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QUASI-OPTIMAL NONCONFORMING METHODS FOR
SYMMETRIC ELLIPTIC PROBLEMS. III---DISCONTINUOUS
GALERKIN AND OTHER INTERIOR PENALTY METHODS\ast 
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Abstract. We devise new variants of the following nonconforming finite element methods: dis-
continuous Galerkin methods of fixed arbitrary order for the Poisson problem, the Crouzeix--Raviart
interior penalty method for linear elasticity, and the quadratic C0 interior penalty method for the
biharmonic problem. Each variant differs from the original method only in the discretization of the
right-hand side. Before applying the load functional, a linear operator transforms nonconforming
discrete test functions into conforming functions such that stability and consistency are improved.
The new variants are thus quasi-optimal with respect to an extension of the energy norm. Further-
more, their quasi-optimality constants are uniformly bounded for shape regular meshes and tend to
1 as the penalty parameter increases.
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1. Introduction. This article is the third in a series on quasi-optimal non-
conforming methods for linear and symmetric elliptic problems. Here we apply the
framework developed in the first part [23] to design and analyze quasi-optimal inte-
rior penalty methods. We illustrate our construction and main results in the case of
approximating the Poisson problem with discontinuous linear elements via the sym-
metric interior penalty (SIP) method, which was first studied by Baker [5], Wheeler
[26], and Arnold [1].

Let u \in H1
0 (\Omega ) be the weak solution of the Poisson problem

(1.1)  - \Delta u = f in \Omega , u = 0 on \partial \Omega ,

and let \scrM be a simplicial, face-to-face mesh of the domain \Omega \subseteq \BbbR d, d \in \BbbN . We write \Sigma 
for its skeleton and S0

1 for the space of discontinuous \scrM -piecewise affine functions and
use standard notation for piecewise gradients, jumps, averages, local meshsizes, etc.
(cf. section 3.1 below). The SIP approximation U \in S0

1 solves the discrete problem

(1.2) \forall \sigma \in S0
1 b(U, \sigma ) =

ˆ
\Omega 

f\sigma ,

where f \in L2(\Omega ), the bilinear form b := b1 + b2 is given by

b1(s, \sigma ) :=

ˆ
\Omega 

\nabla \scrM s \cdot \nabla \scrM \sigma  - 
ˆ
\Sigma 

\{ \{ \nabla s\} \} \cdot n J\sigma K ,

b2(s, \sigma ) :=

ˆ
\Sigma 

\eta 

h
JsK J\sigma K  - 

ˆ
\Sigma 

JsK \{ \{ \nabla \sigma \} \} \cdot n,
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and the penalty parameter \eta > 0 is sufficiently large so that b is coercive. If we replace
U by u \in H1

0 (\Omega ), we see that

(1.3) u \in H2(\Omega ) =\Rightarrow \forall \sigma \in S0
1 b1(u, \sigma ) =

ˆ
\Omega 

f\sigma , while \forall \sigma \in S0
1 b2(u, \sigma ) = 0.

Hence, b2 establishes symmetry and coercivity for shape regular meshes, without
impairing the consistency provided by b1. One therefore can derive the following
abstract error bound (cf. Di Pietro and Ern [12, Theorem 4.17] and Gudi [14, section
3.2]):

(1.4) | u - U | 1;\eta \lesssim inf
s\in S0

1

\Bigl( 
| u - s| 21;\eta +AG(u - s)2

\Bigr) 1
2

,

where the norm

| v| 21;\eta :=

ˆ
\Omega 

| \nabla \scrM v| 2 +
ˆ
\Sigma 

\eta 

h
| JvK | 2, v \in H1

0 (\Omega ) + S0
1 ,

extends the energy norm associated with (1.1) and is augmented with

AG(v)2 :=

ˆ
\Sigma 

h

\eta 
| \{ \{ \nabla v\} \} | 2 or

\sum 
K\in \scrM 

h2
K inf

c\in \BbbR 
\| \Delta v  - c\| 2L2(K)

on the right-hand side. While (1.4) implies convergence of optimal order, the augmen-
tation is an important difference to C\'ea's lemma. Indeed, since it is not meaningful for
a generic solution in H1

0 (\Omega ), it cannot be bounded by the best error infs\in S0
1
| u - s| 1;\eta 

and, in addition, it restricts the applicability of (1.4). Notice that also the first part
of (1.3) and the right-hand side of the discrete problem (1.2) require extra regularity
of the solution and the load in (1.1), respectively. These observations suggest that
the stability of the SIP method (1.2) is impaired. More precisely, if, e.g., the right-
hand side cannot be boundedly extended to H - 1(\Omega ) = H1

0 (\Omega )
\prime , then | U | 1;\eta , or the

error | u - U | 1;\eta , cannot be bounded in terms of \| f\| H - 1(\Omega ). Since this ``full stability""
is necessary for removing the augmentation AG from (1.4), we thus expect that the
SIP method (1.2) is not | \cdot | 1;\eta -quasi-optimal and so does not always fully exploit the

approximation potential offered by its discrete space S0
1 . This suspicion is confirmed

by Remark 4.9 in the first part [23] of this series.
In order to achieve quasi-optimality, we consider the following variant of the

discrete problem (1.2): find UE \in S0
1 such that

(1.5) \forall \sigma \in S0
1 b(UE , \sigma ) = \langle f,E\sigma \rangle ,

where the linear operator E : S0
1 \rightarrow H1

0 (\Omega ) to be specified enables f \in H - 1(\Omega ). If we
require that the means on internal faces are conserved as in Badia et al. [4, section 6],

(1.6) \forall \sigma \in S0
1 , F \in \scrF i

ˆ
F

E\sigma =

ˆ
F

\{ \{ \sigma \} \} ,

then piecewise integrating by parts twice shows

\forall s, \sigma \in S0
1 b1(s, \sigma ) =

ˆ
\Sigma 

J\nabla sK \cdot n \{ \{ \sigma \} \} =

ˆ
\Omega 

\nabla \scrM s \cdot \nabla (E\sigma ).

The right-hand side of this identity provides an extension \widetilde b1 of b1 that does not involve
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regularity beyond H1
0 (\Omega ), in contrast to the one tacitly employed in (1.3). Thus, we

obtain the following regularity-free counterpart of (1.3):

\forall u \in H1
0 (\Omega ), \sigma \in S0

1
\widetilde b1(u, \sigma ) = \langle f,E\sigma \rangle , and b2(u, \sigma ) = 0.

In order to construct an ``H1
0 (\Omega )-smoothing operator"" that satisfies (1.6) and is

computationally feasible, we extend a similar operator devised in the second part [24]
of this series, ensuring that its operator norm \| E\| \scrL (S0

1 ,H
1
0 (\Omega )) is bounded in terms of

the shape coefficient \gamma \scrM of \scrM .
Exploiting the improved stability and consistency properties of (1.5), the abstract

theory of [23] then yields

| u - UE | 1;\eta \leq 
\bigl( 
1 + C\eta  - 1

\bigr) 1
2 inf
s\in S0

1

| u - s| 1;\eta ,

where C depends on d and \gamma \scrM and \eta is sufficiently large. Notably, as \eta \rightarrow \infty , the
discontinuous space S0

1 is replaced by the space S1
1 of continuous piecewise affine

functions and we end up exactly in C\'ea's lemma for the conforming Galerkin method
with S1

1 .
It is worth comparing with the quasi-optimal Crouzeix--Raviart method for (1.1)

of the second part [24] of this series. Thanks to the coupling between Crouzeix--
Raviart elements, b1 becomes symmetric and there is no need for b2 and penalization.
As a consequence, the ensuing quasi-optimality constant equals the operator norm
with respect to the piecewise energy norm of the smoothing operator E.

The rest of this article is organized as follows. Section 2 provides a brief summary
of the abstract results in [23] to be used here. In section 3, we introduce new variants
of various interior penalty methods and prove their quasi-optimality. First, we design
quasi-optimal DG methods of arbitrary fixed order for the Poisson problem, covering
also the setting illustrated in this introduction. Second, we devise a quasi-optimal
Crouzeix--Raviart interior penalty method for linear elasticity and establish a robust
error bound for it in the nearly incompressible regime. Last, we conclude with a
quasi-optimal variant of the quadratic C0-interior penalty method for the biharmonic
problem.

In these examples, we consider polyhedral domains with Lipschitz boundaries
and homogeneous essential boundary conditions. An application of the presented
approach to more general domains and boundary conditions is given in [25]. Numerical
investigations will be presented elsewhere.

2. Stability and consistency for quasi-optimality. We briefly summarize
the characterization of quasi-optimality in [23], adopting an approach to noncon-
forming consistency corresponding to the so-called second Strang lemma, which was
introduced in [6].

A linear and symmetric elliptic problem can be written in the following abstract
form: given \ell \in V \prime , find u \in V such that

(2.1) \forall v \in V a(u, v) = \langle \ell , v\rangle ,

where V is an infinite-dimensional Hilbert space with scalar product a(\cdot , \cdot ), V \prime is its
(topological) dual space, and \langle \cdot , \cdot \rangle stands for the dual pairing of V and V \prime . We write
\| \cdot \| =

\sqrt{} 
a(\cdot , \cdot ) for the energy norm, which induces the dual energy norm \| \ell \| V \prime :=

supv\in V,\| v\| =1\langle \ell , v\rangle on V \prime . Problem (2.1) is uniquely solvable and, introducing the

Riesz isometry A : V \rightarrow V \prime , v \mapsto \rightarrow a(v, \cdot ), we have u = A - 1\ell with \| u\| = \| \ell \| V \prime .
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V \prime 

E \star 

��

A - 1
//

M

��

V

P

��

S\prime B - 1
// S

Fig. 1. Diagram with operators A, B, E, nonconforming method M = (S, b, E), and induced
approximation operator P .

We shall design quasi-optimal methods M : V \prime \rightarrow S with discrete problems of the
following form: given \ell \in V \prime , find M\ell \in S such that

(2.2) \forall \sigma \in S b(M\ell , \sigma ) = \langle \ell , E\sigma \rangle ,

where S is a finite-dimensional linear space, b : S\times S \rightarrow \BbbR is a nondegenerate bilinear
form, E is a linear operator from S to V , and \langle \cdot , \cdot \rangle stands also for the pairing of
S and S\prime . Although we do not require S \subset V , the operator E ensures that the
method M is entire, i.e., defined for all \ell \in V \prime . In light of [23, Remark 2.4], this is
a necessary condition for the kind of quasi-optimality we are interested in. We refer
to E as a smoothing operator or smoother, because S \not \subset V often arises for the lack of
smoothness. Moreover, we identify the operator M with the triplet (S, b, E), ignoring
some slight ambiguity; cf. [23, Remark 2.2].

The relationship between continuous and discrete problem is illustrated by the
commutative diagram in Figure 1. This diagram introduces

\bullet the adjoint E \star : V \prime \rightarrow S\prime given by \langle E \star \ell , \sigma \rangle = \langle \ell , E\sigma \rangle for \ell \in V \prime , \sigma \in S,
\bullet the invertible map B : S \rightarrow S\prime , s \mapsto \rightarrow b(s, \cdot ),
\bullet the approximation operator P := MA

and illustrates the representations

(2.3) M = B - 1E \star and P = B - 1E \star A.

The solution u of (2.1) is thus approximated by M\ell with \ell = Au, that is, by Pu.
To assess the quality of this approximation, we assume that a can be extended to a
scalar product \widetilde a on the sum \widetilde V := V + S and quantify the error with the extended
energy norm

\| \cdot \| :=
\sqrt{} \widetilde a(\cdot , \cdot ) on \widetilde V ,

using the same notation as for the original one. The best approximation error within
S to u is then infs\in S \| u - s\| and attained by the \widetilde a-orthogonal projection \Pi S onto S.
We say that the method M is quasi-optimal (for Problem (2.1) with respect to the
extended energy norm) if there exists a constant C \geq 1 such that

(2.4) \forall u \in V \| u - Pu\| \leq C inf
s\in S

\| u - s\| .

The associated quasi-optimality constant C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} of M is then the smallest constant
with this property. Notice that (2.4) involves all exact solutions of (2.1), not only
certain smooth ones.

Remark 2.1 (equivalence to the best error). Notice that in (2.4) the same norm is
used on both sides. Thus, Pu \in S readily entails that the error \| u - Pu\| is equivalent
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to the best error infs\in S \| u  - s\| for quasi-optimal methods. This property justifies
the terminology quasi-optimality and distinguishes (2.4) from estimates like (1.4) in
terms of other best errors.

Theorem 2.2 (stability, consistency, and quasi-optimality). Given a noncon-
forming method M = (S, b, E) for (2.1) and an extended scalar product \widetilde a, introduce
the bilinear form d : V \times S \rightarrow \BbbR by

(2.5) d(v, \sigma ) := b(\Pi Sv, \sigma ) - a(v,E\sigma ).

Then the following hold:
(i) M is bounded, or fully stable, with

C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} := \| M\| \scrL (V \prime ,S) = sup
\sigma \in S

\| E\sigma \| 
sups\in S,\| s\| =1 b(s, \sigma )

.

(ii) M is quasi-optimal if and only if it is fully algebraically consistent in that

\forall u \in S \cap V, \sigma \in S 0 = d(u, \sigma ) = b(u, \sigma ) - a(u,E\sigma ).

(iii) If M is quasi-optimal, then its quasi-optimality constant satisfies

C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} \leq C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} =
\sqrt{} 
1 + \delta 2,

where \delta \in [0,\infty ) is the consistency measure given by the smallest constant in

\forall v \in V, \sigma \in S | d(v, \sigma )| \leq \delta sup
\^s\in S,\| \^s\| =1

b(\^s, \sigma ) inf
s\in S

\| v  - s\| .

Proof. Item (i) follows from [23, Theorem 4.7], while (ii) is a consequence of [23,
Theorem 4.14] and (i). Finally, the first part of [23, Theorem 4.19] implies (iii).

Since the formula for C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} plays a key role in what follows, we provide a self-
contained proof of it. Let u \in V . The Pythagoras theorem yields

(2.6) \| u - Pu\| 2 = \| u - \Pi Su\| 2 + \| \Pi Su - Pu\| 2.

To bound the second term, we observe that, owing to the nondegeneracy of b, \| \sigma \| b :=
sup\^s\in S,\| \^s\| =1 b(\^s, \sigma ) defines norm on S with

(2.7) \forall s \in S \| s\| = sup
\sigma \in S

b(s, \sigma )

\| \sigma \| b
.

Indeed, the definition of \| \cdot \| b readily implies ``\geq "" and the converse inequality follows
from

inf
s\in S

sup
\sigma \in S

b(s, \sigma )

\| s\| \| \sigma \| b
= inf

\sigma \in S
sup
s\in S

b(s, \sigma )

\| s\| \| \sigma \| b
= inf

\sigma \in S

1

\| \sigma \| b
sup
s\in S

b(s, \sigma )

\| s\| 
= 1.

Employing (2.7) and the definitions of P and \delta , we deduce

\| \Pi Su - Pu\| = sup
\sigma \in S

d(u, \sigma )

\| \sigma \| b
\leq \delta \| \Pi Su - u\| .

Since u is arbitrary and the only inequality we have used is the one defining \delta , this
and (2.6) prove C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} =

\surd 
1 + \delta 2.
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Some comments on Theorem 2.2 and the consequences of its proof are in order.
The adverb ``fully"" in (i) means that M is defined on V \prime . (While, for instance, the
method (1.2) is defined only on a strict subspace ofH - 1(\Omega ).) The built-in full stability
of the considered methods is a necessary condition for quasi-optimality. It has to be
established by applying a smoothing operator E before evaluating the load functional.
We refer to the constant C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} as the stability constant of M .

The use of ``fully"" in (ii) indicates that no additional regularity on u is assumed.
(In contrast, only sufficiently smooth solutions of (1.1) are considered in (1.3).) Notice
that full algebraic consistency does not actually depend on the extension \widetilde a of the scalar
product a. In particular, it can be rephrased in the following manner: whenever an
exact solution happens to be discrete, it has to be also the discrete solution. Natural
candidates for full algebraic consistency are nonforming Galerkin methods satisfying

(2.8) b| SC\times SC
= a| SC\times SC

and E| SC
= IdSC

,

where SC := S \cap V is the conforming subspace of S. Notice that this generalization
of conforming Galerkin methods does not determine b and E if S is not a subspace
of V . Furthermore, it may be weaker than full algebraic consistency, involving also
nonconforming discrete test functions.

While full algebraic consistency involves only the conforming part SC of the dis-
crete space, the constant \delta captures consistency properties of M for nonconforming
directions in S \setminus V . We call M (algebraically) overconsistent whenever d(\cdot , \cdot ) vanishes,
that is, whenever the discrete bilinear form b is \widetilde a(\cdot , E\cdot ). In this case, C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} = C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t};
see [24, Theorem 2.1]. The following simple consequence of the inf-sup theory implies
that this appealing property requires a certain interplay of S, V , and \widetilde a; cf. also [24,
Lemma 2.6], which strengthens the statement to a characterization.

Lemma 2.3 (obstruction for nondegenerate \widetilde a(\cdot , E\cdot )). Let S, V , and \widetilde a be given
as in Theorem 2.2 and assume that there exists some \sigma \in S \setminus \{ 0\} such that \widetilde a(\sigma , v) = 0
for all v \in V . Then, for any smoother E : S \rightarrow V , the bilinear form \widetilde a(\cdot , E\cdot ) is
degenerate.

For a further discussion of the aforementioned notions and their role and prop-
erties, we refer to [23] and [24, section 2]. Here we continue by underlining that
Theorem 2.2 was formulated with the following viewpoint: for quasi-optimality, the
discrete bilinear form b has to be a perturbation of \widetilde a(\cdot , E\cdot ), which is fully algebraically
consistent and affects the quasi-optimality via \delta . This viewpoint will be our guiding
principle for constructing quasi-optimal interior penalty methods. It is therefore of
interest to bound C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} and \delta , connecting them to a well-known and important, but
not yet mentioned, constant.

Remark 2.4 (stability, consistency, and inf-sup constants). Let M = (S, b, E) be
a nonconforming method. As S is finite-dimensional, the nondegeneracy of b entails
that the inf-sup constant is positive:

\alpha := inf
\sigma \in S,\| \sigma \| =1

sup
s\in S,\| s\| =1

b(s, \sigma ) > 0.

Then the definitions of C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} and \delta readily yield

(2.9) C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} \leq 
\| E\| \scrL (S,V )

\alpha 
and \delta \leq \gamma 

\alpha 
,

where \gamma \geq 0 verifies | d(s, \sigma )| \leq \gamma infs\in S \| v - s\| \| \sigma \| for all v \in V and \sigma \in S. Hence, up
to the inverse of the inf-sup constant \alpha , the constants C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} and \delta depend, respectively,
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only on the smoothing operator E and the bilinear form d(\cdot , \cdot ). It is worth noting
that these bounds may be pessimistic; see [24, Remark 2.5].

3. Applications to interior penalty methods. The goal of this section is to
devise interior penalty methods that are based upon nonconforming finite elements
and are quasi-optimal. In view of Theorem 2.2 and Lemma 2.3, we may achieve this
by the following steps: given a continuous problem (2.1) and a nonconforming finite
element space S,

\bullet extend the scalar product a to the sum V + S,
\bullet find a computationally feasible smoothing operator E : S \rightarrow V , possibly with

E| V \cap S = IdV \cap S ,
\bullet if necessary, use a bilinear form d(\cdot , \cdot ) with d| (S\cap V )\times S = 0 to arrange that

b = \widetilde a(\cdot , E\cdot ) + d(\cdot , \cdot ) is nondegenerate and has other optional properties like
symmetry, without losing control of \delta in item (iii) of Theorem 2.2.

Notice that here the domain of the bilinear form d(\cdot , \cdot ) is S \times S, while in Theo-
rem 2.2 it is V \times S. We use the same notation because both forms have a common,
unique extension on \widetilde V \times S thanks to d| (S\cap V )\times S = 0.

Denoting by \varphi 1, . . . , \varphi n the nodal basis of S, we consider a smoothing operator E
to be computationally feasible if each E\varphi i is in some conforming finite element space
and the number of elements in its support is bounded independently of n.

We shall carry out the aforementioned steps for three different settings, involving
vector and fourth-order problems as well as various couplings between elements (com-
pletely discontinuous, Crouzeix--Raviart, continuous). In each case the nondegeneracy
of b will be obtained by means of interior penalties.

3.1. Simplicial meshes and (broken) function spaces. We indicate Lebesgue
and Sobolev spaces as usual (see, e.g., [9]) and adopt the following notations, mainly
taken from [24].

Given n \in \{ 0, . . . , d\} , an n-simplex C \subseteq \BbbR d is the convex hull of n + 1 points
z1, . . . , zn+1 \in \BbbR d spanning an n-dimensional affine space. The uniquely determined
points z1, . . . , zn+1 are the vertices of C and form the set \scrL 1(C). If n \geq 1, we let
\scrF C denote the (n - 1)-dimensional faces of C, which are the (n - 1)-simplices arising
by picking n distinct vertices from \scrL 1(C). Given a vertex z \in \scrL 1(C), its barycentric
coordinate \lambda C

z is the unique first-order polynomial on C such that \lambda C
z (y) = \delta zy for all

y \in \scrL 1(C). Then 0 \leq \lambda C
z \leq 1 and

\sum 
z\in \scrL 1(C) \lambda 

C
z = 1 in C and, if \alpha = (\alpha z)z\in \scrL 1(C) \in 

\BbbN n+1
0 is a multi-index,

(3.1)

ˆ
C

\prod 
z\in \scrL 1(C)

(\lambda C
z )

\alpha z =
n!\alpha !

(n+ | \alpha | )!
| C| ,

where | C| stands also for the n-dimensional Hausdorff measure in \BbbR d. We write mC

for the barycenter of C, hC := diam(C) for its diameter, \rho C for the diameter of its
largest inscribed n-dimensional ball, and \gamma C for its shape coefficient \gamma C := hC/\rho C .

Let \scrM be a simplicial, face-to-face mesh of some open, bounded, connected, and
polyhedral set \Omega \subset \BbbR d with Lipschitz boundary \partial \Omega . More precisely, \scrM is a finite
collection of d-simplices in \BbbR d such that \Omega =

\bigcup 
K\in \scrM K and the intersection of two

arbitrary elements K1,K2 \in \scrM is either empty or an n-simplex with n \in \{ 0, . . . , d\} 
and \scrL 1(K1 \cap K2) = \scrL 1(K1) \cap \scrL 1(K2). We let \scrF :=

\bigcup 
K\in \scrM \scrF K denote the (d  - 1)-

dimensional faces of \scrM and distinguish between boundary faces \scrF b := \{ F \in \scrF | F \subseteq 
\partial \Omega \} and interior faces \scrF i := \scrF \setminus \scrF b. Moreover, let \Sigma := \cup F\in \scrF F be the skeleton
of \scrM and, fixing a unit normal nF for each interior face F \in \scrF i, extend the outer
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normal n of \partial \Omega to \Sigma by n| F = nF for F \in \scrF i. The ambiguity in the orientation of
nF is insignificant to our discussion. The meshsize h on \Sigma is given by h| F = hF for
all F \in \scrF and the shape coefficient of \scrM is

\gamma \scrM := max
K\in \scrM 

\gamma K .

For k \in \BbbN , the broken Sobolev space of order k is

Hk(\scrM ) := \{ v \in L2(\Omega ) | \forall K \in \scrM v| K \in Hk(K)\} .

If v \in Hk(\scrM ), we use the subscript \scrM to indicate the piecewise variant of a differ-
ential operator. For instance, \nabla \scrM v is given by (\nabla \scrM v)| K := \nabla (v| K) for all K \in \scrM .
Jumps and averages are defined as follows. Given an interior face F \in \scrF i, let
K1,K2 \in \scrM be the two elements such that F = K1 \cap K2 and the outer normal
of K1 coincides with n| F on F . Set

(3.2a) JvK := v| K1
 - v| K2

, \{ \{ v\} \} :=
1

2

\bigl( 
v| K1

+ v| K2

\bigr) 
on F.

The fact that the sign of JvK depends on the ordering ofK1 andK2 will be insignificant
to our discussion. It will be convenient to extend these definitions on \partial \Omega . Given
F \in \scrF b, let K \in \scrM be the element such that F = K \cap \partial \Omega and set

(3.2b) JvK := \{ \{ v\} \} := v| K on F.

In this notation, piecewise integration by parts reads as follows: if v, w \in H1(\scrM ) and
j \in \{ 1, . . . , d\} , then

(3.3)

ˆ
\Omega 

(\partial j,\scrM v)w  - 
ˆ
\Sigma \setminus \partial \Omega 

JvK \{ \{ w\} \} n \cdot ej

=  - 
ˆ
\Omega 

v(\partial j,\scrM w) +

ˆ
\Sigma \setminus \partial \Omega 

\{ \{ v\} \} JwKn \cdot ej +
ˆ
\partial \Omega 

vw n \cdot ej .

Notice that the surface integrals are independent of the orientation of n and that,
e.g., the singular part of the distributional derivative \partial j,\scrM v is represented by means
of the negative jumps  - JvK| F , F \in \scrF i.

Given p \in \BbbN 0, we write \BbbP p(C) for the linear space of polynomials on the n-
simplex C with (total) degree \leq p. Consider p \in \BbbN , excluding the trivial case p = 0.
A polynomial in \BbbP p(C) is determined by its point values at the Lagrange nodes \scrL p(C)
of order p, which, for p \geq 2, are given by

\bigl\{ 
x \in C | \forall z \in \scrL 1(C) p\lambda C

z (x) \in \BbbN 0

\bigr\} 
. We let

\Psi p
C,z, z \in \scrL p(C), denote the associated nodal basis in \BbbP p(C) given by \Psi p

C,z(y) = \delta zy
for all y, z \in \scrL p(C). The Lagrange nodes are nested in that \scrL p(F ) = \scrL p(C) \cap F
for any face F \in \scrF C . Thus, the restriction P| F of P \in \BbbP p(C) is determined by the
``restriction"" \scrL p(C) \cap F of the Lagrange nodes and we have \Psi p

C,z | F = \Psi p
F,z for all

z \in \scrL p(F ).
Given k, p \in \BbbN 0, the space of functions that are piecewise polynomial with degree

\leq p and are in Hk
0 (\Omega ) (with the convention H0

0 (\Omega ) := L2(\Omega ) for k = 0) is

(3.4) Sk
p :=

\bigl\{ 
s \in Hk

0 (\Omega ) | \forall K \in \scrM s| K \in \BbbP p(K)
\bigr\} 
.

The cases p \in \BbbN with k \in \{ 0, 1\} are of particular interest.
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Consider first S0
p with p \in \BbbN and extend each \Psi p

K,z outside of K \in \scrM by 0. The

functions \{ \Psi p
K,z\} K\in \scrM ,z\in \scrL p(K) form a basis of S0

p with \Psi p
K,z | K\prime (z\prime ) = \delta K,K\prime \delta z,z\prime for

K,K \prime \in \scrM and z \in \scrL p(K), z\prime \in \scrL p(K
\prime ), which amounts to distinguishing Lagrange

nodes from different elements.
The construction of a basis of S1

p is a little more involved. Here, identifying

coinciding Lagrange nodes, we set \scrL p := \cup K\in \scrM \scrL p(K) as well as \scrL i
p := \scrL p \setminus \partial \Omega , and

write \Phi p
z, z \in \scrL p, for the function given piecewise by \Phi p

z | K := \Psi p
K,z if z \in K and

\Phi p
z | K := 0 otherwise. Then the nestedness of Lagrange nodes implies that \{ \Phi p

z\} z\in \scrL i
p

is a basis of S1
p satisfying \Phi p

z(y) = \delta zy for all y, z \in \scrL i
p. In connection with these

basis functions, the following subdomains are useful. Let \omega z :=
\bigcup 

K\prime \ni z K
\prime be the star

around z \in \scrL p and let \omega K :=
\bigcup 

K\prime \cap K \not =\emptyset K
\prime be the patch around K \in \scrM . Since \partial \Omega 

is Lipschitz, stars are face-connected in the sense of [22]: given z \in \scrL p and any pair
K,K \prime \in \scrM with z \in K\cap K \prime , there exists a path \{ Ki\} ni=1 \subset \scrM of elements containing
z such that K1 = K, Kn = K \prime , and each Ki \cap Ki+1 \in \scrF i.

If not specified differently, C\ast stands for a function which is not necessarily the
same at each occurrence and depends on a subset \ast of \{ d, \gamma \scrM , p\} , increasing in \gamma \scrM 
and p if present. For instance, we have, for K,K \prime \in \scrM ,

(3.5) K \cap K \prime \not = \emptyset =\Rightarrow | K| \leq C\gamma \scrM | K \prime | and hK \leq C\gamma \scrM \rho K\prime 

and, for p \in \BbbN , K \in \scrM , and z \in \scrL p(K),

(3.6) cd,p| K| 12h - 1
K \leq \| \nabla \Psi p

K,z\| L2(K) \leq Cd,p| K| 12 \rho  - 1
K .

If there is no danger of confusion, A \leq C\ast B may be abbreviated as A \lesssim B.

3.2. Quasi-optimal DG methods for the Poisson problem. In this sub-
section we devise quasi-optimal DG methods for the Poisson problem, covering the
results illustrated in the introduction (section 1).

Let \Omega and \scrM be as in section 3.1 and, with \eta \geq 0, define

(3.7) (v, w)1;\eta :=

ˆ
\Omega 

\nabla \scrM v \cdot \nabla \scrM w +
\sum 
F\in \scrF 

\eta 

hF

ˆ
F

JvK JwK , | v| 1;\eta := (v, v)
1
2
1;\eta 

on H1(\scrM ) and abbreviate (\cdot , \cdot )1;0 to (\cdot , \cdot )1. Recalling (3.4), we consider

(3.8) V = H1
0 (\Omega ), S = S0

p with p \in \BbbN , \widetilde a = (\cdot , \cdot )1;\eta on \widetilde V = H1
0 (\Omega ) + S0

p .

Then \widetilde a is a scalar product for \eta > 0 and the abstract problem (2.1) provides a weak
formulation of (1.1). Our setting has two parameters: the polynomial degree p and
the scaling factor \eta of the jumps. The latter will also be the penalty parameter and is
essentially free to be specified by the user. In order to keep notation simple, we shall
sometimes suppress the dependencies on p and \eta . The conforming part of S0

p is the
strict subspace

(3.9) S0
p \cap H1

0 (\Omega ) = S1
p = \{ s \in S0

p | \forall F \in \scrF JsK \equiv 0\} .

Moreover, we easily see that

(3.10) \emptyset \not = S0
0 \subseteq S0

p \cap V \bot ,

which precludes overconsistency in light of Lemma 2.3.
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To obtain hints for a suitable choice of the smoothing operator E : S0
p \rightarrow H1

0 (\Omega ),
we invoke integration by parts and the piecewise structure of S0

p . Let s, \sigma \in S0
p be

arbitrary. On the one hand, piecewise integration by parts (3.3) yields

(s, E\sigma )1;\eta =
\sum 

K\in \scrM 

ˆ
K

( - \Delta s)E\sigma +
\sum 
F\in \scrF i

ˆ
F

J\nabla sK \cdot nE\sigma 

due to E\sigma \in H1
0 (\Omega ). On the other hand, we want

´
\Omega 
\nabla \scrM s \cdot \nabla \scrM \sigma = (s, \sigma )1 to appear

in the discrete bilinear form. For this term, (3.2b) and (3.3) give

(s, \sigma )1 =
\sum 

K\in \scrM 

ˆ
K

( - \Delta s)\sigma +
\sum 
F\in \scrF i

ˆ
F

J\nabla sK \cdot n \{ \{ \sigma \} \} +
\sum 
F\in \scrF 

ˆ
F

\{ \{ \nabla s\} \} \cdot n J\sigma K .

A comparison of these two identities suggests that the smoothing operator E should
conserve certain moments on faces and elements and proves the following lemma.
Such moment conservation was already used in Badia et al. [4, section 6] to design a
DG method with a (partial) quasi-optimality result and in [24, sections 3.2 and 3.3]
to construct overconsistent Crouzeix--Raviart-like methods of arbitrary fixed order.

Lemma 3.1 (conservation of moments). Let p \in \BbbN and, for notational conve-
nience, set \BbbP  - 1(K) = \emptyset for all K \in \scrM . If the linear operator E : S0

p \rightarrow H1
0 (\Omega )

satisfies

(3.11)

ˆ
F

q(E\sigma ) =

ˆ
F

q \{ \{ \sigma \} \} and

ˆ
K

r(E\sigma ) =

ˆ
K

r\sigma 

for all F \in \scrF i, q \in \BbbP p - 1(F ), K \in \scrM , r \in \BbbP p - 2(K), and \sigma \in S0
p , then

(s, E\sigma )1;\eta =

ˆ
\Omega 

\nabla \scrM s \cdot \nabla \scrM \sigma  - 
\sum 
F\in \scrF 

ˆ
F

\{ \{ \nabla s\} \} \cdot n J\sigma K

for all s, \sigma \in S0
p .

We adapt the construction of the smoothing operators in [24] to the given setting
and begin with the so-called bubble smoother. It employs the following weighted
L2-projections associated to faces and elements. For every interior face F \in \scrF i, let
QF : L2(F ) \rightarrow \BbbP p - 1(F ) be given by

(3.12) \forall q \in \BbbP p - 1(F )

ˆ
F

(QF v)q\Phi F =

ˆ
F

vq,

where \Phi F :=
\prod 

z\in \scrL 1(F ) \Phi 
1
z \in S1

d is the face bubble function supported in the two
elements containing F . Moreover, for every mesh element K \in \scrM , set QK = 0 if
p = 1, and otherwise let QK : L2(K) \rightarrow \BbbP p - 2(K) be given by

(3.13) \forall r \in \BbbP p - 2(K)

ˆ
K

(QKv)r\Phi K =

ˆ
K

vr,

where \Phi K :=
\prod 

z\in \scrL 1(K) \Phi 
1
z \in S1

d+1 is the element bubble function with support K.

For v \in H1(\scrM ), we then define the global bubble operators

B\scrM ,pv :=
\sum 

K\in \scrM 
(QKv)\Phi K , B\scrF ,pv :=

\sum 
F\in \scrF i

\sum 
z\in \scrL p - 1(F )

\bigl( 
QF \{ \{ v\} \} 

\bigr) 
(z)\Phi p - 1

z \Phi F ,
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where, if p = 1, we set \scrL 0(F ) := \{ mF \} and \Phi 0
mF

:= 1 with mF being the barycenter of
F . Notice that B\scrF ,p incorporates an extension by means of Lagrange basis functions
in view of the partition of unity

\sum 
z\in \scrL p - 1(F ) \Phi 

p - 1
z = 1 on F . The combination of

these two operators provides the desired property and an extension of the operator
with the same name in [24].

Lemma 3.2 (bubble smoother). For p \in \BbbN , the linear operator Bp : S0
p \rightarrow H1

0 (\Omega )
defined by

Bp\sigma := B\scrF ,p\sigma +B\scrM ,p(\sigma  - B\scrF ,p\sigma )

satisfies (3.11) and, for any K \in \scrM , the local stability estimate

\| \nabla Bp\sigma \| L2(K) \leq 
Cd,p

\rho K

\Biggl( 
sup

r\in \BbbP p - 2(K)

´
K
\sigma r

\| r\| L2(K)
+
\sum 

F\in \scrF K

| K| 12
| F | 12

sup
q\in \BbbP p - 1(F )

´
F
\{ \{ \sigma \} \} q

\| q\| L2(F )

\Biggr) 
.

Proof. Proceed as in the proof of [24, Lemma 3.8].

The factor \rho  - 1
K in the stability estimate in Lemma 3.2 suggests that Bp is not

uniformly stable under refinement. The example in [24, Remark 3.5] confirms this
also for the current setting. However, since the bound involves lower-order norms,
we have the possibility to stabilize. This will be done with the help of the following
variant Ap : S0

p \rightarrow S1
p of nodal averaging. For every interior node z \in \scrL i

p, fix some
element Kz \in \scrM containing z and set

(3.14) Ap\sigma :=
\sum 

z\in \scrL i
p
\sigma | Kz

(z)\Phi p
z, \sigma \in S0

p .

Clearly, Ap\sigma (z) = \sigma (z) whenever \sigma is continuous at z \in \scrL i
p and so Ap is a projection

onto S1
p . On the one hand, the operator Aq is a restriction of Scott--Zhang interpo-

lation [20] defined for broken H1-functions and, on the other hand, it is a simplified
variant of nodal averaging in that it requires only one evaluation per degree of free-
dom. Nodal averaging has been used in various nonconforming contexts; see, e.g.,
Brenner [7], Karakashian and Pascal [16], and Oswald [18]. Here the following error
bound for Ap will be instrumental.

Lemma 3.3 (simplified nodal averaging and L2-norms of jumps). Let p \in \BbbN ,
\sigma \in S0

p piecewise polynomial, K \in \scrM , and z \in \scrL p(K) be a Lagrange node. If
z \not \in \partial K, then Ap\sigma (z) = \sigma | K(z), else\bigm| \bigm| \sigma | K(z) - Ap\sigma (z)

\bigm| \bigm| \leq Cd,p

\sum 
F\in \scrF :F\ni z

1

| F | 
1
2

\| J\sigma K \| L2(F ).

Proof. The ``then"" part of the claim readily follows from the nonoverlapping of
elements in \scrM . For the ``else"" part, we first recall that J\sigma K| F denotes the jump across
the face F and notice that its point values are well-defined. We thus can derive\bigm| \bigm| \sigma | K(z) - Ap(z)

\bigm| \bigm| \leq \sum 
F\in \scrF :F\ni z

\bigm| \bigm| \bigm| J\sigma K| F (z)
\bigm| \bigm| \bigm| 

with the help of the face-connectedness of stars in \scrM ; cf. [24, equation (3.6)]. There-

fore, the inverse estimate \| \cdot \| L\infty (F ) \leq Cd,p | F |  - 
1
2 \| \cdot \| L2(F ) in \BbbP p(F ) finishes the

proof.

Stabilizing the bubble smoother Bp with simplified nodal averaging Ap, we obtain
a smoothing operator with the desired properties.
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Proposition 3.4 (stable smoothing with moment conservation). The linear
operator Ep : S0

p \rightarrow H1
0 (\Omega ) given by

Ep\sigma := Ap\sigma +Bp(\sigma  - Ap\sigma )

is invariant on S1
p and satisfies (3.11), and for all \sigma \in S0

p ,

\| \nabla \scrM (\sigma  - Ep\sigma )\| L2(\Omega ) \leq Cd,\gamma \scrM ,p\| h - 1
2 J\sigma K \| L2(\Sigma ).

Proof. We adapt the proof of [24, Propositions 3.3 and 3.9] to the current setting
with jumps in the extended energy norm.

Clearly, the operator Ep is well-defined and maps into H1
0 (\Omega ). With Ap, also Ep is

a projection onto S1
p . We next show that Ep conserves the moments in (3.11). Given

any F \in \scrF i and any q \in \BbbP p - 1(F ), we arrange terms to exploit that Bp conserves
moments and get

(3.15)

ˆ
F

(Ep\sigma )q =

ˆ
F

(Bp\sigma )q +

ˆ
F

(Ap\sigma  - BpAp\sigma )q\underbrace{}  \underbrace{}  
=0

=

ˆ
F

\{ \{ \sigma \} \} q.

Arguing similarly, we obtain also that the element moments in (3.11) are conserved.
Finally, we turn to the claimed stability bound. Let \sigma \in S0

p and write

\| \nabla \scrM (\sigma  - Ep\sigma )\| L2(\Omega ) \leq \| \nabla \scrM (\sigma  - Ap\sigma )\| L2(\Omega ) + \| \nabla Bp(\sigma  - Ap\sigma )\| L2(\Omega ).

In order to bound the right-hand side, we fix a mesh element K \in \scrM and consider
the first term. Employing \Phi p

z | K = \Psi p
K,z and (3.6) and then Lemma 3.3, we obtain

\| \nabla (\sigma  - Ap\sigma )\| L2(K) \leq 
\sum 

z\in \scrL p(K)

\bigm| \bigm| \sigma | K(z) - Ap\sigma (z)
\bigm| \bigm| \| \nabla \Phi p

z\| L2(K)

\leq Cd,\gamma \scrM ,p

\sum 
z\in \scrL p(K)

\bigm| \bigm| \sigma | K(z) - Ap\sigma (z)
\bigm| \bigm| | K| 

1
2

\rho K

\leq Cd,\gamma \scrM ,p

\sum 
z\in \scrL p(K)

\sum 
F \prime \in \scrF ,F \prime \ni z

| K| 
1
2

\rho K | F \prime | 
1
2

\| J\sigma K \| L2(F \prime ).

(3.16)

If K \prime \in \scrM contains a face F \prime of the sum, then (3.5) implies

| K| 
1
2

\rho K | F \prime | 
1
2

\leq hK

\rho K

\Biggl( 
hd - 2
K

\rho d - 1
K\prime 

\Biggr) 1
2

\lesssim \rho 
 - 1

2

K\prime \lesssim h
 - 1

2

F \prime .

Consequently, with the help of \#\{ K \prime \in \scrM | K \prime \subseteq \omega K\} \leq Cd,\gamma \scrM , we arrive at

(3.17) \| \nabla (\sigma  - Ap\sigma )\| L2(K) \lesssim 

\left(  \sum 
F\in \scrF ,F\cap K \not =\emptyset 

h - 1
F \| J\sigma K \| 2L2(F )

\right)  1
2

.

Next, consider the second term and observe that (3.1) gives

sup
r\in \BbbP p - 2(K)

´
K
(\sigma  - Ap\sigma )r

\| r\| L2(K)
\leq Cd,p | K| 

1
2

\sum 
z\in \scrL p(K)

\bigm| \bigm| \sigma | K(z) - Ap\sigma (z)
\bigm| \bigm| 
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and, for every F \in \scrF K ,

sup
q\in \BbbP p - 1(F )

´
F
(\{ \{ \sigma \} \}  - Ap\sigma )q

\| q\| L2(F )
\leq Cd,p | F | 

1
2

\sum 
K\prime \supset F

\sum 
z\in \scrL p(F )

\bigm| \bigm| \sigma | K\prime (z) - Ap\sigma (z)
\bigm| \bigm| .

Inserting these two bounds in the stability estimate of Lemma 3.2, we find essentially
the bound after the second inequality in (3.16) and so also

(3.18) \| \nabla Bp(\sigma  - Ap\sigma )\| L2(K) \lesssim 

\left(  \sum 
F\in \scrF ,F\cap K \not =\emptyset 

h - 1
F \| J\sigma K \| 2L2(F )

\right)  1
2

.

We arrive at the claimed inequality by summing (3.17) and (3.18) over all K \in \scrM ,
observing that the number of elements touching a given face is \leq Cd,\gamma \scrM .

The smoothing operator Ep in Proposition 3.4 is computationally feasible. In
fact, we have that

\bullet it suffices to know the evaluations \langle f,\Phi p
z\rangle for z \in \scrL i

p as well as \langle f,\Phi p - 1
z \Phi F \rangle 

for F \in \scrF i, z \in \scrL p - 1(F ), and \langle f,\Phi p - 2
z \Phi K\rangle for K \in \scrM , z \in \scrL p - 2(K),

\bullet the support of each Ep\Psi 
p
K,z is contained in \omega z,

\bullet the operators QF and QK in (3.12) and (3.13) can be implemented via matri-
ces associated with a reference element and, for d = 2, QF can be diagonalized
by means of Legendre polynomials.

After having found a suitable smoothing operator, we now choose the bilinear
form d(\cdot , \cdot ). Recall that, due to (3.10), the bilinear form (\cdot , Ep\cdot )1;\eta is degenerate and
so d(\cdot , \cdot ) needs to be nontrivial. There are several choices; see, e.g., Arnold et al. [3].
Here we shall discuss the interplay between Ep and some of them.

A quasi-optimal NIP method. One possibility to achieve nondegeneracy is to
employ the jump penalization in (\cdot , \cdot )1;\eta . If, in addition, we neutralize the downgrading
of coercivity due to  - 

´
\Sigma 
\{ \{ \nabla s\} \} \cdot n J\sigma K in (\cdot , Ep\cdot )1;\eta , we end up with

(3.19) b\mathrm{n}\mathrm{i}\mathrm{p} := (\cdot , Ep\cdot )1;\eta + d\mathrm{n}\mathrm{i}\mathrm{p} with d\mathrm{n}\mathrm{i}\mathrm{p}(s, \sigma ) :=

ˆ
\Sigma 

JsK \{ \{ \nabla \sigma \} \} \cdot n+
\eta 

h
JsK J\sigma K

and reestablish the bilinear form of the nonsymmetric interior penalty (NIP) method
introduced in [19], according to Lemma 3.1 and Proposition 3.4.

Lemma 3.5 (b\mathrm{n}\mathrm{i}\mathrm{p} and extended energy norm). For any penalty parameter \eta > 0,
we have

\forall s, \sigma \in S0
p b\mathrm{n}\mathrm{i}\mathrm{p}(s, s) \geq | s| 21;\eta and b\mathrm{n}\mathrm{i}\mathrm{p}(s, \sigma ) \leq 

\Bigl( 
1 +

\sqrt{} 
\eta  - 1\eta \ast 

\Bigr) 
| s| 1;\eta | \sigma | 1;\eta ,

where \eta \ast > 0 depends on d, p, and \gamma \scrM .

Hence, if the penalty parameter \eta is not too small, we may consider | \cdot | 1;\eta with the
same \eta to be the discrete energy norm associated with b\mathrm{n}\mathrm{i}\mathrm{p}. Remarkably, as \eta \rightarrow \infty ,
the coercivity and continuity constants tend to their respective counterparts of the
limiting conforming Galerkin method in S1

p .

Proof. The coercivity bound holds by construction. For the continuity bound,
we observe that, if F \in \scrF K is a face of any K \in \scrM , we have the inverse estimate

\| \cdot \| L2(F ) \leq Cd,\gamma \scrM ,ph
 - 1

2

F \| \cdot \| L2(K) in \BbbP p - 1(K) and set \eta \ast := (d+ 1)C2
d,\gamma \scrM ,p. Then

(3.20) \| h 1
2 \{ \{ \nabla \sigma \} \} \| 2L2(\Sigma ) \leq \eta \ast \| \nabla \scrM \sigma \| 2L2(\Omega )

and the claimed continuity bound follows by standard steps.
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We thus arrive at M\mathrm{n}\mathrm{i}\mathrm{p} = (S0
p , b\mathrm{n}\mathrm{i}\mathrm{p}, Ep), a new variant of the NIP method of order

p with the discrete problem

(3.21) U \in S0
p such that \forall \sigma \in S0

p b\mathrm{n}\mathrm{i}\mathrm{p}(U, \sigma ) = \langle f,Ep\sigma \rangle .

Since b\mathrm{n}\mathrm{i}\mathrm{p} = (\cdot , \cdot )1 on S1
p \times S1

p and E = Id on S1
p , this is a nonconforming Galerkin

method. In contrast to the original NIP method, it applies to any load f \in H - 1(\Omega )
and has the following property.

Theorem 3.6 (quasi-optimality of M\mathrm{n}\mathrm{i}\mathrm{p}). For any \eta > 0, the method M\mathrm{n}\mathrm{i}\mathrm{p} is
| \cdot | 1;\eta -quasi-optimal for the Poisson problem (1.1) with constant \leq 

\sqrt{} 
1 + Cd,\gamma \scrM ,p\eta  - 1.

Proof. After using the combination of Lemma 3.1 and Proposition 3.4 in Theo-
rem 2.2, it remains to bound the consistency measure \delta from (iii). Let v \in H1

0 (\Omega ),
\sigma \in S0

p and denote by \Pi \eta ,p the (\cdot , \cdot )1;\eta -orthogonal projection onto S0
p . Then JvK =

0 = JEp\sigma K and the definition of \Pi \eta ,p imply

b\mathrm{n}\mathrm{i}\mathrm{p}(\Pi \eta ,pv, \sigma ) - (v,Ep\sigma )1 = (\Pi \eta ,pv  - v,Ep\sigma  - \sigma )1 +

ˆ
\Sigma 

J\Pi \eta ,pv  - vK \{ \{ \nabla \sigma \} \} \cdot n,

whence Proposition 3.4 and (3.20) yield

(3.22) | b\mathrm{n}\mathrm{i}\mathrm{p}(\Pi \eta ,pv, \sigma ) - (v,Ep\sigma )1| \leq Cd,\gamma \scrM ,p\eta 
 - 1

2 | \sigma | 1;\eta | \Pi \eta ,pv  - v| 1;\eta .

We thus conclude \delta \lesssim \eta  - 
1
2 with the help of the coercivity bound in Lemma 3.5.

A quasi-optimal SIP method. The NIP bilinear form b\mathrm{n}\mathrm{i}\mathrm{p} arises in particular
by enforcing coercivity. As an alternative, one can achieve symmetry by changing the
sign of the first term in d\mathrm{n}\mathrm{i}\mathrm{p}. This leads to the SIP bilinear form b\mathrm{s}\mathrm{i}\mathrm{p}; cf. (1.2). While
b\mathrm{s}\mathrm{i}\mathrm{p} verifies the same continuity bound as b\mathrm{n}\mathrm{i}\mathrm{p}, the coercivity bound can be replaced
as follows. Inequality (3.20) implies\bigm| \bigm| \bigm| \bigm| ˆ

\Sigma 

JsK \{ \{ \nabla \sigma \} \} \cdot n
\bigm| \bigm| \bigm| \bigm| \leq 1

2

\sqrt{} 
\eta \ast \eta  - 1

\Bigl( 
\eta \| h - 1

2 JsK \| 2L2(\Sigma ) + \| \nabla \scrM \sigma \| 2L2(\Omega )

\Bigr) 
,

from which we get

(3.23) \forall s \in S0
p b\mathrm{s}\mathrm{i}\mathrm{p}(s, s) \geq \alpha (\eta \ast \eta 

 - 1) | s| 21;\eta with \alpha (t) = 1 - 
\surd 
t.

Hence, if \eta > \eta \ast , then the discrete problem

(3.24) U \in S0
p such that \forall \sigma \in S0

p b\mathrm{s}\mathrm{i}\mathrm{p}(U, \sigma ) = \langle f,Ep\sigma \rangle 

is well-posed and gives rise to a new variant of the SIP method, which is a noncon-
forming Galerkin method and denoted by M\mathrm{s}\mathrm{i}\mathrm{p}. The following theorem covers the
results illustrated in the introduction (section 1) and is proved as Theorem 3.6.

Theorem 3.7 (quasi-optimality of M\mathrm{s}\mathrm{i}\mathrm{p}). For any \eta > \eta \ast , the method M\mathrm{s}\mathrm{i}\mathrm{p} is

| \cdot | 1,\eta -quasi-optimal for (1.1) with constant \leq 
\sqrt{} 
1 + Cd,\gamma \scrM ,p(\alpha (\eta \ast /\eta )2\eta ) - 1.

For \eta \rightarrow \infty , we again end up in C\'ea's lemma for the limiting conforming Galerkin
method in S1

p .
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High-order smoothing with first-order averaging. Assume that p \geq 2. The
simplified averaging operator A1 is defined also on S0

p and so we may consider

(3.25) \widetilde Ep\sigma := A1\sigma +Bp(\sigma  - A1\sigma ), \sigma \in S0
p ,

which is cheaper to evaluate than Ep. In order to assess this idea, let us first check
in which sense A1 can provide stabilization. Since it is not a projection onto S1

p with
p \geq 2, the conclusions in Lemma 3.3 have to be modified and, in particular, an error
bound solely in jump terms is not possible.

Lemma 3.8 (first-order averaging for higher-order piecewise polynomials). Let
p \geq 2, K \in \scrM , and F \in \scrF K . For all z \in \scrL p(K) \cap F and all \sigma \in S0

p , we have

\bigm| \bigm| \sigma | K(z) - A1\sigma (z)
\bigm| \bigm| \leq Cd,p

\left(  \sum 
F \prime \cap F \not =\emptyset 

1

| F \prime | 

\bigm| \bigm| \bigm| \bigm| ˆ
F \prime 

J\sigma K
\bigm| \bigm| \bigm| \bigm| + \sum 

K\prime \cap F \not =\emptyset 

hK\prime 

| K \prime | 
1
2

\| \nabla \sigma \| L2(K\prime )

\right)  ,

where F \prime and K \prime vary, respectively, in \scrF and \scrM .

Proof. Given any z \in \scrL p(K) \cap F , Lemma 3.1 in [24] ensures

(3.26)
\bigm| \bigm| \sigma | K(z) - Ap\sigma (z)

\bigm| \bigm| \leq \sum 
F \prime \ni z

1

| F \prime | 

\bigm| \bigm| \bigm| \bigm| ˆ
F \prime 

J\sigma K
\bigm| \bigm| \bigm| \bigm| + Cd,p

\sum 
K\prime \ni z

hK\prime 

| K \prime | 
1
2

\| \nabla \sigma \| L2(K\prime ).

We distinguish two cases, depending on whether or not z is a vertex.
Case 1: z \in \scrL 1(K). Then we have A1\sigma (z) = Ap\sigma (z) and the claimed estimate

follows from (3.26).
Case 2: z \in \scrL p(K) \setminus \scrL 1(K). Since A1\sigma | F \in \BbbP 1(F ) and

\sum 
y\in \scrL 1(F ) \lambda 

F
y = 1 on F ,

we may write

(3.27) | \sigma | K(z) - A1\sigma (z)| \leq 
\sum 

y\in \scrL 1(F )

\bigm| \bigm| \sigma | K(z) - A1\sigma (y)
\bigm| \bigm| \lambda F

y (z)

and, for any y \in \scrL 1(F ),\bigm| \bigm| \sigma | K(z) - A1\sigma (y)
\bigm| \bigm| \leq \bigm| \bigm| \sigma | K(z) - \sigma | K(y)

\bigm| \bigm| + \bigm| \bigm| \sigma | K(y) - A1\sigma (y)
\bigm| \bigm| .

As the second term of the right-hand side is already bounded in Case 1, it remains to
bound the first term. Writing c for the mean value of \sigma in K, we deduce\bigm| \bigm| \sigma | K(z) - \sigma | K(y)

\bigm| \bigm| \leq \bigm| \bigm| \sigma | K(z) - c
\bigm| \bigm| + \bigm| \bigm| \sigma | K(y) - c

\bigm| \bigm| 
\lesssim | F |  - 

1
2 \| \sigma | K  - c\| L2(F ) \lesssim hK | K|  - 

1
2 \| \nabla \sigma \| L2(K)

with the help of an inverse estimate in \BbbP p(F ) and [22, Lemma 3].

Using this lemma in the proof of Proposition 3.4, we obtain the following prop-

erties of \widetilde Ep.

Proposition 3.9 (moment conservation with first-order averaging). The linear

operator \widetilde Ep from (3.25) is invariant on S1
1 and satisfies (3.11), and for all \sigma \in S0

p ,

\| \nabla \scrM (\sigma  - \widetilde Ep\sigma )\| L2(\Omega ) \leq Cd,\gamma \scrM ,p

\Biggl( \sum 
F\in \scrF 

h - d
F

\bigm| \bigm| \bigm| \bigm| ˆ
F

J\sigma K
\bigm| \bigm| \bigm| \bigm| 2 + \| \nabla \scrM \sigma \| 2L2(\Omega )

\Biggr) 1
2

.
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Combining the new smoothing operator \widetilde Ep with one of the previous bilinear forms

b\mathrm{v}\mathrm{a}\mathrm{r}, var \in \{ nip, sip\} , leads to a nonconforming method \widetilde M\mathrm{v}\mathrm{a}\mathrm{r} with discrete problem

(3.28) U \in S0
p such that \forall \sigma \in S0

p b\mathrm{v}\mathrm{a}\mathrm{r}(U, \sigma ) = \langle f, \widetilde Ep\sigma \rangle ,

which is well-posed for all \eta > \eta \mathrm{v}\mathrm{a}\mathrm{r}. Hereafter

\eta \mathrm{v}\mathrm{a}\mathrm{r} :=

\Biggl\{ 
0, if var = nip,

\eta \ast , if var = sip,
and \alpha \mathrm{v}\mathrm{a}\mathrm{r}(t) :=

\Biggl\{ 
1, if var = nip,

1 - 
\surd 
t, if var = sip.

As \widetilde Ep is only invariant on the strict subset S1
1 of (3.9) for p \geq 2, the method \widetilde M\mathrm{v}\mathrm{a}\mathrm{r} is

not a nonconforming Galerkin method. Nevertheless, the following holds.

Theorem 3.10 (quasi-optimality of \widetilde M\mathrm{v}\mathrm{a}\mathrm{r}). Let var \in \{ nip, sip\} . If \eta > \eta \mathrm{v}\mathrm{a}\mathrm{r},

the method \widetilde M\mathrm{v}\mathrm{a}\mathrm{r} is | \cdot | 1;\eta -quasi-optimal for the Poisson problem (1.1) with constant

\leq Cd,\gamma \scrM ,p

\sqrt{} 
1 + (\alpha \mathrm{v}\mathrm{a}\mathrm{r}(\eta \ast /\eta )2\eta ) - 1.

Proof. Proceed as in the proof of Theorem 3.6 or as indicated for Theorem 3.7,
replacing Ep by \widetilde Ep. The only difference is that, in the derivation of the counterpart
of (3.22), we use

\sum 
F\in \scrF 

h - d
F

\bigm| \bigm| \bigm| \bigm| ˆ
F

J\sigma K
\bigm| \bigm| \bigm| \bigm| 2 \lesssim 

\sum 
F\in \scrF 

h - 1
F

ˆ
F

| J\sigma K| 2

and obtain only

| b\mathrm{v}\mathrm{a}\mathrm{r}(\Pi \eta ,pv, \sigma ) - (v, \widetilde Ep\sigma )1| \leq Cd,\gamma \scrM ,p

\sqrt{} 
1 +

\bigl( 
\alpha \mathrm{v}\mathrm{a}\mathrm{r}(\eta \ast /\eta )2\eta 

\bigr)  - 1 | \sigma | 1;\eta | \Pi \eta ,pv  - v| 1;\eta 
because the stability bound in Proposition 3.9 involves gradient terms.

3.3. A quasi-optimal and locking-free method for linear elasticity. The
goal of this section is to conceive a quasi-optimal and locking-free method for linear
elasticity.

Given \Omega \subseteq \BbbR d as in section 3.1, we consider the displacement formulation of
the linear elasticity problem with pure displacement boundary conditions: find u \in 
H1

0 (\Omega )
d such that

(3.29)  - div
\bigl( 
2\mu \varepsilon (u) + \lambda div(u)

\bigr) 
= f in \Omega , u = 0 on \partial \Omega .

Hereafter \varepsilon (v) := (\nabla v+\nabla vT )/2 is the symmetric gradient and \mu , \lambda > 0 are the Lam\'e
coefficients. We shall mostly suppress the dependencies on \mu in the notation, while
we trace the ones on \lambda .

Let \scrM be a mesh of \Omega as in section 3.1 and, for \eta \geq 0, define

(3.30)
a\lambda ;\eta (v, w) :=

ˆ
\Omega 

2\mu \varepsilon \scrM (v) : \varepsilon \scrM (w) + \lambda div\scrM v div\scrM w +

ˆ
\Sigma 

\mu \eta 

h
JvK \cdot JwK ,

\| v\| \lambda ;\eta = a\lambda ;\eta (v, v)
1
2

for v, w \in H1(\scrM )d and abbreviate a\lambda ;0 to a\lambda . The colon indicates the matrix scalar

product G : H =
\sum d

j,\ell =1 Gj\ell Hj\ell . We aim at applying Theorem 2.2 with the following
setting:

(3.31) V = H1
0 (\Omega )

d, S \subseteq (S0
1)

d, \widetilde a = a\lambda ;\eta on \widetilde V = H1
0 (\Omega )

d + S,
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where S will be specified below. Notice that a\lambda ;\eta is then a scalar product and (2.1)
provides a weak formulation of (3.29).

We readily deduce the following counterpart of Lemma 3.1.

Lemma 3.11 (moment conservation). If a linear operator E : S \rightarrow H1
0 (\Omega )

d

satisfies

(3.32) \forall \sigma \in S, F \in \scrF i

ˆ
F

E\sigma =

ˆ
F

\{ \{ \sigma \} \} ,

then, for all s, \sigma \in S,

a\lambda ;\eta (s, E\sigma ) = a\lambda (s, \sigma ) - 
ˆ
\Sigma 

\bigl( 
\{ \{ 2\mu \varepsilon \scrM (s) + \lambda div\scrM (s)I\} \} 

\bigr) 
n \cdot J\sigma K .

In section 3.2, the impact on coercivity or symmetry of the counterpart of the
term

´
\Sigma 
(\{ \{ 2\mu \varepsilon \scrM (s) + \lambda div\scrM (s)I\} \} )n \cdot J\sigma K was compensated only with the help of

d(\cdot , \cdot ). Here we shall handle it also with the choice of the discrete space S. More
precisely, if we choose the Crouzeix--Raviart space

(3.33) S = CRd with CR := \{ s \in S0
1 | \forall F \in \scrF 

ˆ
F

JsK = 0\} 

with homogeneous boundary conditions, then this term vanishes because, on each face
F \in \scrF , the average (\{ \{ 2\mu \varepsilon \scrM (s) + \lambda div\scrM (s)I\} \} )n is a constant. Another advantage of
setting S = CRd is that (3.32) becomes

´
F
E\sigma =

´
F
\sigma , F \in \scrF i, since the integral on

the faces of \scrM is well-defined for functions in CR . We shall exploit this observation
in Lemma 3.15 below. The conforming part of CRd is

CRd \cap H1
0 (\Omega )

d = (S1
1)

d,

which is a strict subspace for \#\scrM > 1. Finally, Arnold [2] shows that, for certain
choices of \Omega and \scrM , there is a nonzero function

(3.34) s0 \in CR2 \setminus \{ 0\} with \varepsilon \scrM (s0) = 0 and div\scrM s0 = 0,

entailing, in contrast to the setting of [24, section 3.2] for the Poisson problem,

0 \not = s0 \in CR2 \cap (H1
0 (\Omega )

2)\bot 

so that overconsistency is in general ruled out by Lemma 2.3.
As (3.32) is the vector version of (3.11) for p = 1, we can take the computionally

feasible smoothing operator E1 from Proposition 3.4 componentwise. We denote this
vector version again by E1. Since a\lambda ;\eta (\cdot , E1\cdot ) may be degenerate in view of (3.34), we
take

(3.35) b\mathrm{H}\mathrm{L} := a\lambda ;\eta (\cdot , E1\cdot ) + d\mathrm{H}\mathrm{L} with d\mathrm{H}\mathrm{L}(s, \sigma ) =

ˆ
\Sigma 

\mu \eta 

h
JsK \cdot J\sigma K with \eta > 0,

which is the discrete bilinear form in Hansbo and Larson [15, equation (26)]. We thus
introduce a new penalized Crouzeix--Raviart method M\mathrm{H}\mathrm{L} = (CRd, b\mathrm{H}\mathrm{L}, E1) given by
the following discrete problem: find U \in CRd such that

(3.36)

ˆ
\Omega 

\bigl( 
2\mu \varepsilon \scrM (U) : \varepsilon \scrM (\sigma ) + \lambda div\scrM U div\scrM \sigma 

\bigr) 
+

ˆ
\Sigma 

\mu \eta 

h
JsK \cdot J\sigma K = \langle f,E1\sigma \rangle 
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for all \sigma \in CRd. The method M\mathrm{H}\mathrm{L} is a nonconforming Galerkin method. The modi-
fication of the right-hand side with respect to [15] allows one to apply any H - 1(\Omega )-
volume force with the following a priori error control.

Theorem 3.12 (quasi-optimality of M\mathrm{H}\mathrm{L}). The method M\mathrm{H}\mathrm{L} is \| \cdot \| \lambda ;\eta -quasi-
optimal for (3.29) with constant \leq 

\sqrt{} 
1 + Cd,\gamma \scrM (2\mu + \lambda )\eta  - 1.

Proof. We first use Lemma 3.11 and Proposition 3.4 for p = 1 in Theorem 2.2.
Then it remains to bound \delta in item (iii) of Theorem 2.2. Let v \in H1

0 (\Omega )
d, \sigma \in 

CRd, and denote by \Pi \lambda ;\eta the a\lambda ;\eta -orthogonal projection onto CRd. Lemma 3.11, the
definition of CR , JvK = 0 = JE1\sigma K, and the definition of \Pi \lambda ;\eta imply

b\mathrm{H}\mathrm{L}(\Pi \lambda ;\eta v, \sigma ) - a\lambda (v,E1\sigma ) = a\lambda (\Pi \lambda ;\eta v  - v,E1\sigma  - \sigma )

and so Proposition 3.4 yields

| b\mathrm{H}\mathrm{L}(\Pi \lambda ;\eta v, \sigma ) - a\lambda (v,E1\sigma )| \leq Cd,\gamma \scrM 

\sqrt{} 
2\mu + \lambda \eta  - 1/2\| \Pi \lambda ;\eta v  - v\| \lambda ;\eta \| \sigma \| \lambda ;\eta .

Hence, we have \delta \lesssim 
\surd 
2\mu + \lambda \eta  - 

1
2 and the proof is finished.

The following remarks show that the upper bound of the quasi-optimality constant
C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} in Theorem 3.12 captures the correct asymptotic behavior not only for the
conforming limit \eta \rightarrow \infty .

Remark 3.13 (C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} as \eta \rightarrow 0). The degeneracy of the bilinear form a\lambda ;\eta (\cdot , E1\cdot )
entails C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} \geq C\lambda \eta 

 - 1
2 . To see this, suppose that s0 satisfies (3.34) and notice that

identity (3.32) and [24, Lemma 3.2] guarantee that E1 is injective. We then have that

\| E1s0\| \lambda ;\eta = C\lambda \not = 0 and \| s0\| \lambda ;\eta = C\eta 
1
2 . Hence, Theorem 2.2 yields C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} \geq C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} \geq 

C\lambda \eta 
 - 1

2 .

The following remark is closely connected with Linke [17, section 2] concerning
incompressible flows.

Remark 3.14 (deterioration of C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} for nearly incompressible materials). The
property

(3.37) E1

\bigl( 
\{ s \in CRd | div\scrM s = 0\} 

\bigr) 
\not \subseteq \{ v \in H1

0 (\Omega )
d | div v = 0\} 

results in C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} \geq C\eta \lambda 
1
2 . Indeed, if s \in CRd satisfies div\scrM s = 0 and div(E1s) \not = 0,

we have \| s\| \lambda ;\eta = C\eta and \| E1s\| \lambda ;\eta \approx C\lambda 
1
2 as \lambda \rightarrow \infty and so Theorem 2.2 implies

C\mathrm{q}\mathrm{o}\mathrm{p}\mathrm{t} \geq C\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b} \geq C\eta \lambda 
1
2 .

In order to verify (3.37), fix any face F \in \scrF i of a given mesh \scrM . Let \Psi F be the
associated basis function in CR with

´
F \prime \Psi F = \delta FF \prime for all F \prime \in \scrF and \Psi F | K = 0

whenever F \not \in \scrF K . Then, appropriately picking the elements Kz in the definition
(3.14) of A1, we can arrange A1\Psi F = 0 and so E1\Psi F = \beta \Phi F with some \beta > 0 and
\Phi F as in (3.12). Consider \Psi F tF \in CRd, where tF is a unit tangent vector of F .
On the one hand, we have div\scrM (tF\Psi F ) = tF \cdot \nabla \scrM \Psi F = 0 and, on the other hand,
divEd(tF\Psi F ) = \beta div(tF\Phi F ) = \beta tF \cdot \nabla \Phi F \not = 0.

It is instructive to shed additional light on the performance of M\mathrm{H}\mathrm{L} for nearly
incompressible materials. First, recall that the space S1

1 shows locking whenever
\{ s \in S1

1 | div s = 0\} provides poor approximation; see [9, section 11.3]. Hence the
choice \eta \approx \lambda will also result in poor approximation for large \lambda . For fixed penalty
parameter \eta > 0, the following lemma, which is also of interest by its own, will be
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useful. It quantifies the difference between the original method \^M\mathrm{H}\mathrm{L} of Hansbo and
Larson, and its new variant M\mathrm{H}\mathrm{L}. Recall that, if f \in L2(\Omega )d, the discrete solution
\^U \in CRd of Hansbo and Larson is given by

(3.38) \forall \sigma \in CRd b\mathrm{H}\mathrm{L}( \^U, \sigma ) =

ˆ
\Omega 

f \cdot \sigma .

Lemma 3.15 (M\mathrm{H}\mathrm{L} and \^M\mathrm{H}\mathrm{L}). Assume f \in L2(\Omega )d and let U, \^U \in CRd verify
(3.36) and (3.38), respectively. Then

\| U  - \^U\| \lambda ;\eta \leq Cd,\gamma \scrM \eta  - 
1
2

\Biggl( \sum 
K\in \scrM 

h2
K\| f\| 2L2(K)

\Biggr) 1
2

.

Proof. The definitions of U and \^U immediately give

\| U  - \^U\| \lambda ;\eta = sup
\| \sigma \| \lambda ;\eta =1

\bigm| \bigm| \bigm| b\mathrm{H}\mathrm{L}(U  - \^U, \sigma )
\bigm| \bigm| \bigm| = sup

\| \sigma \| \lambda ;\eta =1

\bigm| \bigm| \bigm| \bigm| ˆ
\Omega 

f \cdot (E1\sigma  - \sigma )

\bigm| \bigm| \bigm| \bigm| ,
where \sigma varies in CRd. For any element K \in \scrM , we have

´
\partial K

E1\sigma  - \sigma = 0 implying
the Poincar\'e inequality \| E1\sigma  - \sigma \| L2(K) \lesssim hK\| \nabla (E1\sigma  - \sigma )\| L2(K). Therefore,

\bigm| \bigm| \bigm| \bigm| ˆ
\Omega 

f \cdot (E1\sigma  - \sigma )

\bigm| \bigm| \bigm| \bigm| \lesssim 
\Biggl( \sum 

K\in \scrM 
h2
K\| f\| 2L2(K)

\Biggr) 1
2

\| \nabla \scrM (E1\sigma  - \sigma )\| L2(\Omega ).

Hence, Proposition 3.4 and [24, Proposition 3.3] followed by Brenner [8, Theorem 3.1]
finish the proof.

We readily see from this proof that the asymptotic closeness of U and \^U could be
increased by requiring that the smoothing operator also conserves element moments.

A consequence of Lemma 3.15 is the following equivalence concerning the asymp-
totic error bounds

\| u - U\| \lambda ;\eta \leq Ch\| f\| L2(\Omega ), \| u - \^U\| \lambda ;\eta \leq \^Ch\| f\| L2(\Omega )

with best constants C and \^C for all h := maxK\in \scrM hK and f \in L2(\Omega )d:

(3.39) C is independent of \lambda \Leftarrow \Rightarrow \^C is independent of \lambda .

Therefore, the robustness result [15, Theorem 3.1], which ensures that \^C is indepen-
dent of \lambda for polygons \Omega \subseteq \BbbR 2, carries over to M\mathrm{H}\mathrm{L}. In summary, for smooth volume
forces, the method M\mathrm{H}\mathrm{L} is locking-free. The nonrobustness of the quasi-optimality
constant is thus due to rough volume forces, including forces for which the locking-free
nonconforming methods in Falk [13], Brenner and Sung [10], and Hansbo and Larson
[15] are not defined.

Let us conclude this section with a remark on the generalization to order p \geq 2,
where CR is replaced by its higher-order counterpart CRp from Stoyan and Baran
[21]. This case is of different nature. In fact, the Korn inequalities of Brenner [8]
ensure that \| \cdot \| \lambda ;\eta is a norm on H1

0 (\Omega )
d + CRd

p even for \eta = 0. This allows one to
construct overconsistent methods with the help of Ep from Proposition 3.4.
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3.4. A quasi-optimal \bfitC \bfzero interior penalty method for the biharmonic
problem. In this subsection, we introduce a new C0 interior penalty method for the
biharmonic problem with clamped boundary conditions,

(3.40) \Delta 2 u = f in \Omega , u = \partial nu = 0 on \partial \Omega ,

and prove its quasi-optimality. We let \Omega and \scrM be as in section 3.1 with d = 2.
Jumps and averages of vector- and matrix-valued maps are intended componentwise.
Consequently, if v \in H2(\scrM ), then J\nabla vK \cdot n and \{ \{ \nabla v\} \} \cdot n indicate, respectively, the
jump and the average of the normal derivative of v on the skeleton \Sigma . We write alsoq
\partial 2v/\partial n2

y
and

\bigl\{ \bigl\{ 
\partial 2v/\partial n2

\bigr\} \bigr\} 
in place of (

q
D2v

y
n) \cdot n and (

\bigl\{ \bigl\{ 
D2v

\bigr\} \bigr\} 
n) \cdot n, respectively.

Given \eta \geq 0, set

(3.41)
(v, w)2;\eta :=

ˆ
\Omega 

D2
\scrM v : D2

\scrM w +

ˆ
\Sigma 

\eta 

h
(J\nabla vK \cdot n) (J\nabla wK \cdot n) ,

| v| 2;\eta := (v, v)
1
2
2;\eta 

for v, w \in H2(\scrM ) and abbreviate (\cdot , \cdot )2;0 to (\cdot , \cdot )2. Recalling (3.4), consider the
following setting for Theorem 2.2:

(3.42) V = H2
0 (\Omega ), S = S1

2 , \widetilde a = (\cdot , \cdot )2;\eta on \widetilde V = H2
0 (\Omega ) + S1

2 ,

where, for \eta > 0, the bilinear form (\cdot , \cdot )2;\eta is a scalar product on

(3.43) H2
0 (\Omega ) + S1

2 \subseteq \{ v \in H2(\scrM ) | \forall F \in \scrF J\nabla vK \cdot tF = 0\} 

and tF is a unit tangent vector of F . Then, the abstract problem (2.1) with (3.42) is
a weak formulation of the biharmonic problem (3.40). The conforming part of S1

2 is
the strict subspace

(3.44) S1
2 \cap H2

0 (\Omega ) = \{ s \in S1
2 | J\nabla sK \cdot n = 0\} ,

which may even be trivial; cf. [24, Remark 3.12]. Finally, we have

(3.45) \{ 0\} \not = S1
1 \subseteq S1

2 \cap H2
0 (\Omega )

\bot 

and, therefore, Lemma 2.3 rules overconsistency out.
Let us turn to the choice of the smoothing operator. Interestingly, Brenner and

Sung [11] propose a C0 interior penalty method M\mathrm{B}\mathrm{S} involving a smoothing operator
based upon averaging. In contrast to similar methods, M\mathrm{B}\mathrm{S} is well-defined for general
loads \ell \in H - 2(\Omega ), fully stable according to Theorem 2.2(i), and, for any \alpha > 0 and
all \ell \in H - 2+\alpha (\Omega ), its error in | \cdot | 2;\eta with a suitable \eta decays at the optimal rate \alpha .
Nevertheless, M\mathrm{B}\mathrm{S} is not guaranteed to be quasi-optimal with respect to | \cdot | 2;\eta , because
it is not designed to be fully algebraically consistent.

To devise a method ensuring full algebraic consistency, we proceed as before and
derive the following counterpart of Lemmas 3.1 and 3.11 with the help of integration
by parts (3.3).

Lemma 3.16 (moment conservation). If the smoothing operator E : S1
2 \rightarrow H2

0 (\Omega )
satisfies

(3.46) \forall \sigma \in S1
2 , F \in \scrF i

ˆ
F

\nabla E\sigma =

ˆ
F

\{ \{ \nabla \sigma \} \} ,
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then

\forall s, \sigma \in S1
2 (s, E\sigma )2;\eta =

ˆ
\Omega 

D2
\scrM s : D2

\scrM \sigma  - 
ˆ
\Sigma 

\biggl\{ \biggl\{ 
\partial 2s

\partial n2

\biggr\} \biggr\} 
J\nabla \sigma K \cdot n.

Thanks to S1
2 + H2

0 (\Omega ) \subseteq C0(\Omega ) and the fundamental theorem of calculus, we
may ensure the conservation (3.46) of the mean gradients on faces by

(3.47) \forall z \in \scrL i
1 E\sigma (z) = \sigma (z) and \forall F \in \scrF i

ˆ
F

\nabla E\sigma \cdot n =

ˆ
F

\{ \{ \nabla \sigma \} \} \cdot n.

The smoothing operator for Morley functions in [24] verifies these new require-
ments. We adapt its construction to the current setting, focusing on the modifications
only. Let us begin with the (simplified) averaging operator mapping into the Hsieh--
Clough--Tocher (HCT) space

HCT := \{ s \in C1(\Omega ) | \forall K \in \scrM s| K \in C1(K) \cap \BbbP 3(\scrM K), s = \partial ns = 0 on \partial \Omega \} ,

where \scrM K stands for the triangulation obtained by connecting each vertex of the
triangle K with its barycenter mK . For each vertex z \in \scrL i

1 and edge F \in \scrF i, we pick
elements Kz,KF \in \scrM containing z or F , respectively, and define

(3.48) AHCT\sigma :=
\sum 
z\in \scrL i

1

\left(  \sigma (z)\Upsilon 0
z +

2\sum 
j=1

\partial j
\bigl( 
\sigma | Kz

\bigr) 
(z)\Upsilon j

z

\right)  +
\sum 
F\in \scrF i

\partial 
\bigl( 
\sigma | KF

\bigr) 
\partial n

(mF )\Upsilon F ,

where \Upsilon j
z with z \in \scrL i

1, j \in \{ 0, 1, 2\} and \Upsilon F with F \in \scrF i form the nodal basis of
HCT and mF denotes the midpoint of F . Next, we introduce the bubble smoother.
Given any interior edge F \in \scrF i, let K1,K2 \in \scrM be the two elements such that
F = K1 \cap K2. Considering their barycentric coordinates (\lambda Ki

z )z\in \scrL 1(Ki), i = 1, 2, as
first-order polynomials on \BbbR 2, we set

\=\phi F :=
630

| F | 
\phi F with \phi F :=

\left\{   
\prod 

z\in \scrL 1(F )

\bigl( 
\lambda K1
z \lambda K2

z

\bigr) 2
in K1 \cup K2,

0 in \Omega \setminus (K1 \cup K2).

For all F \prime \in \scrF , we have
´
F \prime 

\=\phi F = \delta FF \prime according to (3.1) and (\nabla \=\phi F )| F \prime = 0 if
F \prime \not = F . We define also \zeta F (x) := (x  - mF ) \cdot nF for x \in \BbbR 2, which satisfies \zeta F = 0
on F and \nabla \zeta F = nF . Then \=\Phi nF

:= \zeta F \=\phi F is in H2
0 (\Omega ) and we have

´
F \prime \nabla \=\Phi nF

\cdot nF \prime =´
F \prime 

\=\phi F\nabla \zeta F \cdot nF \prime = \delta F,F \prime for all F \prime \in \scrF i. Hence,

B\partial n
\sigma :=

\sum 
F\in \scrF i

\biggl( ˆ
F

\{ \{ \nabla \sigma \} \} \cdot n
\biggr) 

\=\Phi nF

maps S1
2 +HCT into H2

0 (\Omega ), verifying B\partial n
\sigma (z) = 0 for all z \in \scrL i

1 and the second part
of (3.47). The combination of bubble smoother and averaging thus yields the desired
moment conservation in a stable manner.

Proposition 3.17 (stable smoothing with moment conservation). The linear
operator E\mathrm{C}0 : S1

2 \rightarrow H2
0 (\Omega ) given by

E\mathrm{C}0\sigma := AHCT\sigma +B\partial n
(\sigma  - AHCT\sigma )
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is invariant on S1
2 \cap H2

0 (\Omega ) and verifies (3.46), and for all \sigma \in S1
2 ,

\| D2
\scrM (\sigma  - E\mathrm{C}0\sigma )\| L2(\Omega ) \leq C\gamma \scrM 

\Biggl( \sum 
F\in \scrF 

h - 1
F \| J\nabla \sigma K \cdot n\| 2L2(F )

\Biggr) 1
2

.

Proof. We proceed as in [24, Proposition 3.17] with the following difference. For
the HCT averaging, we use the following bound: if K \in \scrM and z \in \scrL 2(K), then\bigm| \bigm| \nabla (\sigma | K)(z) - \nabla AHCT\sigma (z)

\bigm| \bigm| \leq C
\sum 

F\in \scrF :F\ni z

h
 - 1

2

F \| J\nabla \sigma K \cdot n\| L2(F ),

which follows along the lines of the proof of Lemma 3.3 and from (3.43).

It remains to choose the bilinear form d(\cdot , \cdot ). In view of (3.45), we need to establish
nondegeneracy, for example, in the vein of the extended energy norm | \cdot | 2;\eta . Requiring
also symmetry for the resulting discrete bilinear form then leads to

d\mathrm{B}\mathrm{S}(s, \sigma ) =

ˆ
\Sigma 

J\nabla sK \cdot n
\biggl( 
 - 
\biggl\{ \biggl\{ 

\partial 2\sigma 

\partial n2

\biggr\} \biggr\} 
+

\eta 

h
J\nabla \sigma K \cdot n

\biggr) 
and the discrete bilinear form of Brenner and Sung [11]:

(3.49) b\mathrm{B}\mathrm{S}(s, \sigma ) = (s, \sigma )2;\eta  - 
ˆ
\Sigma 

\biggl( \biggl\{ \biggl\{ 
\partial 2s

\partial n2

\biggr\} \biggr\} 
J\nabla \sigma K \cdot n+ J\nabla sK \cdot n

\biggl\{ \biggl\{ 
\partial 2\sigma 

\partial n2

\biggr\} \biggr\} \biggr) 
.

Similarly to the SIP bilinear form, there is \eta \ast > 0 depending on \gamma \scrM such that

(3.50) \| h - 1
2

\bigl\{ \bigl\{ 
\partial 2\sigma /\partial 2n

\bigr\} \bigr\} 
\| L2(\Sigma ) \leq \eta \ast \| D2

\scrM \sigma \| L2(\Omega )

and therefore b\mathrm{B}\mathrm{S} is | \cdot | 2,\eta -coercive with constant \alpha (\eta \ast /\eta ) whenever \eta > \eta \ast ; cf. (3.23)
and [11, Lemma 7]. Under this assumption, the discrete problem

(3.51) U \in S1
2 such that \forall \sigma \in S1

2 b\mathrm{B}\mathrm{S}(U, \sigma ) = \langle f,E\mathrm{C}0\sigma \rangle 

is well-posed and introduces a new C0 interior penalty methodM\mathrm{C}0 for the biharmonic
problem (3.40). Inspecting b\mathrm{B}\mathrm{S}, E\mathrm{C}0 and recalling Proposition 3.17, we see that
M\mathrm{C}0 = (S1

2 , b\mathrm{B}\mathrm{S}, E\mathrm{C}0) is a nonconforming Galerkin method with a computationally
feasible smoothing operator. It differs from the original method of Brenner and Sung
[11] in the choice of the smoother and the following property.

Theorem 3.18 (quasi-optimality of M\mathrm{C}0). For any penalty parameter \eta > \eta \ast ,
the method M\mathrm{C}0 is | \cdot | 2;\eta -quasi-optimal for the biharmonic problem (3.40) with constant

\leq 
\sqrt{} 

1 + C\gamma \scrM (\alpha (\eta \ast /\eta )2\eta ) - 1.

Proof. Assume \eta > \eta \ast . Hence b\mathrm{B}\mathrm{S} is coercive and Theorem 2.2 applies. After
making use of Lemma 3.16, Proposition 3.17, and (3.44), it remains to bound \delta in
(iii) of Theorem 2.2. To this end, we let \Pi \eta denote the (\cdot , \cdot )2;\eta -orthogonal projection
onto S1

2 and derive, for all v \in H2
0 (\Omega ) and \sigma \in S1

2 ,

b\mathrm{B}\mathrm{S}(\Pi \eta v, \sigma ) - (v,E\mathrm{C}0\sigma )2 = (\Pi \eta v  - v,E\mathrm{C}0\sigma  - \sigma )2  - 
ˆ
\Sigma 

J\nabla (\Pi \eta v  - v)K \cdot n
\biggl\{ \biggl\{ 

\partial 2\sigma 

\partial n2

\biggr\} \biggr\} 
with the help of J\nabla E\mathrm{C}0\sigma K = 0 = J\nabla vK, Lemma 3.16, and the definition of \Pi \eta . Con-
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sequently, Proposition 3.17 and (3.50) yield

| b\mathrm{B}\mathrm{S}(\Pi \eta v, \sigma ) - (v,E\mathrm{C}0\sigma )2| \leq C\gamma \scrM \eta  - 
1
2 | \Pi \eta v  - v| 2;\eta | \sigma | 2;\eta .

The coercivity of b\mathrm{B}\mathrm{S} thus implies \delta 2 \lesssim 
\bigl( 
\alpha (\eta \ast /\eta )

2\eta 
\bigr)  - 1

and the proof is finished.

The presented approach may be extended to design quasi-optimal methods of
order p \geq 3. Perhaps the simplest manner is to keep the HCT averaging AHCT and
to construct a higher-order version of the bubble smoother similar to Bp in section
3.2. This will not result in a nonconforming Galerkin method, but achieves quasi-
optimality.
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