
The Split Delivery Capacitated Team

Orienteering Problem

C. Archetti(1) N. Bianchessi(1) A. Hertz(2)

M.G. Speranza(1)

(1)Department of Quantitative Methods

University of Brescia, Brescia, Italy

{archetti, bianche, speranza}@eco.unibs.it
(2)École Polytechnique and GERAD, Montréal, Canada

alain.hertz@gerad.ca

July 10, 2012

Abstract

In this paper we study the capacitated team orienteering problem where split
deliveries are allowed. A set of potential customers is given, each associated with a
demand and a profit. The set of customers to be served by a fleet of capacitated
vehicles has to be identified in such a way that the profit collected is maximized,
while satisfying constraints on the maximum time duration of each route and the
vehicle capacity constraints. When split deliveries are allowed each customer may be
served by more than one vehicle. We show that the profit collected by allowing split
deliveries may be as large as twice the profit collected under the constraint that each
customer has to be served by one vehicle at most. We then present a branch-and-price
exact algorithm, and a hybrid heuristic. We show the effectiveness of the proposed
approaches on benchmark instances and on a new set of instances that allow us to
computationally evaluate the impact of split deliveries.

Keywords: Capacitated Team Orienteering Problem, split deliveries, worst-case
analysis, branch-and-price, heuristic.

1 Introduction

The Capacitated Team Orienteering Problem (CTOP) is the problem where a set of po-
tential customers, each of them associated with a demand and a profit, is given. The
subset of customers to be served by a fleet of capacitated vehicles has to be identified
in such a way that the profit collected is maximized, while satisfying constraints on the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/187990784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

maximum time duration of each route and the vehicle capacity constraints. In the CTOP
each customer can be served by one vehicle at most. In this paper we study the Split
Delivery Capacitated Team Orienteering Problem (SDCTOP), where a customer may be
served by more than one vehicle.

The CTOP is the capacitated version of the Team Orienteering Problem (TOP), a
well known problem that belongs to the class of routing problems with profits. A survey
on the problems of this class when only one vehicle is available is due to Feillet, Dejax,
Gendreau [15]. The TOP was introduced by Butt, Cavalier [9] under the name Multiple
Tour Maximum Collection Problem, while the definition of TOP was introduced by Chao,
Golden, Wasil [10]. Heuristics for the TOP were presented by Tsiligirides [21] Tang,
Miller-Hooks [20] and by Archetti, Hertz, Speranza [5], whereas an exact algorithm was
presented by Boussier, Feillet, Gendreau [8]. A survey on the Orienteering Problem, i.e.
the single vehicle version of the TOP, the TOP and its applications can be found in [22].

The CTOP has been introduced in Archetti et al. [3] where heuristics and a branch-
and-price algorithm were proposed. The CTOP is motivated by several applications where
a carrier can select actual customers from a set of potential customers on the basis of their
profit. Transactions between shippers and carriers more and more take place through
the web. Databases of transportation demands from shippers are posted on the web in
different forms and the carriers may access those databases and evaluate these demands.
Typically carriers have to bid on the most profitable customers. It is crucial for the carriers
to identify the customers that are most profitable, given their capacitated fleet of vehicles.

When split deliveries are allowed each customer may be served by more than one
vehicle. In the Split Delivery Vehicle Routing Problem (SDVRP), that is the traditional
Vehicle Routing Problem where split deliveries are allowed, it is well known that split
deliveries may reduce the cost of routes and the number of vehicles used (see Archetti,
Savelsbergh, Speranza [6], where it is shown that the cost may be halved). In this paper
we show that the profit collected in the SDCTOP is, in the best case, as large as twice
the profit collected in the CTOP.

We then present an exact branch-and-price algorithm and two heuristics for the so-
lution of the SDCTOP. A first heuristic makes use of the columns generated during the
execution of the branch-and-price to obtain heuristic solutions. A mixed integer linear
programming (MILP) problem is solved on subsets of promising columns. The other
heuristic is a hybrid algorithm that combines a tabu search scheme with an improvement
phase where an ad hoc MILP problem is solved to intensify the search. We show the effec-
tiveness of the proposed approaches on benchmark instances and on a new set of instances
that also allow us to evaluate the impact of split deliveries.

The paper is organized as follows. In Section 2 we introduce the SDCTOP and some
properties are derived in Section 3. In Section 4 we show that the profit collected can
be doubled when allowing split deliveries. A mathematical programming formulation for
the SDCTOP is presented in Section 5. An exact branch-and-price and two heuristics are

2

presented in Sections 6 and 7, respectively. Computational results are shown in Section 8.

2 Problem definition

We consider a directed graph G = (V,A), where V = {1, . . . , n} is the set of vertices
and A is the set of arcs. Vertex 1 represents the depot, whereas each vertex i = 2, . . . , n
represents a potential customer. We denote by V ′ = V \{1} the set of potential customers.
An arc (i, j) ∈ A represents the possibility to travel from vertex i to vertex j. A non-
negative integer demand di and a non-negative profit pi are associated with each potential
customer i ∈ V ′. A non-negative travel time tij is associated with each arc (i, j) ∈ A. We
assume that travel times satisfy the triangle inequality. A set of vehicles is available to
provide the service, each with limited integer capacity Q. Let F denote the index set for
the vehicles, with |F | = m. The route associated with each vehicle f ∈ F starts and ends
at the depot and must not exceed a given time limit Tmax. Each customer i ∈ V ′ may
be served by more than one vehicle and the profit associated with each served customer
can be collected at most once. The objective of the Split Delivery Capacitated Team
Orienteering Problem (SDCTOP) is to maximize the total collected profit while satisfying
the constraints on the time duration of each route and the vehicle capacity constraints.
When the restriction that each customer can be served by one vehicle at most is added
we have the Capacitated Team Orienteering Problem (CTOP). Obviously, in the CTOP,
it is necessary to assume that di ≤ Q, i ∈ V ′.

In the following we will denote by z(CTOP) and z(SDCTOP) the value of an optimal
solution to problems CTOP and SDCTOP, respectively.

3 Properties

Dror and Trudeau [14] showed an important property of the SDVRP based on the following
concept.

Definition 1 Given k customers i1, i2, ..., ik and k routes. Route 1 visits customers i1
and i2, route 2 visits customers i2 and i3, ..., route k−1 visits customers ik−1 and ik, and
route k visits customers ik and ik+1 = i1. The subset of customers i1, i2, ..., ik is called a
k-split cycle.

Dror and Trudeau [14] showed that an optimal solution to the SDVRP exists without
k-split cycles. We extend this property to the SDCTOP.

Theorem 1 If the time matrix satisfies the triangle inequality, then there exists an opti-
mal solution to the SDCTOP where there is no k-split cycle (for any k).

3

Proof: Let us consider an optimal solution to the SDCTOP and suppose it contains k-split
cycles. Let us consider one of the k-split cycles. Let d be the minimum quantity delivered
by any of the k routes to any of the customers of the k-split cycle. Let r be the route
that delivered the quantity d in the k-split cycle and suppose, without loss of generality,
that the customer to whom quantity d was delivered by route r is ir. We can transform
the optimal solution in a non worse solution without the k-split cycle as follows. Let us
delete the customer ir from the route r and let us modify the route by connecting the
preceding and the subsequent customers. The duration of route r does not increase thanks
to the triangle inequality and route r has an additional residual capacity d. Such residual
capacity can be used to serve d units of the demand of the customer ir+1 previously served
by the route r + 1 (or 1) of the k-split cycle. Thus, d units of customer ir+1 are moved
from route r + 1 (or 1) to route r. This operation does not modify the duration of any
route. Now route r+1 (or 1) has an additional residual capacity of d units. The procedure
is repeated until the route that preceded route r in the k-split cycle is modified to serve
the quantity d of customer ir originally served by route r. The new solution is non worse
than the previous one and then still optimal. The procedure is then repeated on any other
k-split cycle, if any.

The following property is an immediate consequence of Theorem 1.

Corollary 1 If the time matrix satisfies the triangle inequality, then there exists an op-
timal solution to the SDCTOP where no two routes have more than one customer with a
split delivery in common.

From this property, another property can be derived for the SDCTOP that was shown
to hold for the SDVRP by Desaulniers [12]. A pair of reverse arcs is a pair (i, j) ∈ A and
(j, i) ∈ A.

Corollary 2 If the time matrix satisfies the triangle inequality, then there exists an opti-
mal solution such that, for each pair of reverse arcs that join pairs of customers, at most
one of them is traversed.

Archetti, Savelsbergh and Speranza [6] showed a property of the SDVRP that relates
the number of splits to the number of routes in an optimal solution. Such property holds
for the SDCTOP.

Let ni be the number of routes that visit customer i. We say that customer i is a
customer with split deliveries if ni > 1 and that the number of splits at customer i is
ni − 1. Therefore, the total number of splits is equal to

∑
i∈V ′(ni − 1).

Theorem 2 If the time matrix satisfies the triangle inequality, then there exists an opti-
mal solution to the SDCTOP where the total number of splits is less than the number of
routes.

4

Proof: The proof of this property for the SDVRP in the paper by Archetti, Savelsbergh
and Speranza [6] (called Property 2 in [6]) is based on the existence of an optimal solution
without k-split cycles. Such latter property holds for the SDCTOP (see Theorem 1) and
the same proof used in [6] can be applied here too.

4 Worst-case analysis

In this section we analyze the savings that can be achieved by allowing split deliveries in
the CTOP. As this section deals with the comparison between CTOP and SDCTOP, we
assume that di ≤ Q, i ∈ V ′.

Lemma 1 From an optimal solution to the SDCTOP without k-split cycles we can build
a solution where each customer is visited at most once such that for each route of the
SDCTOP solution at most another, not longer, route is created. All routes satisfy the
time and capacity constraints. The number of routes in the new solution is not greater
than 2m.

Proof: The proof follows the lines of part of the proof of Theorem 1 in [6].
We convert the solution to the SDCTOP working on the customers with split deliveries

one at a time. When considering a customer with a split delivery, we perform one of two
operations on the routes visiting the customer:

• Operation 1. Delete the customer from the route by connecting its predecessor with
its successor on the route.

• Operation 2. Delete the customer from the route by connecting its predecessor with
its successor on the route, mark the route, and create an out-and-back tour to the
customer.

It is key that we will never mark a route more than once during the construction. It
is important to observe that

• the deletion of a customer can only reduce the length of a route (because of the
triangle inequality),

• the constructed out-and-back tours will never be longer than the (marked) route
that prompted their creation (because of the triangle inequality), and

• a route in the original optimal SDCTOP solution results in at most one out-and-back
tour being created (because routes are never marked more than once).

5

All routes in the SDCTOP solution are initially unmarked. Now, we proceed as follows.
For each customer i with a split delivery we delete the customer from all the routes which
visit it and we create a single out-and-back tour to i (delivering di). We arbitrarily mark
one of the unmarked routes from which customer i has been removed. Such an unmarked
route always exists because the original optimal SDCTOP solution does not contain any
k-split cycle, due to Property 1. We continue by processing, one by one, all the customers
with split deliveries on marked routes. If there remain customers with split deliveries on
unmarked routes that have not been considered, we repeat starting from an arbitrarily
chosen customer.

Note that all routes in the created solution to the CTOP satisfy the time and capacity
constraints.

Theorem 3
z(CTOP)

z(SDCTOP)
≥ 1

2

and this bound is tight.

Proof: From Lemma 1, we know that from an optimal solution to the SDCTOP we
can construct a set of feasible routes where each customer is visited at most once. The
number of such routes is not greater than twice the number of routes in the solution to the
SDCTOP. The solution is possibly infeasible for the CTOP because the number of routes
may be greater than m. The profit collected in the constructed solution would be the same
if we had enough vehicles. Now we order the routes of the new solution by non-increasing
profit and take the first m routes. The profit of these routes is clearly greater than or
equal to half the profit of the optimal solution to the SDCTOP.

To show that the bound is tight, we take an instance similar to the instance presented
by Archetti, Savelsbergh and Speranza [6]. There are m vehicles with capacity Q, with
Q ≥ 2m. The time limit is taken to be large. We consider 2m customers. Each customer
has demand Q

2 + 1 and profit p. An optimal solution to the CTOP will have to visit all
customers with out-and-back tours. As only m vehicles are available only m customers
can be visited with a total collected profit equal to mp. On the other hand, a feasible
solution to the SDCTOP uses m − 1 vehicles to visit two customers together, delivering
Q
2 + 1 to a customer and Q

2 − 1 to another customer. The last vehicle is used to deliver
the 2 missing units to the m − 1 partially served customers. The total collected profit is
equal to 2(m− 1)p. Therefore, z(CTOP)

z(SDCTOP) tends to 1
2 when m tends to infinity.

Remark 1 The above result and proof hold also if the time limit is removed in the problem
definition.

6

5 Mathematical programming formulation

In order to define the mathematical programming formulation for the problem let us
consider the following additional notation. Define V +(i) = {j ∈ V |(i, j) ∈ A} and
V −(i) = {j ∈ V |(j, i) ∈ A} as the set of successors and predecessors of i ∈ V , respectively.
Moreover, let di = min{di, Q} denote the maximum quantity that can be delivered to
customer i by a single vehicle.

Using this notation, the arc flow formulation of the SDCTOP is the following:

max
∑
i∈V ′

pizi (1)∑
f∈F

δfi = dizi i ∈ V ′ (2)

∑
f∈F

(xfij + xfji) ≤ 1 i, j ∈ V ′, j > i (3)

∑
f∈F

∑
j∈V +(1)

xf1j ≤ m (4)

∑
j∈V +(1)

xf1j = 1 f ∈ F (5)

∑
j∈V +(i)

xfij −
∑

j∈V −(i)

xfji = 0 f ∈ F, i ∈ V ′ (6)

∑
j∈V −(1)

xfj,1 = 1 f ∈ F (7)

∑
i∈U

∑
j∈U\{i}

xfij ≤ |U | − 1 f ∈ F,U ⊆ V ′, |U | ≥ 2 (8)

∑
(i,j)∈A

tijx
f
ij ≤ Tmax f ∈ F (9)

∑
i∈V ′

δfi ≤ Q f ∈ F (10)∑
j∈V +(i)

xfij ≤ δ
f
i ≤ di

∑
j∈V +(i)

xfij f ∈ F, i ∈ V ′ (11)

δfi ≥ 0, integer f ∈ F, i ∈ V ′ (12)

zi ∈ {0, 1} i ∈ V ′ (13)

xfij ∈ {0, 1} f ∈ F, (i, j) ∈ A (14)

7

where xfij is a binary variable equal to 1 if vehicle f ∈ F traverses arc (i, j) ∈ A, 0

otherwise; δfi is a non-negative variable that gives the quantity delivered by vehicle f ∈ F
to customer i ∈ V ′; and zi is a binary variable equal to 1 if customer i ∈ V ′ is selected to
be served, 0 otherwise.

In (1) the total profit collected by the vehicles is maximized. Constraints (2) impose
that the total quantity delivered to any customer i may be 0 or the total demand di.
Constraints (3) follow from Corollary 2. Constraint (4) limits the number of routes to m.
Constraints (5), (6) and (7) are the network flow constraints for each route. Constraints
(8) are the subtour elimination constraints. The limitation on the time duration of each
route is imposed in (9), whereas constraints (10) are the vehicle capacity constraints.

Consistency between variables δfi and xfij is imposed in constraints (11). Finally, (12)–
(14) are the non-negativity and integrality constraints for the problem variables.

Constraints (3) and the lower bound on the δ variables in (11) are not necessary for the
correctness of the formulation and are added to strengthen it. Similarly, only one of the
sets (5) and (7) is necessary. Moreover, the integrality condition in constraints (12) may
be relaxed when the customers demands and the vehicle capacity are integer, as it can be
proved that an optimal solution exists where the variables that define the quantities to be
delivered to the customers are integer (see Archetti, Hertz and Speranza [4] for a similar
proof).

6 The branch-and-price approach

The branch-and-price approach is based on the extended model obtained applying the
Dantzig-Wolfe decomposition to the problem formulation (1)-(14). Actually, constraints
from (5) to (14) are separable by vehicle. For each f ∈ F , this latter group of constraints
defines a finite set Df including all feasible routes the vehicle f may perform, where
each route is also characterized by the quantities to be delivered to the visited customers.
In particular, as observed by Jin, Liu and Eksioglu [16], Desaulniers [12] and Archetti,
Bianchessi and Speranza [2], the extreme points of each set Df , f ∈ F , are routes asso-
ciated with extreme delivery patterns, that is delivery patterns where customers receive
either a full delivery (that is, a quantity equal to di), or a delivery of 1 unit and at most
one customer receives a split delivery greater than 1 and lower than di (this definition of
extreme delivery pattern was introduced by Archetti, Bianchessi and Speranza [2], whereas
Desaulniers [12] proposed a slightly different definition of extreme delivery pattern). This
implies that integrality requirements cannot be imposed in the extended model on the
variables associated with the extreme points of the subproblem feasible regions. Optimal
solutions where in a route several customers have to be served with a split delivery greater
than 1 could not be found otherwise. Integrality requirements have instead to be imposed
on additional variables as done by Desaulniers [12], to which the reader is referred for

8

details on the decomposition. The decomposition gives rise to the master problem and
subproblem formulations described in the following two subsections.

6.1 The master problem

Let us consider the following additional notation:

• R: set of all feasible routes, that is circuits in graph G starting and ending at the
depot and with total time not exceeding the given limit Tmax. The empty route is
denoted with 0.

• Rs ⊆ R: set of routes visiting a single customer.

• Rt ⊆ R: set of routes visiting more than one customer;

• bijr: binary parameter equal to 1 if arc (i, j) ∈ A is traversed by route r ∈ R, 0
otherwise;

• Wr: set of all feasible extreme delivery patterns compatible with route r ∈ R, that
is, patterns assigning delivery quantities to the customer visited in route r ∈ R such
that at most one customer receives a split delivery greater than 1 and lower than di
and the total quantity delivered is at most Q;

• δirw: quantity delivered to customer i ∈ V ′ in delivery pattern w ∈Wr, r ∈ R;

• prw =
∑

i∈V ′ pi
δirw
di

: profit collected by delivery pattern w ∈Wr, r ∈ R.

The master problem can be then formulated as follows:

9

max
∑
r∈R

∑
w∈Wr

prwθrw (15)

∑
r∈R

∑
w∈Wr

δirwθrw = dizi i ∈ V ′ (16)

∑
r∈R

∑
w∈Wr

(bijr + bjir)θrw ≤ 1 i, j ∈ V ′, j > i (17)

∑
r∈R\{0}

∑
w∈Wr

θrw ≤ m (18)

θrw ≥ 0 r ∈ R,w ∈Wr (19)

θr =
∑
w∈Wr

θrw r ∈ R (20)

θr ∈ {0, 1} r ∈ Rt (21)

θr integer r ∈ Rs (22)

zi ∈ {0, 1} i ∈ V ′, (23)

where θrw is a non-negative variable indicating the number of vehicles assigned to route
r ∈ R and delivery pattern w ∈ Wr, and θr is a non-negative integer (resp. binary)
variable indicating the number of vehicles assigned to route r ∈ Rs (resp. Rt). Note that
variables θrw are associated with the extreme points of the subproblem feasible region,
that is with extreme delivery patterns, whereas variables θr are the additional problem
variables on which integrality requirements are imposed.

The objective function (15) and constraints (16)-(18) are the reformulation in terms of
the θrw variables of the objective (1) and the linking constraints (2)-(4) appearing in the
arc-flow formulation of the problem. Note that constraints (17) are not needed. They are
inserted in order to strengthen the linear relaxation of the master problem. Constraints
(19) enforce non-negativity on the θrw variables. In constraints (20), for each route r ∈ R,
the corresponding additional problem variable θr is defined as the convex combination
of the variables θrw associated with route r. Given this definition, imposing binary and
integrality requirements (21) and (22) on the θr variables and letting the θrw variables to
be continuous, allows us to guarantee that routes can contain more than one split customer
(see Desaulniers [12]).

Our solution approach is based on this formulation which we call from now on Master
Problem (MP). In particular, to cope with the exponential number of non-negative vari-
ables of the MP we develop a branch-and-price algorithm where, at each node of the tree,
the continuous relaxation of the MP augmented by the generated branching constraints,
referred to as LMP, is solved by means of column generation. This means that, to solve

10

the LMP, we restrict the set of variables θrw to a subset, obtaining the Restricted Lin-
ear Master Problem (RLMP). Then, a pricing problem is iteratively solved to find new
variables with positive reduced cost to be added to the RLMP. When no such variable
(column) exists, an optimal solution to the RLMP corresponds to an optimal solution to
the LMP.

6.2 The subproblem

The subproblem, which aims at finding variables θrw with positive reduced cost with
respect to the LMP, is also called the pricing problem. At the root node the LMP is
obtained by removing constraints (20)–(22) and relaxing integrality constraints (23).

Let us define the following dual variables for the LMP at the root node:

• πi: non-negative dual variable of constraint (16) for customer i ∈ V ′;

• ρij : dual variable of constraint (17) for arcs (i, j) and (j, i), with i, j ∈ V ′. In order
to simplify the formulation of the subproblem, we impose ρji = ρij , j > i;

• β: dual variable of constraint (18);

The subproblem formulation makes use of the variables x and δ as defined in the arc-flow
formulation of the SDCTOP without the index of the vehicle f .

11

The subproblem can be formulated as follows:

c̃∗ = max
∑
i∈V ′

(
pi
di
− πi)δi +

∑
(i,j)∈A

c̄ijxij (24)

∑
j∈V +(1)

x1j = 1 (25)

∑
j∈V +(i)

xij −
∑

j∈V −(i)

xji = 0 i ∈ V ′ (26)

∑
j∈V −(1)

xj,1 = 1 (27)

∑
i∈U

∑
j∈U

xij ≤ |U | − 1 U ⊆ V ′, |U | ≥ 2 (28)

∑
i∈V ′

δi ≤ Q (29)∑
(i,j)∈A

tijxij ≤ Tmax (30)

∑
j∈V +(i)

xij ≤ δi ≤ di
∑

j∈V +(i)

xij i ∈ V ′ (31)

δi ≥ 0, integer i ∈ V ′ (32)

xij ∈ {0, 1} (i, j) ∈ A, (33)

where c̄ij is the reduced cost of arc (i, j) ∈ A. It is c̄1j = 0, c̄i,j = −ρij and c̄i1 = −β,
i, j ∈ V ′.

6.3 The branch-and-price algorithm

The solution approach we propose is inspired by the branch-and-price-and-cut presented
by Archetti, Bianchessi and Speranza [2] to address the SDVRP. The algorithm for the
solution of the pricing problem is described in Section 6.3.1. A mixed integer linear pro-
gramming (MILP) based primal heuristic that takes advantage of the columns generated
in the dual bounding procedure is discussed in Section 6.3.2. The set of branching rules
described in [2] has to be completed with an additonal branching rule since here not all the
customers have to be served. This branching rule applies to fractional values of variables
zi and is introduced at the second level of the hierarchical scheme presented in [2]. For all
the remaining details not covered here, we refer to [2].

12

6.3.1 Solving the subproblem

Instead of solving directly formulation (24)-(33), the subproblem is modeled and solved as
an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) defined over
an expanded graph G = (V,A), where the vertex set V and the arc set A are defined as
follows. The vertex set includes two different vertices, s and t, associated with the depot,
and a set of di vertices for each customer i ∈ V ′, each of them representing the customer
served with a feasible quantity. Let us denote by vih the vertex that represents customer
i ∈ V ′ with delivered quantity h, h = 1, . . . , di. Each arc (1, j) ∈ A is replaced in A by
two sets of arcs: arcs (s, vjh), h = 1, . . . , dj , of cost c′

svjh
= (

pj
dj
−πj)h+ c̄1j , associated with

load and time consumption equal to h and t
s,vjh

= t1j , respectively (see Figure 1 where

p̄j =
pj
dj
− πj), and arcs (vjh, v

j

dj
), h = 1, . . . , dj − 1, associated with null cost and null

resource consumption (dashed arcs in Figure 1). Arcs (i, j) ∈ A are similarly replaced
as shown in Figure 2. Finally, arcs (i, 1) ∈ A are replaced by arcs (vi

di
, t) ∈ A of value

c′
vi
di
t

= c̄i1 and associated with null load consumption and time consumption tvi
di
,t = ti1

(see Figure 3).

Figure 1: Expansion of arc (1, j) ∈ A. Figure 2: Expansion of arc (i, j) ∈ A.

Figure 3: Expansion of arc (i, 1) ∈ A.

As finding elementary paths is very cumbersome, we allow paths that contain cycles.
This does not affect the correctness of the overall approach and generates a remarkable

13

decrease of the computational time. Thus, we solve a Shortest Path Problem with Resource
Constraints (SPPRC) over graph G = (V,A).

The problem is solved by means of a label setting dynamic programming algorithm
where each partial path ending in node i ∈ V is associated with a state represented by
a label (λ, q, τ, ς, C, i), where C is the value (reduced cost) of the path and i is the last
vertex visited in the path, while the first four terms represent resources. In particular

• λ is the number of customers visited along the path,

• q is the quantity loaded on the vehicle when leaving vertex i,

• τ is the duration of the path when leaving vertex i,

• ς is the number of split customers visited along the path.

The initial state at vertex s is represented by the label (0, 0, 0, 0, 0, s). At a given vertex
i, a state (λ, q, τ, ς, C, i) is feasible if λ ≤ |V ′|, q ≤ Q, τ ≤ Tmax and ς ≤ 1. When arc
(w, z) ∈ A is traversed, a label (λ, q, τ, ς, C, w) is extended to the label (λ′, q′, τ ′, ς ′, C ′, z)
as follows.
Along arcs (s, vjh) and (vi

di
, vjh) the extension rules for the resource consumptions are

λ′ = λ+ 1

q′ = q + h

τ ′ = τ + t
w,vjh

(with w = s or w = vi
di
, respectively)

ς ′ =

{
ς + 1 if 1 < h < dj

ς otherwise,

with C ′ equal to C + c′
s,vjh

and to C + c′
vi
di
,vjh

, respectively.

Along arcs (vih, v
i
di

), h = 1, . . . , di − 1, the resource consumptions do not vary and their

values are simply reported in the new label, while along arcs (vi
di
, t) the only resource which

varies is τ ′ = τ + tvi
di
t. The value C remains unchanged if arcs (vih, v

i
di

) are traversed, with

h = 1, . . . , di − 1, whereas when arcs (vi
di
, t) are considered C ′ = C + c′vi

di
,t.

The efficiency of the dynamic programming algorithm depends on the ability to dis-
card paths that are dominated by other paths. Let L′ ≡ (λ′, q′, τ ′, ς ′, C ′, i) and L′′ ≡
(λ′′, q′′, τ ′′, ς ′′, C ′′, i) be two different labels representing states associated with the same
vertex i. Then, L′ dominates L′′ if λ′ ≤ λ′′, q′ ≤ q′′, τ ′ ≤ τ ′′, ς ′ ≤ ς ′′ and C ′ ≥ C ′′.

The label setting algorithm performs Q iterations and, at each iteration q ∈ {0, . . . , Q−
1}, all partial paths associated with labels characterized by a cumulated load equal to q

14

are extended. The 2-cycle elimination technique presented by Desrochers, Desrosiers
and Solomon [13] and the bounded bidirectional search technique proposed by Righini
and Salani [19] are incorporated in the algorithm in order to improve its efficiency. In
particular, concerning the latter technique, the amount q that can be loaded on a vehicle
is considered as critical resource.

In order to accelerate the solution of LMP, at each column generation iteration, heuris-
tic methods are applied before solving the pricing problem to optimality. Each heuristic
consists in applying the implemented dynamic programming algorithm to a subgraph of
G (see Archetti, Bianchessi and Speranza [2]).

6.3.2 Restricted master heuristic

The solution of the MP restricted to any subset of the columns provides a heuristic solution.
The restricted set of columns can include either columns generated heuristically or columns
generated during the solution of the RLMPs, or a combination of both. The resulting
heuristic belongs to the class of the so called restricted master heuristics [17].

The restricted master heuristic we designed plays the role of a primal bound heuristic
within the branch-and-price algorithm. The heuristic takes advantage of the information
provided by the dual bounding procedure, that is of the columns provided by the column
generation algorithm. Let Ω be a subset of the columns considered while solving a given
LMP. Columns in Ω represent routes associated with quantities to deliver to the visited
customers. Then, let RΩ represent the set of the routes associated with columns in Ω.
A pre-processing is first applied in order to eventually make routes in RΩ cycle-free. To
this aim, each route is scanned and all, with the exception of the first, visits to the same
customer are removed. Then, on the basis of the routes included in RΩ, the following
MILP problem is defined and solved

max
∑
i∈V ′

pizi (34)

s.t.:
∑
r∈RΩ

αri = dizi ∀i ∈ V ′ (35)

∑
i∈V ′

αri ≤ Qyr ∀r ∈ RΩ (36)∑
r∈RΩ

yr ≤ m (37)

zi ∈ {0, 1} ∀i ∈ V ′ (38)

yr ∈ {0, 1} ∀r ∈ RΩ (39)

αri ≥ 0 and integer ∀i ∈ V ′,∀r ∈ RΩ, (40)

15

where αri is a variable representing the quantity delivered to customer i in route r, yr is
a binary variable equal to 1 if route r is selected and zi is a binary variable equal to 1 if
customer i is served.

The objective (34) aims at the maximization of the collected profit. Inequalities (35)
ensure that exactly the demand will be delivered to each customer selected to be served.
Constraints (36) state the vehicle capacity constraints and, finally, we have the constraint
on the maximum number of vehicles (37).

The set of columns Ω should include a large number of columns to allow the heuristic
to find high quality solutions, but, at the same time, the solution of (34)-(40) should be
obtained in a reasonable time. Starting from the columns used to solve a given LMP, Ω is
initialized with one of the columns that have null reduced cost in the LMP. Then, at most
n̄O subsets of columns are included in Ω. Each subset is defined as follows. The columns
not in Ω are considered in non-increasing order of reduced cost. A column is inserted
in the subset if it has at least one vertex that is not covered by the columns previously
inserted in the subset. The process stops when all vertices are covered by the columns
in the subset or there are no more columns available. The maximum number of subsets
that can be included in Ω is modified after each solution of (34)-(40). If the problem is
infeasible or the solution found is close to the corresponding dual bound, n̄O is increased.
Otherwise, n̄O is decreased. Increasing and decreasing values are allowed provided that
n̄O ∈ [n̄min, n̄max].

At the root node the restricted master heuristic is run before each exact solution of
the pricing problem, whereas at non-root nodes it is run after the LMP solution. The
solution found has no impact on the other components of the branch-and-price algorithm.
The solution value, however, helps in pruning the nodes of the tree. From this point of
view, the time limit for the heuristic has to be set according to the quality of the solutions
found in the allotted time. Details concerning the use of the restricted master heuristic
are given in Section 8.

7 A hybrid heuristic for the SDCTOP

In this section we describe a heuristic algorithm for the SDCTOP. Let s be a solution to
the SDCTOP. Thus, s is a collection R of m routes. Let Λ ⊆ V be the set of vertices
visited by R and P (Λ) =

∑
i∈Λ pi be the total profit of the customers in Λ. Moreover, for

each route r ∈ R, we define as αri the quantity delivered to customer i by route r, T (r)
as the duration of route r and D(r) =

∑
i∈Λ α

r
i as the total quantity delivered by r. A

solution s is feasible if, for each route r ∈ R, T (r) ≤ Tmax and D(r) ≤ Q. When a route
r is infeasible, we define I(r) = max{D(r) − Q, 0}2 + % ∗ max{T (r) − Tmax, 0}2, where
% = Q

Tmax
. Hence, I(r) = 0 if and only if r is feasible. The infeasibility of a solution s is

defined as
∑

r∈R I(r).

16

The algorithm is composed by the following four procedures:

1. Initial solution;

2. Tabu search(s);

3. Improve(s);

4. Optimize(s).

The general scheme of the approach is presented in Algorithm 1 where sbest is the best
solution found so far. In the following subsections we describe each procedure.

Algorithm 1 A hybrid heuristic for the SDCTOP

Apply the Initial solution procedure to generate an initial solution s. Set sbest ← s.
while no stopping criterion is met do

Apply the Tabu search(s) procedure to find a new solution s′.
if I(s′) > 0 then

Apply the Improve(s′) procedure to possibly remove the infeasibility in s′.
end if
if s′ is better than sbest then

Apply the Optimize(s′) procedure to possibly improve s′ and set sbest ← s′.
end if
Set s← s′.

end while

7.1 Initial solution

Since any feasible solution to the CTOP is a feasible solution also to the SDCTOP, we
decided to use a feasible solution of CTOP as the initial solution for the SDCTOP heuristic
algorithm. In particular, we use the solution given by the Variable Neighborhood Search
(VNS) algorithm described in Archetti et al. [3], run for ten minutes.

7.2 Tabu search (s)

The tabu search we have implemented uses two kinds of moves:

• Insertion: Consider a customer i ∈ V ′ \ Λ. Insert i in R in the following way:

1. Order the routes in R on the basis of a non-decreasing value of I(r). Let
r1, ..., rm be the list of the ordered routes in R.

17

2. Starting from j = 1, insert i in route rj using the cheapest insertion method.

The quantity inserted is α
rj
i = max{0,min{Q−D(rj), di−

∑j−1
t=1 α

rt
i }}, unless

j = m or D(rj) ≥ Q. When j = m we set αr1i = di −
∑m

t=1 α
rt
i , while when

D(rj) ≥ Q we set α
rj
i = di −

∑j−1
t=1 α

rt
i .

• Removal: Let i be a customer in Λ. For each route r ∈ R, remove i from r by joining
its predecessor with its successor.

A temporary tabu status forbids customers to be inserted in R once they have been
removed and viceversa for a number of iterations equal to:

L+ random(κ
√
n), (41)

where L and κ are constants and random(x) is an integer uniformly selected in the set
{0, · · · , x}.

The solution s′ resulting from an insertion move applied to s possibly contains infeasible
routes. Thus, the value of a solution is evaluated through the following modified objective
function:

f ′(s) = P (Λ)− γ
∑
r∈R

max{T (r)− Tmax, 0}2 − ϕ
∑
r∈R

max{D(r)−Q, 0}2, (42)

where γ and ϕ are two parameters that penalize the duration infeasibility and the capacity
infeasibility, respectively. They are both set to 1 at the beginning of the algorithm and
are then updated as follows: if the last 10 iterations were feasible with respect to duration
(capacity), then γ (ϕ) is halved. If instead the last 10 iterations were infeasible with
respect to duration (capacity), then γ (ϕ) is doubled. In the definition of f ′(s), both the
duration and capacity infeasibility are defined as the square of the exceeding time and
exceeding load, respectively, since we prefer to have a solution containing different routes
with a small infeasibility (and thus easy to correct) rather than a solution having few
routes with a large infeasibility.

7.3 Improve (s)

In the Improve (s) procedure, we first apply the 2-opt algorithm proposed by Lin [18]
on each route r ∈ R of solution s. Then, we apply the following procedure SMART IM-

PROVE (R) which optimizes a function F over the set of routes R. Function F evaluates
the following two terms: the total infeasibility I(R) =

∑
r∈R I(r) and the total duration

T (R) =
∑

r∈R T (r). F (R′) < F (R) if I(R′) < I(R), whatever are the values of T (R′)
and T (R). Moreover, F (R′) < F (R) if I(R′) = I(R) and T (R′) < T (R).

18

SMART IMPROVE (R)

Let us define the following moves:

• 1-move: Consider a customer i ∈ Λ, a route r ∈ R visiting i and a route r′ ∈ R
. Remove i from r by joining its predecessor with its successor and insert i in r′

with the cheapest insertion method. Set αr
′
i = αr

′
i +αri . Note that r′ can be a route

already visiting i.

• swap-move: Let i and i′ be two customers in Λ on two different routes, r and r′,
respectively. Remove i from r and i′ from r′ by joining the predecessors with the
successors. Then, insert i in r′ and i′ in r with the cheapest insertion method. Set
αr
′
i = αr

′
i + αri and αri′ = αri′ + αr

′
i′ .

The SMART IMPROVE (R) procedure is a local search that follows the general scheme
of Figure 4.

Procedure SMART IMPROVE (R)

Input: A set R of routes.
Output: A set R′ of routes with P (R′) = P (R), | R′ |≤| R |, and F (R′) ≤ F (R)

1. Determine R′ applying the 1-move which minimizes function F on R.

2. If F (R′) < F (R) then go to 1, else set R′ ← R and go to 3.

3. Determine R′ applying the swap-move which minimizes function F on R.

4. If F (R′) < F (R) then go to 1, else STOP.

Figure 4. Procedure SMART IMPROVE (R)

7.4 Optimize (s)

Every time a new best feasible solution sbest is found by the tabu search, we first apply the
Improve(sbest) procedure described in the previous subsection obtaining a new solution
s′ with routes R′. Then, a MILP model, called SMART OPT, which tries to improve
s′, is solved to optimality. To describe SMART OPT, we need to introduce the following
additional notation:

• σri = 1 if i is visited by route r in s′, 0 otherwise.

• ∆r
i = estimated time increase for inserting i in route r according to the cheapest

insertion method.

• Γri = estimated time decrease caused by removing i from route r and joining its
predecessor with its successor.

19

SMART OPT makes use of the variables zi and αri defined in Section 6.3.2 plus the
following additional variables:

• wri = 1 if i is inserted in r, 0 otherwise.

• vri = 1 if i is removed from r, 0 otherwise.

Then, SMART OPT is the following:

max
∑
i∈V ′

pizi (43)∑
r∈R′

αri = dizi i ∈ V ′ (44)∑
i∈V ′

αri ≤ Q r ∈ R′ (45)

T (r) +
∑
i∈V ′

(∆r
iw

r
i − Γri v

r
i) ≤ Tmax r ∈ R′ (46)

wri ≤ 1− σri i ∈ V ′ r ∈ R′ (47)

vri ≤ σri i ∈ V ′ r ∈ R′ (48)

αri ≤ d̄i(σri − vri + wri) i ∈ V ′, r ∈ R′ (49)∑
i∈V ′

vri ≤ 1 r ∈ R′ (50)

wri ∈ {0, 1} i ∈ V ′, r ∈ R′ (51)

vri ∈ {0, 1} i ∈ V ′, r ∈ R′ (52)

zi ∈ {0, 1} i ∈ V ′ (53)

αri ≥ 0 i ∈ V ′, r ∈ R′ (54)

The objective function (43) aims at maximizing the profit collected. Constraints (44)
and (45) are the demand and capacity constraints, respectively. Constraint (46) is the
duration constraint. Constraints (47)-(49) are coherence constraints. Constraint (50) is
imposed in order to avoid big estimation errors when evaluating the new cost of a route.
Finally, (51)-(54) are variable definitions.

After applying SMART OPT, we obtain a new solution s̃. Three different situations
can occur:

1. s̃ is feasible and is better than s′; in this case we apply the Improve (s̃) procedure.
We set s′ equal to the new solution we obtained and we apply again SMART OPT.

20

2. s̃ is feasible but it is not better than s′; in this case, let Λ′ be the set of customers
visited in s′. Choose the customer i ∈ Λ′ with the lowest profit pi and remove it
from s′. Then, apply again SMART OPT.

3. s̃ is infeasible. This can happen because of a bad estimation of the new route
duration made in constraint (46). Let Λ̃ be the set of customers for which wri = 1
for some r ∈ R′. Note that Λ̃ 6= ∅ since s′ is always feasible and, thus, s̃ is infeasible
only if at least one customer is inserted. We choose the customer i in Λ̃ with the
lowest profit pi and we forbid the insertion of i in s′ (i.e., we set wri = 0 for each
r ∈ R′). Then, we apply again SMART OPT.

Thus, SMART OPT is applied iteratively and we stop the procedure when one of the
following conditions is met:

• all customers in Λ′ have been removed;

• no improvement has been reached in the last 20 iterations;

• a maximum time of 5 minutes has elapsed.

8 Computational results

The exact and the heuristic solution approaches have been implemented in C++, using
CPLEX 10.1.1 to solve the RLMPs and the problems (34)-(40), as well as problems (43)-
(54) in the hybrid heuristic. Experiments have been carried out on a 2.4 GHz Intel Dual
Core Pentium IV machine with 3 GB of RAM for the hybrid heuristic presented in Section
7, while an Intel Xeon processor E5520, 2.26 GHz machine with 12 GB of RAM has been
used to test the exact algorithm described in Section 6. Both approaches have been tested
on known and new sets of benchmark instances.

We considered first the three sets of instances proposed in Archetti et al. [3] for the
CTOP.

Set 1. This set is based on 10 VRP instances proposed by Christofides, Mingozzi and
Toth [11] which consider both capacity and time constraints. The number n of vertices
ranges from 51 to 200. The profit pi of customer i has been defined as (0.5 + b)di, where b
is a random number uniformly generated in the interval [0, 1]. An optimal solution to the
CTOP has been obtained for all the instances of this set. For each instance, the optimal
solution serves all the customers and collects all the possible profit. Thus, this set of
instances is not interesting for the SDCTOP as no advantage can be obtained by allowing
split deliveries.

21

Set 2. For each instance of Set 1, 9 instances are derived considering 3 different values
for Q and Tmax (Q = Tmax = 50, 75, 100, respectively) and, for each of the former values,
3 different fleet size values: m = 2, 3, 4. We obtain 90 instances in total.

Set 3. Three instances are derived for each instance of Set 1, for m = 2, 3, 4. We obtain
30 instances in total.

We have tested the instances of Sets 2 and 3. As in these instances the demands of
the customers are small with respect to the vehicle capacity, the split deliveries do not
have a relevant impact. Therefore, we also propose a new set of benchmark instances (Set
4) generated on the basis of the Set 1 instances by changing the customer demands only.
The technique adopted to define the new instances is the one used in Belenguer, Martinez
and Mota [7] and Dror and Trudeau [14] to derive benchmark instances for the SDVRP.
For each original instance, we generate 11 new instances where the customer demand is
generated according to 11 scenarios ([0.01−0.1], [0.1−0.3], [0.1−0.5], [0.1−0.7], [0.1−0.9],
[0.3 − 0.5], [0.3 − 0.7], [0.3 − 0.9], [0.5 − 0.7], [0.5 − 0.9], [0.7 − 0.9]). The demand of a
customer in scenario [η − ν] is randomly generated from a uniform distribution on the
interval [ηQ, νQ].

The overall execution time limit for the exact approach has been set to 3 hours in case
of Set 2 instances and to 6 hours in all the other cases. We now report the setting of
the parameters of the branch-and-price algorithm we made according to preliminary tests.
These parameters are introduced and described in Archetti, Bianchessi and Speranza [2].
We did not introduce all of them in the description of the branch-and-price algorithm
for the sake of clarity. We simply give here a short explanation of the meaning of each
parameter. The reader is referred to Archetti, Bianchessi and Speranza [2] for more
details. The parameter n̄a, considered while defining the subgraphs in the heuristic column
generation phase, has been set to n

16 . The parameters n̄S and n̄m, that is the maximum
number of column subsets and the maximum number of columns to insert in the RLMP
after each solution of the pricing problem, have been set to 30 and to 1

3 of the number
of the RLMP rows, respectively. The time limit for each individual problem (34)-(40)
solution has been set to 1800 seconds if n ≤ 101, and to 1800 + dn−101

50 e · 450 seconds
otherwise. In particular, after 600 seconds without improvements in the primal bound
value, the solution process stops. The parameter n̄O, that is the maximum number of
column subsets to be included in Ω, is initially set to 75. The minimum and the maximum
values for n̄O, that is n̄min and n̄max, have been set to 15 and 150, respectively. The n̄O
variation (increase or decrease) has been set equal to 5. Finally, a feasible solution for
(34)-(40) is considered close to the corresponding dual bound if the gap is less than 5%.

As far as the hybrid heuristic is concerned, according to preliminary tests, parameter
L is set to 5 and parameter κ to 2. The stopping criterion is 10 minutes of running time.

A first set of tests have been performed in order to assess the efficiency of the restricted
master heuristic embedded in the branch-and-price algorithm, on one side, and of proce-

22

dure Optimize(s) for the hybrid heuristic. The tests have been performed on the instances
with 51 vertices of Set 4 for the branch-and-price algorithm and on all the instances for
the hybrid algorithm. The overall execution time limit for the branch-and-price algorithm
has been set to 6 hours and the results are reported in Table 1. The first 5 columns of the
table describe the instance. Then, columns 6-8 and 10-12 give the best upper bound (z),
the best heuristic solution value (z) and the percentage optimality gap (gap(%)) obtained
by means of the branch-and-price algorithm when the time limit for the restricted master
heuristic is set to 900 seconds and to 1800 seconds, respectively. Next to the optimality
gap (columns 9 and 13), the number of seconds required to find the optimal solution is
reported in all cases optimality has been proved. The results show that, in most of the
cases where the optimal solution is found, the branch-and-price algorithm is faster when
the time limit is set to 1800 seconds rather than 900 seconds. Without making use of the
restricted master heuristic, the branch-and-price algorithm is able to find the optimum for
the first instance listed in Table 1 only. For the remaining instances no feasible solution is
found and the dual bound does not improve. This underlines the relevance of embedding
the heuristic in the branch-and-price algorithm.

Table 2 concerns the performance of the procedure Optimize(s) for the hybrid heuristic.
The table reports, for each set of instances, the average and maximum percentage gaps
between the solutions obtained running or not the Optimize(s) procedure. Then, the
number of times the Optimize(s) procedure allows us to improve the final solution is
reported (# best). In particular, in the last column, the total number of instances in
each set is reported in parentheses. As the results show, the Optimize(s) procedure is on
average effective in improving the solution. On the other hand, the solution obtained with
the Optimize(s) may be worse than the solution without. This is the case, for example, in
two instances of Set 4.

Table 3 shows the results on the instances of Set 2. The column CTOP gives the
optimal solution value to the CTOP, which is obtained by using the code of the algorithm
presented in Archetti, Bianchessi and Speranza [1] run for 3 hours. Note that for the
instances of sets 3 and 4 the algorithm has been run for 6 hours, given the difficulty
of the instances. The columns ‘Branch-and-price’ give the best upper bound (z), the
best heuristic solution value (z) and the percentage gap (gap(%)). Moreover, the time in
parentheses gives the number of seconds required to find the optimal solution in all the
cases optimality has been proved, i.e. whenever the gap is 0. For the hybrid heuristic
the solution value is reported (zH). Then, the percentage gap with respect to the upper

bound obtained by the branch-and-price (
z−zH
z) and the percentage gap with respect to

the restricted master heuristic (
z−zH
z) are shown. A positive value in the latter column

indicates that the restricted master heuristic has obtained a better solution than the hybrid
heuristic. Finally, in the last column (Imp.(%)) the percentage improvement of the best
solution obtained for the SDCTOP with respect to the optimal solution to the CTOP

23

is given. 56% of the instances of Set 2, 50 out of 90, have been solved to optimality.
The optimality gaps obtained through the primal and dual bounds of the branch-and-
price algorithm are, with the exception of 4 cases, less than 1%. On these instances, the
branch-and-price heuristic is more effective than the hybrid heuristic. The best solution
found for the SDCTOP improves or is equal to the optimal solution to the CTOP on all
but one instance. This is due to the fact that the CTOP is solved to optimality while a
heuristic solution was found for the SDCTOP.

In Table 4 the results for the instances of Set 3 are presented. The structure of the
table is similar to the structure of Table 3 with the difference that in the CTOP column we
report the upper bound z. The symbol ’*’ after z means that the upper bound is proved to
correspond to an optimal solution (the same for Tables 5 and 6). The branch-and-price is
able to solve 4 of the 30 instances. However, on 25 instances the upper bound corresponds
to an optimal solution, as proved by the solution provided by the hybrid heuristic. On
all instances where the upper bound is produced, the hybrid heuristic finds an optimal
solution with only one exceptions, with a maximum gap of 0.18% with respect to the upper
bound. The hybrid heuristic performs much better than the restricted master heuristic
on this class of instances with a maximum improvement of 81.91%. No improvement has
been found with respect to the CTOP solution. This is due to the fact that, in this class
of instances, demands are very small with respect to Q.

Tables 5 and 6 present the results for the instances of Set 4 with n ≤ 101 and n > 101,
respectively. With respect to the structure of Table 3, a column t provides the time needed
to solve the linear relaxation at the root node. Moreover, here two columns are presented
in the last section (Imp.(%)) of the table. The first of these two columns (z) gives the
improvement achieved by the restricted master heuristic with respect to the best known
solution to the CTOP, while the second column (zH) gives the improvement achieved by
the hybrid heuristic. On these instances, the hybrid heuristic performs better than the
branch-and-price heuristic. Moreover, a large increase in the profit can be observed on
instances where the demands are over 50% of the capacity. We do not report the results
of the branch-and-price algorithm on instances of Table 6 since these instances turned out
to be very hard to solve and the branch-and-price algorithm was not able to produce any
solution or upper bound in the maximum time allowed. In Table 7 we summarize the
improvements with respect to the CTOP solution reported in Tables 5 and 6, by classes
of demands. As can be observed, the main advantages of split deliveries are obtained on
instances with high customers demands, especially when demands are just above half of
the vehicle capacity. In the last two columns of the same table we report the percentage
capacity used in the SDCTOP solution and the percentage time limit used. The results
show that, apart for the first class of instances, split deliveries allow the efficient use of
the capacity of the vehicles while the time limit constraint is not binding. This obviously
depends on the instances we tested.

For all previous instances, we made further tests on the hybrid heuristic by increasing

24

the maximum time allowed to 20 minutes. All results remained identical to the case with
a maximum time of 10 minutes with the exception of instance p09 with η = 0.70 and
ν = 0.90 (**) where there is an improvement of the solution value of 3.55%.

Finally, Table 8 reports performance indicators about the branch-and-price algorithm
for instances of Set 4 with n ≤ 101. Column 6 gives the number of nodes explored.
With the exception of the instances with 51 vertices, very few nodes are explored by
the algorithm, rarely above 10 for instances with 101 vertices. Columns 7 - 11 show
how the total computational time (Tot.) has been used by the different components of
the algorithm, i.e. solving the continuous relaxation of the master (LMPs), heuristically
solving the pricing problem (PPs - heur.), solving to optimality the pricing problem (PPs
- opt.), running the restricted master heuristic (RMH). The value in column (Tot.) is
below 100% because of side procedures such us management of the columns pool and
of the branch-and-bound tree. The table clearly shows that the most time consuming
components of the algorithm are the restricted master heuristic and the exact algorithm
for the pricing problem.

Conclusions

The possibility to serve customers with multiple vehicles, even if the demand is smaller
than the vehicle capacity, has been explored for the traditional Vehicle Routing Problem.
In this paper we investigated this possibility for the most studied routing problem with
profits, the Capacitated Team Orienteering Problem. We have theoretically shown that
split deliveries may double the profit collected and we have computationally shown that
the profit increase due to split deliveries varies on the basis of the instance. A large
increase has been observed on instances where the demands are slightly greater than
half the vehicle capacity. A branch-and-price algorithm could solve to optimality several
instances with up to 200 customers. A branch-and-price and a hybrid heuristic produce
high quality solutions.

Future research will be devoted to investigating the advantages of split deliveries on
other routing problems with profits.

Acknowledgments

We acknowledge the contribution of two reviewers that have helped us to improve a pre-
vious version of this paper.

25

Table 1: Branch-and-price preliminary results on Set 4, n ≤
51

Instance Time limit
900 sec. 1800 sec.

name n m Q Tmax z z gap(%) z z gap(%)

p06 1 10 51 10 160 200 761 761 0.00 (11”) 761 761 0.00 (14”)
p06 10 30 757 755 0.26 757 750 0.92
p06 10 50 687 687 0.00 (18758”) 687 687 0.00 (11148”)
p06 10 70 581 581 0.00 (16178”) 581 581 0.00 (7269”)
p06 10 90 495 495 0.00 (15309”) 495 495 0.00 (11550”)
p06 30 50 538 538 0.00 (14134”) 538 538 0.00 (4759”)
p06 30 70 490 490 0.00 (212”) 490 490 0.00 (299”)
p06 30 90 433 432 0.23 433 432 0.23
p06 50 70 433 392 9.47 433 392 9.47
p06 50 90 400 392 2.00 400 392 2.00
p06 70 90 339 335 1.18 339 335 1.18

Table 2: Hybrid heuristic preliminary results

av. gap (%) max. gap (%) # best

Set 2 0.04 0.24 9(30)
Set 3 0.63 3.98 54(90)
Set 4 0.21 5.88 60(100)

26

Table 3: Set 2 instances

Instance CTOPb SDCTOP
Branch-and-price Hybrid heuristic Imp.

name n m Q Tmax z∗ z z gap(%) zH
z−zH
z

z−zH
z (%)

p03 101 2 50 50 133 138 138 0.00 (61”) 138 0.00 0.00 3.76
p03 101 3 50 50 198 203 203 0.00 (174”) 203 0.00 0.00 2.53
p03 101 4 50 50 260 269 269 0.00 (170”) 269 0.00 0.00 3.46
p03 101 2 75 75 208 210 208 0.95 208 0.95 0.00 0.00
p03 101 3 75 75 307 311 311 0.00 (2388”) 311 0.00 0.00 1.30
p03 101 4 75 75 403 404 404 0.00 (379”) 404 0.00 0.00 0.25
p03 101 2 100 100 277 278 277 0.36 275 1.08 0.72 0.00
p03 101 3 100 100 408 410 410 0.00 (2062”) 410 0.00 0.00 0.49
p03 101 4 100 100 532 534 534 0.00 (6493”) 532 0.37 0.37 0.38
p06 51 2 50 50 121 124 124 0.00 (2”) 124 0.00 0.00 2.48
p06 51 3 50 50 177 179 179 0.00 (16”) 179 0.00 0.00 1.13
p06 51 4 50 50 222 230 230 0.00 (33”) 230 0.00 0.00 3.60
p06 51 2 75 75 183 186 186 0.00 (384”) 186 0.00 0.00 1.64
p06 51 3 75 75 269 271 270 0.37 270 0.37 0.00 0.37
p06 51 4 75 75 349 354 353 0.28 353 0.28 0.00 1.15
p06 51 2 100 100 252 254 253 0.39 252 0.79 0.40 0.40
p06 51 3 100 100 369 375 372 0.80 371 1.07 0.27 0.81
p06 51 4 100 100 482 487 483 0.82 479 1.64 0.83 0.21
p07 76 2 50 50 126 127 127 0.00 (278”) 127 0.00 0.00 0.79
p07 76 3 50 50 187 190 190 0.00 (280”) 190 0.00 0.00 1.60
p07 76 4 50 50 240 246 246 0.00 (5405”) 246 0.00 0.00 2.50
p07 76 2 75 75 193 198 198 0.00 (3566”) 198 0.00 0.00 2.59
p07 76 3 75 75 287 295 295 0.00 (2482”) 294 0.34 0.34 2.79
p07 76 4 75 75 378 388 386 0.52 386 0.52 0.00 2.12
p07 76 2 100 100 266 271 269 0.74 270 0.37 -0.37 1.50
p07 76 3 100 100 397 400 398 0.50 398 0.50 0.00 0.25
p07 76 4 100 100 521 524 524 0.00 (338”) 521 0.57 0.57 0.58
p08 101 2 50 50 133 138 138 0.00 (59”) 138 0.00 0.00 3.76
p08 101 3 50 50 198 203 203 0.00 (179”) 203 0.00 0.00 2.53
p08 101 4 50 50 260 269 269 0.00 (168”) 269 0.00 0.00 3.46
p08 101 2 75 75 208 210 208 0.95 208 0.95 0.00 0.00
p08 101 3 75 75 307 311 311 0.00 (2613”) 311 0.00 0.00 1.30
p08 101 4 75 75 403 404 404 0.00 (358”) 404 0.00 0.00 0.25
p08 101 2 100 100 277 278 277 0.36 275 1.08 0.72 0.00
p08 101 3 100 100 408 410 410 0.00 (1993”) 410 0.00 0.00 0.49
p08 101 4 100 100 532 534 534 0.00 (6338”) 532 0.37 0.37 0.38

27

Table 3: Set 2 instances

Instance CTOPb SDCTOP
Branch-and-price Hybrid heuristic Imp.

name n m Q Tmax z∗ z z gap(%) zH
z−zH
z

z−zH
z (%)

p09 151 2 50 50 137 137 137 0.00 (3958”) 137 0.00 0.00 0.00
p09 151 3 50 50 201 204 203 0.49 202 0.98 0.49 1.00
p09 151 4 50 50 262 270 268 0.74 268 0.74 0.00 2.29
p09 151 2 75 75 210 211 210 0.47 209 0.95 0.48 0.00
p09 151 3 75 75 312 313 312 0.32 312 0.32 0.00 0.00
p09 151 4 75 75 408 411 409 0.49 408 0.73 0.24 0.25
p09 151 2 100 100 279 282 280 0.71 280 0.71 0.00 0.36
p09 151 3 100 100 415 418 418 0.00 (3295”) 418 0.00 0.00 0.72
p09 151 4 100 100 546 547 547 0.00 (4552”) 547 0.00 0.00 0.18
p10 200 2 50 50 134 138 138 0.00 (279”) 138 0.00 0.00 2.99
p10 200 3 50 50 200 204 204 0.00 (3515”) 204 0.00 0.00 2.00
p10 200 4 50 50 265 269 268 0.37 268 0.37 0.00 1.13
p10 200 2 75 75 208 210 210 0.00 (1434”) 210 0.00 0.00 0.96
p10 200 3 75 75 311 314 313 0.32 311 0.64 0.01 0.64
p10 200 4 75 75 411 416 414 0.48 410 1.44 0.97 0.73
p10 200 2 100 100 282 284 282 0.70 282 0.71 0.00 0.00
p10 200 3 100 100 418 420 418 0.48 419 0.24 -0.24 0.24
p10 200 4 100 100 553 555 554 0.18 553 0.36 0.18 0.18
p13 121 2 50 50 134 134 134 0.00 (21”) 134 0.00 0.00 0.00
p13 121 3 50 50 193 193 193 0.00 (323”) 192 0.52 0.52 0.00
p13 121 4 50 50 243 243 243 0.00 (263”) 243 0.00 0.00 0.00
p13 121 2 75 75 193 193 193 0.00 (294”) 193 0.00 0.00 0.00
p13 121 3 75 75 265 265 265 0.00 (5337”) 265 0.00 0.00 0.00
p13 121 4 75 75 323 323 323 0.00 (1989”) 323 0.00 0.00 0.00
p13 121 2 100 100 263 254 254 0.00 (6818”) 249 1.97 1.97 -3.42
p13 121 3 100 100 - 344 338 1.74 329 4.36 2.66 -
p13 121 4 100 100 - 419 397 5.25 395 5.73 0.50 -
p14 101 2 50 50 124 124 124 0.00 (157”) 124 0.00 0.00 0.00
p14 101 3 50 50 184 184 184 0.00 (161”) 184 0.00 0.00 0.00
p14 101 4 50 50 241 241 241 0.00 (46”) 241 0.00 0.00 0.00
p14 101 2 75 75 190 203 200 1.48 199 1.97 0.50 5.26
p14 101 3 75 75 279 299 291 2.68 291 2.68 0.00 4.30
p14 101 4 75 75 366 388 386 0.52 382 1.55 1.04 5.46
p14 101 2 100 100 271 272 271 0.37 271 0.37 0.00 0.00
p14 101 3 100 100 399 402 399 0.75 397 1.24 0.50 0.00
p14 101 4 100 100 525 526 525 0.19 514 2.28 2.10 0.00

28

Table 3: Set 2 instances

Instance CTOPb SDCTOP
Branch-and-price Hybrid heuristic Imp.

name n m Q Tmax z∗ z z gap(%) zH
z−zH
z

z−zH
z (%)

p15 151 2 50 50 134 138 138 0.00 (1821”) 138 0.00 0.00 2.99
p15 151 3 50 50 200 209 209 0.00 (1616”) 209 0.00 0.00 4.50
p15 151 4 50 50 266 276 276 0.00 (1667”) 276 0.00 0.00 3.76
p15 151 2 75 75 211 213 212 0.47 212 0.47 0.00 0.47
p15 151 3 75 75 315 318 316 0.63 316 0.63 0.00 0.32
p15 151 4 75 75 415 418 417 0.24 417 0.24 0.00 0.48
p15 151 2 100 100 282 284 284 0.00 (1074”) 284 0.00 0.00 0.71
p15 151 3 100 100 418 418 418 0.00 (1943”) 416 0.48 0.48 0.00
p15 151 4 100 100 549 550 549 0.18 549 0.18 0.00 0.00
p16 200 2 50 50 137 141 141 0.00 (915”) 141 0.00 0.00 2.92
p16 200 3 50 50 203 210 209 0.48 209 0.48 0.00 2.96
p16 200 4 50 50 269 279 279 0.00 (2973”) 279 0.00 0.00 3.72
p16 200 2 75 75 212 215 214 0.47 214 0.47 0.00 0.94
p16 200 3 75 75 317 320 319 0.31 318 0.63 0.31 0.63
p16 200 4 75 75 420 423 422 0.24 422 0.24 0.00 0.48
p16 200 2 100 100 285 285 285 0.00 (6108”) 285 0.00 0.00 0.00
p16 200 3 100 100 423 424 424 0.00 (1201”) 423 0.24 0.24 0.24
p16 200 4 100 100 558 558 558 0.00 (1164”) 555 0.54 0.54 0.00

b: Archetti, Bianchessi and Speranza [1].

29

Table 4: Set 3 instances

Instance CTOPb SDCTOP
Branch-and-price Hybrid heuristic

name n m Q Tmax z z z gap(%) zH
z−zH
z

z−zH
z

p03 101 2 200 200 536∗ 536 536 0.00 (19446”) 536 0.00 0.00
p03 3 762∗ 762 721 5.38 762 0.00 -5.59
p03 4 950 950 859 9.58 950 0.00 -10.59

p06 51 2 160 200 403∗ 403 401 0.50 403 0.00 -0.50
p06 3 565∗ 565 546 3.36 565 0.00 -3.48
p06 4 683∗ 683 631 7.61 683 0.00 -8.24

p07 76 2 140 160 377∗ 377 377 0.00 (2493”) 377 0.00 0.00
p07 3 548∗ 548 548 0.00 (909”) 548 0.00 0.00
p07 4 707∗ 707 706 0.14 707 0.00 -0.14

p08 101 2 200 230 536∗ 536 536 0.00 (20453”) 536 0.00 0.00
p08 3 762∗ 762 714 6.30 762 0.00 -6.30
p08 4 950 950 768 19,16 950 0.00 -23.70

p09 151 2 200 200 548 548 535 2.37 548 0.00 -1.50
p09 3 797∗ 797 765 4.02 797 0.00 -4.18
p09 4 1033 1033 991 4.07 1033 0.00 -4.24

p10 200 2 200 200 556∗ 556 550 1.08 556 0.00 -1.09
p10 3 816 816 750 8.09 816 0.00 -8.80
p10 4 1064 - - - 1064 - -

p13 121 2 200 720 513 513 282 45.03 513 0.00 -81.91
p13 3 749 - - - 727 - -
p13 4 1125 - - - 908 - -

p14 101 2 200 1040 534∗ 534 502 5.99 534 0.00 -6.37
p14 3 770∗ 770 715 7.14 770 0.00 -7.69
p14 4 975∗ 975 857 12.10 975 0.00 -13.76

p15 151 2 200 200 550 551 550 0.18 550 0.18 0.00
p15 3 802∗ 802 763 4.86 802 0.00 -4.86
p15 4 1031 1031 938 9.02 1031 0.00 -9.91

p16 200 2 200 200 558 558 542 2.87 558 0.00 -2.95
p16 3 822 822 747 9.12 822 0.00 -10.04
p16 4 1076 - - - 1073 - -

b: Archetti, Bianchessi and Speranza [1].

30

T
a
b

le
5
:

S
et

4
in

st
a
n

ce
s;
n
≤

1
0
1

In
st

a
n

ce
C

T
O

P
b

S
D

C
T

O
P

B
ra

n
ch

-a
n

d
-p

ri
ce

H
y
b

ri
d

h
eu

ri
st

ic
Im

p
(%

)

n
a
m

e
n

m
Q

T
m

a
x

z
t

z
z

g
a
p

(%
)

z
H

z
−
z
H

z

z
−
z
H

z
z

z
H

p
0
3

1
1
0

1
0
1

1
5

2
0
0

2
0
0

1
4
0
9
*

3
4
8

1
4
0
9

1
4
0
9

0
.0

0
(

3
5
1
”
)

1
4
0
9

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
3

1
0

3
0

1
3
0
5
*

1
4
2
3

1
3
0
5

1
2
8
3

1
.6

9
1
3
0
5

0
.0

0
-1

.7
1

-1
.6

9
0
.0

0
p

0
3

1
0

5
0

1
1
1
7
*

1
5
2
8

1
1
1
7

1
1
1
0

0
.6

3
1
1
1
7

0
.0

0
-0

.6
3

-0
.6

3
0
.0

0
p

0
3

1
0

7
0

9
6
1
*

1
4
9
2

9
6
1

9
6
1

0
.0

0
(

1
4
9
2
”
)

9
6
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
3

1
0

9
0

1
0
0
5
*

1
8
8
1

1
0
0
5

1
0
0
5

0
.0

0
(

7
7
7
4
”
)

1
0
0
4

0
.1

0
0
.1

0
0
.0

0
-0

.1
0

p
0
3

3
0

5
0

8
9
2
*

1
8
6
2

9
2
8

9
1
1

1
.8

3
9
2
7

0
.1

1
-1

.7
6

2
.1

3
3
.9

2
p

0
3

3
0

7
0

8
0
7
*

2
0
6
8

8
1
1

8
0
8

0
.3

7
8
1
0

0
.1

2
-0

.2
5

0
.1

2
0
.3

7
p

0
3

3
0

9
0

7
0
4
*

2
3
7
4

7
5
5

7
5
3

0
.2

6
7
5
5

0
.0

0
-0

.2
7

6
.9

6
7
.2

4
p

0
3

5
0

7
0

5
4
9
*

2
6
5
3

7
4
1

6
8
7

7
.2

9
7
3
9

0
.2

7
-7

.5
7

2
5
.1

4
3
4
.6

1
p

0
3

5
0

9
0

5
1
7
*

2
5
4
8

6
4
3

6
1
8

3
.8

9
6
4
3

0
.0

0
-4

.0
5

1
9
.5

4
2
4
.3

7
p

0
3

7
0

9
0

5
1
7
*

2
6
5
5

5
9
2

5
8
5

1
.1

8
5
8
5

1
.1

8
0
.0

0
1
3
.1

5
1
3
.1

5
p

0
6

1
1
0

5
1

1
0

1
6
0

2
0
0

7
6
1
*

1
4

7
6
1

7
6
1

0
.0

0
(

1
4
”
)

7
6
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
6

1
0

3
0

7
5
7
*

9
4
9

7
5
7

7
5
0

0
.9

2
7
5
7

0
.0

0
-0

.9
3

-0
.9

2
0
.0

0
p

0
6

1
0

5
0

6
8
7
*

9
9
6

6
8
7

6
8
7

0
.0

0
(

1
1
1
4
8
”
)

6
8
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
6

1
0

7
0

5
8
1
*

5
1
9

5
8
1

5
8
1

0
.0

0
(

7
2
6
9
”
)

5
8
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
6

1
0

9
0

4
9
3
*

5
2
0

4
9
5

4
9
5

0
.0

0
(

1
1
5
5
0
”
)

4
9
5

0
.0

0
0
.0

0
0
.4

1
0
.4

1
p

0
6

3
0

5
0

5
0
4
*

6
9
3

5
3
8

5
3
8

0
.0

0
(

4
7
5
9
”
)

5
3
8

0
.0

0
0
.0

0
6
.7

5
6
.7

5
p

0
6

3
0

7
0

4
7
7
*

2
9
9

4
9
0

4
9
0

0
.0

0
(

2
9
9
”
)

4
9
0

0
.0

0
0
.0

0
2
.7

3
2
.7

3
p

0
6

3
0

9
0

4
0
9
*

2
8
9

4
3
3

4
3
2

0
.2

3
4
3
2

0
.2

3
0
.0

0
5
.6

2
5
.6

2
p

0
6

5
0

7
0

2
8
9
*

1
1
0
0

4
3
3

3
9
2

9
.4

7
4
2
8

1
.1

5
-9

.1
8

3
5
.6

4
4
8
.1

0
p

0
6

5
0

9
0

3
0
8
*

1
0
9
5

4
0
0

3
9
2

2
.0

0
3
9
6

1
.0

0
-1

.0
2

2
7
.2

7
2
8
.5

7
p

0
6

7
0

9
0

2
8
9
*

2
8
0

3
3
9

3
3
5

1
.1

8
3
3
5

1
.1

8
0
.0

0
1
5
.9

2
1
5
.9

2
p

0
7

1
1
0

7
6

2
0

1
4
0

1
6
0

1
3
2
7
*

1
2
0

1
3
2
7

1
3
2
7

0
.0

0
(

1
2
1
”
)

1
3
2
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
7

1
0

3
0

1
3
2
7
*

6
6

1
3
2
7

1
3
2
7

0
.0

0
(

6
6
”
)

1
3
2
7

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
7

1
0

5
0

1
2
9
2
*

1
0
1
3

1
2
9
2

1
2
7
8

1
.0

8
1
2
9
2

0
.0

0
-1

.1
0

-1
.0

8
0
.0

0
p

0
7

1
0

7
0

1
1
8
0
*

1
0
6
0

1
1
8
0

1
1
7
9

0
.0

8
1
1
8
0

0
.0

0
-0

.0
8

-0
.0

8
0
.0

0
p

0
7

1
0

9
0

1
0
7
5
*

1
0
3
5

1
0
7
7

1
0
6
4

1
.2

1
1
0
7
6

0
.0

9
-1

.1
3

-1
.0

2
0
.0

9
p

0
7

3
0

5
0

1
0
7
6
*

1
0
0
4

1
1
4
2

1
1
1
7

2
.1

9
1
1
4
2

0
.0

0
-2

.2
4

3
.8

1
6
.1

3
p

0
7

3
0

7
0

9
6
6
*

1
1
2
0

9
8
0

9
6
2

1
.8

4
9
8
0

0
.0

0
-1

.8
7

-0
.4

1
1
.4

5
p

0
7

3
0

9
0

8
5
2
*

1
1
4
1

8
9
4

8
9
4

0
.0

0
(

4
3
7
2
”
)

8
9
4

0
.0

0
0
.0

0
4
.9

3
4
.9

3
p

0
7

5
0

7
0

6
3
1
*

1
1
6
1

8
8
4

8
1
4

7
.9

2
8
8
4

0
.0

0
-8

.6
0

2
9
.0

0
4
0
.1

0
p

0
7

5
0

9
0

6
2
7
*

1
2
0
0

8
1
3

7
8
9

2
.9

5
8
1
1

0
.2

5
-2

.7
9

2
5
.8

4
2
9
.3

5
p

0
7

7
0

9
0

6
1
9
*

1
3
0
1

7
2
8

7
2
3

0
.6

9
7
2
3

0
.6

9
0
.0

0
1
6
.8

0
1
6
.8

0
p

0
8

1
1
0

1
0
1

1
5

2
0
0

2
3
0

1
4
0
9
*

1
0
8
5

1
4
0
9

1
4
0
9

0
.0

0
(

1
0
8
8
”
)

1
4
0
9

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
8

1
0

3
0

1
3
2
6
*

1
2
4
8

1
3
2
6

1
3
0
2

1
.8

1
1
3
2
6

0
.0

0
-1

.8
4

-1
.8

1
0
.0

0
p

0
8

1
0

5
0

1
1
5
8
*

1
4
9
7

1
1
5
9

1
1
5
2

0
.6

0
1
1
5
8

0
.0

9
-0

.5
2

-0
.5

2
0
.0

0
p

0
8

1
0

7
0

1
0
4
5
*

1
5
7
3

1
0
4
5

1
0
4
5

0
.0

0
(

1
2
9
3
0
”
)

1
0
4
5

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

0
8

1
0

9
0

9
0
9
*

1
9
2
0

9
1
0

8
8
8

2
.4

2
9
1
0

0
.0

0
-2

.4
8

-2
.3

1
0
.1

1
p

0
8

3
0

5
0

8
9
3
*

2
2
0
0

9
3
7

9
2
1

1
.7

1
9
3
6

0
.1

1
-1

.6
3

3
.1

4
4
.8

2
p

0
8

3
0

7
0

8
0
5
*

3
9
2
2

8
3
9

8
2
3

1
.9

1
8
3
8

0
.1

2
-1

.8
2

2
.2

4
4
.1

0
p

0
8

3
0

9
0

7
5
0
*

2
8
1
0

7
7
7

7
7
0

0
.9

0
7
7
7

0
.0

0
-0

.9
1

2
.6

7
3
.6

0
p

0
8

5
0

7
0

5
1
7
*

3
4
4
2

7
3
2

6
6
9

8
.6

1
7
2
5

0
.9

6
-8

.3
7

2
9
.4

0
4
0
.2

3
p

0
8

5
0

9
0

5
1
7
*

3
1
4
7

6
8
0

6
5
7

3
.3

8
6
7
8

0
.2

9
-3

.2
0

2
7
.0

8
3
1
.1

4
p

0
8

7
0

9
0

5
1
7
*

3
1
1
1

5
9
4

5
8
5

1
.5

2
5
8
5

1
.5

2
0
.0

0
1
3
.1

5
1
3
.1

5
p

1
4

1
1
0

1
0
1

1
0

2
0
0

1
0
4
0

1
7
1
0
*

2
1
6
7

1
7
1
0

1
7
1
0

0
.0

0
(

2
1
7
2
”
)

1
7
1
0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
p

1
4

1
0

3
0

1
3
1
9
*

1
4
5
6

1
3
1
9

1
2
7
7

3
.1

8
1
3
1
9

0
.0

0
-3

.2
9

-3
.1

8
0
.0

0
p

1
4

1
0

5
0

1
0
4
0
*

2
4
5
3

1
0
4
1

1
0
4
0

0
.1

0
1
0
4
0

0
.1

0
0
.0

0
0
.0

0
0
.0

0
p

1
4

1
0

7
0

9
3
0
*

2
0
7
6

9
3
1

9
3
0

0
.1

1
9
3
0

0
.1

1
0
.0

0
0
.0

0
0
.0

0
p

1
4

1
0

9
0

8
2
2
*

2
9
6
4

8
2
4

8
0
8

1
.9

4
8
2
3

0
.1

2
-1

.8
6

-1
.7

0
0
.1

2
p

1
4

3
0

5
0

8
3
5
*

4
6
5
3

8
6
3

8
4
0

2
.6

7
8
6
2

0
.1

2
-2

.6
2

0
.6

0
3
.2

3
p

1
4

3
0

7
0

7
3
2
*

4
2
1
3

7
5
5

7
4
5

1
.3

2
7
5
4

0
.1

3
-1

.2
1

1
.7

8
3
.0

1
p

1
4

3
0

9
0

6
1
1
*

8
0
5
8

6
5
0

6
4
7

0
.4

6
6
4
7

0
.4

6
0
.0

0
5
.8

9
5
.8

9
p

1
4

5
0

7
0

4
1
8
*

-
-

5
6
2

-
6
1
9

-
-1

0
.1

4
3
4
.4

5
4
8
.0

9
p

1
4

5
0

9
0

4
1
4
*

1
0
4
9
1

5
6
4

5
2
7

6
.5

6
5
6
1

0
.5

3
-6

.4
5

2
7
.2

9
3
5
.5

1
p

1
4

7
0

9
0

4
0
7
*

-
-

4
7
0

-
4
9
8

-
-5

.9
6

1
5
.4

8
2
2
.3

6

b
:

A
rc

h
et

ti
,

B
ia

n
ch

es
si

a
n

d
S

p
er

a
n

za
[1

].

31

Table 6: Set 4 instances; n > 101

Instance CTOPb SDCTOP
Hybrid heuristic Imp (%)

name n m Q Tmax z zH
p09 1 10 151 10 200 200 2194* 2194 0.00
p09 10 30 1417 1417 0.00
p09 10 50 1136* 1136 0.00
p09 10 70 920* 920 0.00
p09 10 90 973* 973 0.00
p09 30 50 766* 814 6.27
p09 30 70 702* 750 6.84
p09 30 90 653* 667 2.14
p09 50 70 357* 582 63.03
p09 50 90 379* 539 42.22
p09 70 90 357* 423** 18.49
p10 1 10 200 20 200 200 3048 3048 0.00
p10 10 30 2376 2376 0.00
p10 10 50 1975* 1975 0.00
p10 10 70 1616* 1616 0.00
p10 10 90 1578* 1578 0.00
p10 30 50 1378* 1450 5.30
p10 30 70 1260* 1278 1.43
p10 30 90 1219* 1239 1.64
p10 50 70 782* 1091 39.51
p10 50 90 773* 999 29.24
p10 70 90 738* 886 20.05
p13 1 10 121 15 200 720 1287* 1287 0.00
p13 10 30 1076* 1076 0.00
p13 10 50 884 884 0.11
p13 10 70 761* 761 0.00
p13 10 90 721* 722 0.14
p13 30 50 649* 679 4.62
p13 30 70 597* 617 3.35
p13 30 90 552* 572 3.62
p13 50 70 342* 503 47.08
p13 50 90 345* 438 26.96
p13 70 90 337* 421 24.93
p15 1 10 151 15 200 200 2159* 2159 0.00
p15 10 30 1695* 1695 0.12
p15 10 50 1341* 1341 0.07
p15 10 70 1264* 1264 0.00
p15 10 90 1064* 1065 0.09
p15 30 50 990* 1046 5.66
p15 30 70 907* 934 2.98
p15 30 90 773* 837 8.28
p15 50 70 552* 806 46.01
p15 50 90 552* 773 40.04
p15 70 90 552* 659 19.38
p16 1 10 200 15 200 200 3066 3066 0.00
p16 10 30 2386* 2386 0.00
p16 10 50 1900* 1900 0.00
p16 10 70 1731* 1731 0.00
p16 10 90 1606* 1606 0.00
p16 30 50 1449* 1518 4.76
p16 30 70 1336* 1358 1.65
p16 30 90 1109* 1177 6.13
p16 50 70 747* 1122 50.20
p16 50 90 753* 964 28.02
p16 70 90 747* 911 21.95

b: Archetti, Bianchessi and Speranza [1].

32

Table 7: Summary of improvements on CTOP solution for instances of Set 4

η ν % gap SDCTOP/CTOP % capacity used % time limit used

0.01 0.10 0 45.15 51.94
0.10 0.30 0.01 97.45 47.02
0.10 0.50 0.02 99.87 48.37
0.10 0.50 0 99.88 47.75
0.10 0.90 0.08 99.92 46.49
0.30 0.50 5.15 99.83 42.86
0.30 0.70 2.79 99.88 43.03
0.30 0.90 4.91 99.90 41.95
0.50 0.70 45.7 99.55 40.41
0.50 0.90 31.54 99.83 41.02
0.70 0.90 18.62 98.81 37.69

33

Table 8: Branch-and-price algorithm performance indicators

Instance Nodes Sol. time (%) for
name n m Q Tmax LMPs PPs - heur. PPs - opt. RMH Tot.
p03 1 10 101 15 200 200 1 1,21 21.66 17.35 58.11 98.33
p03 10 30 11 0.07 3.24 31.63 64.93 99.87
p03 10 50 10 0.02 1.89 42.85 55.19 99.95
p03 10 70 1 0.01 2.44 53.8 43.71 99.96
p03 10 90 7 0.01 2.42 87.5 10.04 99.97
p03 30 50 6 0.01 0.68 60.4 38.42 99.51
p03 30 70 5 0.00 0.64 66.51 32.33 99.48
p03 30 90 5 0.01 0.72 70.32 28.92 99.97
p03 50 70 5 0.00 0.61 72.94 26.43 99.98
p03 50 90 5 0.00 0.65 72.87 26.45 99.97
p03 70 90 4 0.00 0.60 96.27 3.11 99.98
p06 1 10 51 10 160 200 1 0.33 23.08 45.04 30.22 98.67
p06 10 30 27 0.03 1.16 8.22 90.09 99.50
p06 10 50 103 0.04 3.61 66.38 29.87 99.90
p06 10 70 53 0.02 2.75 91.59 5.60 99.96
p06 10 90 67 0.01 1.77 71.52 26.66 99.96
p06 30 50 33 0.04 1.28 54.14 44.43 99.89
p06 30 70 1 0.01 1.37 59.45 39.14 99.97
p06 30 90 77 0.01 1.19 80.67 18.10 99.97
p06 50 70 14 0.00 0.33 20.5 79.14 99.97
p06 50 90 13 0.00 0.29 23.87 75.74 99.90
p06 70 90 58 0.02 1.15 93.84 4.95 99.96
p07 1 10 76 20 140 160 1 0.31 7.11 14.76 76.90 99.08
p07 10 30 1 0.14 12.31 85.35 1.65 99.45
p07 10 50 15 0.02 1.08 10.91 87.65 99.66
p07 10 70 28 0.01 1.53 28.42 69.98 99.94
p07 10 90 13 0.01 0.92 21.93 77.07 99.93
p07 30 50 15 0.02 0.50 13.94 84.99 99.45
p07 30 70 13 0.01 0.52 25.79 73.67 99.99
p07 30 90 5 0.01 0.47 27.16 72.33 99.97
p07 50 70 12 0.01 0.37 29.32 70.12 99.82
p07 50 90 12 0.01 0.42 31.39 68.15 99.97
p07 70 90 12 0.01 0.38 43.02 56.53 99.94
p08 1 10 101 15 200 230 1 0.77 10.62 4.99 82.96 99.34
p08 10 30 12 0.06 2.53 25.68 71.69 99.96
p08 10 50 9 0.02 1.86 42.44 55.44 99.76
p08 10 70 17 0.01 2.79 89.2 7.95 99.95
p08 10 90 7 0.01 1.49 60.25 38.17 99.92
p08 30 50 6 0.01 0.65 64.8 34.35 99.81
p08 30 70 3 0.00 0.45 82.64 16.88 99.97
p08 30 90 5 0.01 0.71 68.67 30.59 99.98
p08 50 70 4 0.00 0.48 78.97 20.54 99.99
p08 50 90 4 0.00 0.60 78.5 20.89 99.99
p08 70 90 4 0.00 0.52 82.01 17.46 99.99
p14 1 10 101 10 200 1040 1 2.05 52.22 3.51 41.58 99.36
p14 10 30 9 0.05 3.38 47.36 49.10 99.89
p14 10 50 11 0.01 2.77 87.77 9.42 99.97
p14 10 70 8 0.01 1.86 97.33 0.79 99.99
p14 10 90 4 0.00 1.54 73.44 25.01 99.99
p14 30 50 2 0.00 0.33 90.2 9.43 99.96
p14 30 70 1 0.00 0.49 91.18 8.30 99.97
p14 30 90 1 0.00 0.31 97.07 2.60 99.98
p14 50 70 0 0.00 0.09 95.76 4.11 99.96
p14 50 90 1 0.00 0.19 95.65 4.14 99.98
p14 70 90 0 0.00 0.07 97.13 2.73 99.93

34

References

[1] Archetti, C., Bianchessi, N., Speranza, M.G. (2012), Optimal solutions
for routing problems with profits, Discrete Applied Mathematics, doi:
10.1016/j.dam.2011.12.021.

[2] Archetti, C., Bianchessi, N., Speranza, M.G. (2011), A column generation approach
for the Split Delivery Vehicle Routing Problem, Networks, 58 (4), 241-254.

[3] Archetti, C., Feillet, D., Hertz, A., Speranza, M.G. (2009), The capacitated team
orienteering and profitable tour problem, Journal of the Operational Research Society
60, 831-842.

[4] Archetti, C., Hertz, A., Speranza, M.G. (2006), A tabu search algorithm for the split
delivery vehicle routing problem, Transportation Science 40, 64-73.

[5] Archetti, C., Hertz, A., Speranza, M.G. (2007), Metaheuristics for the team orien-
teering problem, Journal of Heuristics 13, 49-76.

[6] Archetti, C., Savelsbergh, M., Speranza, M.G.(2006), Worst-case analysis for split
delivery vehicle routing problems, Transportation Science 40, 226-234.

[7] Belenguer, J.M., Martinez, M.C., Mota, E. (2000), A lower bound for the split delivery
vehicle routing problem, Operations Research 48, 801-810.

[8] Boussier, S., Feillet, D., Gendreau, M. (2007), An exact algorithm for team orienteer-
ing problems, 4OR 5, 211-230.

[9] Butt, S.E., Cavalier, T.M. (1994), A heuristic for the multiple tour maximum collec-
tion problem, Computers and Operations Research 21, 101-111.

[10] Chao, I-M., Golden, B., Wasil, E.A. (1996), The team orienteering problem, European
Journal of Operational Research 88, 464-474.

[11] Christofides, N., Mingozzi, A., Toth, P. (1979), The vehicle routing problem, in
Christofides, N., Mingozzi, A., Toth, P., Sandi, C., editors, Combinatorial Optimiza-
tion, 315-338, Wiley, Chichester.

[12] Desaulniers, G. (2010), Branch-and-price-and-cut for the split delivery vehicle routing
problem with time windows, Operations Research 58, 179-192.

[13] Desrochers, M., Desrosiers, J., Solomon, M. (1992), A new optimization algorithm
for the vehicle routing problem with time windows, Operations Research 40, 342-354.

35

[14] Dror, M., Trudeau, P. (1989), Savings by split delivery routing, Transportation Sci-
ence 23, 141-145.

[15] Feillet, D., Dejax, P., Gendreau, M. (2005), Traveling salesman problems with profits,
Transportation Science 39, 188-205.

[16] Jin, M., Liu, K., Eksioglu, B. (2008), A column generation approach for the split
delivery vehicle routing problem, Operations Research Letters 36, 265-270.

[17] Joncour, C., Michel, S., Sadykov, R., Sverdlov, D., Vanderbeck, F. (2010), Column
generation based primal heuristics, Electronic Notes in Discrete Mathematics 36, 695-
702.

[18] Lin, S. (1965), Computer solutions of the traveling salesman problem, Bell System
Technical Journal 44, 2245-2269.

[19] Righini G., Salani, M. (2006), Symmetry helps: Bounded bi-directional dynamic
programming for the elementary shortest path problem with resource constraints,
Discrete Optimization 3, 255-273.

[20] Tang, H., Miller-Hooks, E. (2005), A tabu search heuristic for the team orienteering
problem, Computers and Operations Research 32, 1379-1407.

[21] Tsiligirides, T. (1984), Heuristic methods applied to orienteering, Journal of the Op-
erational Research Society 35, 797-809.

[22] Vansteenwegen, P., Souffriau, W., Van Oudheusden, D. (2011), The orienteering
problem: A survey, European Journal of Operational Research 209, 1-10.

36

