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Walking on a split-belt treadmill (each of the two belts
running at a different speed) has been proposed as an
experimental paradigm to investigate the flexibility of the
neural control of gait and as a form of therapeutic exercise.
However, the scarcity of dynamic investigations challenges
the validity of the available findings. The aim of the present
study was to investigate the dynamic asymmetries of lower
limbs of healthy adults during adaptation to gait on a split-
belt treadmill. Ten healthy adults walked on a split-belt
treadmill mounted on force sensors, with belts running
either at the same speed (‘tied’ condition) or at different
speeds (‘split’ condition, 0.4 vs. 0.8 or 0.8 vs. 1.2 m/s). The
sagittal power and work provided by ankle, knee and hip
joints, joint rotations, muscle lengthening, and surface
electromyography were recorded simultaneously. Various
tied/split walking sequences were requested. In the split
condition a marked asymmetry between the parameters
recorded from each of the two lower limbs, in particular from
the ankle joint, was recorded. The work provided by the
ankle (the main engine of body propulsion) was 4.8 and 2.2
times higher (in the 0.4 vs. 0.8, and 0.8 vs. 1.2 m/s
conditions, respectively) compared with the slower side, and

1.2 and 1.1 times higher compared with the same speed in
the tied condition. Compared with overground gait in
hemiplegia, split gait entails an opposite spatial and
dynamic asymmetry. The faster leg mimics the paretic limb
temporally, but the unimpaired limb from the spatial and
dynamic point of view. These differences challenge the
proposed protocols of split gait as forms of therapeutic
exercise. International Journal of Rehabilitation Research
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Introduction
More than a decade after a pioneering work by Dietz et al.
(1994), thanks to an influential paper by Reisman et al.
(2005), the scientific literature began to pay attention to

the effects of walking on a split-belt treadmill (heretofore

‘split gait’). The instrument is composed of two inde-

pendent belts that can run at different speeds. This

imposes an asymmetrical gait, mimicking limping that

has been observed in various pathologic conditions.

Healthy individuals and stroke (Malone and Bastian,

2014), Parkinson’s (Fasano et al., 2016), and cerebellar

(Morton and Bastian, 2006) patients were studied. In

stroke patients, split gait has been tested widely as a form

of therapeutic exercise. The rationale is based on the

observation that in hemiparetic patients, the paretic

(anterior) step is usually longer than the opposite step. In

split gait, this asymmetry is emphasized by placing the

paretic limb on the slower belt, although in various

research protocols, the opposite arrangement was also

tested (Morton and Bastian, 2006; Lauzière et al., 2014a,
2014b; Hoogkamer et al., 2015). When the belts are

returned to the same speed, an after-effect occurs,

entailing a more symmetric step length. In a unique

paper, this was shown to last up to a month if repeated

sessions are applied (Reisman et al., 2009). Some

hypotheses were advanced on the differential control and

storage of intralimb and interlimb parameters, the

potential cerebellar localization of the corresponding

neural circuits (Reisman et al., 2005; Morton and Bastian,

2006; Malone and Bastian, 2014; Hoogkamer et al., 2015),
and the distorted perceptions of average single-limb

speed during split gait (Malone and Bastian, 2010;

Lauzière et al., 2014a, 2014b; Hoogkamer and O’Brien,

2016).

However, the absence of dynamic considerations chal-

lenges the validity of the above-cited neurologic spec-

ulations. It is well known that in most unilateral

impairments kinematic symmetry is compatible with

hidden dynamic asymmetries between the lower limbs

and also between the energy changes of the body center
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of mass between subsequent steps (Cavagna et al., 1983a,
1983b; Tesio et al., 1998; Rota et al., 2016).

Although split-belt rehabilitation has been shown to be

effective (Reisman, McLean, and Bastian, 2010; Reisman

et al., 2013), to the authors’ knowledge only two research

groups have reported that split gait may impose an

asymmetric production of work from the lower limbs

(Roemmich et al., 2012; Lauzière et al., 2014a, 2014b). In
the current study, these preliminary observations were

examined more systematically and the differential effects

of split gait on lower limb kinematics and dynamics were

clarified.

Participants and methods
Participants
A convenience sample of 10 healthy voluntary adults

enrolled. The inclusion criteria were as follows: (i) ability

to wittingly sign the informed consent form; (ii) ability to

understand the instructions and to complete the loco-

motor task; (iii) age between 18 and 60 years; (iv) absence

of neurologic or orthopedic conditions affecting gait.

Patients were excluded if they had received surgical

orthopedic interventions in the 18 months before the

study, and had joint diseases (any forms of arthritis, joint

laxity, joint replacement), symptomatic spine diseases,

and previous experience of walking on split-belt tread-

mills. Participants were tested for their foot dominance

by means of the Waterloo footedness questionnaire-

revised (Elias et al., 1998).

Instruments and methods
Instruments and methods to record and analyze joint kine-

matics and dynamics, and surface electromyography (sEMG)

during walking, have been described previously in detail

(Tesio and Rota, 2008). Briefly, gait was analyzed using a

split-belt force-sensorized treadmill (model ADAL 3D;

Médical Développement, Andrézieux-Bouthéon, France)

embedded in the floor. It consists of two parallel, indepen-

dent half-treadmills, each mounted on four three-dimensional

(3D) piezoelectric force sensors (KI 9048B; Kistler,

Winterthur, Switzerland). Speeds up to 10 km/h can be

regulated in 0.1m/s steps. Force and belt speed signals were

sampled at 250Hz.

Joint kinematics was recorded through an optoelectronic

method as per the Davis anthropometric model. The 3D

displacement of the markers was captured using 10 near-

infrared stroboscopic cameras (Smart-D optoelectronic

system; BTS Bioengineering Spa, Milan, Italy, sampling

rate 250Hz), thus enabling the estimation of ankle, knee,

and hip 3D excursions.

Through the spatiotemporal synchronization of ground

reaction force vectors and the joint centers of rotation, the

joint moment and power can be computed. In this work,

kinematic and dynamic variables were analyzed only

along the sagittal plane.

Four sEMG probes (FreeEMG; BTS Bioengineering

Spa) were positioned, bilaterally, on the bellies of

Tibialis Anterior (not shown in the present study),

Gastrocnemius Lateralis (GaLat), Vastus Medialis, and

Semi-Membranosus as per the SENIAM guidelines.

Sample frequency was set at 1 kHz. The sEMG signals

were off-line rectified (time constant: 0.08 s) and filtered

(band pass Hamming filter: 10–450 Hz).

The length changes in GaLat, Rectus Femoris, and

Semi-Membranosus were estimated from joint kine-

matics using an anthropometric model implemented in

the SMART Software Suite (BTS Bioengineering Spa)

and expressed as a percentage of the muscle length

estimated at rest in the supine position.

General testing procedures
The participant had to wear a t-shirt, short pants, and

light gym shoes. Once he/she was equipped, height and

weight were measured. Then, the participant was

instructed to stand quietly on the treadmill for about 15 s

during calibration of the participant’s weight. Finally, the

participant was allowed to adapt to walk on the treadmill

for about 30 s (baseline), and then asked to walk in dif-

ferent gait conditions (adaptation). The participant was

instructed not to look at her/his feet during walking, but

toward a black spot (8 cm diameter) placed at about 2 m

distance and 1.65 m height on a white wall in front of the

treadmill. A researcher stood beside the participant.

Neither handrails nor a suspension safety harness were

deemed necessary at the tested speeds.

Dynamic parameters
Only the sagittal plane of motion was considered here.

Joint power was computed as the product of joint torque

and joint rotation speed (Tesio and Rota, 2008). As it is

customary in physiology, power was defined as generated

or positive when joint moment and rotation speed share

the same direction (agonist muscles are contracting while

shortening, thus providing ‘positive’ work), and as

absorbed or negative otherwise. Positive work was com-

puted as the integral of generated (positive) power over

time (Tesio et al., 2017a, 2017b).

Tagging gait patterns
In the context of this paper, gait modality refers to

walking on belts running either at the same speed (tied

modality) or at different speeds (split modality). Gait

condition indicates a specific combination of speeds of

each belt. A four-number tag without decimals was

assigned to each combination of walking speed and belt

speed asymmetry. The first two numbers referred to the

speed of the belt running under the nondominant limb.

The next two numbers referred to the speed of the other

belt. For example, the tag 0408 labeled a walking trial

where the belt under the nondominant and the dominant
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lower limbs ran at 0.4/ms and 0.8 m/s, respectively (split

modality, 0408 condition).

Sequence and timing of gait conditions
Table 1 shows the experimental timeline.

During the baseline phase, the participant was asked to walk

with treadmill belts tied from 0.2 to 1.2m/s at increasing

speeds (in 0.2m/s steps). Speed increases were applied

every 30 s after a verbal warning. Changes in the average

belt speed were completed gradually in 3–5 s. After a 2min

pause, the first adaptation phase began. This included a tied

condition, a split condition, and a postsplit tied condition.

Participants walked 30 s at 0404. Then, they had to walk for

3min at 0408, i.e. with the dominant lower limb on the

faster belt, and again for 30 s at 0404. After another 2min

pause, the tied-split-tied sequence was repeated at higher

speeds (0808, 0812, and 0808, respectively).

Definitions and computations of variables
Spatiotemporal gait parameters
Step: the ensemble of kinematic, dynamic, and electro-

physiological events taking place between two sub-

sequent foot–ground contacts. Foot–ground contact

phases were determined from vertical ground reactions

equal to or exceeding 30 N (threshold above the back-

ground noise) (Tesio and Rota, 2008).

Side of step: the side of the posterior foot during double

stance.

Step length: the sagittal distance between the reflective

markers placed on the lateral malleolus of the posterior and

the anterior foot at the ground strike of the anterior foot.

Step time: the time duration of the step.

Stride length, unilateral: the sagittal distance covered by

the external malleolus of one side between two sub-

sequent foot–ground contacts of the same foot. This

quantity is the same on both sides in the tied modality,

but not in the split modality.

Stride length in split modality: the sum of the length of two

subsequent steps, or, alternatively, the average length

between the unilateral strides of the left and the right side.

Single-stance time: for each lower limb, the time interval

during which the limb determines vertical ground reac-

tions equal to or exceeding 30N.

Swing time: for each lower limb, the time interval during

which vertical ground reactions are lower than 30 N.

Double-stance time: the time interval during which under

each of the lower limbs vertical ground reactions equal or

exceed 30 N.

Total stance time: for each lower limb, the time interval

during which vertical ground reactions under each foot

equal or exceed 30N.

Side of the double-stance phase: the side of the posterior foot.

It must be kept in mind that here, both the sides of the

step and of the double-stance phase were named after the

posterior foot during double foot–ground contact. This has

the advantage of linking spatiotemporal parameters to joint

dynamics, that is, the step length and duration to the body

propulsion, which is mostly provided by the posterior leg

during double stance (Tesio et al., 2017a, 2017b).

Data analysis
Strides in the first 10 s after completion of each speed

change were not considered, in order to neglect the

transition phase. In the split modality, within the next 20

strides, a sequence of six subsequent strides was selected

for further analysis. Therefore, only the early phase of

adaptation was considered here.

All signals were synchronized and off-line analyzed using

algorithms available within the SMART Software Suite.

Stride time was normalized to 100 time points. Results

were averaged across six subsequent strides for each

participant, and then grand-averaged across participants.

Further computations, statistics, and graphic representa-

tion were performed using MATLAB (version 8;

MathWorks Inc., Natick, Massachusetts, USA), STATA

(version 14.0; STATA Corp., College Station, Texas,

USA), and SigmaPlot software (version 12.0; Systat

software Inc., San Jose, California, USA).

Statistics
A sample size of 10 was considered to be sufficient for a

reliable estimate of all the recorded parameters, given the

very high reproducibility allowed within participants

across subsequent steps. Reproducibility is fostered by

the known and constant average speed imposed by the

treadmill, as confirmed by previous articles (Tesio and

Rota, 2008, 2017a, 2017b).

Table 1 Experimental sequence and timing of gait conditions

Adaptation 1 Adaptation 2

Baseline Rest Tied 0404 Split 0408
Postsplit tied

0404 Rest Tied 0808 Split 0812
Postsplit
tied 0808

From 0.2 to 1.2 m/s in 0.2 m/s increments every 30 s 0.4 m/s 0.4–0.8 m/s 0.4 m/s 0.8 m/s 0.8–1.2 m/s 0.8 m/s
180 s 120 s 30 s 180 s 30 s 120 s 30 s 180 s 30 s
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The Shapiro–Wilk’s test was used to assess the normality of

the distribution of spatiotemporal, kinematic, and dynamic

variables. Descriptive summaries were given as ranges (for

age, only), and mean (SD). All variables were compared

between the two sides using a paired Student’s t-test or a
non-parametric Wilcoxon signed-rank test in case of non-

normality. For each of the continuous variables analyzed

the dominant/non-dominant side ratio (linearized through

log-odd transformation; Cavagna et al., 1983) was computed.

The faster/slower side ratios in the split modality with the

dominant/non-dominant side ratio in the tied modality were

compared using a repeated analysis of variance (ANOVA)

model (non-parametric Friedman ANOVA in case of non-

normality). The contrasted tied modality was the one in

which speed (a) matched either the faster or the slower

speed between the split belts, or (b) was the average

between the two belt speeds. In case of significant ANOVA

models, Tukey’s (or the Wilcoxon signed-rank test in case

of non-normality) post-hoc tests were run on contrasts

between pairs of conditions. Also, the difference in side log-

ratios was tested between the two split conditions (i.e. 0408

vs. 0812).

Significance was set at P less than 0.05. The Benjamini–

Hochberg ‘false discovery rate’ correction for multiplicity

was adopted (Benjamini and Hochberg, 1995) whenever

appropriate.

The time courses of limb joint angles and power, muscle

length, and sEMG signals were shown as mean values

within each of 100 time bins. For graphic clarity, con-

fidence bands were not provided. It was shown pre-

viously that these are of very moderate amplitude and

almost superimposable to those found in ground walking

at the same speed (Tesio and Rota, 2008; Tesio et al.,
2017a, 2017b).

Ethics
All participants provided written consent before participa-

tion. The study was approved by the local ethic committee

of this Institution.

Results
Demographic and anthropometric information of the

participants enrolled in the present study is presented in

Table 2.

Figure 1 graphically represents the mean values of the

various spatiotemporal gait parameters as a function of

the belt speed combinations. Numeric values [mean

(SD)] are shown in Table 3.

Results show that:

(1) Under tied conditions no significant differences

emerged between steps on opposite sides.

(2) For all parameters, as expected, a difference between

sides could be detected in both split conditions (i.e.

0408 and 0812), except for the double-stance time

(side named after the posterior foot) in the 0812 split

condition.

(3) The split conditions implied that, on the faster side,

step length (side named after the posterior foot) and

Table 2 Demographic characteristics of the 10 participants

Sex (men/women) (n) 5/5
Age [mean (SD)] (years) 26.10 (2.81)
Range 22–30
Height [mean (SD)] (m) 1.71 (0.12)
Weight [mean (SD)] (kg) 63.67 (11.13)
Dominant side (right/left) (n) 8/2

Fig. 1

Spatiotemporal gait parameters. From top to bottom, the panels show
the spatiotemporal gait parameters indicated by the labels (ss TIME:
single-stance time, ds TIME: double-stance time, ts TIME: total stance
time). Pairs of bars are provided for each combination of belt speeds,
given on the abscissa. The bars show the grand-mean (SD) across six
subsequent strides performed by 10 participants for each parameter.
The gray and black bars refer to the nondominant and the dominant
side, respectively, in tied conditions. The white and the dashed bars
refer to the same sides, becoming the slower and the faster sides in split
conditions.*Statistically significant pairwise comparisons between lower
limb sides on a same gait condition. Statistically significant
comparisons of faster/slower side ratios (linearized through log-odd
transformation) in the split conditions with respect to the dominant/
nondominant side ratios in the tied conditions (i.e. 0408 vs. 0404,
0606, and 0808; and 0812 vs. 0808, 1010, and 1212), and between
the two split conditions (i.e. 0408 vs. 0812).
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swing time were longer, whereas single-stance and

double-stance (hence, total stance) time were shorter

compared with the slower side.

(4) For all parameters, the faster/slower side ratios (log-

transformed; see Participants and methods section)

were statistically different between the two split

conditions (i.e. 0408 vs. 0812) (Table 4).

(5) The faster/slower side ratio of step length, single-

stance time, total stance time, and swing time

showed significant differences in all the comparisons

between gait conditions. Significance was missed

only for the 0812/1010 comparison of step length

(Tables 6 and 7).

(6) For all spatiotemporal parameters the asymmetries

were larger in the 0408, compared with the 0812, split

condition, that is, when the faster/slower side ratio

was larger.

Figure 2 shows the kinematic, dynamic, and sEMG

changes during a stride in the 0408 split condition and in

tied conditions (0404, 0606, and 0808, respectively).

Results show that the values of all parameters are barely

distinguishable between the two sides in the tied

conditions.

As expected (Tesio et al., 2017a, 2017b), ankle plantar

flexors provided most of the propulsive power required

during the stride. More precisely, this occurred just

before and during the double stance of the corresponding

step. A speed-dependent increase in the amplitude of

kinematic, dynamic and sEMG values, and a decrease in

ground contact time and relative phase duration were also

evidenced.

The effect of split gait can be appreciated by comparing

the split condition 0408 with the tied conditions. Shifting

from the tied to the split condition induced a marked

asymmetry between the parameters recorded from each

of the two lower limbs, in particular, from the ankle joint

(Fig. 2, leftmost columns of each panel).

On the faster belt, the ankle rotation (negative values

indicate plantar flexed position) ranged from − 12.7° to

11.8° versus 0.0° to 14.4° for the slower side. These

ranges were superimposable to those found at the cor-

responding speeds in tied conditions: − 8.2° to 14.6° and
− 4.1° to 13.7° in 0808 and 0404 conditions, respectively.

On the slower side, by contrast, the ankle never reached a

plantar flexed position. Joint excursions were paralleled

by changes in the elongation of the GaLat muscle (sec-

ond row from the top in each panel).

The ankle joint on the faster belt provided a much higher

and earlier peak of plantar flexor power compared with

the opposite joint and with an earlier onset. Ankle power

was generated from 31 to 84% of the gait cycle on the

faster belt versus 59 to 86% of the slower belt. Remarkably,

ankle joint peak power on the faster belt was intermediateTa
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between that recorded in the corresponding 0808 tied

condition [1.51 (0.24) vs. 1.78 (0.45) W/kg] and that

recorded in the 0606 tied condition [1.24 (0.23) W/kg]

(Fig. 2).

In the latter condition, both lower limbs were moving at

0.6 m/s, the average speed between the two belts. Similar

effects of the split gait modality were found from the

sEMG tracings (fourth panel from top). On the slower

side, peak sEMG from GaLat was equal to 29.64 (10.17)

µV and lower than that recorded in the 0404 tied condi-

tion [38.95 (20.36) µV]. On the faster side, peak sEMG

from GaLat was equal to 75.78 (39.65) µV and greater

than that recorded both in the 0606 [60.92 (31.41) µV]
and the 0808 [58.64 (25.99) µV] conditions.

Interestingly, on both sides the generation of power was

preceded by a phase of power absorption. On the faster side,

the negative power reached a higher peak, appeared earlier,

and had a lower duration compared with the slower side.

This was paralleled by the larger lengthening–shortening

cycle of the plantar flexor muscles and by an sEMG signal of

higher amplitude and duration.

In Fig. 2 in each panel, the second and the third columns

from left replicate the information given for the ankle

with respect to knee and hip joints, respectively. It can

be seen that the split gait modality entailed much smaller

asymmetries, compared with the ankle joint, for all the

recorded parameters. In particular, the amplitude of the

power and sEMG signals was very small, as was the case

for the tied modalities investigated.

All of the above considerations also apply to the 0812

split condition and to its comparison with the tied con-

ditions replicating the speed of either belt (here, the 0808

and 1212 conditions), or in their average speed (here, the

1010 condition). For ankle joint rotation, Fig. 3 shows

that the lower limb on the fast belt had a joint rotation

range equal to 27.7° (5.7°), similar to that of the lower

limbs moving with both belts tied at 1.2 m/s [24.8° (3.2°)],
whereas the ankle joint on the slow belt had a rotation

equal to 17.5° (2.7)°, resembling that of the lower limbs

moving with both belts tied at slow speed [20.5° (3.4°)].

Peak power generated from the fast lower limb was

greater than that from the slow lower limb [2.9 (0.3) vs.

1.9 (0.6) W/kg]. Moreover, it was lower than that gener-

ated in the 1212 tied condition [3.3 (0.5) W/kg], whereas

it was more similar to that generated in the 1010 tied

condition [2.6 (0.3) W/kg]. In the 0812 split condition, the

ankle joint power generation lasted from 31 to 85% of the

gait cycle of the fast lower limb and from 52 to 88% of the

gait cycle of the slow lower limb.

It is worth noting that higher asymmetries were observed

in the 0408 compared with the 0812 split condition.

Analogous to the case of spatiotemporal parameters

(Fig. 1), the faster/lower speed ratio (here, 2 : 1 vs. 1.5 : 1)

between the two belts seemed more effective than speed

difference in causing dynamic asymmetries.

In Fig. 4, a 3D representation of the ankle joint power as

a function of normalized stride time and of gait conditions

is reported.

This form of representation makes it evident that on the

faster belt (dominant lower limb, dashed curves), power

was generated in an earlier phase and for a longer relative

duration compared with both the slower side and the tied

conditions.

A summary of dynamic findings is shown in Fig. 5.

Numeric values [mean (SD)] are shown in Table 5. The

figure highlights and complements the pattern shown in

Fig. 4, contributing quantitative evidence.

As expected, higher values of peak power were observed

with increasing average speeds. The ankle provided a

peak power 5.56 and 2.80 times higher compared with

knee and hip, respectively, in tied conditions, in agree-

ment with a previous study (Tesio et al., 2017a, 2017b).
Both interlimb asymmetries and an interaction with belt

speed combinations emerged.

Interlimb asymmetries

(1) In the split conditions a higher peak power was

provided at ankle and knee joints on the faster side

compared with the slower side. Significance was

missed for the knee (both 0408 and 0812 conditions).

(2) The split conditions implied a faster/slower side ratio

of ankle peak power greater than the dominant/non-

dominant ratios in tied conditions (Tables 6 and 7).

(3) At the ankle, only, split gait entailed greater

asymmetries for work than for power (P= 0.01 for

both split conditions; compare left and right upper

panels of Fig. 5). This is consistent with the greater,

Table 4 Results from the repeated analysis of variance model between faster/slower side ratios (linearized through log-odd transformation)
in the two split conditions (i.e. 0408 vs. 0812)

Ankle Knee Hip

Side ratios
(log odds)

Step
length

Single-stance
time

Double-stance
time

Total stance
time Swing time

Peak
power Work

Peak
power Work

Peak
power Work

R2 0.81 0.83 0.85 0.77 0.83 0.80 0.87 0.91 0.94 0.80 0.78
P 0.00* 0.00* 0.00* 0.04* 0.00* 0.00* 0.00* 0.48 0.84 0.02* 0.07

*Significant after false discovery rate correction.
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Fig. 2

Kinematic, dynamic, and surface electromyography (sEMG) changes in joint parameters (on the ordinate) as a function of normalized stride time (on
the abscissa, absolute mean duration within brackets) during walking on the force treadmill with belts running at 0.4 and 0.8 m/s (0408 split condition,
upper panel on the left), with both belts tied at 0.4 m/s (0404 tied condition, upper panel on the right), at 0.6 m/s (0606 tied condition, lower panel on
the left), and at 0.8 m/s (0808 tied condition, lower panel on the right). In each panel, the labels above the uppermost panel indicate the joint (ankle,
knee, and hip from left to right, respectively) and the muscle (within brackets) analyzed in each column. From top to bottom, the rows show the joint
sagittal rotations, the changes in muscle length, the joint sagittal power and the sEMG signal. The curves show the grand-mean of data recorded from
six subsequent strides performed by 10 healthy adults. The horizontal bottom bars show the single-stance (dashed or filled background) and the
double-stance (white background) time. The ‘whiskers’ show the total stance time SD. The dashed lines and bar segments show the dominant (fast in
split gait) lower limb; the continuous lines and the filled bar segments show the nondominant (slow in split gait) lower limb.
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Fig. 3

Kinematic, dynamic, and sEMG changes during walking on the force treadmill with split belts running at 0.8 and 1.2 m/s (0812 split condition, upper
panel on the left), with both belts tied at 1.0 m/s (1010 tied condition, lower panel on the left), and with both belts tied at 1.2 m/s (1212 tied condition,
lower panel on the right). Other information as in Fig. 2.
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Table 5 Dynamic gait parameters across six subsequent strides performed by 10 healthy participants walking on the split-belt treadmill at different gait modalities and speed conditions

Ankle [mean (SD)] Knee [mean (SD)] Hip [mean (SD)]

Peak power (W/kg) Work (J/kg) Peak power (W/kg) Work (J/kg) Peak power (W/kg) Work (J/kg)

Dynamic gait
parameters

Non-dom
(tied) or

slower (split)
Dom (tied) or
faster (split)

Non-dom (tied)
or slower (split)

Dom (tied) or
faster (split)

Non-dom
(tied) or

slower (split)
Dom (tied) or
faster (split)

Non-dom
(tied) or

slower (split)
Dom (tied) or
faster (split)

Non-dom
(tied) or

slower (split)
Dom (tied) or
faster (split)

Non-dom (tied)
or slower (split)

Dom (tied) or
faster (split)

0404 0.62 (0.20) 0.62 (0.19) 7.30 (1.84) 7.49 (2.76) 0.14 (0.06) 0.19 (0.09) 1.86 (0.76) 2.63 (1.24) 0.29 (0.13) 0.26 (0.10) 3.85 (1.87) 3.59 (1.61)
0606 1.19 (0.32) 1.24 (0.14) 13.32 (1.73) 12.45 (1.91) 0.15 (0.03) 0.32 (0.19) 2.10 (0.95) 5.43 (3.67) 0.40 (0.17) 0.39 (0.17) 6.49 (2.49) 5.63 (2.61)
0408 0.60 (0.28) 1.49 (0.24) 4.43 (2.13) 21.34 (4.22) 0.24 (0.13) 0.29 (0.13) 3.99 (2.86) 4.33 (2.21) 0.49 (0.23) 0.37 (0.09) 7.23 (2.41) 5.36 (2.09)
0808 1.67 (0.50) 1.88 (0.38) 17.51 (4.12) 18.27 (5.68) 0.28 (0.15) 0.34 (0.19) 4.08 (2.74) 5.82 (3.95) 0.62 (0.29) 0.59 (0.25) 10.01 (3.44) 9.59 (3.39)
1010 2.45 (0.62) 2.62 (0.26) 24.83 (4.56) 26.06 (3.39) 0.33 (0.15) 0.47 (0.27) 3.55 (2.41) 7.07 (4.98) 0.94 (0.54) 0.93 (0.48) 14.41 (4.56) 13.75 (4.43)
0812 1.90 (0.58) 2.77 (0.45) 15.81 (5.08) 34.33 (4.85) 0.40 (0.22) 0.49 (0.19) 6.41 (4.08) 7.24 (3.75) 0.74 (0.31) 0.75 (0.22) 14.06 (4.56) 12.15 (3.55)
1212 3.26 (0.48) 3.33 (0.47) 30.23 (4.94) 30.69 (5.65) 0.54 (0.29) 0.69 (0.42) 5.46 (3.74) 8.69 (4.90) 1.15 (0.65) 1.07 (0.58) 18.48 (7.24) 17.32 (6.23)

The lower limb on the dominant side is labeled as ‘dom’ when data refer to tied modality (treadmill belts running at the same speed). During the split modality, the dominant limb was placed on the faster belt; hence, it is labeled as
‘faster’.
Dom, dominant; non-dom, non-dominant.
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anticipated, and prolonged power generation on the

faster side (Figs 2 and 3).

Differences between gait modalities

(1) Compared with the corresponding average tied

speeds (i.e. 0606 vs. 0408 condition, and 1010 vs.

0812 condition), power and work were higher on the

faster side and lower on the slower side (upper most

row histograms in Fig. 5, also see Figs 2 and 3).

(2) With respect to the corresponding tied speeds, peak

power was lower on the faster side (0408 vs. 0808)

and unchanged on the slower side (0408 vs. 0404).

(3) At variance with power, work was lower for the

slower side and higher for the faster side.

Discussion
From the current study split gait emerges as a unique

paradigm of locomotion, not amenable to the familiar

form of pathologic claudication known as escape limp. In

a limping gait on a firm ground the affected leg ‘escapes’

from load, whereas in split gait the faster leg ‘escapes’

from being dragged backwards with respect to the slower

leg. This effort requires an extra muscular work. In this

effort muscle properties seem to be of some help. During

human walking elastic energy is stored in the calf

muscle–tendon complex during ankle dorsal flexion and

released during the subsequent shortening (Zelik et al.,
2014). This mechanism is stronger the faster the gait

speed. The hypothesis of an effective elastic loading of

the ankle on the faster side is consistent with the nega-

tive power phase, the muscle lengthening, and the

sEMG tracings shown in Figs 2 and 3.

In short, the split-belt treadmill induced mechanical

asymmetries in healthy individuals between the sub-

sequent steps that mimic the natural-pathologic escape

limp only in its temporal step parameters, but neither for

the spatial or for the dynamic ones which are the focus of

the present study.

The present results are consistent with published kinematic

(Reisman et al., 2005) and dynamic data (Roemmich et al.,
2012; Lauzière et al., 2014a, 2014b). However, the latter

were limited to one belts’ speed combination, to plantar

flexor moments during post-adaptation (thus neglecting

knee and hip dynamics) (Roemmich et al., 2012; Lauzière
et al., 2014a, 2014b), or did not provide information on joint

rotations and EMG signals (Roemmich et al., 2012). As a key
point, the present results suggest that a partial shift in per-

spective may help to clarify the potential of the split-belt

paradigm as a research and rehabilitation tool. The aim of

the adaptive behavior in split gait can be simplified to keep

the body system at a forward average speed between those

of the two belts. The main mechanism consists in the fine

tuning of the main source of body propulsion, that is, the

plantarflexion power and work. It is known that the pool of

plantar flexor muscles provides more than 65% of the power

needed to keep the body system in motion (Meinders et al.,
1998; Zelik et al., 2014). This power is provided by the

posterior limb during push-off (mostly overlapping with the

double-stance phase) (Tesio et al., 1998). In split gait,

however, there is more than a simple replication of the ankle

power and work output provided on each side at the cor-

responding speed in tied modality (e.g. when in the 0408

condition, the same power provided in the 0404 and 0808

conditions, respectively). The timecourse of power and

work is tailored to the split modality, mostly on the faster

side. The published inferences on the neural substrate of

adaptation should probably be simplified. All kinematic

changes may be seen as the consequence of this necessary

Table 6 Results from the repeated analysis of variance model (Friedman analysis of variance in case of non-normality) among faster/slower
side ratios (linearized through log-odd transformation) in the 0408 split condition with dominant/nondominant side ratios in the 0404, 0606,
and 0808 tied conditions

Ankle Knee Hip

Side ratios
(log odds)

Step
length

Single-stance
time

Double-stance
time

Total stance
time Swing time

Peak
power Work

Peak
power Work

Peak
power Work

R2 0.86 0.87 0.69 0.88 0.87 0.90 0.93 0.69 0.19 NA 0.68
P 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.00a 0.25 0.65 0.02f 0.03a

Post-hoc test over (Gait modalities), P values
0404 vs. 0606 0.91 0.42 0.90 0.31 0.48 0.97 0.98 NA NA 0.78 0.83
0404 vs. 0808 0.93 0.89 0.85 0.96 0.90 0.85 1.00 NA NA 0.77 0.95
0404 vs. 0408 0.00t 0.00t 0.02t 0.00t 0.00t 0.00t 0.00t NA NA 0.86 0.21
0606 vs. 0808 0.59 0.14 0.46 0.15 0.18 0.98 0.95 NA NA 0.78 0.54
0606 vs. 0408 0.00t 0.00t 0.14 0.00t 0.00t 0.00t 0.00t NA NA 0.16 0.71
0808 vs. 0408 0.00t 0.00t 0.00t 0.00t 0.00t 0.00t 0.00t NA NA 0.28 0.07

False discovery rate correction was applied.
ANOVA model P= nonsignificant.
ANOVA, analysis of variance; NA, not applicable.
aSignificant after the repeated ANOVA model.
fSignificant after the Friedman ANOVA model.
tSignificant after Tukey’s post-hoc test.
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dynamic adaptation, not as a primary goal of the adaptive

behavior. Dynamic symmetry implies a kinematic one,

whereas the reverse is not necessarily true (Cavagna et al.,
1983a, 1983b; Tesio et al., 1998; Rota et al., 2016). Step
length mostly arises from limb swing, whereas propulsive

power is mostly generated during double stance whenminor

joint rotations occur. This may make the clinical assessment

of gait asymmetries difficult on visual inspection alone. This

notwithstanding, one should not ignore the fact that

dynamic symmetry, reflecting an intrinsic, not an adaptive

recovery, is a more relevant goal for rehabilitation. Split gait

is a favorable form of rehabilitation exercise as long as it

forces dynamic symmetry by assigning the faster belt to the

affected or to the unaffected lower limb, depending on the

search for adaptation or postadaptation effects, respectively

(a still open matter). In either case, however, it cannot be

overemphasized that opposite changes occur on spatio-

temporal gait parameters.

Some limitations of this study must be highlighted. First,

age was very homogenous across participants (it ranged

from 22 to 30 years). Caution must be exercised when

extrapolating results to either children or older patients.

With respect to adults, quite surprisingly, data are miss-

ing for the age range 40–60 years (Herssens et al., 2018).
The available literature suggests, in any case, that rele-

vant dynamic differences are expected neither with

respect to healthy children older than 5 years of age nor

with respect to older adults, once the speed is adjusted

for size in the former (Cavagna et al., 1983a, 1983b), and
the same absolute speed (not the preferred one) is

compared across the latter (Tesio et al., 1991). Second, a
speed difference between the two belts greater than

0.4 m/s and a speed ratio greater than 2 : 1 have not been

taken into consideration. Third, neither the whole

timecourse of adaptation nor the postadaptation phases

were analyzed. Step length tends to approach symmetry

during late (e.g. > 10 min) adaptation (Reisman et al.,
2005) whereas in the present study, only the early phase

(< 3min) was considered. The dynamic perspective

claimed for in this work, however, predicts that plantar

flexor power should remain asymmetric nonetheless to

cope with the persisting asymmetry of belt speed.

All of these limitations seem to represent valuable targets

for the next research agenda on the mechanics of

split gait.
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