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Abstract 

Plastic deformation of metallic glasses performed well below the glass transition temperature 

leads to the formation of shear bands as a result of shear localization. It is believed that shear 

banding originates from individual stress concentrators having quadrupolar symmetry. To 

elucidate the underlying mechanisms of shear band formation, microstructural investigations 

were carried out on sheared zones using transmission electron microscopy. Here we show 

evidence of a characteristic signature present in shear bands manifested in the form of sinu-

soidal density variations. We present an analytical solution for the observed post-deformation 

state derived from continuum mechanics using an alignment of quadrupolar stress field per-

turbations for the plastic events. Since we observe qualitatively similar features for three dif-

ferent types of metallic glasses that span the entire range of characteristic properties of metal-

lic glasses, we conclude that the reported deformation behavior is generic for all metallic 
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glasses, and thus has far-reaching consequences for the deformation behavior of amorphous 

solids in general. 



Crystals have the ability to deform at constant volume along slip planes via dislocations since 

the periodicity of the lattice provides identical atomic positions for the sheared material[1]. 

However, the situation is different for amorphous materials such as metallic glasses because 

of their inherent structural heterogeneity as well as the absence of topologically well-defined 

structural “defects”. As a consequence, extra volume needs to form in order to accommodate 

the mismatch between sheared zones (shear bands) and surrounding matrix[2]. Such zones are 

softer than the surrounding matrix enabling the material to flow. Although less clearly defined 

on the topological and atomic-level, the free volume in amorphous materials may be thought 

of as a carrier of plasticity equivalent to dislocations in crystalline materials. It is commonly 

accepted that shear bands are associated with a structural change such as local dilatation 

caused by shear localization, implying a volume change and thus a change in the atomic den-

sity, ρ [3–11]. An important issue is, therefore, the local quantification of free volume or den-

sity inside shear bands. Recently, the local density within shear bands of an Al88Y7Fe5 metal-

lic glass has been determined using high angle annular dark field scanning transmission elec-

tron microscopy (HAADF-STEM)[12]. These experiments showed that high and low density 

regions alternate along the propagation direction of the shear bands with respect to the un-

deformed glass matrix[12,13]. Thus, densification, in addition to the expected dilatation, also 

occurred as a response to plastic shear deformation. So far, a theoretical and mechanistic un-

derstanding to rationalize the observed features is missing. The model presented here is capa-

ble of describing these new observations quantitatively for a series of glass forming alloys 

with vastly different fragility, kinetic stability and deformability in compression. Moreover, it 

predicts an average structural length scale of heterogeneities that control the plastic deforma-

tion of metallic glasses. 

Since the pioneering work of Spaepen and Argon[3,4], it has been recognized by a large body 

of simulation studies that single plastic events in metallic glass are characterized by local 

stress fields having quadrupolar symmetry[11,14–19] resembling Eshelby’s famous descrip-



tion of inclusions within an elastic continuum[20]. While the local free volume can provide 

the effective “inclusions” responsible for the Eshelby quadrupolar stress fields, one of the 

remaining great challenges is to understand how shear bands are actually formed in the vicin-

ity of these stress concentrators having such complex stress fields[21]. A quadrupolar stress 

field symmetry is consistent with the basic symmetry of shear deformation in a disordered 

lattice of spherical-like atoms[17]. The inherent heterogeneity of glasses necessarily involves 

a distribution of atomic neighbourhoods with different effective binding strengths. Following 

this line of thought, the concept of local “soft spots” can be identified with shear-

transformation zones[3,4,17,18,22]. They are characterised by a weak connectivity and sig-

nificant local free volume. In such a soft spot, large non-affine displacements cause particles 

in the shear plane to leave the glassy cage outwards along a particular line (in both directions), 

whereas they cause particles along the perpendicular line (again, in both directions) to be 

pushed inwards and squeezed-in towards the centre of the glassy cage (see Fig.1a)[23]. 

If such soft spots were aligned appropriately this would lead to alternating densities as ob-

served in our experiments. This hypothesis is supported by recent work of Dasgupta and co-

workers[24], in which MD was used to simulate an alignment of regularly spaced quadrupolar 

stress fields in metallic glasses. Careful examination of Fig.4 (right-hand panel) in 

reference[24] shows periodic density variations originating from the alignment of the quadru-

poles. 

 

Model 

Here we propose a model based on the idea that density changes and thus shear banding are 

caused by an alignment of Eshelby-like quadrupoles (see Fig. 1b) that can be tested against 

experimental observations. We start from the basic geometry of a quadrupolar stress field 

perturbation for a plastic event, which locally follows a ~ cosሺ4ߠሻ  is ߠ ଷdependence, whereݎ/



the angle, which spans the shear plane, and r is the radial coordinate measured from the centre 

of the glassy cage. The quadrupoles are aligned along the 45° directions as it has been shown 

analytically that such an alignment of quadrupoles minimizes the strain energy of an interact-

ing array of Eshelby-like quadrupoles[25]. It should be noted that this is an idealized situa-

tion; experiments have shown that shear band inclination angles depend on the deformation 

conditions (compression or tension) and can vary between 40° and 50° [26]. Proceeding with 

our mathematical description, we label the 45o direction as the ݖ-axis. The alignment of elas-

tic quadrupoles give rise to an alternating distribution of forces along the 45o direction in the 

shear plane (see Fig.1b). Using Fourier’s theorem, we can write the distribution of forces ߩ௙ሺݖሻ as a periodic function in a Fourier series expansion as ߩ௙ሺݖሻ ൌ ∑ ௡ஶ௡ܣ cosሺ݇ݖ ൅ ߮௡ሻ, 

where ܣ௡ is the expansion coefficient and, ߮௡ is the phase of the nth mode. It is worth noting 

while our experimentally observed density variations are not perfectly periodic, the alterna-

tions are such that we can fit them with a periodic function. The fit is better for the Pd-based 

glass (Fig.2b) than for the Al-based glass (see Fig.4a). As a first order approximation to ena-

ble analytical calculations, we truncate the series at the first Fourier mode in the expansion. If 

the origin of the ݖ axis coincides with the center of the band, the phase is fixed by the symme-

try to be ߮ଵ ؠ ߮ ൌ 0. However, if the measurement does not start exactly at the center of the 

band as in the subsequent comparison with experiments, the phase will be non-zero. Hence, 

we approximate the force density distribution along the 45o ݖ-axis of Fig.1 as ߩ௙ሺݖሻ ൌܣଵcosሺ݇ݖሻ, with A ؠ  .ଵ, which is a normalization constant that depends on the sample sizeܣ

Having defined the spatial distribution of forces, the microscopic displacement field u(z) for 

longitudinal displacements along a given direction (ݖ-axis in our case) obeys the fundamental 

equation of elastic equilibrium[27] ׏ܭଶݑሺݖሻ ൌ െߩ௙ሺݖሻ, where ߩ௙ሺݖሻ is the density of forces 

along ݖ, which has units of force per unit volume, consistent with the left-hand side where K 

is the bulk modulus. We now use the formal analogy between elasticity theory and electrostat-

ics to solve for the microscopic displacement field analytically[28]. Within this well-known 



analogy, as explained in detailed e.g. in Ref.[28], the equation for elastic equilibrium maps 

onto the Poisson’s equation where the electrostatic potential ߶௘௟ is equivalent to the elastic 

displacement field u, and the bulk modulus K replaces the dielectric constant ߝ. The distribu-

tion of forces in our elastic problem plays the same role as the distribution of charges in the 

electrostatic problem. Hence, the distribution of forces can be written as ߩ௘ሺݖሻ ൌ ሻݖ௙ሺߩ ൌܣଵcosሺ݇ݖሻ. It can be seen that our elastic problem of microscopic displacement field along 

the ݖ-direction in Fig.1 is mathematically identical to the problem of a 1D array of electrostat-

ic dipoles placed along the ݖ-axis. We can thus work with the Poisson’s equation, formally 

identical to our elastic equilibrium equation, to obtain the electrostatic potential, which yields 

the form of the displacement field ݑሺݖሻ of the elastic problem. Focusing on a 1D array of 

electrostatic dipoles placed along the ݖ-axis of Fig.1 as a consequence of the quadrupoles 

alignment, the charge distribution must obey the Poisson’s equation which to a good approx-

imation may be written as ׏ଶ߶௘௟ ൎ ݀ଶ߶௘௟ ⁄ଶݖ݀ ൌ െߩ௙ሺݖሻ/ߝ. The qualitative form of the so-

lution for the electrostatic field is readily obtained by inspection, and gives ߶௘௟ ~ ሺ1/εሻsinሺ݇ݖ ൅ ߮ሻ, upon omitting numerical pre-factors. A detailed and more exact 3D 

derivation, see Appendix, gives the full quantitative solution as ߶௘௟ሺzሻ ൌ  Aସ√ଶగ க sinሺ݇ݖ ൅ ߮ሻ. 

Upon using this mathematical solution of the elastic problem, we obtain ݑሺݖሻ ൌ  Aସ√ଶగ K sinሺ݇ݖ ൅ ߮ሻ . Finally, the relative density change in the shear band along the 

45o line is obtained as 

 ∆ఘሺ௭ሻఘ ൌ ஺ସ௄√ଶగ sinሺ݇ݖ ൅ ߮ሻ  Eq. (1) 

where ∆ఘሺ௭ሻఘ  is the normalized mass density change in the shear band relative to the average 

density ߩ of the surrounding un-deformed matrix. ߮, as mentioned above, is an arbitrary 

phase shift (i.e. a fitting parameter in the following). 



Methods 

Ingots of Pd40Ni40P20 were fabricated by ingot copper mould casting under argon atmosphere. 

The sizes of the as-cast ingots were 25 mm (length) x 10 mm (width) x 1 mm (height). Prior 

to casting, the ingots were cycled with boron oxide (B2O3) to purify the samples[29]. The 

completely amorphous state of the cast samples was monitored by X-ray studies performed 

with a Siemens D5000 x-ray diffractometer using Cu Kα radiation and calorimetry using a 

differential scanning calorimeter (Perkin Elmer Diamond DSC) with a heating rate of 20 

K/min. Subsequently, the ingots were deformed by cold-rolling to a thickness reduction of 

10%. Regions containing individual shear bands were prepared to electron-transparency using 

focused ion beam (FIB) (FEI Helios) milling. Microstructural characterization was performed 

using a Zeiss Libra 200FE transmission electron microscope operated at 200kV in STEM 

mode and equipped with a Schottky field emitter, a HAADF detector (Fischione model 3000), 

an in-column (Ω) energy filter  and a slow scan CCD camera (Gatan US 4000). During the 

experiment electrons having a scattering angle greater than 65 mrad were collected by the 

HAADF detector (camera length of 720 mm) and a nominal spot size of 2 nm was used. For 

the fitting of the experimental data, which are summarized in Tab.1, we used 

 ∆ఘሺ௭ሻఘ ൌ ஺ସ௄√ଶగ sinሺ݇ݖ ൅ ߮ሻ ൅ ଴ݕ ؆ ூೄಳିூಾூಾ  Eq. (2) 

where ܫௌ஻ and ܫெ are the intensities extracted from the HAADF-STEM image as shown in 

Fig.2a, ܣ is a conversion/scaling factor, ܭ, the bulk modulus of the investigated material, ݇ ൌ ߨ2 ൗܮ  the period, ߮ an arbitrarily introduced phase shift (see above) and ݕ଴ an offset val-

ue since the signal is not symmetric to the mathematical origin. This accounts for the different 

amplitudes of dilated and densified shear band regions observed in the experiment. The Pois-

son’s ratios of the three metallic glasses (Pd40Ni40P20, Zr52.5Cu17.9Ni14.6Al10Ti5 and Al88Y7Fe5 

(partially crystallized cast material)) were determined from ultrasonic measurements carried 

out with an Olympus 38DL Plus device.



Results 

The deformation by cold-rolling of Pd40Ni40P20 bulk metallic glass produced numerous shear 

bands visible by the macroscopic shear off-sets at the surfaces. Individual slices of such shear 

bands were cut out and thinned down to electron-transparent thicknesses of about 100 nm 

using a focused ion beam (FIB). Fig.2a displays part of such a FIB lamella containing a repre-

sentative shear band marked by arrows and having a width of about 16 nm. The FIB lamella 

also displays a curtaining contrast due to the milling conditions used. The onset of the shear 

band was identified by the shear off-set at the surface of the foil (see Fig.3a). It was reported 

that the observation of shear bands in Pd40Ni40P20 is difficult[30]. While this is true, we were 

able to identify shear bands successfully and carefully analyse them in the following manner: 

A HAADF-STEM intensity profile was extracted from inside the shear band along the propa-

gation direction as well as two on each side to determine the matrix intensity at the position of 

the shear band. The profile of the matrix intensity was then subtracted from the profile of the 

shear band intensity and the result of the difference was normalized by the profile of the ma-

trix intensity (see Fig.2b). (The method used for the density determination is described in 

more detail in [12,13]). This procedure allows extraction of the density changes in the shear 

band relative to the matrix. For comparison, a reference measurement (see Fig.3) following 

the same procedure as described above was performed at a matrix position without a shear 

band in order to prove that the curtaining in the TEM foil or other hidden artefacts do not 

cause or affect the observed periodic density variations in Fig. 2. The result of the reference 

measurement is shown in Fig.3. The result of the density variations along the real shear band 

is shown at the bottom of Fig.2b. We observe small but noticeable periodic density variations 

with a confidence of 4σ for the smallest observed amplitude. The signal occurs periodically 

with larger negative and smaller positive amplitudes (Fig.2b). Negative amplitudes corres-

pond to dilated regions whereas the positive amplitudes refer to densified regions of the shear 

band compared to the surrounding matrix. Similar periodic changes between dilatation and 



densification (see Fig.4) were found for a marginal glass former Al88Y7Fe5 and for 

Zr52.5Cu17.9Ni14.6Al10Ti5 (Vitreloy105). The periodicity of density variation is more pro-

nounced for Pd40Ni40P20 glass; however, the amplitudes of the density variations are about 10 

times smaller than for the marginal glass former Al88Y7Fe5. The smaller magnitude of the 

density changes in shear bands in some glasses seems to be the underlying reason for the dif-

ficulty in observing a distinct shear band contrast in TEM. Since we found similar observa-

tions for three very different metallic glasses, the question of an existing generic deformation 

mechanism for metallic glasses/amorphous solids with periodic density variations as a signifi-

cant feature, is now discussed. 

 

Discussion 

An analytical solution of Eq. (1) using the framework of a continuum mechanics approach for 

the displacement field in analogy to electrostatics[28] fits the experimental observation well 

since it accounts for the sinusoidal density distribution along the propagation direction of 

shear bands as well as for the (non-trivial) difference in amplitude for dilated and densified 

regions. The accordance between model and experiment strongly suggests that the density 

changes observed in the post deformation state are caused by an alignment of Eshelby-like 

quadrupoles along the shear banding propagation line (see Fig.1b). The results are summa-

rized in Tab.1. We find a periodic length of about 135 nm for the Pd-based bulk metallic glass 

compared to about 163 nm for the marginal Al-based glass former and 150 nm for the Zr-

based bulk metallic glass.  

The experimentally determined values of the periodic lengths allow calculation of an average 

correlation length between two Eshelby-like quadrupoles (Tab.1). The correlation length, 

which yields an average value of (75±10) nm, is half of the periodic length. This value corres-

ponds to the distance between the heterogeneities in these glasses which control their plastic 



deformation. Intuitively, a distance of the order of 75 nm may appear to be too long for a cha-

racteristic unit in the glass. Yet, it should be kept in mind, that the first initiation of non-affine 

transformations occur only in the most “fertile” or softest spots, i.e. in regions which have a 

local configuration that resides in the low-coordination tail of the continuous distribution of 

atomic packing. Moreover, independent sub-micron strain analysis using nanodot 

deposition[31] show strain profiles with a periodicity of the order of about 100 nm switching 

from compression to tensile strain. 

The difference in amplitude for dilated and densified regions seems to be characteristic for all 

three metallic glass systems. Rearranging Eq. (1), where the compressibility 1 ൗܭ  can be ex-

pressed in terms of density and pressure, leads to 

 ∆ఘሺ௭ሻఘ ൌ ஺ସ௄√ଶగ sinሺ݇ݖ ൅ ߮ሻ ൌ ஺ସ√ଶగ ଵఘ ௗఘௗ௉ sinሺ݇ݖ ൅ ߮ሻ Eq. (3) 

which clearly elucidates the 1 ൗߩ  dependence of the pre-factor. One should note that while ߩሺݖሻ denotes the local position-dependent density, ߩ denotes the overall average density of 

the sample, which is uniform. It is interesting to note that the trends of the average correlation 

lengths and the deformability of the three different metallic glasses are also paralleled in the 

glass forming abilities of the three glasses (see Tab. 2). Moreover, the average correlation 

length would also account for micro-alloying effects[32–35] in which minor elements can 

drastically change the deformability. While three different glass forming systems are not suf-

ficient to dismiss coincidence, this observation might indicate the importance of the width of 

the distribution of local excess volume (or coordination) for the mechanical properties and the 

kinetic stability of metallic glasses. 

  



Conclusions 

Density variations in shear bands of metallic glasses (Pd40Ni40P20, Al88Y7Fe5, 

Zr52.5Cu17.9Ni14.6Al10Ti5) were observed along their propagation direction having periodicities 

between 135-163 nm with smaller positive and larger negative magnitudes. A model, using an 

alignment of Eshelby-like quadrupoles as input, is presented. It crucially provides the non-

trivial connections between the different magnitudes for dilated and densified regions, on one 

hand, and the bulk modulus and sample’s density, on the other. The good accordance between 

model and experiment strongly suggests that the observed density changes originate from 

aligned Eshelby-like quadrupolar stress fields. Moreover, the model predicts an average struc-

tural length scale of heterogeneities of the order of 75 nm that control the plastic deformation 

of metallic glasses. Since qualitatively similar features were observed for different types of 

metallic glasses having different compositions and vastly different characteristics, the conclu-

sion is drawn that alternating density variations in shear bands, resulting from the alignment 

of Eshelby plastic events, are fundamental for the plastic deformation of all metallic glasses, 

and, possibly, for all amorphous materials in general. 
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Appendix 

Density determination using HAADF-STEM intensities 

The dark-field intensity I/I0 contains information about the mass thickness ρ·t as follows[12]: 

 ூூబ ൌ ቂ1 െ exp ቀെ ேಲ·ఙ·ఘ·௧஺ ቁቃ ൌ 1 െ exp ቀെ ఘ·௧௫ೖ ቁ 

and for small arguments: ூூబ ؆ ఘ·௧௫ೖ  Eq. (4) 

where ஺ܰ is the Avogadro’s number, σ is the total scattering cross-section, ρ is the density, t is 

the foil thickness and ܣ is the atomic weight. ݔ௞ is the contrast thickness, which is defined as 

ேಲ·ఙ஺ . For experimental data, an acquired electron energy loss (EEL) signal allows calculation 

of the specimen foil thickness t from the low-loss spectral region[36]. Using Eq. (4) the rela-

tive density change normalized to the intrinsic density of the material (un-deformed surround-

ing matrix) can be expressed: 

 
∆ఘఘ ൌ ఘೄಳିఘಾఘಾ ൌ ூೄಳڄ௧ಾڄ௫ೖೄಳூಾڄ௧ೄಳڄ௫ೖಾ െ 1 Eq. (5) 

where ߩௌ஻, ߩெ are the mass densities of the shear band (SB) and the matrix, ܫௌ஻, ܫெ are the 

HAADF intensities, ݔ௞ௌ஻, ݔ௞ெ are the contrast thicknesses and ݐௌ஻, ݐெ are the corresponding 

local foil thicknesses of SB and matrix. A constant contrast thickness ݔ௞ can be assumed here 

over the SB area which causes the ݔ௞ term to cancel out in Eq. (5)[12]. If the foil thickness ݐ 

is uniform or continuously increasing as for the case of a wedge-shape specimen such as in 

the experiment where no preferential etching is present at the SB (Fig. 2), the terms ݐௌ஻  and ݐெ cancel out. Eq. (5) simplifies then to: 

 
∆ఘఘ ൌ ఘೄಳିఘಾఘಾ ൌ ூೄಳିூಾூಾ  Eq. (6) 

Thus the intensity ratio equals the relative density change as shown in Fig. 2. 



Derivation of Equation 1 in the main article 

According to Fig.1 in the main article, taking one particle as the center of the frame in the 

shear plane, its nearest neighbors tend to move away along the extension direction ሺ4/ߨሻ, 

while they are squeezed-in along the compression direction ሺ34/ߨሻ. Hence, the local stress 

field necessarily has quadrupolar symmetry, in analogy with the Eshelby inclusion quadru-

pole. The alignment of quadrupoles in the 45° direction as schematically depicted in the main 

article in Fig.1b is therefore the starting point of our mathematical description. 

Analogy between Electrostatics and Elastostatics  

When dealing with dipoles, it is most convenient to take advantage of the analogy between 

elasticity and electrostatics, which then includes the use of established relations for electros-

tatic dipoles. As is well known, the equations of elastic equilibrium and electrostatics are for-

mally identical, provided that for each quantity in the electrostatic problem the corresponding 

quantity in the elastic problem is correctly defined[28,37]. In our case, we are interested in 

determining the local displacement field since this directly relates to density fluctuations. The 

quantity in the electrostatics problem that is analogous to the displacement field is the elec-

trostatic potential, with a change of[28]: ߶௘௟ሺݎԦሻ ֜  Ԧሻ, while the corresponding quantity forݎሬԦሺݑ

the bulk modulus is the dielectric constant ܭ ൌ ߳. 

For an array of elastic dipoles, the displacement is non-zero only along the direction of align-

ment of the dipoles, hence we can treat the displacement field as a scalar, ݑሺݎሻ ؠ  .ሻݎ௭ሺݑ

Furthermore, the electrostatic charges, in the electrostatic problem, play the same role as the 

forces in the elastic case. Just as the Poisson equation relates the electrostatic potential to the 

charge density distribution, the same equation with changed sign relates the displacement 

field to the density distribution of mechanical forces in the material. 

 



Distribution of forces in the shear band along the 45° direction  

From Fig.1b in the main article, an alignment of Eshelby quadrupoles causes a distribution of 

forces along the 45° axis which can be described by a periodic function. 

Relabeling again the 45° axis as the ݖ axis, we thus write the distribution of forces ߩ௙ (equiva-

lent to the distribution of charges ߩ௘ in the electrostatic problem) as a periodic function in a 

Fourier series 

ሻݖ௙ሺߩ   ൌ ∑ ௡ܣ cosሺ݇ݖ ൅ ߮௡ሻஶ௡ୀଵ  Eq. (7) 

since any periodic function can be expanded in Fourier series. Here ܣ௡ are expansion coeffi-

cients, ݇ ൌ  is the period, while ߮௡ is the phase. We can consider the first-order mode in ܮ/ߨ2

Eq. (7) as a first-order approximation to make analytical calculations.  

If the origin of the ݖ axis coincides with the center of the band, the phase is fixed by the sym-

metry to be ߮ଵ ൌ 0. However, if the measurement do not start exactly at the center of the 

band as in the subsequent comparison with experiments, the phase will be non-zero. Hence 

we use the following approximation  

ሻݖ௙ሺߩ  ൌ A cosሺ݇ݖሻ Eq. (8) 

for the density distribution of forces, with ܣ ؠ  ଵ as a normalization constant which dependsܣ

on the size of the sample. 

Derivation of the displacement field along the 45° direction 

We now use the analogy with electrostatics to solve for the microscopic displacement field 

analytically under the assumptions presented above. We first solve for the electrostatic poten-

tial ߶௘௟ሺݖሻ for a distribution of charges given by Eq. (8), and at the end we use the relation ݑሺݖሻ ൌ െ߶ሺݖሻ to get to the displacement field.  



The field is related to the local dipole moment ݌ԦሺݎԦሻ of a continuous distribution of charges ߩሺݎԦሻ via the standard relation[37] 

 ߶௘௟ሺݎԦሻ ൌ െ ଵସగఢ ׬ ଴ሬሬሬԦሻ௅ݎԦሺ݌݀ · ׏ ଵ|௥Ԧି௥బሬሬሬሬԦ| Eq. (9) 

where ݎ଴ሬሬሬԦ labels the positions of the forces, while ݎԦ labels the generic position in space at 

which the field ߶ሬԦ is evaluated. 

We now take a cylindrical frame where the 45° axis of the shear band propagation coincides 

with the polar axis ݖ, whereas ݎ is the radial axis (oriented along the compression direction, 

135°). Clearly, ݌Ԧሺݎ଴ሬሬሬԦሻ ൌ ଴ሬሬሬԦ෡ݖሻݖሺ݌ , because the local dipole moment is oriented along the ݖ axis. 

Then we express the dipole moment by introducing the force density distribution[28], Ԧ߬ ൌ ௗ௣Ԧሺ௭బሻௗ௭బ , which is also oriented along the ݖ axis. Therefore Eq. (9) can be rewritten as 

 ߶௘௟ሺݎԦሻ ൌ െ ଵସగఢ ׬ ଴ݖ݀ Ԧ߬௅ · ׏ ଵ|௥Ԧି௥బሬሬሬሬԦ| Eq. (10) 

where ݎ଴ሬሬሬԦ ൌ ሾ0,0,  .଴ሿ, in cylindrical coordinatesݖ

For Ԧ߬ ൌ ሾ0,0, ߬଴ሺݖ଴ሻሿ only the ݖ-component is non-zero. Therefore the scalar product can be 

easily evaluated and the integral can be written as 

 ߶௘௟ሺݎ, ሻݖ ൌ െ ଵସగఢ ׬ ଴ሻ௅ݖ଴߬௭ሺݖ݀ ௗௗ௭బ · ൤ ଵඥሾ௥మିሺ௭ି௭బሻమሿ൨ Eq. (11) 

Upon evaluating the derivative we get 

 ߶௘௟ሺݎ, ሻݖ ൌ ଵସగఢ ׬ ଴ሻ௅ݖ଴߬௭ሺݖ݀ ሺ௭ି௭బሻሾ௥మିሺ௭ି௭బሻమሿయ/మ Eq. (12) 

Since we are interested in the displacement field along the ݖ-axis (45° direction) at the center 

of the band, we take the near-field approximation[37], ݎ ا ሺݖ െ   ଴ሻ, and focus on the integralݖ

 ߶௘௟ሺݖሻ ൌ ଵସగఢ ׬ ଴ሻݖ଴߬௭ሺݖ݀ ଵሺ௭ି௭బሻమ௅  Eq. (13) 



The density of dipole moment ߬ along ݖ is related to the charge density distribution along ݖ, 

via ߩ௙ሺݖ଴ሻ ൌ െ ௗௗ௭బ ߬ሺݖ଴ሻ. Using Eq. (8) we thus obtain ߬ሺݖ଴ሻ ൌ െܣ ቀ1 ൅ ୱ୧୬ሺ௞௭బሻ௞ ቁ. Upon 

putting this in Eq. (11), we get the following expression 

 ߶ሺݖሻ ൌ ି஺ସగఢ ׬ ଴ݖ݀ ቀ1 ൅ ୱ୧୬ሺ௞௭బሻ௞ ቁ ଵሺ௭ି௭బሻమ௅  Eq. (14) 

Upon considering an infinite medium (or at least a macroscopic size which is much larger 

than the atomic scale as is always the case) ׬ ଴ݖ݀ ՜ ׬ ଴ାஶିஶ௅ݖ݀ , and letting the ݖ଴ coordinate 

start at the center of the band (φൌ 0) for ease of notation and without loss of generality, the 

integral can be evaluated analytically after recognizing that it is a standard convolution 

integral: 

 ݄ሺݐሻ ൌ ׬ ݐᇱ݂ሺݐ݀ െ ᇱሻgሺtᇱሻାஶିஶݐ  Eq. (15) 

with the following straightforward identifications: ݖ଴ ൌ ݖ ,Ԣݐ ൌ ᇱሻݐሺ݃ ,ݐ ൌ 1 ൅ ୱ୧୬ሺ௞௭బሻ௞  and 

݂ሺݐ െ ᇱሻݐ ൌ ଵሺ௭బି௭ሻమ . As is well known[37], convolution integrals satisfy the following proper-

ty 

 ݄ሺݖሻ ൌ ଵଶగ ׬ ௜௤௭ି݁ݍ݀ መ݂ሺݍሻݍොሺݍሻାஶିஶ  Eq. (16) 

where ݍ is a dummy variable which in our case has dimensions [1/length] and መ݂ሺݍሻ denotes 

the Fourier transform of the function ݂ሺݖሻ, with ݍ ൌ  .ݖ/ߨ2

With the previous identifications we obtain 

 መ݂ሺݍሻ ൌ െ గଶ ݍ sgnሺݍሻ 

 ො݃ሺݍሻ ൌ ሻݍሺߜߨ2√ ൅ ටగଶ ௜ఋሺ௭ି௞ሻ௞ െ ටగଶ ௜ఋሺ௭ା௞ሻ௞  Eq. (17) 



Hence, upon taking advantage of the convolution theorem Eq. (15,16), we can find the field ߶௘௟ሺݖሻ along the band propagation direction by simply taking the Fourier transform of the 

product መ݂ሺݍሻݍොሺݍሻ, which gives 

 ߶௘௟ሺݖሻ ൌ െ ஺଼గఢ ටగଶ ݁ି௜௞௭൫݁ଶ௜௞௭ െ 1൯ Eq. (18) 

Using the standard Euler relations, this simplifies to 

 ߶௘௟ሺݖሻ ൌ െ ஺ସ√ଶగఢ sinሺ݇ݖ ൅ ߮ሻ Eq. (19) 

where the phase ߮ is added to fit the experimental data.   

This is a central result, which shows that a periodic distribution function of forces, as a conse-

quence of the alignment of Eshelby quadrupoles, generates a sinusoidal microscopic dis-

placement field ݑሺݖሻ ֜ ߶௘௟ሺݖሻ, which upon replacing ߳ with the bulk modulus ܭ reads as 

ሻݖሺݑ  ൌ ஺ସ√ଶగ௄ sinሺ݇ݖ ൅ ߮ሻ Eq. (20) 

Here the arbitrary phase ߮ takes care of any arbitrary sign convention and of the fact that the 

experimental measurements do not necessarily start from the center of the band (which would 

be ݖ ൌ 0 in our treatment).  

The parameter ݇ is the same as that modulates the period of the force distribution in the 

Eshelby quadrupoles array in Fig.1 and Eq. (1), and its value depends on the atomic structure 

and size of the building blocks. Its value therefore varies depending on the density and com-

position of the material.  

Finally we obtain the relative density change in the band along the 45° direction as 

 ∆ఘሺ௭ሻఘ ൌ 1 ൅ ሻݖሺݑ ൌ ஺ସ√ଶగ௄ sinሺ݇ݖ ൅ ߮ሻ Eq. (21) 

where ∆ߩሺݖሻ ൌ ሻݖሺߩ െ  .is the average density of the material in the band ߩ and ߩ
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Figures 

 

 
 

Figure 1: (a) Schematic of shear deformation in metallic glass. Large non-affine displace-
ments cause particles in the shear plane to leave the glassy cage outwards along the 45o line or 
to be pushed inwards towards the centre along the 135o line leading to local density changes. 
(b) Illustration of the idea that density changes are caused by an alignment of Eshelby-like 
quadrupoles along the 45° direction.  

 
Fit function (see Methods) Pd40Ni40P20 Al88Y7Fe5 Zr52.5Cu17.9Ni14.6Al10Ti5

k [1/nm] 0.047  0.039  0.042  
L=2π/k [nm] 135  163  150 

Correlation length = L/2 67.5 81.5 75 
y0

 -2.8  -2.6  -0.9 
 

Tab.1: Results of fitting Eq. (2) (see Methods) to the experimental observation. 
 

 ρ [g/cm3] ν K 
[GPa] G [GPa] E [GPa] Tg [K] Tx [K] Tx-Tg [K] L/2 [nm] 

Al88Y7Fe5[38] 3.121 0.301 821 381 981 479 522 43 81.5 
Zr52.5Cu17.9Ni14.6
Al10Ti5 

6.60 0.37 113 33 91 681 743 62 75.0 

Pd40Ni40P20[39] 9.47 0.41 186 36 101 575 641 66 67.5 
Tab.2: Table of properties for the three investigated metallic glasses: The list contains the 

density ρ, Poisson’s ratio ν, bulk modulus K, shear modulus G, Young’s modulus E, 
glass transition temperature Tg, first crystallization on-set temperature Tx, width of the 
supercooled liquid region Tx-Tg, and the average correlation length L/2 determined 
from the observed density oscillations in shear bands. 

                                                            
1  measured on partially crystallized cast material 
 



   

 a) b) 

Figure 2: (a) HAADF-STEM image of a FIB-prepared Pd40Ni40P20 bulk metallic glass sam-
ple showing contrast reversals inside a shear band (see arrows). Note that the vertical contrast 
(curtaining) is due to the FIB milling conditions. (b) Top: Corresponding intensity profiles of 
shear band (red) and matrix (blue). Bottom: Quantified intensity profile of the shear band rela-
tive to the matrix. The red line corresponds to the best fit using Eq. (2).  

 

  
  a) b) 

Figure 3: a) HAADF-STEM overview of the FIB-prepared Pd40Ni40P20 bulk metallic glass 
sample showing the analyzed shear band of Fig.2a at low magnification. Note the surface off-
set of the shear band (red arrow). The black and blue lines indicate the position of the refer-
ence measurement. b) Line profiles of the reference measurement using a region next to the 
observed shear band. Bottom: Calculated relative intensity/density change using Eq. (2) show-
ing scatter/noise only.  



 
Figure 4:a) Top: HAADF-STEM image showing contrast reversals (bright-dark-bright) in a 
shear band of cold-rolled Al88Y7Fe5 metallic glass. Bottom: Corresponding quantified density 
oscillations along the shear band for different collection angles of the HAADF detector. The 
results clearly indicate that the results are independent of the collection angle. Note that the 
amplitudes for the denser shear band segments are about half of the dilated states. 

 

 
b) Top: HAADF-STEM image showing contrast reversals (bright-dark-bright) in a shear 
band (see arrows) of a compression-deformed bulk metallic glass sample 
(Zr52.5Cu17.9Ni14.6Al10Ti5, Vitreloy105). Bottom: Corresponding quantified density oscilla-
tions along the shear band. 


