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A B S T R A C T

Arrhythmogenic Cardiomyopathy (ACM) is an inherited cardiac disease characterized by arrhythmias and fibro-fatty replacement in the ventricular myocardium.
Causative mutations are mainly reported in desmosomal genes, especially in plakophilin2 (PKP2). Here, using a virus-free reprogramming approach, we generated
induced pluripotent stem cells (iPSCs) from skin fibroblasts of one ACM patient carrying the frameshift heterozygous PKP2mutation c.2569_3018del50. The iPSC line
(EURACi004-A) showed the typical morphology of pluripotent cells, possessed normal karyotype and exhibited pluripotency markers and trilineage differentiation
potential, including cardiomyogenic capability. Thus, this line can represent a human in vitro model to study the molecular basis of ACM.

Resource table

Unique stem cell line
identifier

EURACi004-A

Alternative name(s) of
stem cell line

N/A

Institution Institute for Biomedicine, Eurac Research,
Bolzano, Italy

Contact information of
distributor

Alessandra Rossini (alessandra.rossini@
eurac.edu)

Type of cell line iPSCs
Origin Human
Additional origin info Age: 34-year-old

Sex: Male
Ethnicity: Caucasian

Cell source Skin fibroblasts
Clonality Clonal
Method of

reprogramming

Electroporation of episomal vectors
(pCXLE hOCT3/4-shp53-F, pCXLE-hSK,
and pCXLE-hUL)

Genetic modification YES
Type of modification Spontaneous mutation
Associated disease Arrhythmogenic Cardiomyopathy
Gene/locus Heterozygous PKP2 c.2569_3018del50
Method of

modification
N/A

Name of transgene or
resistance

N/A

Inducible/constitutive
system

N/A

Date archived/stock
date

January 2015

Cell line repository/
bank

N/A

Ethical approval Skin fibroblasts were collected after patient
informed consent and after approval from
Centro Cardiologico Monzino – IRCCS
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Ethical Committee (12/06/2012). The
research project was also reviewed and
approved by Ethical Committee of the
Province of South Tyrol (Nr.1/2014, 12/
03/2014)

Resource utility

The established iPSC line (EURACi004-A) provides an unlimited
source of in vitro human cardiomyocytes that can be a useful model to
investigate the molecular basis of arrhythmia generation in ACM. This
might help to identify pharmacological approaches to ameliorate the
arrhythmogenic and/or metabolic phenotypes associated with ACM.

Resource details

Arrhythmogenic Cardiomyopathy (ACM) is a cardiac genetic dis-
order characterized by potentially lethal ventricular arrhythmias, pro-
gressive loss of cardiomyocytes and fibro-fatty replacement in the
myocardium, mainly in the right ventricle. The disease usually has an
autosomal dominant transmission with variable penetrance and ex-
pressivity. Most mutations have been found in genes encoding desmo-
somal proteins and PKP2 is the most common causal gene (Awad et al.,
2008). ACM is a complex disease and the associated pathogenic me-
chanisms are still unclear. Given the difficulty to obtain isolated human
cardiomyocytes for in vitro studies, patient-specific iPSCs constitute an
unlimited source of human cardiomyocytes for disease modelling, thus
allowing the elucidation of ACM pathophysiology.

Here, we generated iPSCs from skin fibroblasts of a 34 years old
male carrying a heterozygous frameshift mutation in PKP2 gene
(c.2569_3018del50), leading to a premature termination on the PKP2
protein, already described as associated with ACM (Antoniades et al.,
2006). Three different iPSC clones were generated from this patient and
the EURACi004-A iPSC clone reported in this work was randomly se-
lected for the characterization reported in Table 1. In detail, skin

fibroblasts were reprogrammed into iPSCs using electroporation of
episomal plasmids carrying OCT3/4, SOX2, KLF4, and L-MYC
(Meraviglia et al., 2016). The selected EURACi004-A iPSC was ampli-
fied on mouse embryonic fibroblasts (MEFs). iPSC colonies showed a
typical human embryonic-stem cell morphology and displayed high
positivity for alkaline phosphatase (Fig. 1A). Undifferentiated iPSCs
expressed endogenous pluripotency genes (i.e. SOX2, OCT4, NANOG) at
higher levels compared to parental skin fibroblasts (Fig. 1B).

Of note, EURACi004-A iPSC clone did not show the expression of
episomal transgenes, evaluated by performing qPCR using primers for
the episomal specific EBNA-1 gene, thus confirming successful activa-
tion of endogenous pluripotency genes without genome integration of
exogenous plasmids (Fig. 1C).

The expression of transcription factors OCT4, SOX2 and surface
markers SSEA4, TRA-1-60 associated with pluripotency was evaluated
by immunofluorescence analysis (Fig. 1D), while the percentage of
positive cells for SOX2 (98%) and SSEA4 (99%) was assessed by flow
cytometry (Fig. 1E). The potential to differentiate into three germ
lineages was evaluated after spontaneous differentiation through em-
bryoid body (EB) formation by qRT-PCR on endodermal (SOX7 and
AFP, green), mesodermal (CD31, ACTA2, SCL and CDH5, red) and ec-
todermal (KTR14, NCAM1 and GABRR2, blue) genes (Fig. 1F). Cardi-
omyogenic differentiation occurred spontaneously through embryoid
body (EB) formation, as evident by the clear striated pattern of α-Ac-
tinin and Troponin I (Fig. 1G). As indicated in Fig. 1H, Sanger se-
quencing confirmed the presence of the PKP2 mutation and
EURACi004-A iPSC line showed a normal karyotype at passage
33(Fig. 1I). STR analysis indicated that the newly created EURACi004-A
iPSC clone yielded a 100% match with the skin fibroblast counterpart,
confirming that they are correctly derived from the donor (Table 1,
available with the authors). Finally, iPSCs resulted negative for myco-
plasma contamination (Supplementary Fig. S1).

Table 1
Characterization and validation.

Classification Test Result Data

Morphology Light microscopy Normal morphology and alkaline phosphatase positivity Fig. 1 panel A
Phenotype Immunocytochemistry Expression of pluripotency markers: SSEA4, OCT4, TRA-1-60,

SOX2
Fig. 1 panel D

Flow cytometry and gene
expression analysis by RT-qPCR

Fold change for pluripotency genes (RT-qPCR):
SOX2=37,189 ± 430
OCT4=13 ± 2
NANOG=456 ± 64% of positive cells (flow cytometry analysis):
SOX2 98.1% ± 1.1%
SSEA4 99% ± 0.9%

Fig. 1 panel B (gene expression analysis)
and Fig. 1 panel E (flow cytometry)

Genotype Karyotype (Q-banding) Resolution:
300–400 bands

Normal karyotype: 46, XY Fig. 1 panel I

Identity Microsatellite PCR (mPCR) Not performed
STR analysis 21 markers tested:

Amelogenin (for gender identification), D3S1358, D1S1656,
D6S1043, D13S317, Penta E, D16S539, D18S51, D2S1338,
CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX,
D8S1179, D12S391, D19S433 and FGA with 100% match

Available with the authors

Mutation analysis (IF
APPLICABLE)

Sequencing Heterozygous PKP2 c.2569_3018del50 Fig. 1 panel H
Southern Blot OR WGS N/A N/A

Microbiology and
virology

Mycoplasma Mycoplasma testing by luminescence: Negative Supplementary Fig. S1

Differentiation potential Embryoid body formation Expression of genes of the three germ layers in embryoid bodies
(SOX7 and AFP for endoderm; CD31, ACTA2, SCL and CDH5 for
mesoderm; KRT14, NCAM1 and GABBR2 for ectoderm) and
immunocytochemistry for spontaneous differentiation into
cardiomyocytes

Fig. 1 panel F (gene expression analysis)
and
Fig. 1 panel G (immunocytochemistry for
cardiac markers)

Donor screening
(OPTIONAL)

HIV 1+2 Hepatitis B, Hepatitis C N/A N/A

Genotype additional info
(OPTIONAL)

Blood group genotyping N/A N/A
HLA tissue typing N/A N/A
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Materials and methods

Cell culture and reprogramming

Skin fibroblasts were isolated from skin biopsy and amplified as
previously described (Meraviglia et al., 2016). IPSCs from skin fibro-
blasts were generated using the episomal vectors pCXLE-hOCT3/4-
shp53-F, pCXLE-hSK, and pCXLE-hUL (Addgene). Specifically,
7.5× 105 skin fibroblasts were electroporated with 1 μg of each epi-
somal vector using the Neon System (Thermo Fisher Scientific) at the
program: 1650 V, 10msec, 3 pulses and plated onto a plastic tissue
culture dish for seven days in standard culture medium composed of
Iscove's Modified Dulbecco's Medium (IMDM) (Thermo Fisher Scien-
tific), 20% FBS Defined (Hyclone), 1% Penicillin/Streptomycin, 1% L-
Glutamine (all from Thermo Fisher Scientific). Then, transfected fi-
broblasts were trypsinized, plated on 0.1% gelatin-coated plate with
irradiated MEF feeder layer and cultured in stem cell medium con-
taining knockout DMEM, 20% KO-Serum Replacement (KOSR), 1 mM
NEAAs, 1% Penicillin/Streptomycin, 1% L-Glutamine, 0.1 mM β-mer-
captoethanol (all from Thermo Fisher Scientific) and 10 ng/ml bFGF
(Merck-Millipore), until the first iPSC colonies appeared. Then, iPSCs
on MEF were cultured in the same stem cell medium and expanded once
a week by enzymatic dissociation using 1mg/ml Collagenase IV
(Thermo Fisher Scientific) (ratio 1:4). IPSCs adapted to feeder-free
condition were cultured in StemMACS™ iPS-Brew XF (Miltenyi Biotec)
on Matrigel matrix (Corning) and amplified using TrypLE™ (Thermo
Fisher Scientific) twice a week with a split ratio of 1:6. All the cells were
incubated at 37 °C, 5% CO2 in a humidified incubator.

qRT-PCR

Total RNA from skin fibroblasts, iPSCs and EBs was extracted using
TRIzol® Reagent. Reverse transcription of RNA (1 μg) was performed
using SuperScript VILO cDNA Synthesis Kit following manufacturer's
instruction (all from Thermo Fisher Scientific). All-in-One SYBR® Green
qPCR Mix (GeneCopoeia) was used for cDNA amplification on CFX96
Real-Time PCR Detection System (BioRad). Table 2 reports primer se-
quences.

Immunofluorescence staining

Pluripotent Stem Cell 4-Marker Immunocytochemistry Kit (Thermo
Fisher Scientific) was used for the detection of pluripotency markers on
undifferentiated iPSCs, according to manufacturer's instructions
(Table 2). Cardiomyocytes at 30–35 days of differentiation were fixed in
PFA 4% for 10min and permeabilized with 0.2% of Triton-100× at
room temperature for 7min. Blocking buffer (5% goat serum) was
added for 1 h at room temperature. Primary antibodies were incubated
overnight at 4 °C, while secondary antibodies were incubated for 1 h at
37 °C (Table 2). Nuclei were counterstained with DAPI. All the images
have been acquired using Leica SP8-X confocal microscope.

Flow cytometry

SOX2 and SSEA4 expression in iPSCs adapted to feeder-free condi-
tion was analyzed by flow cytometry using Multi-Color Flow Cytometry
Kit (R&D System) following manufacturer's instruction. Samples were

Fig. 1. Generation and characterization of iPSC line EURACi004-A obtained from skin fibroblasts of one ACM patient.
(A) Representative images showing the iPSC colony morphology (scale bar 100 μm) and positive staining for alkaline phosphatase (scale bar 200 μm). (B) Gene
expression analysis indicating the re-expression of endogenous pluripotency genes. (C) qPCR analysis shows no genome-integration of episomal vectors using epi-
somal-specific primers (EBNA-1) (relative to control FBOX15 primers). (D) Representative immunofluorescence staining showing significant expression of plur-
ipotency proteins SSEA-4, OCT4, SOX-2 and TRA-1-60. Nuclei are counterstained with DAPI; scale bar 100 μm. (E) Expression of pluripotency markers SSEA4 ad
SOX2 evaluated by flow citometry analysis. (F) qRT-PCR analysis of three germ layer genes after 15-20 days of iPSC differentiation via embryoid body formation. (G)
Immunofluorescence images for cardiac sarcomeric proteins α-Actinin and Troponin I (Tn-I) in single-cell dissociated beating areas; scale bar 25 μm. (H) Sanger
sequencing results highlighting PKP2 gene region containing the heterozygous deletion. (I) Representative picture of normal karyogramm by Q-banding karyotype
analysis.
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analyzed using the S3e Cell Sorter (BioRad). Flow cytometry data
analysis was performed using Flowing Software 2.5.1.

Embryoid body formation

IPSCs were differentiated as embryoid bodies (EBs) by detaching
colonies and growing them in ultra-low attachment plates for 7 days in
EB 20% medium composed of KO-DMEM (Thermo Fisher Scientific)
with 20% FBS Defined (Hyclone), 1 mM NEAAs, 1% Penicillin/
Streptomycin, 1% L-Glutamine, 0.1 mM β-mercaptoethanol (all from
Thermo Fisher Scientific). EBs were then plated onto 0.1% gelatin-
coated dishes and cultured in EB 20% medium for further 15–20 days.
Approximately at day 25 of differentiation, spontaneous beating clus-
ters, indicating iPSC spontaneous cardiomyogenic ability, were manu-
ally microdissected, dissociated at single cell level using TrypLE and
plated onto gelatin-coated plates in EB 2% medium (same EB medium
except for supplementation with only 2% FBS) for additional 5–10 days,
in order to avoid fibroblast over-growth.

Karyotyping

Karyotype evaluation was assessed on iPSC adapted to feeder-free
condition after 33 in vitro passages by cytogenetic Q-banding analysis as

previously described (Meraviglia et al., 2015). Specifically, 20 meta-
phases were analyzed and all metaphases showed a normal karyo-
gramm.

Sequencing and STR analysis

Genomic DNA used for PKP2 sequencing and STR analysis was
isolated using DNeasy Blood and Tissue kit (Qiagen), following manu-
facturer's instructions. PKP2 mutation analysis was performed on a PCR
product obtained by genomic DNA amplification using Kapa High
Fidelity DNA Polymerase (Kapa Biosystems), following manufacturer's
instructions (see primers listed in Table 2, mutation analysis PCR). The
PCR reaction has been performed on Mastercycler® pro S instrument
(Eppendorf) using the following conditions: 95 °C 5min/98 °C 20 s;
60 °C 20 s; 72 °C 30 s for 35 cycles/72 °C 1min 30 s;4 °C 10min; 16 °C
∞. The amplification product was purified using Agencourt AMPure
PCR purification system (Beckman Coulter) and PCR product size was
inspected using agarose-gel electrophoresis (agarose gel 1%). Then,
PKP2 mutation was confirmed on iPSCs and their skin fibroblast
counterpart on the amplification product by Sanger sequencing per-
formed by Eurofins Genomics (Germany), according to ANSI/ATCC
standard ASN-0002 (Table 1), using a combined set of forward and
reverse primers (Table 2, see mutation analysis sequencing).

Table 2
Reagents details.

Antibodies used for immunocytochemistry/flow-citometry

Antibody Dilution Company Cat # and RRID

Pluripotency Markers (Immunocytochemistry) Rabbit anti-OCT4 1:100 Thermo Fisher Scientific Cat# A24867, RRID:AB_2650999
Pluripotency Markers (Immunocytochemistry) Mouse anti-SSEA4 (IgG3) 1:100 Thermo Fisher Scientific Cat# A24866, RRID:AB_2651001
Pluripotency Markers (Immunocytochemistry) Rat anti-SOX2 1:100 Thermo Fisher Scientific Cat# A24759, RRID:AB_2651000
Pluripotency Markers (Immunocytochemistry) Mouse anti-TRA-1-60 (IgM) 1:100 Thermo Fisher Scientific Cat# A24868, RRID:AB_2651002
Secondary antibodies (Immunocytochemistry) Alexa Fluor® 555 Donkey Anti-Rabbit 1:250 Thermo Fisher Scientific Cat# A24869, RRID:AB_2651006
Secondary antibodies (Immunocytochemistry) Alexa Fluor® 488 Goat Anti-Mouse IgG3 1:250 Thermo Fisher Scientific Cat# A24877, RRID:AB_2651008
Secondary antibodies (Immunocytochemistry) Alexa Fluor® 488 Donkey Anti-Rat 1:250 Thermo Fisher Scientific Cat# A24876, RRID:AB_2651007
Secondary antibodies (Immunocytochemistry) Alexa Fluor® 555 Goat Anti-Mouse IgM 1:250 Thermo Fisher Scientific Cat# A24871, RRID:AB_2651009
Pluripotency Markers (Flow cytometry) PE-SOX2 Mouse IgG2A 1:20 R&D System Cat# IC2018P, RRID:AB_357273
Pluripotency Markers (Flow cytometry) CFS-SSEA-4 Mouse IgG3 1:20 R&D System Cat# FAB1435F, RRID:AB_952015
Pluripotency Markers (Flow cytometry) PE Isotype control- mouse IgG2A 1:20 R&D System Cat# IC003P, RRID:AB_357245
Pluripotency Markers (Flow cytometry) CFS Isotype control- Mouse IgG3 1:20 R&D System Cat# IC007F, RRID:AB_952037
Cardiomyocyte markers

(Immunocytochemistry)
Mouse anti-Sarcomeric actinin 1:250 Sigma Aldrich Cat# A7732,

RRID:AB_2221571
Cardiomyocyte markers

(Immunocytochemistry)
Rabbit anti-Troponin I (H-170) 1:500 Santa Cruz Biotechnology Cat#

sc-15,368, RRID:AB_793465
Secondary antibodies

(Immunocytochemistry)
Alexa Fluor® 488 Goat Anti-Mouse IgG 1:1000 Thermo Fisher Scientific Cat#

A11029, RRID:AB_2534088
Secondary antibodies

(Immunocytochemistry)
Alexa Fluor® 555 Goat Anti-Rabbit IgG 1:1000 Thermo Fisher Scientific Cat#

A21429, RRID:AB_2535850

Primers

Target Forward/Reverse primer (5′-3′)

Pluripotency Markers (qRT-PCR) SOX2 GGGAAATGGGAGGGGTGCAAAAGAGG/TTGCGTGAGTGTGGATGGGATTGGTG
Pluripotency Markers (qRT-PCR) OCT4 GACAGGGGGAGGGGAGGAGCTAGG/CTTCCCTCCAACCAGTTGCCCCAAAC
Pluripotency Markers (qRT-PCR) NANOG TGCAAGAACTCTCCAACATCCT/ATTGCTATTCTTCGGCCAGTT
Three germ layer markers (endoderm) (qRT-PCR) SOX7 TGAACGCCTTCATGGTTTG/AGCGCCTTCCACGACTTT
Three germ layer markers (endoderm) (qRT-PCR) AFP GTGCCAAGCTCAGGGTGTAG/CAGCCTCAAGTTGTTCCTCTG
Three germ layer markers (mesoderm) (qRT-PCR) CD31 ATGCCGTGGAAAGCAGATAC/CTGTTCTTCTCGGAACATGGA
Three germ layer markers (mesoderm) (qRT-PCR) ACTA2 GTGATCACCATCGGAAATGAA/TCATGATGCTGTTGTAGGTGGT
Three germ layer markers (mesoderm) (qRT-PCR) SCL CCAACAATCGAGTGAAGAGGA/CCGGCTGTTGGTGAAGATAC
Three germ layer markers (mesoderm) (qRT-PCR) CDH5 GAGCATCCAGGCAGTGGTAG/CAGGAAGATGAGCAGGGTGA
Three germ layer markers (ectoderm) (qRT-PCR) KRT14 CACCTCTCCTCCTCCCAGTT/ATGACCTTGGTGCGGATTT
Three germ layer markers (neuro-ectoderm) (qRT-PCR) NCAM1 CAGATGGGAGAGGATGGAAA/CAGACGGGAGCCTGATCTCT
Three germ layer markers (neuro-ectoderm) (qRT-PCR) GABRR2 CTGTGCCTGCCAGAGTTTCA/ACGGCCTTGACGTAGGAGA
House-Keeping Gene (qRT-PCR) GAPDH CCACCCATGGCAAATTCC/TCGCTCCTGGAAGATGGTG
Episomal plasmid Gene (episome silencing) EBNA-1 ATCAGGGCCAAGACATAGAGATG/GCCAATGCAACTTGGACGTT
House-Keeping Gene (episome silencing) FBXO15 GCCAGGAGGTCTTCGCTGTA/AATGCACGGCTAGGGTCAAA
Mutation analysis (PCR) PKP2 GAACACCCACAGGCCGC/TTTCTTGGGCTGGGTAGTAGAAA
Mutation analysis (sequencing) PKP2 GCCTCACTCATTCTCCCTGATCTCAG/TAGGCTTTGGCAGTCCGGCTGTTG
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Specifically, cell identity was analyzed on genomic DNA, evaluating 21
independent loci by PCR-single-locus-technology (Promega, PowerPlex
21 PCR Kit).

Mycoplasma test

MycoAlert™ Mycoplasma Detection Kit (Lonza) was used to test
mycoplasma contamination, following manufacturer's instructions
(Table 2).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.scr.2018.09.003.
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