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Abstract 

We present a study on biosurfactant uptake at the interface of a millimeter-sized drop 

of squalene in water, by a recently developed differential interferometric technique.  

The technique allows detecting capillary waves, with amplitudes of the order of 10-9 m, 

excited on the surface of the drop by an electric field in the order of 5V/cm. By studying 

the resonant surface modes of the drop it is possible to assess the interfacial properties 

as a function of the surfactant concentration in the water bulk. The technique allows to 

follow the adsorption process at extremely low surfactant concentration, not 

accessible by other methods, investigating the gas state in the π-A diagrams of 2D 

amphiphilic monolayers. 

 

keywords: Confocal Fabry-Perot interferometer, drop interferometer, capillary 

waves, monolayer gas state, monolayer gas phase, liquid/liquid interface, bio-
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HPLC- High-Performance Liquid Chromatography  

ELSD - Evaporative Light Scattering Detector 

  

https://www.sciencedirect.com/topics/chemistry/light-scattering


1. Introduction 

The determination of the physico-chemical properties of a liquid/liquid interface in the 

presence of surface-active molecules is important in many applied fields. Low-

molecular-weight surfactants are commonly used in pharmaceuticals, food and 

cosmetics production. In the last decades, properties of interfaces and their response 

to the uptake of surface-active molecules have been studied by the optical observation 

of the shape of pending drops [1], as it depends on the surface tension, modulated by 

molecule uptake at the interface. The interest in oil/water emulsion properties has 

refocussed on the process of loading of molecules at the interface in the very low 

concentration limit, well below the cmc. In fact, this appears to be a key factor in the 

production of emulsions with the desired features, that is, the optimization of the 

initial active surfactant concentration, both in traditional and innovative applications 

[2]. 

At low surface concentration of adsorbed molecules the interface monolayer is in the 

gas state where adsorbed molecules do not affect surface tension (or surface 

pressure). In this regime the system is out of the pending-drop technique applicability. 

Recently, a differential interferometric technique has been developed, which is able to 

explore the properties of the oil/water interface of oil drops at extremely low 

surfactant concentration. The interferometer applied, exploits the analysis of 

stationary modes of a resonating drop under small perturbations induced by an 

external forcing field, namely an electric field. Upon adsorption, the amplitude, the 

frequency and the width of the resonant response can be followed, depending on the 

charge properties of the surface, on the restoring force and on the dissipation at the 

interface, and allow studying the surface properties with extremely high sensitivity.  

We present a study of the evolution of the squalene/water interface properties upon 

addition of very low amounts of a natural anionic biosurfactant, namely a rhamnolipid, 

that elucidates the potentiality of the technique. 

Squalene (SQ, see Figure 1) is a highly hydrophobic molecule, naturally produced by 

plants and animals, being the precursor of cholesterol. Its wide use in food and 

pharmaceutics technology is connected to its very low miscibility in water (solubility = 

0.124 mg/L) and the low SQ/water interfacial tension that, together with its large 



availability, makes it suitable for high-performance microemulsions, [3-5]. SQ is liquid 

at room temperature. In the literature, extremely variable values for interfacial tension 

with water can be found, ranging from 17 to 47 mN/m, depending on aging and degree 

of purification [6].  

A recent pending-drop study has investigated SQ/water interface upon addition of a 

phospholipid at the interface [7]. A drop of the same oil is here investigated in a diluted 

water solution of mono-rhamnolipid, well below the cmc.   

In fact, an interesting family of surface-active natural surfactants is that of 

rhamnolipids. Rhamnolipids are amphiphilic glycolipids produced by bacteria of the 

genera Pseudomonas and Burkholderia and are involved in the formation of biofilms, 

cell motility and access to hydrophobic substrates [8,9]. There is a great diversity of 

rhamnolipid structures. Among those produced by P. aeruginosa, the mono-

rhamnolipid (MR) studied in this paper is shown in Figure 1. Its polar head comprises 

one L-rhamnose, linked by a glycosidic bond with a pair of fatty acids, 10 carbons each, 

hydroxylated in position 3, connected by an ester bond, and presenting a carboxylic 

group [8]. Their bio-surfactant properties offer possibilities of use in many fields, in 

particular in the formulation of cosmetic and pharmaceutical compounds, as well as for 

the decontamination of sites polluted by metals or hydrocarbons [10]⁠ . They are also 

looked at as antimicrobial for a large panel of micro-organisms [11] and for their 

property of stimulating plant defenses [12], then interesting for the plant biocontrol. 

The physico-chemical properties of rhamnolipids and in particular their behavior in 

water have been the subject of numerous studies [13-18]⁠. Due to their amphiphilic 

structure, rhamnolipids aggregate beyond a concentration of critical aggregation (CMC) 

ranging from 10 to 180 μM depending on the medium conditions and on the structure 

of rhamnolipids [18,14,19]. For MR with β-hydroxydecanoic acids, CMC values in water 

solution have been reported in the range 100-180 µM, for pH’s in the range 6.5-7.0, 

lowering the surface tension from 72 mN m-1 to around 30 mN m-1 [19-21]. Due to the 

presence of a carboxylic function, MR is negatively charged at pH > 5.9 [18] ⁠ .  

 

2. Material and Methods 



2.1 Materials.  

Squalene (SQ) was purchased from Sigma Aldrich s.r.l.  

Rhamnolipids from P. aeruginosa were purchased from AGAE Technologies (AGAE 

Technologies, LLC,       Corvallis, OR, USA) and consist of a mix of two 90% pure 

rhamnolipid species: α-L-rhamnopyranosyl-β- hydroxydecanoyl-β-hydroxydecanoate 

(RL-1,210: 40%) and 2-O-α-L-rhamnopyranosyl-α-L-rhamnopyranosyl-β-

hydroxydecanoyl-β-hydroxydecanoate (RL-2,210: 60%). Mono- and di-rhamnolipids 

were isolated from this commercial mixture by preparative High-performance liquid 

chromatography coupled to an evaporative light scattering detector (HPLC–ELSD) on an 

Interchim Uptisphere Strategy C18-2 column (21.2 mm, 15 µm) on an Interchim 

Puriflash 4250 system. Before injection, the mix was solubilized in pure methanol and 

filtered through a 0.22 µm PTFE membrane. Distilled water (0.1%, vol/vol, of formic 

acid) and ACN (0.1%, vol/vol, of formic acid) were used as mobile phase. For the first 8 

min, the percentage of ACN was increased from 60% to 100%. Pure ACN was then used 

for 8 min. The percentage of ACN was decreased to 60% in 30 sec and the column was 

cleaned during 3 min. The flow was 20 ml/min. The purity of the collected fractions was 

checked by HPLC-ELSD. The ELSD parameters were: 35°C and 2.5 bar. The pure 

fractions were then pooled and dried with a speed vac apparatus (10 mbar, 40◦C). An 

amount of 3 mg of the mono-rhamnolipid pool was diluted in milli-Q water, lyophilized 

and conserved in nitrogen environment until weighting and dilution to the final 1mM-

solution with filtered milli-Q water (18.2 M/cm). Small aliquots of this 1 mM-solution, 

in the order of 1L, were progressively added to the bulk water, 0.5mL, in contact with 

the squalene drop (1mm size, 5L). Error in weighting is estimated to be less than 

10%.   

2.2 The drop interferometry technique. 

The technique here applied to study interface properties is based on the study of 

capillary waves rising at the oil/water interface of a 1mm sized drop when perturbed by 

an external field. In particular an oscillating electric field is applied in this study. The 

interferometric method recently developed [22-26], is briefly summarized in the 

following.  



A plexiglass cubic measuring cell, 0.5 ml total volume, is equipped with a couple of 

stainless-steel electrodes, one protruding from the bottom and the second, a mobile 

one, entering the cell from the top. The top electrode is hollow and hosts a calibrated 

glass capillary, 0.8 mm inner diameter, provided with a piston that is used to create the 

desired drop in the center of the cell. The geometry of the measuring system is that of 

a drop constrained to the edge of a glass capillary. Drop oscillations are excited by a 

periodic electric field, and are due to the effective net charge existing at the interface, 

of negative sign for oil in water [22,23].  

The amplitude of the exciting field is kept low enough in order to produce oscillations 

of the interface in the range of few nanometers, without affecting the bulk. Drop 

surface deformation is probed by a differential interferometric technique [23-26] that 

analyzes the interference of the beams reflected from the drop, once laser light crosses 

it on its diameter. In fact, when traversed by a Gaussian laser beam, the drop oil/water 

interfaces act as the mirrors of a confocal Fabry−Perot interferometer, due to the 

difference in refractive indexes. A set of concentric fringes are formed in the backward 

direction, the pattern being sensitive to the variations in the optical path inside the 

drop while deformed by the forcing field.  

Due to the closed geometry of the drop, only discrete stationary modes, l, are excited. 

In fact, the oscillation frequencies deviate from the Rayleigh frequencies of a free drop 

[27] as the drop is bound to a constraint. This introduces a lower frequency mode, F1,  

associated to center-of-mass motion [28,29] ,connected to the same restoring force. In 

general, the frequencies of the higher-order modes, Fl, are blue-shifted with respect to 

free-bubble modes by the constrained geometry. The resonance frequencies depend 

on the drop radius, on the constraint size, and are related to the restoring force 

determined by the interfacial tension as reported in Equations 1a and 1b.  
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                     for l > 1    (1b)   

where  is the surface tension, R is the radius of the drop, the coefficient A(l,a) 

depends on the constraint size a determined by the geometry of attachment to the 

glass capillary [28,29], ρoil and ρwater are the densities of oil and water,  = ρoil /ρwater 



On the other hand, the amplitude of the excited fluctuations depends on the interfacial 

charge that, of course, is affected by absorption of any charged molecular species at 

the interface. Several characteristic modes can be observed for some liquid/liquid 

interfaces already studied [26], while only very few are seen in the case of SQ, as will 

be shown below. The typical lower frequency mode is of the order of 102 Hz, with an 

amplitude of oscillation in the nanometer range, well above the ultimate sensitivity of 

the instrument. 

The conductance of the bulk solution is continuously monitored during the 

measurements, allowing a control on surfactant concentration in bulk. 

 

3. Results and discussion 

MR is a short-double-chain glycolipid bearing a negative charge in water solution at 

neutral pH. This makes MR a suitable molecule to perform absorption/desorption 

studies with the drop interferometer in the electric-field excitation mode.  

Figure 1 shows the molecular structures of SQ and MR applied in this study. 

 

Figure 1. Molecular structures of a) squalene and b) mono-rhamnolipid. 

In fact, upon surfactant uptake, the immiscible SQ drop interface progressively 

increases its charge, hence the amplitude of its electrically excited fluctuations. 

Confocal interferometry is then extremely sensitive to adsorption of the charged 

molecules. 

 

 



 

Figure 2. a) The picture shows a drop attached to the capillary protruding from the top electrode (left), 

a sketch of the interfering beams reflected from opposite interfaces of the drop (center) and the 

concentric fringes of the interference pattern (right). b) the resonance spectrum of a pure squalene 

drop in water. 

Figure 2 shows the experimental model and an example of the lowest frequency 

resonance of a drop of SQ in water, the only one being easily excited for this oil. Thus, 

while several characteristic modes can be observed for some liquid/liquid interfaces 

already studied [26], much less are detectable in the case of SQ, due to strong 

dampening (η = 12mPas at 25°C). As can be seen in Figure 2b the FWHM of the 

resonance peak is quite high, as for strong dissipation associated to a high interfacial 

viscosity of the SQ/water system. 

A SQ drop is first created inside a 500 l cell filled with pure water and its resonance 

spectrum was collected. The production of a suitable drop is challenging, as any contact 

of SQ with the electrode has to be prevented, while providing the required proximity of 

the drop to the top electrode. This is obtained by a glass capillary protruding from the 

electrode (see Figure 2 left), then, in turn, requiring great care in order to overcome 

the tendency of SQ oil to wet the glass. The resonance spectrum of the drop in pure 

water is kept as a reference spectrum all along the absorption experiments. The typical 

amplitude of resonant oscillations is in the 1-10 nm range, involving an interfacial slab 

where the molecular layers contributing to the surface pressure are found [30]. 

Starting from pure water, the cell is progressively supplied with small aliquots of 

surfactant, hundred times lower that the CMC concentration, followed by continuously 

monitoring the conductance of the solution. The addition of MR was performed by 

adding aliquots, in the order of 1-10 L, of the 1mM MR solution in a bottom corner of 

the cell. The diffusion time of the MR monomers towards the SQ drop surface was 

reasonably short, due to the small size of the cell, and in few minutes equilibrium was 

reached.  



Adsorption of anionic MR at the interface showed up evident by the increase of the 

amplitude of the electrically-excited fluctuations. Figure 3 shows the resonance peak of 

a SQ drop evolving towards the steady-state after addition of MR to the bulk water in 

0.22M concentration. It is evident that the expected increase in the fluctuation 

amplitude is not accompanied by a shift in the resonance frequency, indicating that in 

this range of concentration the surface tension is not affected by MR upload.  

 

Figure 3 Resonance amplitude increasing during MR adsorption at the interface of a SQ drop 

(R=0.6mm) after addition of MR to the bulk, in the concentration range corresponding to the gas-state 

for the interfacial monolayer, surface pressure being unaffected. The three presented spectra are 

taken 5 , 7 and 11 minutes after administration. Red lines are the lorentzian fits. 

The transition of the monolayer to the liquid-expanded phase is marked by a change in 

the resonance frequency, associated to a modification of the interfacial tension of the 

drop. Figure 4 reports the resonance frequency of a SQ drop in the entire 

concentration range investigated. The onset of the red-shift in the drop resonance was 

observed upon addition of 66 L of the MR source solution to the cell, corresponding 

to a MR bulk concentration of 7.7 M.  Upon further MR addition, the peak kept on 

shifting to lower frequency, consistently with the expected reduction in surface 

tension. An absolute calibration is not feasible for squalene drops in our setup, yet 

applying eq. 1, we can evaluate the normalized surface tension decrease          , 

   being the squalene-water interfacial tension. At the highest investigated 

concentration the normalized surface tension decrease was 0.62, well reproducible in 

different experiments. However, theory is still missing to model the behavior of 

interfacial properties when active charged molecules are adsorbed on 100Hz oscillating 



drop. In this condition, interactions among adsorbed molecules can play an important 

role. 

 

  

Figure 4. Resonance frequency versus MR bulk concentration of a SQ drop of radius 0.7mm. The two 

regimes corresponding to the gas-state and the liquid-expanded state for the surface monolayer of 

MR at the SQ/water interface can be identified. Standard errors from the fitting procedure are 

reported. 

Main goal of the study was to highlight the adsorption process at low concentrations, 

where only the resonance amplitude is affected by the surfactant uptake at the 

interface. This behavior was observed over more than one decade in bulk 

concentration, from 0.1 to 2 M (Figure 4), and is consistent with a partial coating of 

the surface, corresponding to the so-called 'gas state' in the π-A diagrams of 2D 

amphiphilic monolayers. This region is usually unaccessed by other methods, while it 

can be easily explored by the present interferometric technique in the electric field 

excitation mode, given the ionic nature of the adsorbing molecule. Figure 5a shows 

that the dependence of the measured equilibrium resonance amplitudes on the 

logarithm of MR bulk concentration is linear. In our measurements, the resonance 

amplitude evaluates the surface uptake of the surfactant, increasing with the surface 

density. Thus it is used as the significative parameter in investigating the behavior of 

the adsorption process. Among the different models describing absorption [31], this  

makes evident the agreement with the Temkin isotherm model [32], which predicts a 

linear dependence of the interface surfactant density versus the logarithm of the bulk 



surfactant concentration. In fact, the Temkin isotherm model is suitable for describing 

the gas state, when tight packing and orientational order of the adsorbed molecules 

are not present. Testing the MR uptake with the Langmuir isotherm model shows good 

agreement except for the lowest concentration, as seen in Figure 5b. Error in 

concentration can be excluded, being linear the increase of bulk conductivity, online 

continuously checked. On the other hand, the deviation appears to be in the limit of 

the standard error evaluated for the amplitude fitting parameter. Nonetheless, this 

suggests that some adsorbate/adsorbate interaction may affect the charge dependent 

response of the oscillating drop in some concentration interval. Figure 5a also reports 

successive transient values of the fluctuation amplitude vertically arranged in the 

highlighted slice, in correspondence to the second addition of MR (0.110.22M bulk 

concentration). In fact, the evolution of the oscillation amplitude could be observed to 

follow the kinetics of uptake after addition of surfactant to the contacting aqueous 

solvent out of equilibrium, before attaining the steady state.  

 

   

Figure 5. a) Resonance amplitude versus MR bulk concentration, in the regime 

corresponding to the gas state for the interfacial monolayer. The highlighted slice 

shows successive transient values of the resonance amplitude (empty dots) after 

administration of the second surfactant dose (0.110.22M bulk concentration), soon 

after, 3 and 6 minutes after administration. The line corresponds to the fit to Temkin 

isotherm model of the steady state experimental values (full dots). b) The same 



experimental data are reported for testing the Langmuir isotherm model. Errors on the 

parameter of the fitting procedure are reported. 

 

Surfactant desorption from the drop interface could also be obtained by gentle dilution 

of the bulk solution with pure water, without moving the drop. Online check of the 

solution conductivity allowed following the rinsing progression until conductivity went 

back to the typical value for pure water, with a contemporary up-shift of the resonance 

frequency back to that of a squalene drop in pure water.  

  



Conclusions 

We applied the recently developped drop-interferometry technique to study the 

properties of a squalene-oil/water interface upon uptake of the anionic mono-

rhamnolipid bio-surfactant.  

The adsorption process could be followed at extremely low surfactant concentration, 

because the incremental uptake of molecules at the oil/water interface produces an 

increase in the amplitude of the drop response to the exciting electric field without 

affecting the resonance frequency, i.e. the interfacial tension. The evolution of the 

oscillation amplitude could be observed in two features, namely, in the kinetics of 

uptake following each step of surfactant addition to the contacting aqueous solvent, 

and in the increase of the steady-state value as a function of surfactant concentration. 

The latter is well reproduced by the Tempkin isotherm model, adapted to describing 

the gas state, when tight packing and orientational order at the surface are not 

present. This monolayer gas state evolves towards the monolayer liquid-expanded 

state that is detected by a shift of the drop resonance towards lower frequency, 

associated to a decrease of the surface tension. Evaluating the initial steps of the 

adsorption process at the interface is of relevance for applications requiring 

optimization of microemulsion features.  
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