic genes.66

Although the interest in circulating miRNAs as disease
biomarkers has increased steadily during the last few years,
several limitations still hamper their introduction in daily
clinical practice. One of the most important issues is the dif-
ficulty in standardizing detection and quantification
methods.58 Nevertheless, their undisputable potential and
the higher sensitivity and specificity in comparison to other
biomarker candidates may represent an advantage that can
overcome technical issues, thus ensuring their implementa-
tion in the clinical setting.
Conclusion
In this review, we summarized several aspects of ACM in
relation to blood-based analyses, including genetics, inflam-
mation, and a variety of novel potential circulating bio-
markers associated with different ACM features (Figure 1
and Table 1).

Although many of the tests are routinely included in the
clinical practice of various diseases, many limitations are still
present and need to be addressed before they can be exploited
in the ACM field. For example, ACM prognostic specificity
and yield in differential diagnosis, both against other
arrhythmic or HF diseases and against athletes’ hearts,
must be delineated. Many studies have reported that intense
training induces the release into the circulation of most of
the proposed biomarkers.46,67–71

The future identification of new ACM-specific biomarkers,
either alone or in combination, may overcome the current lim-
itations. In order to achieve this goal, several validation steps
for suitable candidates in wide patient cohorts are mandatory
to define disease thresholds and admission to clinical practice
in order to help patient diagnosis and stratification.

Notably, to date no circulating biomarkers have been pro-
posed in relation to some crucial ACM features, including
fibro-adipose substitution.Speculatively,ACM-specific cardiac
remodelingmay be the source of circulating “debris” that could
be exploited as a diagnostic marker. Alternatively, the identifi-
cation of clinically relevant biomarkers using hypothesis-
generating “omics” approaches could provide new hints about
unexplored ACM mechanisms and therapeutic targets.

The current knowledge of circulating factors in ACMblood
is limited, and clinical application is restricted to genetics and a
fewHFbiomarkers (Table 1). Further researchwill improve the
use of noninvasive blood tests in patients with ACM.
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