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Ca2+ play a key role in cell signaling across organisms. The question of how a simple ion can mediate specific outcomes has
spurred research into the role of Ca2+ signatures and their encoding and decoding machinery. Such studies have frequently
focused on Ca2+ alone and our understanding of how Ca2+ signaling is integrated with other responses is poor. Using in vivo
imaging with different genetically encoded fluorescent sensors in Arabidopsis (Arabidopsis thaliana) cells, we show that Ca2+

transients do not occur in isolation but are accompanied by pH changes in the cytosol. We estimate the degree of cytosolic
acidification at up to 0.25 pH units in response to external ATP in seedling root tips. We validated this pH-Ca2+ link for distinct
stimuli. Our data suggest that the association with pH may be a general feature of Ca2+ transients that depends on the transient
characteristics and the intracellular compartment. These findings suggest a fundamental link between Ca2+ and pH dynamics in
plant cells, generalizing previous observations of their association in growing pollen tubes and root hairs. Ca2+ signatures act in
concert with pH signatures, possibly providing an additional layer of cellular signal transduction to tailor signal specificity.

INTRODUCTION

Ca2+ are used in signaling by both prokaryotes and eukaryotes
(Clapham,2007). Theoriginof thesignaling functionsofCa2+ likely
results from its chemical ability to bind and precipitate phos-
phates, including ATP, a condition that cellsmust avoid to survive
(Sze et al., 2000). As the Ca2+ concentration of water is in the
millimolar range, which is above the equilibrium dissociation
constant of various forms of ATP to Ca2+ and would therefore be
toxic to the cell, cells have evolved ways to decrease the Ca2+

concentration using pumps, transporters, and buffers. Cells
typically maintain cytosolic free Ca2+ concentrations at resting
levels of ;50–200 nM, resulting in a substantial chemical Ca2+

gradient among the cytosol, the extracellular space, and in-
tracellular compartments (e.g., vacuole and endoplasmic re-
ticulum) (Stael et al., 2012; Costa et al., 2018). Besides, the net

electrical potentials existing across the plasma membrane (PM)
and tonoplast contribute to building up large electrochemical
gradients to drive for Ca2+ transport. Cells exploit these gradients
and the associated machinery to generate rapid intracellular
concentration changes,whichprovide thebasis forCa2+ signaling
(Sze et al., 2000; Clapham, 2007; Dodd et al., 2010).
The energy required to maintain such a large electrochemical

Ca2+ gradient is provided by ATP, which is used directly by
Ca2+-ATPases and indirectly by Ca2+ antiporters, such asCa2+/H+

exchangers (e.g., CAXproteins), to extrudeCa2+ out of the cytosol
driven by the proton motive force (Bonza and De Michelis, 2011;
Emery et al., 2012; Martins et al., 2013). Using H+ gradients
generated by P-type and V-type ATPases at both the PM and
tonoplast (Serrano, 1989; Gaxiola et al., 2007; Duby and Boutry,
2009), Ca2+/H+ transporters link the transport of Ca2+ with the
transport of H+. Moreover, Ca2+ export via Ca2+-ATPases (lo-
calized at the PM, tonoplast, endoplasmic reticulum, and Golgi)
acts by a net Ca2+/H+ exchange lowering the energetic re-
quirement for the export (Rasi-Caldogno et al., 1987; Beffagna
et al., 2000; Luoni et al., 2000; Brini and Carafoli, 2009; Bonza and
De Michelis, 2011).
Other ions move across the membranes. In addition to the

CAXs, plants have a large set of predicted cation/H+ exchangers
localized in the different membranes that may contribute to pH
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changes in response to a change ofmembrane potential (Sze and
Chanroj, 2018). Generally, the membrane potential provides an
integrative link between all ions moving across a membrane as
described by the Goldman-Hodgkin-Katz equation (Hille, 1992).
As such, cytosolic Ca2+ increase through influx across a mem-
brane is likely tobeassociatedwith amembranepotential change,
which will in turn influence H+ transport. It can therefore be hy-
pothesized that changes of cytosolic free Ca2+ concentration
([Ca2+]cyt), becauseof its influx throughchannels (Swarbreck et al.,
2013), are accompanied by changes in cytosolic pH (pHcyt)
possibly linked to its efflux (Bonza andDeMichelis, 2011). Indeed,
evidenceofa linkbetween [Ca2+]cyt andpHcyt hasbeenobserved in
the tip of growing pollen tubes and root hairs (Herrmann and Felle,
1995; Monshausen et al., 2008; Michard et al., 2011, 2017), guard
cells in response to ABA (reviewed in Blatt and Grabov, 1997) as
well as in seedlings subjected to cold stress (Gao et al., 2004),
exogenous auxin (indole-3-acetic acid, IAA) treatment (Dindas
et al., 2018) or mechanical stimulation (Monshausen et al., 2009).

To better understand the interaction between cytosolic Ca2+

transients and H+ homeostasis, we carefully applied the use of
fluorescent biosensors to analyze pH and Ca2+ dynamics in living
plant cells. Using well-defined external stimuli, our results dem-
onstrate that transients in Ca2+ are linked with transients in pH in
the cytosol. The link was observed in all cells and tissues in-
vestigated and itwasmaintained inmutants of selected candidate
mechanisms. The pH transients were remarkably similar in the
cytosol, mitochondria, and plastids, despite distinct Ca2+ re-
sponses. Our data show that Ca2+ and pH are linked but not
strictly coupled, thus raising the possibility that the pH transient
may encode additional information to the Ca2+ transient. Our

observations extend the concept of Ca2+ signatures to pH, pro-
viding insights into their joint responsewhile raisingnewquestions
about the mechanistic nature of the coupling and how specificity
may be achieved in Ca2+ signaling.

RESULTS

To investigatewhether the dynamics in [Ca2+]cyt are accompanied
by pH changes, we monitored pHcyt in Arabidopsis (Arabidopsis
thaliana) leaves subjected to wounding. An early event occurring
after wounding of leaf tissue is a fast [Ca2+]cyt increase, occurring
primarily in the cells that surround the wounded site and then
spreadingacross the leaf asa “Ca2+wave” (Beneloujaephajri et al.,
2013). Although it is hard to differentiate between a passive injury
response and active Ca2+ signaling close to the injury site, the
propagated Ca2+ wave is clearly a result of activated cytosolic
Ca2+ transients. To capture the dynamics of the wounding response,
we used two separate Arabidopsis plant lines expressing the
NES-YC3.6 (Nagai et al., 2004; Krebs et al., 2012) and the pH-
green fluorescent protein (GFP) (Moseyko and Feldman, 2001;
Fendrych et al., 2014) sensors for [Ca2+]cyt and pHcyt, re-
spectively (SupplementalMovies 1 and2). For bothCa2+ andpH,
weobserved reproducible in vivo responses. Increases in [Ca2+]cyt
were accompanied by cytosolic acidification as illustrated by the
superimposed averaged traces from independent experiments
normalized to the pre-stimulus level (R0) (Figure 1). Leaf wounding
generated the characteristic Ca2+ signature featuring twomaxima
as observed previously (Beneloujaephajri et al., 2013; Costa et al.,
2017) (Figure 1A, Supplemental Movie 1). The first maximum
showed a sharp onset and decline with a high amplitude and

IN A NUTSHELL 
Background: Plants survive by adapting their development and physiology to external changes. Information within 
cells is commonly encoded in Ca2+ signals; different external stimuli are translated into changes in the cytosolic Ca2+

concentration. Such Ca2+ signals are decoded by a range of Ca2+ sensors. An unresolved problem in Ca2+ signaling is 
how a simple ion encodes complex information with high specificity. Ca2+ signals may operate in concert with other 
second messengers, and protons have been suggested as candidates. Several proteins that transport Ca2+ across 
plant membranes also transport protons, and there is evidence from other systems, such as growing pollen tubes, 
that supports a connection between cytosolic Ca2+ and pH dynamics.  

Question: Building on a body of previous work, we considered protons as a potential signal and investigated the link 
with Ca2+. We tested the generality of this coupling signaling by monitoring changes in both Ca2+ and pH for a variety 
of external stimuli.  

Findings:  Using modern imaging microscopy technologies and genetically encoded fluorescent biosensors, we 
monitored Ca2+ and protons at high resolution within living cells and demonstrated that cytosolic Ca2+ and pH 
dynamics are linked in both leaf and root cells of Arabidopsis (Arabidopsis thaliana) subjected to external stimuli. 
Specifically, when a cytosolic Ca2+ increase occurs, cytosolic pH decreases. In membrane transport mutants and in 
response to chemical treatments that perturb Ca2+ and proton homeostasis, the link was maintained, indicating its 
robustness. However, the link was modified in cell organelles. Although their internal pH was dominated by the 
cytosol, Ca2+ dynamics differed, pointing to modulation at the subcellular level, which could provide a basis for 
encoding intracellular signals.    

Next steps: We have demonstrated that pH and Ca2+ are linked, but the underlying mechanism is unknown. The 
finding that the responses are similar, but not strictly correlated, and in some cases delayed, points to something 
more complex than would be expected from a simple transporter model or joint buffers. Using multiparametric 
imaging across a range of stimuli with further chemical and genetic perturbations coupled with the development of 
mechanistic models will help unravel these fascinating observations.  
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Figure 1. Cytosolic Ca2+ Transients in Response to Wounding, External ATP, and NAA Are Accompanied by Changes to Cytosolic pH.

(A) Averaged cpVenus/CFP (Ca2+, black) and 405ex/488ex (pH, gray) ratios of the ROI (schematic drawing), corresponding to the cells surrounding the
wounded leaf area, are plotted over time and reported as DR/R0.
(B) First peak cpVenus/CFP and 405ex/488ex ratios as DR/R0 maximum increase or decrease after wounding.
(C) Time when DRmax/R0 increase after wounding is reached.
(D) Amplitudes of cpVenus/CFP and 405ex/488ex ratios reported as DR/R0 of cells close to the wounding region at 300 s.
(E)AveragedcpVenus/CFP (Ca2+,black)and405ex/488ex (pH,gray) ratiosof theROI (schematicdrawing), corresponding to the root tipmeristemtreatedwith
0.1 mM ATP, are plotted over time and reported as DR/R0.
(F) Peak cpVenus/CFP and 405ex/488ex ratios as DR/R0 maximum increase or decrease after ATP treatment.
(G) Time when DRmax/R0 increase after ATP treatment is reached.
(H) Amplitudes of cpVenus/CFP and 405ex/488ex ratios reported as DR/R0 at 500 s.
(I)AveragedcpVenus/CFP (Ca2+,black) and405ex/488ex (pH,gray) ratiosof theROI (schematicdrawing), corresponding to the root tip transitionzone treated
with 0.01 mM NAA, are plotted over time and reported as DR/R0.
(J) Peak cpVenus/CFP and 405ex/488ex ratios as DR/R0 maximum increase or decrease after NAA treatment.
(K) Time when DRmax/R0 increase after NAA treatment is reached.
(L) Amplitudes of cpVenus/CFP and 405ex/488ex ratios reported as DR/R0 at 1000 s.
Shaded arrows up represent Ca2+ increase; shaded arrows down represent pH decrease. n$ 5; *P# 0.05, **P # 0.01, ***P # 0.001 (t test); error bars = SD.
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peaked at 2461safter the stimulus,whereas the second showed
slower kinetics, a lower amplitude, and peaked at 66 6 11 s
(Figures 1A to 1C). [Ca2+]cyt levels recovered to the resting values
at;250 s after the stimulus (Figure 1D). The sameexperimentwas
performed with plants expressing the pH sensor (Figure 1A,
Supplemental Figures 1A to 1D, Supplemental Movies 2 and 3).
Leaf wounding induced cytosolic acidification (Figures 1A to 1D
and Supplemental Movie 2) with a pH minimum (Figures 1A and
1B) that occurred at a time not significantly different from the first
Ca2+ peak (25 6 3 s, Figure 1C). For the second Ca2+ peak,
however, no distinct pH response could be resolved. Despite
differences in shape, the pHcyt recovered to resting values at
;250 s after the stimulus, coincidently with the recovery of the
resting [Ca2+]cyt. These observations demonstrate that leaf
wounding induces a Ca2+ transient in the cells surrounding the
damaged site that shares several features with a pH transient,
but that pHcyt changes do not strictly mirror [Ca2+]cyt dynamics.

To investigate whether our observations are specific to
wounding or of more general relevance, we repeated the ex-
periment using extracellular ATP. ATP is released from
mechanically damaged cells during wounding, acting as a
damage-associated molecular pattern (Cao et al., 2014; Choi
et al., 2014; Tanaka et al., 2014). Extracellular ATP can be
sensed, for instance, by root tip cells, where it triggers a fast and
sustained [Ca2+]cyt increase (Tanaka et al., 2010; Loro et al.,
2012; Waadt et al., 2017). For the following experiments, we
made use of a custom perfusion setup for fluorescence in vivo
microscopy imaging in Arabidopsis seedling roots (Behera and
Kudla, 2013; Bonza et al., 2013; Wagner et al., 2015a) (Figures
1E to 1L). ATP administration at 0.1 mM to the seedlings ex-
pressingNES-YC3.6 triggered a steep rise in [Ca2+]cyt. Transient
cytosolic acidification was observed in seedlings expressing
pH-GFP, similarly to the acidification in response to the
wounding stimulus (Figures 1E and 1F, Supplemental Movies 4
and 5). However, the maximal responses of the two transients
did not coincide; [Ca2+]cyt peaked at 95 6 13 s after ATP ap-
plication whereas the maximal acidification occurred later, at
159 6 12 s (Figure 1G). At recovery, the pre-stimulus Ca2+ and
pH levels were both reached after approximately 450 s
(Figure 1H). This experiment confirms an association between
[Ca2+]cyt andpHcyt dynamics,whereas the temporal difference in
reaching the maxima highlights that a direct mechanistic
coupling is unlikely but is instead mediated by interacting
physiological activities (Felle, 2001). In a simplistic view, the
delay of the minimum pH might be explained by its main as-
sociation with the Ca2+ efflux phase (mediated by cation/H+

exchangers, CAXs and Ca2+-ATPases) and not with the influx
phase (mediate by Ca2+-permeable channels).

As a third assessment of the interplay between [Ca2+]cyt and
pH, we monitored their dynamics in root cells of the transi-
tion zone in response to administration of the synthetic auxin
1-naphthaleneacetic acid (NAA) (0.01 mM) (Figures 1I to 1L,
Supplemental Movies 6 and 7). The natural auxin IAA has been
previously shown to induce a [Ca2+]cyt transient (Monshausen
et al., 2011; Shih et al., 2014, 2015; Waadt et al., 2017) and si-
multaneous apoplastic alkalinization in root cells (Monshausen
et al., 2011; Gjetting et al., 2012; Shih et al., 2014, 2015).
Recently, Dindas et al. (2018) reported a cytosolic H+ influx in

IAA-treated root cells. Our data show that NAA treatment of
seedling roots results in both a [Ca2+]cyt increase and a pHcyt

decrease (Figure 1I), albeit with different signatures from those
recorded after ATP administration (Figure 1E). The averaged
traces from theCa2+ and the pHsensor almostmirror eachother,
but with a delayed pHcyt minimum as comparedwith the [Ca2+]cyt
maximum (133633 s forCa2+ versus 1666 26 s for pH,P<0.05;
Figure 1K). At recovery, the pre-stimulus levels of both param-
eters were regained almost simultaneously (after ;950 s),
consistent with the other two stimuli (Figure 1L). The inverse pH
changes on both sides of the PMmay conceivably be part of the
same process via transport of H+ across the PM. Thus, the NAA-
induced cytosolic acidification may contribute to the previous
observation of apoplastic alkalinization dependent on a [Ca2+]cyt
increase (Monshausen et al., 2011; Gjetting et al., 2012; Shih
et al., 2014, 2015). Although our observations point to a general
link between [Ca2+]cyt andpHcyt, we cannot rule out thatNAAmay
also directly affect the activity of the H+ pumping ATPase, to
influence both cytosolic and apoplastic pH (Barbez et al., 2017).
A role of AUX1-mediated IAA transport (2H+/IAA2) in cytosolic
acidification has been recently postulated, suggesting that at
least in part the observed acidification is because of the IAA
transport itself (Dindas et al., 2018). However, NAA is not
a substrate of AUX1 (Yang et al., 2006); thus, further work is
needed to disentangle the causality of the events among NAA,
Ca2+, and pH dynamics.
The responses of different plant cell types to different stimuli

show the common feature that the induced [Ca2+]cyt increase is
accompaniedbyan increase in thecytosolic protonconcentration
[H+]cyt and that the recovery to the pre-stimulus conditions is
temporally synchronized, supporting the idea that both param-
eters are also linked mechanistically. The different responses of
[Ca2+]cyt and pHcyt to different stimuli, the absence of a second pH
peak upon wounding, and the shift in the maximal responses
between [Ca2+]cyt and pHcyt for ATP and NAA suggest that the link
is not direct, as would, for instance, be expected for a buffer
exchange mechanism (Plieth et al., 1997) or for a Ca2+/H+ ex-
changeacross thePMoranothermembrane.Moreover, it canalso
be taken into consideration that Ca2+/H+ exchange systems
should contribute only to the [Ca2+]cyt recovery phase and not to
Ca2+ influx, which is putatively mediated by channels.
To further test the hypothesis that the cytosolic pH changes

are linked to cytosolic Ca2+ changes, we aimed at modifying the
dynamic/magnitude of the ATP-induced [Ca2+]cyt increase in root
tip cells. It has been reported that this ATP-inducedCa2+ transient
has a primary component because of the influx of Ca2+ from the
apoplast together with a secondary release of Ca2+ from interior
stores (Tanaka et al., 2010). Thus, we transiently supplemented
the imaging solution with 1 mM of EGTA to chelate and thus re-
duce the freeCa2+availability in theextracellular space (Figure2A).
In this condition, ATP administration still triggered an increase in
[Ca2+]cyt, but its amplitudewasstrongly reducedascomparedwith
the non-chelator control (Figure 1E). The ATP-induced pHcyt de-
crease showed an analogous reduction in amplitude (Figures 2A
and 2B). Subsequent EGTA washout re-established the typical
[Ca2+]cyt and pHcyt changes of the control (Figures 2A and 2B),
providing evidence for causal linkage inwhich the amplitudeof the
change in [Ca2+]cyt determines the amplitude of the pH change.
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Figure 2. Extracellular Ca2+ Chelation with EGTA Affects Both Ca2+ and pH Cytosolic Transients Induced by External ATP.
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To shed light on the nature of the link between [Ca2+]cyt and
pHcyt, we adopted a pharmacological and a genetic approach.
First, we aimed to manipulate pHcyt as a primary modification to
assess whether it affects [Ca2+]cyt. We clamped cytosolic pH or
dissipated H+ gradients across cellular membranes by pre-
treating the Arabidopsis seedlings (expressing NES-YC3.6 and
pH-GFP) with 5 mM of the ionophore nigericin (acting mainly as
aH+/K+exchanger) (Figures2C to2H)or 5mMof theprotonophore
Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP)
for 10 min, respectively (Figures 2I to 2L). The treatment with
nigericin did not affect the resting [Ca2+]cyt (Figure 2C), and only
slightly acidified the cytosol (Figure 2F). When nigericin-
pre-treated NES-YC3.6 and pH-GFP seedlings were exposed to
external ATP, a reduced magnitude of both Ca2+ maximum
(Figures 2D and 2E) and pH minimum transients (Figures 2G and
2H) was observed. In both cases, the time of the peaks was not
affected (95 6 6 control (CNT) versus 95 6 10 NIG for Ca2+ and
1556 13CNT versus 1626 11NIG for pH). Thus, nigericin did not
break the [Ca2+]cyt and pHcyt link, only affecting the magnitude of
the maximum and minimum of the transients. FCCP treatment
induced cytosolic acidification (estimated as ;0.2 pH units,
Supplemental Figure 1) but also an increase of the [Ca2+]cyt
compared with the control conditions (Figures 2I and 2K). In the
presence of FCCP, the seedlings failed to show any [Ca2+]cyt in-
crease and acidification at ATP exposure (Figures 2J and 2L).
FCCP pre-treatment severely compromises membrane ener-
getics, which is the likely reason for the lack of ATP responses.
Nonetheless, the increase in [Ca2+]cyt as a consequence of the
primary dissipation of the proton gradient (Figures 2I and 2K)
confirms a link between the dynamics of the two ions.

We next aimed to manipulate [Ca2+]cyt to assess the impact
on pHcyt. Although the Ca2+-ATPase inhibitor EosY provides
a straightforward pharmacologicalmeans of in vivo interference
with cytosolic Ca2+ homeostasis (Bonza et al., 2013), the
fluorescenceof EosYcannotbeeasily separated from that of the

pH-GFP sensor, compromising quantitative measurements (De
Vriese et al., 2018). We therefore decided to follow a genetic
approach by selecting two different Arabidopsis Ca2+-ATPase
double mutants, aca8 aca10 (Frei dit Frey et al., 2012)( and aca4
aca11 (Boursiac et al., 2010). ACA8 and ACA10 are PM-
localized IIB Ca2+-ATPases and the double aca8 aca10
mutant has shown different phenotypes related to Ca2+ ho-
meostasis, pathogen response, and stomata aperture (Frei dit
Frey et al., 2012; Yang et al., 2017; Yu et al., 2018). By contrast,
ACA4 andACA11 are IIBCa2+-ATPases localized at the vacuole
membrane and the double mutant shows a high frequency of
hypersensitive response-like lesions and altered ion homeo-
stasis (Boursiac et al., 2010). We hypothesized that these
mutants might have reduced Ca2+ pumping capacity, resulting
in a sloweddown recovery of the [Ca2+]cyt transient and possibly
higher basal [Ca2+]cyt levels, thus offering ameans to genetically
perturb the [Ca2+]cyt response and to investigate the impact on
pHcyt.
We started our analyses with the aca8 aca10 mutant (ex-

pressing the NES-YC3.6 sensor), which was assayed side by
sidewith theColumbia (Col-0)wild-type control for ATP-induced
cytosolic Ca2+ andpH transients (Figure 3). Resting [Ca2+]cyt was
not changed in the aca8 aca10 background, as indicated by
similar cpVenus/cyan fluorescent protein (CFP) ratios in the root
tip cells of young seedlings (Figure 3A) and suggestive of suf-
ficient backup by other mechanisms for steady-state mainte-
nance in young seedlings. External ATP stimulation of the aca8
aca10 NES-YC3.6 seedlings led to an altered Ca2+ signature as
compared with the wild type (Figure 3B); however, with a de-
creased amplitude (Figure 3C), a lower rate of [Ca2+]cyt increase
(Figures 3E and 3F) and a delayed recovery to the pre-stimulus
level (Figure 3G). Whereas delayed recovery may be intuitively
expected in the absence of two important mediators of Ca2+

extrusion, a reduced Ca2+ amplitude suggests a degree of ac-
climation in the mutants through modified expression and/or

Figure 2. (continued).

(A)AveragedcpVenus/CFP (Ca2+,black) and405ex/488ex (pH, gray) ratiosof theROI shown in the right bottomschematicdrawing, corresponding to the root
tipmeristematic cells treatedwith 0.1mMATP, in the presence of 1mMEGTAor 10mMCaCl2, are plotted over time and reported asDR/R06 SD variations.
(B) Peak cpVenus/CFP and 405ex/488ex ratios as DR/R0 maximum increase or decrease after ATP treatment.
(C) Steady-state cpVenus/CFP ratios preceding ATP administration (averaged over 50-s time window) in CNT (turquoise) and NIG-treated seedlings
(purple).
(D) CNT and NIG-treated root tips of seedlings expressing NES-YC3.6 under continuous perfusion and treated with 0.1 mM ATP for 3 min. Normalized
cpVenus/CFP ratios of the ROI shown in the right bottom schematic drawing, are plotted over time.
(E) Peak cpVenus/CFP ratios as DR/R0 maximum increase after ATP administration.
(F) Steady-state 405ex/488ex ratios preceding ATP application (averaged over 50-s time window) in CNT (turquoise) and NIG-treated seedlings (purple).
(G)CNT andNIG-treated root tips of seedlings expressing pH-GFP imaged under continuous perfusion and treatedwith 0.1mMATP for 3min. Normalized
405ex/488ex ratios of the ROI shown in the right bottom schematic drawing, are plotted over time.
(H) Peak 405ex/488ex ratios as DR/R0 maximum decrease after ATP administration.
(I)Steady-state cpVenus/CFP ratios precedingATP administration (averaged over 50-s timewindow) inCNT (turquoise) and FCCP-treated seedlings (dark
blue).
(J) CNT and FCCP-treated root tips of seedlings expressing NES-YC3.6 under continuous perfusion and treated with 0.1 mM ATP for 3 min. Normalized
cpVenus/CFP ratios of the ROI shown in the right bottom schematic drawing, are plotted over time.
(K)Steady-state405ex/488ex ratiosprecedingATPapplication (averagedover50-s timewindow) inCNT (turquoise) andFCCP-treated seedlings (darkblue).
(L)CNTandFCCP-treated root tipsof seedlingsexpressingpH-GFP imagedunder continuousperfusionand treatedwith0.1mMATP for 3min.Normalized
405ex/488ex ratiosof theROIshown in the insetareplottedover time.CNT=control;NIG=5mMnigericinpretreatment; FCCP=5mMFCCPpretreatment.n$
5; error bars = SD; *P # 0.05; ***P # 0.001 (t test).
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Figure 3. Genetic Ablation of ACA8 and ACA10 Ca2+-ATPase Alters Both Ca2+ and pH Cytosolic Transients Induced by External ATP.

(A) Steady-state cpVenus/CFP ratios preceding ATP administration (averaged over 50-s time window) of wild type (turquoise) and aca8 aca10 (green).
(B) Root tips of seedlings expressing NES-YC3.6 in wild type and aca8 aca10 imaged under continuous perfusion and treated with 0.1 mM ATP for 3 min.
cpVenus/CFP ratios of the ROI shown in the inset (schematic drawing) are plotted over time.
(C) Peak cpVenus/CFP ratios as DR/R0 maximum increase after ATP administration.
(D) Time when DRmax/R0 increase after ATP administration is reached.
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activity of other Ca2+ transport mechanisms acting at both the
PM and interior membranes. This behavior matches similar
observationsusingaequorin-basedCa2+ sensing followingflg22
and chitin treatments (Frei dit Frey et al., 2012). When the same
experiments were repeated with the pH-GFP sensor lines, we
observed analogous differences for the pH transients, with no
significant difference in the resting maximum pHcyt as reported
by raw 405ex/488ex ratios (Figure 3H), a decreased amplitude of
acidification (Figure 3I), and a decreased acidification rate
(Figures 3L and 3M), although the pH recovery to pre-stimulus
levels was not significantly delayed (Figure 3N). These findings
suggest that Ca2+ fluxes remain tightly linked to the H+ fluxes
involved in cytoplasmic acidification. pH recovery appears to
dependon the activity of distinctmechanisms, suchasactivity of
the PM and possibly tonoplast H+-ATPases. Although the
mechanistic impact of the lack of two PM Ca2+ pumps is not
straightforward to interpret and likely includes pleiotropic
components, these results further demonstrate that alteration of
the Ca2+ dynamic is mirrored by pH change. The similarities
between the averaged traces of Ca2+ and pH dynamics from the
two genetic backgrounds appear particularly evident when
superimposed (Supplemental Figure 2).

Side by side analyses of the aca4 aca11 background with the
Col-0 wild-type control for ATP-induced cytosolic Ca2+ and pH
transients did not reveal any clear difference (Supplemental
Figure 3). Lackof the two tonoplastCa2+-ATPasesdidnot alter the
resting [Ca2+]cyt and pHcyt compared with the wild type
(Supplemental Figures 3A and 3H), whereas the maximum peaks
of [Ca2+]cyt (Supplemental Figure 3C) and the rate of pHcyt de-
crease (Supplemental Figures 3M and S3N) were slightly altered.
Clearly, at least in young seedling root tips, the lack of the two
vacuole Ca2+-ATPases did not have anymajor effect on Ca2+ and
pH dynamics in response to an external ATP stimulus.

Recent work has shown that Ca2+ transients in the cytosol
trigger Ca2+ increases also in intracellular compartments, where
the transients display distinct characteristics (Loro et al., 2012,
2016; Wagner et al., 2015a). To assess if the Ca2+–pH link that we
observed in the cytosol also occurs in other intracellular com-
partments, we next aimed to assess the interdependency of
mitochondrial and plastidic Ca2+ and pH in response to the ex-
tracellular ATP treatment. Ca2+ and pH are thought to be linked by
mitochondrial metabolism and energy transformation, which has
been studied at depth inmammalian cells (Wagner et al., 2016). In
chloroplasts, pronounced changes in pH result from the activity of

the thylakoid electron transport chain, and considerable changes
in stromal Ca2+ concentration have been observed (Loro et al.,
2016). Potential mechanistic links between both are currently
under investigation (Carraretto et al., 2016; Armbruster et al.,
2017). We compared the responses of three different Arabidopsis
sensor lines expressing YC3.6 in the cytosol (NES-YC3.6), mi-
tochondria (4mt-YC3.6), and plastids (2Bam4-YC3.6) after ex-
posing root tips to external ATP (Figures 4A to 4G). Mitochondria
showed higher resting cpVenus/CFP ratios than the cytosol,
whereas the ratios in the plastid stroma were lower than in the
cytosol (Figure 4A). The organelles further showed distinct Ca2+

transient kinetics (Figure 4B) as confirmed by different maxi-
mum Ca2+ peaks (Figure 4D) and different times at which the
maximumCa2+ accumulation occurred (Figure 4E). Moreover, the
rates of Ca2+ accumulation in themitochondrial matrix and plastid
stromaweredifferent fromthose in thecytosol (Figures4Eand4F).
The recovery times of the cytosol and the plastids were similar,
whereas mitochondrial recovery was slower (Figure 4G). As
such, the three compartments presented obvious differences in
their detectable Ca2+ dynamics in response to the same ATP
stimulus (Supplemental Figure 4), in agreement with previous
findings (Logan and Knight, 2003; Loro et al., 2012, 2016;Wagner
et al., 2015a). We then performed analogous experiments for pH,
comparing the dynamics in those three compartments
(Supplemental Figure 4). We used theMT-cpYFP line in which the
high-sensitivity, high-pKa pH sensor cpYFP (circularly permuted
yellow fluorescent protein) is targeted to the mitochondrial matrix
(Schwarzländer et al., 2011, 2012, 2014). To have comparable
results among the different compartments, we then generated
Arabidopsis plants expressing the cpYFP localized to the cytosol
and the nucleus (C-cpYFP) and to the plastid stroma (as achieved
through N-terminal fusion with the tobacco transketolase tar-
geting peptide (TKTP-cpYFP)). Both C-cpYFP and TKTP-cpYFP
plants showed appropriate expression of the sensors in root tip
cells (Supplemental Figure 5) and the expected subcellular lo-
calizations (cytosolic and nuclear in the case of cpYFP and
chloroplast in the case of TKTP-cpYFP; Supplemental Figure 6).
To allow for a rigorous analysis, we tested the in vivo pH

sensitivity of the cpYFP sensor with our experimental setup, by
assaying the responses of the seedling root cells expressing the
cytosolic cpYFP sensor to different external pH buffer solutions
and comparing it with that of pH-GFP (Supplemental Figures 1E
to 1H and Supplemental Movie 8; note that for cpYFP a decrease
in the 488ex/405ex ratio represents a pH decrease, whereas the

Figure 3. (continued).

(E) cpVenus/CFP ratio expressed as DR/R0 increase following ATP administration; linear region was selected with R2 > 0.998.
(F) Linear rate representing slope of regression of (E).
(G) Time to pass half-maximal ratio during recovery.
(H) Steady-state 405ex/488ex ratios preceding ATP application (averaged over 50-s time window) in wild type (turquoise) and aca8 aca10 (green).
(I) Root tips of seedlings expressing pH-GFP in wild type and aca8 aca10 imaged under continuous perfusion and treated with 0.1 mM ATP for 3 min.
405ex/488ex ratios of the ROI shown in the inset (schematic drawing) are plotted over time.
(J) Peak 405ex/488ex ratios as DR/R0 maximum decrease after ATP administration.
(K) Time when as DRmax/R0 decrease after ATP administration is reached.
(L) 405ex/488ex ratio expressed as DR/R0 decrease following ATP administration; linear region was selected with R2 > 0.998.
(M) Linear rate representing slope of regression of (L).
(N) Time to pass half-maximal ratio during recovery. n $ 7; *P # 0.05, **P # 0.01, and ***P # 0.001 (t test); error bars = SD.
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Figure 4. Ca2+ and pH Transients Are Linked in the Cytosol, but This Link Is Modulated in Mitochondria and Plastids of Seedling Root Tip Cells.

(A) Steady-state cpVenus/CFP ratios preceding ATP administration (averaged over 50-s time window).
(B) Root tips of seedlings expressing NES-YC3.6 in wild type (turquoise), 4mt-YC3.6 (yellow), and 2Bam4-YC3.6 (orange) imaged under continuous
perfusion and treated with 0.1 mM ATP for 3 min. cpVenus/CFP ratios of the ROI shown in the inset (schematic drawing) are plotted over time.
(C) Peak cpVenus/CFP ratios as DR/R0 maximum increase after ATP administration.
(D) Time when DRmax/R0 increase after ATP administration is reached.
(E) cpVenus/CFP ratio expressed as DR/R0 increase following ATP administration; linear region was selected with R2 > 0.985.
(F) Linear rate representing slope of regression of (E).

2712 The Plant Cell



opposite is true for pH-GFP; Supplemental Figures 1A to 1D). The
analyses of the cpYFP resting ratios in the three different pH
sensor lines showed differential steady states (Figure 4H), but all
three subcellular localizations showed a common steep pH drop
with similar kinetics at ATP treatment (Figure 4I). Ratio normali-
zation showed that the maximum ratio changes were not statis-
tically different between the different compartments (Figure 4J),
occurring almost simultaneously even if, in bothmitochondria and
plastids, the peak was slightly delayed when compared with the
cytosol (1556 18 s for cytosol; 176 6 23 s for mitochondria and
1606 11 s for plastids) (Figure 4K). This delay was much smaller
than the nearly 100-s delay for reaching the maximum Ca2+ ac-
cumulation in mitochondria and plastids compared with the cy-
tosol (Figure 4D). Both the speed of the pH decrease (Figures 4L
and 4M) and the time of recovery (Figure 4N)were almost identical
between the three cell compartments. No significant differences
were observed, indicating that the pH dynamics were practically
identical among the compartments, in contrast with the Ca2+

dynamics (Supplemental Figure 4). This difference appears par-
ticularly remarkable because it suggests integration, as opposed
to simple equilibration, at the boundary membranes of both the
mitochondria and the plastids, which shape their internal Ca2+

dynamics through specific regulation of uptake, buffering, and
export. The mitochondrial calcium uniporter has recently been
found to offer such integration by mediating Ca2+-regulated Ca2+

uptake (recently discussed in Wagner et al., 2016). By contrast,
there is little difference in the matrix and stromal pH dynamics,
hinting at simple pH coupling across compartments, for example,
via proton-coupled transporters, that keep pH gradients across
the organelle membranes unchanged. The pH drop in the plastid
likely influences stromal physiology. In chloroplasts, pH is
a central determinant of photosynthetic regulation and recently
also Ca2+ regulation has been observed at several levels of
chloroplast function (Nomura and Shiina, 2014; Hochmal et al.,
2016; Frank et al., 2018). Organelle-specific effects on the tech-
nical sensor behavior cannot be completely ruled out as potential
contributors to the observed differences, even when the same
protein sensor is used (here YC3.6 for Ca2+ and cpYFP for pH).

DISCUSSION

In this study, we show that Ca2+ and pHdynamics are linked in the
cytosol of plant cells subjected to external challenges (Figure 1).
Our data suggest that the cytosolic pH is linked to a stimulus-
induced change of [Ca2+]cyt and that pH changes can show dif-
ferent dynamics in response to different stimuli. Our observations

generalize previous reports and theoretical considerations and
support the concept of a pH signature thatmay encode additional
information to theCa2+ signatureandmaybedecodedbydifferent
downstream responders (reviewed in Felle, 2001).
Given the magnitude of the acidification, which can be esti-

mated to be between 0.1 and 0.25 pH units in response to NAA,
wounding,andATP (basedonour invivocalibrationof thepH-GFP
sensor;SupplementalFigures1A toC), theobservedpHdynamics
are likely to have direct physiological significance. The estimated
values are in agreementwith pHchangesmeasured inHeLa cells
in response to histamine (0.12 pH units; Poburko et al., 2011),
with the spontaneous pH oscillations observed in the alkaline
bandofgrowingpollen tubes (magnitudes ranging from0.3 to0.5
pH units; Feijó et al., 2001), in guard cells in response to ABA or
IAA (Irving et al., 1992; Blatt and Armstrong, 1993), and in Ara-
bidopsis root epidermal cells in response to mechanical stim-
ulation (Monshausen et al., 2009). pH changes of this size likely
affect a multitude of downstream functions through the pro-
tonation of residues with a pKa around the steady-state pHcyt as
well as on proton gradients affecting transport and energy status.
For instance, PM H+-ATPase activity in microsomal fractions from
Arabidopsis seedlings showed a stimulation by 50% in response
to a pH shift from 7.2 to 6.9 (De Michelis and Spanswick, 1986;
Supplemental Figure 7). Elegant work in Caenorhabditis elegans
even established H+ as bona fide neurotransmitters in muscle
contraction, exemplifying the central regulatory role that pH
changes can play (Beg et al., 2008). A particularly striking example
for intracellular pH regulation in plant cells is provided by the
external mitochondrial NAD(P)H DEHYDROGENASE B1, which
contributes to the alternative respiratory pathway and was shown
to be stimulated by increases in [Ca2+]cyt. However, biochemical
data revealed that the enzyme is only sensitized to Ca2+ regulation
by a coincident decrease of pH (Hao et al., 2015). Our data
now reveal that, in vivo, those changes coincide, providing the
physiological basis for active regulation of the NADPH oxidation
pathway to occur. Similar mechanisms are likely for other
prominent players in Ca2+ signaling, such as kinases and phos-
phatases (reviewed in Felle, 2001) and our work offers a physio-
logical framework for targeted future investigation.
Employing a carefully optimized system of fluorescent protein

biosensors, we were able to refine and generalize the already
available evidence of linkage between [Ca2+]cyt and pHcyt dy-
namics in plant cells. Despitemuch effort, we did not find away to
perturb the [Ca2+]cyt and pHcyt link. This may be either becausewe
have not included a critical candidate or because the linkage is the
result of a larger range of mechanisms. This evidence allows

Figure 4. (continued).

(G) Time to pass half-maximal ratio during recovery.
(H) Steady-state 488ex/405ex ratios preceding ATP application (averaged over 50-s time window).
(I) Root tips of seedlings expressing C-cpYFP in the cytosol (turquoise), MT-cpYFP in the mitochondria (yellow), and TKTP-cpYFP (orange) imaged under
continuous perfusion and treated with 0.1 mM ATP for 3 min. 488ex/405ex ratios of the ROI shown in the inset (schematic drawing) are plotted over time.
(J) Peak 488ex/405ex ratios as DR/R0 maximum decrease after ATP administration.
(K) Time when DRmax/R0 decrease after ATP administration is reached.
(L) 488ex/405ex ratio expressed as DR/R0 decrease following ATP administration; linear region was selected with R2 > 0.995.
(M) Linear rate representing slope of regression of (L).
(N) Time to pass half-maximal ratio during recovery. n $ 7; *P # 0.05, **P # 0.01, and ***P # 0.001 (t test); error bars = SD.
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several considerationsaboutpossiblecontributors. [Ca2+]cyt/pHcyt

linkage by H+-coupled membrane transport of Ca2+ provides an
hypothetical scenario. Ca2+ ATPases and Ca2+ exchangers, such
as CAXs, export Ca2+ from the cytosol primarily to the apoplast
and the vacuole (Bonza and De Michelis, 2011; Pittman and
Hirschi, 2016), aided by the inward-facing proton gradient (Felle,
2001). The higher the rate of Ca2+ pumping, the higher is also the
rate of H+ entry into the cytosol. Our data that demonstrate the
general linkage are consistent with this concept. Reduced Ca2+

influx into the cytosol, as achieved through pharmacological
treatment (e.g., EGTA), coincideswith reduced acidification of the
cytosol (Figures 2A to 2H), possibly reflecting a reduced H+ influx
rate because of a reduced Ca2+ extrusion. When genetic dis-
ruption of the [Ca2+]cyt/pHcyt link was attempted, any change in
[Ca2+]cyt coincided with a change in pHcyt (aca8 aca10). Consis-
tently, the absence of a change in [Ca2+]cyt came with an absence
of a change in pHcyt (aca4 aca11).

If we assume that the link between Ca2+ and H+ is dependent
on the activity of transporters, we can estimate the number of
transported Ca2+ ions and protons. The change in [Ca2+]cyt in root
tip cells in response to auxin and ATP was recently estimated to
reach;100–200 nM (Waadt et al., 2017) as averaged over cells
and tissues (;20–160 nM from our estimations reported in
Supplemental Figure 8). It has been estimated that approxi-
mately 100 Ca2+ ions are bound to internal buffers for every free
Ca2+ ion (Falcke, 2004). Hence, the removal of ;20 mM Ca2+

(specifically, 20 mmole from every liter of cytosol) is required to
bring a D[Ca2+]cyt of 200 nM back to baseline. Assuming that the
Ca2+ ATPases or CAXs operate at aCa2+/H+ stoichiometry of 1:2
and 1:3, respectively (Blackford et al., 1990; Carafoli, 1991), this
implies that an amount corresponding to 40–60 mM of H+ will be
transported into the cytosol. For a cytosolic buffering capacity of
approximately 30mMperunit pHchange (SandersandSlayman,
1982; Bethmann and Schönknecht, 2009), this results in a pH
change of 0.0013–0.00195. Even using estimates of bound/free
Ca2+ ratioof 1700 (Fleet et al., 1998),which results inapHchange
of 0.023, those values are too small (a factor of 10) to explain the
observed shifts of 0.1–0.25 pH units and would not be reliably
picked up in vivo by the pH sensors used in this work (Moseyko
and Feldman, 2001; Schwarzländer et al., 2011, 2012, 2014) that
would require 400–600 mM of H+.

A second candidate mechanism to underpin the Ca2+/H+ link is
a buffer exchange model in which Ca2+ and H+ are competing for
the same binding sites of a common cytosolic buffer (Plieth et al.,
1997). Although the model of Plieth et al. (1997) would explain the
magnitudes of our observations, thismodel has been criticized for
assuming an unrealistically high buffering capacity for Ca2+

(Schönknecht and Bethmann, 1998).
Both direct linkage models (via transporters and buffers) give

rise to a one-to-onemapping between [Ca2+]cyt and pHcyt, that is,
a given level of [Ca2+]cyt leads to a well-defined pHcyt and pHcyt

thus strictly follows every change in [Ca2+]cyt. However, the
detailed dynamics of both ions, although similar, clearly differed
(Figures 1A and 1E). This suggests that additional mechanisms
operate on top of any direct linkage to generate flexibility be-
tween both parameters.

The observation that pH changes are rapidly passed on among
cytosol, mitochondria, and plastids showing a similar signature

despite Ca2+ dynamics that differ between the compartments
(Figure 4) is further evidence against a direct linkage model. Here,
a potential modifier of the linkage may be differing buffering ca-
pacities for Ca2+ and H+ in different cell compartments. Techni-
cally, it also cannot be completely ruled out that sensor response
characteristics differ slightly between compartments, which may
impact the signal (Granqvist et al., 2012). These considerations
suggest that the [Ca2+] and pH link depends on further mecha-
nisms inaddition to thedirectCa2+/H+coupled transport operated
by the transporters located at different membranes, the contri-
bution of cytosolic Ca2+ and pH buffers, or H+-pump activities
(which are intrinsically dependent on [H+]).
In conclusion, our study demonstrates a linkage between Ca2+

and H+ in plant cells, which becomes evident by synchronous
dynamics in response to different external stimuli. Those findings
generalize previous observations in specialized cell structures,
suchasguardcells (Irvinget al., 1992;Blatt andGrabov, 1997) root
epidermal cells (Monshausen et al., 2009), root hairs and pollen
tubes (Herrmann and Felle, 1995; Monshausen et al., 2008;
Michard et al., 2011, 2017), and imply that concentration changes
in both Ca2+ and H+ may act in tandem in the same or even
separate signal transduction events. As such, Ca2+-based sig-
naling would be best assessed by measuring the concerted dy-
namics of several parameters, including pH by multiparametric
in vivo sensing (as recently suggested by De Col et al., 2017;
Waadt et al., 2017). Capturing amore complete picture of theCa2+

-linked dynamics in subcellular physiology will pave the way to
understandingCa2+signalingaspartof thecontext that it operates
in, while potentially providing insights into how specificity is
achieved.

METHODS

Plant Material and Growth Conditions

AllArabidopsis thaliana (Arabidopsis) plants were of the ecotype Columbia
0 (Col-0). Plants were grown on soil under short day conditions (12 h light
/12 h dark, 100 mE m22 s21 of Cool White Neon lamps) at 22°C and 75%
relative humidity. Seeds were surface-sterilized by vapor-phase sterili-
zation (Clough and Bent, 1998) and plated on half-strengthMurashige and
Skoog (MS) medium (Murashige and Skoog, 1962) (Duchefa) supple-
mented with 0.1% SUC and 0.05% MES, pH 5.8, and 0.8% plant agar
(Duchefa). After stratification at 4°C in the dark for 2 d, plates were
transferred to thegrowthchamberunder longdayconditions (16h light / 8h
dark, 100 mEm22 s21 of Cool White Neon lamps) at 22°C. The plates were
kept vertically andseedlingswereused for imaging6–7dafter germination.
Arabidopsis Col-0 wild-type and rdr6 lines pGPTVII Ubq10:NES-YC3.6
(cytosolic Ca2+ sensor), pUpHTKan Ubq10:pH-GFP (cytoplasmic pH
sensor), pH2GW7 CaMV35S:MT-cpYFP (mitochondrial pH sensor),
pGreen0179 CaMV35S:4mt-YC3.6 (mitochondrial Ca2+ sensor), and rdr6
pGreen0029 CaMV35S:2Bam4-YC3.6 (plastidial Ca2+ sensor) were pre-
viously reported (Schwarzländer et al., 2011, 2012; Krebs et al., 2012; Loro
et al., 2012, 2016; Fendrych et al., 2014).

Molecular Cloning and Plasmid Constructs

Thecore coding sequenceof cpYFPwasPCR-amplified fromaMT-cpYFP
insert in a pShuttle-CMVvector (Wang et al., 2008) using extensionprimers
for cloning using Gateway technology (Invitrogen). For cytosolic locali-
zation, the product was first inserted into a pDONR207 vector (Invitrogen)
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and then transferred into a pH2GW7 vector (Karimi et al., 2002) under the
control of the CaMV35S promoter. For sensor localization in the plastid
stroma, the sequence of the Nicotiana tabacum chloroplast transketolase
transit peptide (TKTP) (Wirtz and Hell, 2003; Schwarzländer et al., 2008)
was fused in-frame to thecpYFPsequencebyPCRusingprimer extension.
Primer sequences aredetailed inSupplemental Table 1.Correctness of the
sequences was confirmed by commercial sequencing.

Generation of Transgenic Plants

Plant transformation was performed using Agrobacterium tumefaciens
GV3101 cells by floral-dip (Clough and Bent, 1998). Per construct, several
independent transgenic lines were selected by antibiotic resistance or
presence of fluorescence. pGPTVII Ubq10:NES-YC3.6 and pUpHTKan
Ubq10:pH-GFP constructs were introduced in the double knock-out aca8
aca10 and aca4 aca11Arabidopsis T-DNA line reported in Frei dit Frey et al.
(2012) and Boursiac et al. (2010), respectively. The C-cpYFP and TKTP-
cpYFP constructs were introduced in Col-0 wild-type plants and trans-
formants were selected by hygromycin resistance and YFP fluorescence,
and the samemarkers were also used for segregation analysis to select for
homozygous lines.

Confocal Laser Scanning Microscopy

Confocal laser scanning microscopy analyses were performed using
a Leica SP2 imaging system. cpYFP and chlorophyll were excited by the
488-nm line of the argon laser and the emission was collected at 525–540
nm and 650–750 nm, respectively. Images were acquired by a 403 oil
immersion objective with different digital zooms. Images were analyzed
using FIJI software.

Fluorescence Microscopy

For Ca2+ and pH imaging analyses, an inverted fluorescence microscope
(Ti-E; Nikon) with a CFI 43 numerical aperture 0.13 dry objective for entire
leaves or a 203 numerical aperture 0.75 for seedling roots were used.
Excitation lightwasproducedbyafluorescent lamp (Prior Lumen200PRO;
PriorScientific) set to20%(for roots) and50%(for leaves)with440nm(436/
20 nm) for theCameleon (YC3.6) sensor or 405 nm (405/40 nm) and488nm
(470/40 nm) for pH-GFP and cpYFP sensors. Images were collected with
a dual charge-coupled device camera (ORCA-D2; Hamamatsu). For
Cameleon analysis, the Förster resonance energy transfer CFP/YFP op-
tical block A11400-03 (emission 1, 483/32 nm for CFP; emission 2, 542/27
nm for Förster resonance energy transfer) with a dichroic 510-nm mirror
(Hamamatsu) was used for the simultaneous CFP and cpVenus acquis-
itions.ForpH-GFPandcpYFP imaging, theemissionswerecollectedusing
a 505/530-nm bandpass filter (Chroma Technology) with both excitation
wavelengths (405 and 488 nm) used sequentially to illuminate the sample.
Camera binning (2 3 2 or 4 3 4) and exposure times (from 50 to 400 ms)
were adjusted depending on the sensor line and analyzed tissue. Images
were acquired every 2 s for leaves and 5 s for roots. Filters and the dichroic
mirrors were purchased from Chroma Technology. NIS-Elements (Nikon)
was used as a platform to control themicroscope, illuminator, and camera.
Images were analyzed using FIJI.

Seedling and Leaf Imaging

Seven-d-old seedlings were used for root imaging. Seedlings were kept in
the growth chamber until the experiment. For root experiments, the
seedlings were gently removed from the plate according to Behera and
Kudla (2013), placed in the dedicated chambers, and overlaid with cotton
wool soaked in imagingsolution (5mMKCl, 10mMMES,and10mMCaCl2,
pH 5.8 adjusted with Tris-base). The root was continuously perfused with

imaging solution whereas the shoot was not submerged. Treatments were
performed by supplementing the imaging solution with 0.1 mM sodium
adenosine triphosphate (Na2ATP, froma200mMstocksolutionbufferedat
pH 7.4 with NaOH) or 0.01 mMNAA (from a 10.74 mM stock solution) and
administered for 3 min under running perfusion.

To perform the experiments reported in Figures 2A and 2B in which the
extracellular Ca2+ was chelated, a modified imaging solution was used
(5 mM KCl, 10 mMMES, 50 mM CaCl2, and 1 mM EGTA, pH 5.8 adjusted
with Tris-base). For chemical treatments, seedlingswere pre-incubated for
10min in 5 cmpetri dishes in the imaging solution supplementedwith 5mM
Nigericin or 5 mMFCCP. Solvent control seedlings were kept for the same
times in the imaging solution supplemented with 0.1% (v/v) EtOH.
Seedlings were then transferred to the imaging chamber under running
perfusion and allowed to recover for ;10 min before measurement. It
should be noted that the resting Ca2+ ratios of the NES-YC3.6 seedlings in
Figure 2 are lower than those reported in Figures 3 and 4 even if the mi-
croscope settings were the same. Consistently, the experiments con-
ducted using wild-type and mutant seedlings or control and treated
seedlings were performed side by side. Hence, every single imaging ex-
periment has its internal control. Wounding of leaves from 6-week-old
Arabidopsis plants was performed by gently pressing the lamina with
laboratory forceps as described in Costa et al. (2017).

Quantitative Imaging Analysis

Fluorescence intensity was determined over regions of interest (ROIs),
which corresponded to the cells surrounding the wounded region, or the
root tipmeristematic or transition zones. The cpVenus andCFPemissions,
pH-GFP and cpYFP 405 and 488 emissions of the analyzed ROIs, were
used for the ratio (R) calculations (cpVenus/CFP; 405ex/488ex; 488ex/405ex)
and, where suitable, normalized to the initial ratio (R0) and plotted versus
time (DR/R0). Background subtraction was performed independently for
both channels before calculating the ratio.

In vivo and Semi in vivo pH-GFP and C-cpYFP Sensor Calibrations

For the pH-GFP and C-cpYFP sensors calibration, two different methods
were adopted. The first protocol was based on the same perfusion system
used for the seedling root imaging experiments. Specifically, seedlings
were perfused with the following solutions: 1) 50 mM MES-BTP pH 6.0,
50mMCH3COONH4; 2) 50mMMES-BTP pH 6.5, 50mMCH3COONH4; 3)
50mMMES-BTPpH6.75, 50mMCH3COONH4; 4) 50mMHEPES-BTPpH
7.0, 50 mM CH3COONH4; 5) 50 mM HEPES-BTP pH 7.5, 50 mM CH3

COONH4; and 6) 50 mM HEPES-BTP pH 8.0, 50 mM CH3COONH4. The
solutions at different values of pH were exchanged every 5 min for
seedlings expressing the C-cpYFP sensor or 10 min for those expressing
the pH-GFP sensor.

The in vivopH-GFP response linearity (R2=0.9908),measuredasDR/R0

variations in response to the treatment with different external pH buffers
(from pH 6.0 with a DR/R0 = 0 to pH 8.0 with DR/R0 = 1.49; Supplemental
Figure 1A to S1C), allowed estimation of the pH unit variations observed in
response to the different stimuli reported in Figure 1. Making the rough
assumption that the degree of change occurring for internal and external
pHwas the same (i.e., constant pH gradient across the plasmamembrane
andchangewithin the linear rangeof thepHsensor), the followingcytosolic
pH variations in response to the different stimuli can be estimated:
wounding 0.257 units, ATP 0.268 units, and NAA 0.121 units.

Thesecondprotocolwasadapted fromWagneretal. (2015b).Seedlings
expressing both pH-GFP and C-cpYFP sensors were individually sub-
merged, for 15min, in buffer solutions adjusted at different pHs (6, 7, and 8)
and in presence of 5 mM of FCCP that, being able to transport protons
through cell membranes, can equilibrate the internal (cytoplasmic) and
external (medium) pHs. The solutions were the following: 1) 100 mM

Cytosolic Ca2+ and pH Dynamics are Linked 2715

http://www.plantcell.org/cgi/content/full/tpc.18.00655/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00655/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00655/DC1


MES-Tris, 40mMK2SO4, 5mMFCCP,and0.53MSsalt, pH6.0; 2) 100mM
MOPS-Tris, 40 mM K2SO4, 5 mM FCCP, and 0.53MS salt, pH 7.0; and 3)
100mMHEPES-Tris,40mMK2SO4,5mMFCCP,and0.53MSsalt, pH8.0.
Seedlings were thenmounted on amicroscope slide and imaged for 1 min
as described above. This second semi in vivo protocol showed a reduced
response of both sensors compared with the in vivo calibration. However,
in agreement with the first protocol, the pH-GFP response shows again
a clear linearity in the tested pH range, whereas the C-cpYFP sensor
confirmed, as previously reported (Schwarzländer et al., 2011, 2014),
a higher sensitivity for more alkaline pHs.

Microsomal Membrane Isolation

Ten-d-old seedlings (;5 g) were homogenized as reported in Cerana et al.
(2006). Thehomogenatewascentrifugedat2000gat4°C for 12minand the
resulting supernatant was centrifuged at 20,000g at 4°C for 1 h. Pellet,
containing microsomal membranes, was washed and resuspended as
previously described in Cerana et al. (2006). Protein concentration was
determined using the Bradford assay reagent (Bio-Rad).

pH-Dependence of the Activation of Arabidopsis PM H+-ATPase in
Microsomal Membrane Fractions

Vanadate-sensitive hydrolytic activity of PM H+-ATPase was assayed as
reported in Viotti et al. (2005) at the specified pHs to mimic the cytosol
acidification. Released Pi was determined as described in DeMichelis and
Spanswick (1986). Results are from one experiment with three technical
replicates, representative of three giving similar results.

Statistical Analysis

All the data are representative of at least$ 3 experiments. Reported traces
are averages of traces from all single experiments used for the statistical
analyses. Results are reported as averages 6 SDs. The (DR/R0)/s ratio
changes were calculated in the linear range (R2$ 0.98) of Ca2+ increase or
pH decrease, respectively. The P values were calculated with an unpaired
Student’s t test. Statistical significance was also validated using one-way
analysis of variance and with post hoc Tukey Honestly Significant
Difference tests.

ACCESSION NUMBERS

Sequence data for ACA8 (At5g57110), ACA10 (At4g29900), ACA4
(At2g41560), and ACA11 (At3g57330) can be found in the Arabidopsis
Araport (https://www.araport.org/) or TAIR (https://www.arabidopsis.org/)
databases.
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Supplemental Figure 1. In vivo and semi in vivo responses of
cytosolic localized pH-GFP and C-cpYFP sensors.

Supplemental Figure 2. Superimposition of averaged cpVenus/CFP
and 405ex/488ex ratio traces of wild type and aca8 aca10 mutant
shown in Figure 3.

Supplemental Figure 3.Genetic ablation of ACA4 and ACA11Ca2+-ATPase
does not affect either Ca2+ and pH cytosolic transients induced by
external ATP.

Supplemental Figure 4. Superimposition of averaged cpVenus/CFP
and 488ex/405ex ratio traces of cytosol, mitochondria and plastids
shown in Figure 4.

Supplemental Figure 5. Arabidopsis Col-0 transgenic seedlings
expressing the cpYFP sensor localized to different subcellular
compartments.

Supplemental Figure 6. Comparison of cpYFP subcellular localization
in cotyledon leaf cells of the C-cpYFP, MT-cpYFP and TKTP-cpYFP
transgenic lines.

Supplemental Figure 7.. pH-dependence of the activation of Arabi-
dopsis plasma membrane H+-ATPase in microsomal membranes.

Supplemental Figure 8. NES-YC3.6 calibration in Arabidopsis root
tip cells.

Supplemental Table 1. Primer sequences for the cpYFP constructs
generation.

Supplemental Movie 1. Ratiometric cpVenus/CFP false-color (LUT:
Fire) movie from a representative time series of a wild-type Arabidop-
sis leaf expressing the NES-YC3.6 sensor in response to wounding.

Supplemental Movie 2. Ratiometric 405ex/488ex false-color (LUT:
Green Fire Blue) movie from a representative time series of a wild-type
Arabidopsis leaf expressing the pH-GFP sensor in response to
wounding.

Supplemental Movie 3. Movie from a representative time series of
a wild-type Arabidopsis seedling root tip expressing the pH-GFP
sensor perfused with solutions adjusted to different pHs.

Supplemental Movie 4. Ratiometric cpVenus/CFP false-color (LUT:
Fire) movie from a representative time series of a wild-type Arabidop-
sis seedling root tip expressing the NES-YC3.6 sensor in response to
external ATP.

Supplemental Movie 5. Ratiometric 405ex/488ex false-color (LUT:
Green Fire Blue) movie from a representative time series of a wild-type
Arabidopsis seedling root tip expressing the pH-GFP sensor in
response to external ATP.

Supplemental Movie 6. Ratiometric cpVenus/CFP false-color (LUT:
Fire) movie from a representative time series of a wild-type Arabidop-
sis seedling root tip expressing the NES-YC3.6 sensor in response
to NAA.

Supplemental Movie 7. Ratiometric 405ex/488ex false-color (LUT:
Green Fire Blue) movie from a representative time series of a wild-type
Arabidopsis seedling root tip expressing the pH-GFP sensor in
response to NAA.

Supplemental Movie 8. Movie from a representative time series of
wild-type Arabidopsis seedling root tip cells expressing the C-cpYFP
sensor perfused with solutions adjusted to different pH values.

Supplemental Movie Legends.
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