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ABSTRACT 10 

Data on the presence of pathogenic Escherichia coli in bulk tank milk (BTM) and raw milk 11 

filters (RMF) are not available in Italy and there are few studies worldwide. Therefore, a study 12 

under field condition was conducted to assess the presence of E.coli pathogenic and commensal 13 

(CoEC) strains in BTM and RMF samples and their associated AMR pattern.  14 

One hundred forty-nine E.coli isolates were characterized. Among all the isolates, 53 15 

(35.6%) were classified as pathogenic while the other ones were classified as CoEC. Among the 16 

pathogenic ones, 23 (54.7%) were classified as enterotoxigenic E.coli (ETEC), 6 (11.3%) as 17 

enteroinvasive E.coli (EIEC), 2 (3.8%) as enteroaggregative E.coli (EAEC), 12 (22.6%) harboured 18 

virulence factors (VF) common to ETEC+EIEC, and 2 (3.8%) common to ETEC+EAEC. To our 19 

knowledge, it is the first time that ETEC isolates harboring VF associated with EAEC or EIEC are 20 

observed in raw milk. These data support the presence of transmission of VFs genes among isolates. 21 

None of the isolates showed resistance to three or more antimicrobials. The CoEC role as a 22 

vector of AMR was confirmed by the presence of 18% ampicillin- and cephalexin-resistant isolates. 23 

The presence of AMR in CoEC supports the role of these bacteria as source of resistance genes.  24 

Monitoring raw milk by either BTM or RMF analysis, and the relatively cheap procedure 25 

applied to identify E.coli pathotypes can be useful to identify hazards related to the spread of enteric 26 
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diseases and antimicrobial resistance. 27 
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INTRODUCTION 31 

Escherichia coli is a commensal organism that colonizes the gastrointestinal tract of humans 32 

and warm-blooded animals (Drasar and Hill, 1974). However, a small proportion of E.coli harbors 33 

different virulence factors (VF) causing infections in humans and animals. The pathogenic strains 34 

can be identified using VF which are distinctive for each pathogenic mechanism (Nataro and Kaper, 35 

1998; Russo and Johnson, 2000). E.coli pathogenic strains can be classified in two main groups 36 

based on the diseases caused: gastrointestinal and extraintestinal (ExPEC) infections (Ishii and 37 

Sadowsky, 2008). The strains causing gastrointestinal diseases can be further grouped in several 38 

pathotypes, among them the most frequently isolated in bovine are: enteropathogenic E.coli 39 

(EPEC), enterotoxigenic E.coli (ETEC), enteroaggregative E.coli (EAEC) and enteroinvasive E.coli 40 

(EIEC). The ExPEC strains are epidemiologically and phylogenetically distinct from the intestinal 41 

pathogenic strains. They possess specific genes as fimbria and multiple virulent-trait categories 42 

which allow E.coli to cause diseases outside of the gut reservoir (Russo and Johnson, 2000).  43 

The One Health approach emphasize the importance of the presence of AMR in foodborne 44 

pathogens and in clinical pathogens as a major concern both in public health and in food animal 45 

production systems (Cipolla et al., 2015). Among the foodborne bacteria, E.coli infections are 46 

becoming of great importance, and it has been suggested that E.coli commensal (CoEC) strains  can 47 

harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria 48 

contaminating raw food (Sørum and Sunde, 2001). Indeed, the spreading of AMR depends from 49 

mobile genetic elements, such as plasmids and integrons present in pathogenic and nonpathogenic 50 

isolates of E.coli (Bennett, 2008; Santos et al., 2010). 51 

Dairy cattle, milk and dairy products have been implicated in outbreaks of foodborne illness, 52 

although with a lower frequency compared to outbreaks related to meat and vegetables (Karns et al., 53 

2007). Furthermore, the common use of waste milk and colostrum contaminated with pathogenic or 54 

AMR E.coli for calf-feeding could transmit the infection to calves and increase the risk of AMR 55 

among the animal population. The presence of AMR strains in milk may contribute the propagation 56 
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of AMR bacteria from animals to humans (WHO, 2002). Indeed, recent studies showed the 57 

presence of extended-spectrum beta-lactamase-producing bacteria (ESBL) suggesting that raw milk 58 

could be a potential source of exposure for the consumer (Odenthal et al., 2016; Skockova et al., 59 

2015). 60 

A system to monitor the presence of pathogenic and AMR bacteria can be based on bulk 61 

tank milk -BTM (Berge et al., 2007) and on raw milk filter (RMF) analysis. The RMF is a 62 

component of milking machines, which blocks the entry of debris, large particles of organic 63 

material and foreign objects in BTM. The material of the filter is similar to a tissue with a variable 64 

weight of 60 to 80 g/m2 and the analysis of the filter showed to be useful in identifying the presence 65 

of foodborne pathogens (Albonico et al., 2017; Murphy et al., 2005).  66 

Data on the presence of pathogenic E.coli in BTM and RMF are not available in Italy and 67 

there are very few studies worldwide (Lambertini et al., 2015; Sonnier et al., 2018). The presence of 68 

AMR bacteria in milk was mainly focused on the use of waste milk from antibiotic-treated cows to 69 

feed calves (Aust et al., 2013; Brunton et al., 2012), but there are very few studies addressing the 70 

presence of AMR in BTM (Berge et al., 2007), and to our knowledge, none in RMF. 71 

In order to gain epidemiological data on these aspects, a study was conducted to assess the 72 

presence of E.coli pathogenic strains in raw milk in BTM and RMF samples and the associated 73 

antimicrobial resistance pattern both in pathogenic and CoEC isolates.  74 
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MATERIALS AND METHODS 75 

Samples collection 76 

Bulk tank milk samples and RMF samples were collected in 67 dairy farms located in two 77 

Italian regions: Lombardy and Trentino-Alto Adige during a period of 6 months (September-78 

February). Herds were selected at random, within the ones delivering samples to the respective 79 

regional diagnostic lab of Dairy Farmer Association (ARA). Each farm supplied a single BTM and 80 

RMF. 81 

The BTM samples were collected at the end of the milking, while RMF were obtained just 82 

before the cleaning and disinfection procedures. All the samples were stored at 4 °C and delivered 83 

under refrigeration to the Department of Veterinary Medicine of the University of Milan within 8 h 84 

after collection. Once arrived in the laboratory, the samples were frozen at −20 °C until processed 85 

(Albonico et al., 2017).  86 

Microbiological isolation 87 

The samples were treated differently depending on their BTM or RMF origin. The BTM 88 

samples were defrosted at room temperature and serially diluted using peptone water. The RMF 89 

were chopped using sterile scissors, introduced in plastic bags with 50 mL of sterile peptone water 90 

and processed in a Stomacher for 4 minutes. The obtained preparation was serially diluted using 91 

peptone water. After dilutions, all samples were spread on plates for the enumeration of E.coli (EC 92 

3M™ Petrifilm ™) and the plates were incubated overnight at 37 °C. Then, a maximum of 10 93 

suspected E.coli colonies were picked up randomly from each plate and plated on nutrient agar, 94 

then incubated at 37°C for 18h. All the suspected colonies were identified by VITEK® 2 system 95 

(bioMérieux, Marcy l'Étoile, France), using the VITEK® 2 GN ID card for identification of Gram-96 

negative bacilli, and the results of the analyses were recorded for additional phenotypic 97 

characterization. Each single colony confirmed to be E.coli was transferred in 100 µl of molecular 98 

grade water using a loop with a needle end.  99 

 100 
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DNA extraction  101 

The bacterial DNA was extracted from the isolates using alternative cycles of hot and cold 102 

break, consisting in 15 minutes at 95 °C and 15 minutes at -80°C. This method allowed the cells 103 

lysis and DNA extrusion from bacterial cells.  104 

 105 

Virulence factors detection by conventional PCR 106 

The isolated colonies were analyzed using conventional PCR to identify VF genes encoding for 107 

specific pathogenic profiles. The procedure described by Franz et al., (2015) was followed for the 108 

detection of EAEC, EIEC, ExPEC and  for the heat label enterotoxin (elt), while for the detection of 109 

heat stable enterotoxin (est) the procedure described by Muller et al. 2007 was followed. The 110 

selected VF genes were: aggregative virulence regulator (aggR) for EAEC; invasion plasmid 111 

antigen (ipaH) for EIEC; eltB, estIa and estIb for ETEC. An E.coli isolate was defined as ExPEC if 112 

having three or more of the following virulence genes (Jang et al., 2013): F1C fimbria (focG), group 113 

2 polysaccharide capsule (kpsMII), P fimbria (papA), d S fimbria (sfaS), afimbrial adhesion (afa), 114 

cytolytic protein toxin (hlyD) and iron acquisistion system (iutA) for ExPEC. The primer sequence, 115 

concentration and annealing temperature are reported in Table S1. The PCR reactions were carried 116 

out in a total volume of 20 μl containing 2 μl of DNA, 1X Taq buffer (containing 1.5 mM MgCl2), 117 

0.2 mM dNTPs, 0.2-0.4 μM of each primer, and 1.25 U TaqPromega; H20 was added to reach a 118 

total volume of 20 μl. The PCR reactions were performed on T100™ Thermal Cycler (Bio-Rad). 119 

The thermo-cycling condition was as follows: denaturation step at 95° C for 10 min; 35 120 

amplification cycles at 95°C for 30 s, annealing T °C depending on each primer pair for 30 s and 121 

72°C for 30s; and the final elongation step at 72°C for 10 min. The amplification products were run 122 

on 2% agarose gels and visualized under an UV-transilluminator.  123 

Reference E.coli isolates were kindly provided by the European Union Reference Laboratory VTEC 124 

(Istituto Superiore di Sanità – Rome, Italy) and Istituto Zooprofilattico Sperimentale delle Venezie. 125 

 126 
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Antimicrobial resistance 127 

The AMR was evaluated using the VITEK® 2 system using AST-GN65 test cards 128 

(bioMérieux, Marcy l'Étoile, France), according to the manufacturer's instructions. Susceptibility 129 

cards were inoculated and the results were interpreted according to the most recent Clinical and 130 

Laboratory Standards (CLSI, 2017). The E.coli isolates were tested  for 18 antimicrobials: 131 

Amikacin, Amoxicillin/Clavulanic acid, Ampicillin, Cefalexin, Cefovecin, Cefpodoxime, Ceftiofur, 132 

Chloramphenicol, Enrofloxacin, Gentamicin, Imipenem, Marbofloxicin, Nitrofurantoin, 133 

Piperacillin, Polymyxin B, Tetracycline, Tobramycin, Trimethoprim-Sulfamethoxazole. Moreover, 134 

the card included the test for the presence of Extended Spectrum Beta-Lactamase. All the MIC 135 

results were recorded for additional statistical analyses. In Table S2, the abbreviations of 136 

antimicrobials tested and the concentrations tested are reported.  137 

 138 

Statistical analysis 139 

All the results of phenotypic characteristics obtained by Vitek 2 GN card as well as the MIC 140 

obtained by AST-GN65 card were collected in a database and successively the database was 141 

combined with the results of PCR analyses. 142 

Data were analyzed by parametric and non-parametric procedures (Kruskal Wallis test) on SPSS 25 143 

software (IBM corp., Armonk NY, USA), respectively for descriptive statistics and assessment of 144 

differences in MIC distribution. To describe the relationship among phenotypic characteristics and 145 

MIC, cluster analysis was performed on Xlstat 2018.3 software (Addinsoft, Paris, F), applying 146 

Ward’s agglomeration method with chi-square metrics. 147 

 148 
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RESULTS  149 

Sample description and frequency of pathogenic E.coli in BTM and RMF 150 

Bulk tank milk and RMF have been collected from 67 herds (47 from Lombardy and 20 151 

from Trentino Alto Adige). Overall, 149 E.coli were identified: 64 (43%) collected from BTM and 152 

85 (57%) from RMF. Among BTM, E.coli was isolated in 22 out of 67 samples (22 from Lombardy 153 

herds and none from Trentino herds). Among RMF, E.coli was isolated from 19 out of 67 samples 154 

(17 from Lombardy herds and 2 from Trentino herds). The frequency of isolates among herds was 155 

in the range 1-6 in both BTM and RMF. Fifty-three isolates (35%) were classified as pathogenic, of 156 

which 29 were detected in RMF and 24 were detected in BTM. More in details, 31 isolates were 157 

characterized as ETEC, 6 as EIEC, 2 as EAEC (Figure 1). In 14 isolates a combination of VF were 158 

observed, indeed ETEC VF were also identified together with EIEC VF in 12 isolates and with 159 

EAEC VF in 2 isolates. The ExPEC VFs genes were detected only in 3 isolates that were positive 160 

for only 2 target genes, therefore they were not defined as ExPEC (Jang et al., 2013). Pathogenic 161 

E.coli were recovered from 11 BTM, all from Lombardy herds, and from 18 RMF (17 from 162 

Lombardy herds and 1 from Trentino herds). 163 

 164 

E.coli MCI values 165 

The E.coli isolates were tested for MIC using VITEK® 2 system (Table 1). The recorded 166 

MICs were generally low for all the antimicrobials tested with few important exceptions. More than 167 

50% of EIEC showed the highest MIC values (≥32 µg/ml) for AMP, as well as 25% of 168 

ETEC/EIEC, 20% of ETEC and 50 % of EAEC isolates. Among the commensal E.coli isolates 169 

(CoEC), 18% of them showed MIC ≥32 µg/ml for AMP. 170 

Overall, a single isolated classified as CoEC showed the highest MIC value for CFX (≥32 171 

µg/ml), while 50% of EAEC had a MIC of 16 µg/ml. The same MIC value was observed for 21% 172 

of CoEC, 29% of EIEC, 10% of ETEC and 25% of ETEC/EIEC. 173 

The highest MIC values for PIP and TET, respectively ≥32 µg/ml and 16 µg/ml, were 174 
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recorded in 57% of EIEC. The frequency of isolates in the highest MIC class for these 175 

antimicrobials was in the range 13-25% for all the other isolates. 176 

All the isolates classified as EAEC, ETEC/EAEC had the highest MIC for POL (≥5 µg/ml), 177 

while about 73% of CoEC and ETEC were in the same MIC class. 178 

Finally, MIC for CAF was relatively low for most isolates, but 43% of EIEC and 13% of 179 

ETEC showed the highest MIC values for this substance (≥64 µg/ml). Among all the isolates only 180 

3% of them, all in the CoEC class, showed to be positive for ESBL. 181 

To assess the presence of statistically significant differences in the distribution of MIC 182 

observed for the different pathotypes of E.coli, MICs were compared by Kruskal Wallis test. The 183 

results showed significant differences only for CAF (Table 2). The MIC in EIEC isolates had a 184 

median of 8 µg/ml and a mean of 30.86 µg/ml, which were two times higher than the values 185 

observed for all the other E.coli groups. 186 

    187 

Phenotyping screening 188 

Two thirds of the isolates were classified as CoEC, and this result suggested to investigate 189 

the association between phenotypic characterization of isolates and antimicrobial resistance. The 190 

isolates were evaluated by cluster analysis using the biochemical results of VITEK® 2 system 191 

(positive / negative) as dichotomous variable. The results of the biochemical test performed on the 192 

isolates were reported in Table S3ab. The analysis allowed the identification of three clusters 193 

(Figure 2) which have a dissimilarity > 20% (Piccinini et al., 2010).  194 

The statistical analysis (χ2 test) showed as the difference among clusters were related to 13 195 

assays (ProA, SAC, ILATk, 0129R, Ado, ODC, LDC, SUCT, TyrA, ELLM, dCEL, AGAL, PHOS) 196 

(Table S4). Cluster A is characterized by a significant lower frequency of positive reaction to ProA, 197 

Ado, SUCT, TyrA). Cluster B is characterized by significant lower frequency for SAL and 198 

significant higher frequency for ELLM. Finally, cluster C shows significant higher frequency for 199 

SAL, ODC, LDL, TyrA and significant lower frequency for ADO. 200 
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The association between clusters and AMR were evaluated by comparing the MIC 201 

distribution in the three clusters (Table 3). The three clusters showed statistically significant 202 

differences in the distribution of MIC values for CAF, GEN, PIP and POL. Cluster A had the 203 

lowest mean MIC values for CAF, GEN, PIP, while cluster B had the higher MIC values for CAF 204 

and GEN, and cluster C had the highest MIC values for PIP and POL. 205 

 206 

 207 
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DISCUSSION 208 

The importance of E.coli as an enteropathogenic bacteria is well known, moreover there are 209 

increasing concerns on its role for the spread of AMR both among human and animal populations. 210 

E.coli is usually present in raw milk as a contaminant at low concentrations, and it could be a 211 

source of both enteric diseases  (Kolenda et al. 2015) and antimicrobial resistance (Sørum and 212 

Sunde, 2001). Indeed, the transmission of AMR and/or foodborne pathogen could occur when 213 

unpasteurized milk harboring commensal strains are consumed as food or feed.  214 

Monitoring the raw milk at herd level showed to be a useful way to detect the presence of 215 

enteropathogenic strains and AMR bacteria, before being used to feed calves or  to produce food for 216 

human consumption such as raw milk or raw milk products (Albonico et al., 2017; Berge et al., 217 

2007). Besides the analysis of BTM, also RMF after milking showed to be a very useful tool to 218 

monitor the presence of hazards at milk and herd level (Albonico et al., 2017; Murphy et al., 2005).  219 

Despite some evidence on the role of calf feeding with waste milk as a source of enteric 220 

disease in calves, and AMR in dairy farms (Aust et al., 2013; de Verdier et al., 2012), data on the 221 

presence of enteropathogenic and AMR E.coli in BTM and RMF are scarce. 222 

This study was designed to contribute to fill this gap by investigating the presence of 223 

pathogenic and CoEC in 149 isolates collected from BTM and RMF and their association with 224 

AMR pattern. The higher proportion of isolates from RMF, when compared to BTM confirmed the 225 

usefulness of this sampling in monitoring the presence of hazards at dairy herd level (Albonico et 226 

al., 2017; Murphy et al., 2005). Among all the isolates, 53 (35.6%) were classified as pathogenic 227 

while the other ones were classified as CoEC. Among the pathogenic ones, 23 (54.7%) were 228 

classified as enterotoxigenic E.coli (ETEC), 6 (11.3%) as enteroinvasive E.coli (EIEC), 2 (3.8%) as 229 

enteroaggregative E.coli (EAEC), 12 (22.6%) harboured virulence factors (VF) common to 230 

ETEC+EIEC, and 2 (3.8%) common to ETEC+EAEC. In our knowledge, it is the first time that 231 

isolates harboring both VFs linked to ETEC and VFs associated with EAEC or EIEC are observed 232 

in raw milk. These data support the presence of transmission of VFs genes among isolates (Bennett, 233 



12 
 

2008). This is also the first study reporting the presence of aggR gene in E.coli isolated from raw 234 

milk. This gene is a transcriptional activator of aggregative adherence fimbria I expression in 235 

EAEC. In  all the previous investigations on the presence of this specific gene in isolates from 236 

bovine origin gave  negative results (Kolenda et al., 2015). Moreover, the relative abundance of 237 

EAEC and EIEC isolates in raw milk, when compared to ETEC, supports previous investigation 238 

suggesting that a higher attention on these specific pathotypes should be spent to prevent enteric 239 

disease in both human and animal populations (Kolenda et al., 2015). 240 

Antimicrobial resistance pattern was evaluated by calculating MIC by the means of  241 

VITEK® 2 system.  None of the isolates showed to be multi-resistant. A high frequency of high 242 

mean MIC values was observed for AMP on EIEC isolates, and with a lower frequency in all the 243 

other isolates. The role of CoEC as a potential vector of AMR was confirmed by the presence of 244 

18% of these isolates have very high MIC for AMP and CFX. The resistance to these substances 245 

was not unexpected and confirmed the outcomes of previous studies (de Verdier et al., 2012). To be 246 

noticed the high MIC values observed for POL in all isolates, suggesting a risk also for colistin 247 

resistance, being closely related. 248 

EIEC isolates showed also a large frequency of high MIC levels for PIP and TET, when 249 

compared to the other isolates, confirming values reported in previous studies (de Verdier et al., 250 

2012). Taken together, the relative high frequency of EIEC, and their high MIC levels for AMP, 251 

PIP and TET, antimicrobials that are not commonly used or, in the case of PIP, that are not 252 

available in Italian dairy herds, suggest that this pathogens may have an environmental source 253 

(Santos et al., 2010). The absence of a direct association with disease outbreaks in the dairy herds 254 

considered, suggests that environmental sources may contaminate raw milk, thus representing an 255 

import factor in the spread of this pathogens to other populations. 256 

We also observed an unusual high frequency of high MIC values for CAF in EIEC isolates, 257 

and, to a lesser degree, in ETEC isolates. The resistance to CAF in E.coli isolates was unexpected 258 

because the use of this drug was banned in food animals in ‘80s in Europe and in USA (Gilmore, 259 



13 
 

1986). However, this outcome was also observed in a previous study (Santos et al., 2010) and it was 260 

attributed to treatment with florfenicol, which confers cross-resistance to CAF (White et al., 2000).                   261 

The presence of 65% of isolates classified in CoEC class, and the presence of high levels of MIC 262 

for several antimicrobials among these isolates confirm the potential risk represented by these 263 

bacteria in raw milk for the spread of antimicrobial resistance. Cluster analysis applied to the 264 

biochemical characteristics of the E.coli isolates enabled to identify potential markers associated to 265 

three separate clusters. Furthermore, these clusters are associated to a different AMR patterns. This 266 

suggests that biochemical markers can be used for a quick and cheap identification of potential 267 

AMR E.coli, when other methods are not available. 268 

 269 

CONCLUSIONS  270 

This is the first published report regarding the presence of pathogenic E.coli strains and the 271 

AMR pattern in BTM and RMF from Italian dairy herds, and one of the few on this topic, 272 

worldwide. The results confirm the usefulness of RMF analysis to identify the presence of zoonotic 273 

food-borne and AMR bacteria in dairy herds. 274 

The study supports previous studies reporting an increasing frequency of EIEC and EAEC. 275 

These pathotypes, very likely of environmental origin, may find in raw milk an efficient vehicle for 276 

spreading in animal and human populations. 277 

The observed MIC values suggest that AMR is relatively low in the studied population, but 278 

the presence of AMR in CoEC supports the role of commensal bacteria as a source of transmissible 279 

resistance genes among bacterial population and the risk of the transmission to feed and food.  280 

 E.coli were recovered with a higher frequency from BTM, while pathogenic E.coli were 281 

more frequently recovered from RMF. Therefore, BTM or RMF samples may be selected based the 282 

aim of the investigation. As a conclusion, monitoring raw milk either by BTM or RMF analysis and 283 

the characterization of E.coli by genetic or phenotypic methods can be an efficient, and relatively 284 

cheap procedure to identify hazards related both to the spread of enteric diseases and of 285 
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antimicrobial resistance.  286 
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