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Abstract  

Objective. The spectrum of clinical symptoms changes during the course of Parkinson‟s disease. 

Levodopa therapy, while offering remarkable control of classical motor symptoms, causes 

abnormal involuntary movements as the disease progresses. These levodopa-induced dyskinesias 

(LIDs) have been associated with abnormal cortical plasticity. Since slow wave activity (SWA) 

of nonrapid eye movement (NREM) sleep underlies adjustment of cortical excitability, we 

sought to elucidate the relationship between this physiological process and LIDs. 

Methods. Thirty-six patients at different stages of Parkinson‟s disease (PD) underwent whole-

night video polysomnographyhigh-density EEG (vPSG-hdEEG), preceded by 1 week of 

actigraphy. To represent the broad spectrum of the disease, patients were divided into three 

groups by disease stage, (i) de novo (DNV; n = 9), (ii) advanced (ADV; n = 13), and (iii) 

dyskinetic (DYS; n = 14) and were compared to an age-matched control group (CTL; n = 12). 

The SWA-NREM content of the PSG-hdEEG was then temporally divided into 10 equal parts, 

from T1 to T10, and power and source analyses were performed. T2-T3-T4 were considered 

early sleep and were compared to T7-T8-T9, representing late sleep.  

Results. We found that all groups, except the DYS group, manifested a clear-cut SWA decrease 

between early and late sleep.  

Interpretation. Our data demonstrate a strong pathophysiological association between sleep and 

PD. Given that SWA may be a surrogate for synaptic strength, our data suggest that DYS 

patients do not have adequate synaptic downscaling. Further analysis is needed to determine the 

effect of drugs that can enhance cortical SWA in LIDs.   A
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Abbreviations 

ADV = advanced fluctuating patients; AHI = apnea-hypopnea index; AIMS = abnormal 

involuntary movement scale; CTL = healthy control subjects; DNV = de novo patients; DYS = 

advanced patients with dyskinesia; eSE = estimated sleep efficiency; eSL = estimated sleep 

latency; ESS = Epworth sleepiness scale; eTB = estimated time in bed; eTST = estimated total 

sleep time; H&Y = Hoehn and Yahr staging; iMAO = inhibitor of monoamine oxidase; LEDD = 

levodopa-equivalent daily dose; LID = levodopa-induced dyskinesia; mBDI = modified Beck 

depression scale; PD = Parkinson‟s disease; MDS-UPDRS = Movement Disorder Society-

sponsored revision of the Unified Parkinson Disease Rating Scale; MMSE = Mini-Mental State 

Examination; NREM = nonrapid eye movement; PSQI = Pittsburgh sleep quality index; RBD = 

REM sleep behavior disorder; REM = rapid eye movement; rTMS = repetitive transcranial 

magnetic stimulation;; SE = sleep efficiency; SHY = synaptic homeostasis hypothesis; 

sLORETA = low-resolution brain electromagnetic tomography; SRBD = sleep-related breathing 

disorders; SWA = slow wave activity; TST = total sleep time; vPSG-hdEEG = video-high-

density EEG; WASO = wakefulness after sleep onset 
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Introduction 

Parkinson‟s disease (PD) is a neurodegenerative disorder presenting with a large spectrum of 

motor and nonmotor symptoms that are susceptible to change through the course of the disease, 

depending on the stage of disease progression and on pharmacological therapy 
1
. Levodopa is a 

drug with strong and paradoxical effects on the course of PD; it successfully controls motor 

symptoms for several years and then induces motor fluctuation and abnormal involuntary 

movements, i.e., levodopa-induced dyskinesias (LIDs). This long-term drug-related complication 

causes important functional disability, often requiring complex pharmacological or surgical 

interventions.  

Although LIDs are thought to be related to changes in neuronal plasticity in the striatal nuclei 
2
, 

cortical changes are less well-known and are a new attractive area of research 
3
. Studies 

involving repeated transcranial magnetic stimulation (rTMS) show abnormal motor cortex 

plasticity in patients with LID 
4,5

. Furthermore, changes in cortical slow wave activity (SWA) 

have been observed in animal models of PD with LID 
6
. This finding is of particular interest 

given that SWA during nonrapid eye movement (NREM) sleep is associated with fine 

adjustment of cortical excitability and plasticity, as postulated by the synaptic homeostasis 

hypothesis (SHY)
7–9

. According to this hypothesis, daytime learning processes induce synaptic 

potentiation represented by an increase in synaptic strength. On the other hand, during the 

subsequent sleep, a consolidation of the learning process occurs together with a synaptic 

depotentiation represented by a downscaling of synaptic strength.
7–9

 Moreover, SWA-NREM 

seems to act as a regulator of Hebbian plasticity, preventing saturation of the neuronal network 

by a sleep-related synaptic downscaling process 
10

. Although the SHY requires further 

confirmation, the key role of sleep in brain plasticity is well supported 
11,12

 by morphological 
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evidence of sleep-dependent volumetric reduction of synaptic boutons 
7
. Furthermore, drug-

induced potentiation of SWA with urethane reduced corticocortical and corticostriatal responses 

in vivo 
13

. Additionally, rodents exposed to combined levodopa treatment and sleep deprivation 

developed earlier and more severe LID than animals that were not sleep deprived 
6
. Because 

sleep disturbances are often part of the clinical spectrum of PD, even in the very early stages, we 

investigated the hypothesis that sleep and its effects on brain plasticity may influence the clinical 

phenotype of PD.  

With the intent of translating the results previously obtained in animals 
6
 to humans, we explored 

the correlation between objective sleep parameters and clinical features of different 

subpopulations of PD patients and age-matched controls. Using whole-night video 

polysomnographyhigh-density EEG (vPSG-hdEEG), we investigated possible locoregional 

differences in the homeostatic process that could be limited to discrete brain areas 
14

. Some of 

the results presented here have already been published as a conference paper 
15

. 

 

Materials and methods 

Subjects 

All procedures were carried out with the appropriate understanding and written consent of the 

subjects and had previously been approved by the Local Ethics Committee (Cantonal Ethical 

Commission, reference number CE2562). This study was registered at ClinicalTrial.gov, 

reference number NCT02200887.  

Thirty-six subjects with PD, according to the UK PD Society Brain Bank criteria 
16

, were 

recruited for this study. Patients were divided into three groups, as previously described 
17

: 1) de 

novo (DNV; n = 9), comprising patients with a recent diagnosis, naïve to dopaminergic therapy 
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other than rasagiline; 2) advanced (ADV, n = 13), comprising patients not showing LID with 

their habitual therapy but demonstrating the end-of-dose or wearing-off phenomenon; and 3) 

dyskinetic (DYS, n = 14), comprising advanced patients experiencing motor fluctuations, 

showing LID, as confirmed by the enrolling physician.  

In agreement with the diagnosis of PD, all DNV patients showed the typical clinical phenotype 

(e.g., asymmetrical parkinsonian syndrome, absence of atypical neurological findings) and 

normal cerebral magnetic resonance imaging, while an asymmetric dopaminergic deficit with 

[123I]-FPCIT (DATSCAN, GE Healthcare – Amersham Health) was observed in three of nine 

patients. Exclusion criteria were evidence for cognitive impairment, as defined by a Mini-Mental 

State Examination (MMSE) ≤ 24, and age ≥ 75 years. Demographics and clinical characteristics 

of all patients are shown in Table 1. An age-matched control group, recruited from 

accompanying family members, nonclinical hospital staff, and volunteers, was also subjected to 

the same protocol (CTL; n = 12).  

Six of nine ADV and 10 of 11 DYS patients were administered a combination of levodopa and 

dopamine agonist treatment. The levodopa-equivalent daily dose (LEDD) was calculated 

according to the conversion formula reported elsewhere 
18

. Two patients in each patient group 

(28.5% DNV, 22.2% ADV, and 18.1% DYS) regularly took benzodiazepines. No CTL subjects 

took benzodiazepines.  

One DNV patient was excluded for the subsequent development of progressive dementia, in the 

6 months following the study, compatible with Lewy body dementia (Fig. 1 A). One DYS patient 

was excluded because she developed atypical clinical signs suggestive of multiple system 

atrophy with late-onset cardiovascular autonomic failure, urinary voiding disorder, and 

pyramidal signs, as previously described 
19

.  
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Study design 

At the screening visit (Fig. 1A), mood and sleep complaints were investigated by means of the 

modified Beck depression scale (mBDI), Epworth sleepiness scale (ESS), and Pittsburgh sleep 

quality index (PSQI). All patients were assessed using the first three parts of the Movement 

Disorder Society-sponsored revision of the Unified Parkinson Disease Rating Scale (MDS-

UPDRS) 
20

 and Hoehn and Yahr (H&Y) staging 
21

. In addition, ADV and DYS patients were 

assessed using the fourth part of the MDS-UPDRS, while DYS patients were also evaluated with 

the Abnormal Involuntary Movement Scale (AIMS) 
22

. After the screening visit, participants 

underwent a 1-week actigraphic recording (Fig. 1A). Then, participants arrived at the sleep 

center at 9:00 pm to prepare for the first habituation night in the sleep laboratory, which 

coincided with the last day of actigraphic recording. The following night, all patients underwent 

vPSG-hdEEG recording. The habituation night was included to reduce the “first-night effect” 

commonly associated with alterations in sleep architecture on the first night of sleep 

investigation, in comparison to subsequent nights 
23

. All patients were followed in our outpatient 

service for a period of at least 6 months. 

Patients were asked to adhere to regular sleepwake schedules during the study. 

Antiparkinsonian medication was kept stable throughout the study. All ADV and DYS patients 

received levodopa treatment and other antiparkinsonian medications at a stable and optimized 

dose, as determined by the enrolling neurologists (S.G. and C.S.) for at least 4 weeks before the 

screening visit.  

Based on sleep recordings, both patients and healthy volunteers were assessed for the presence of 

sleep-related breathing disorders (SRBDs). Since SRBDs are known to disrupt normal sleep 
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architecture and to reduce NREM sleep duration 
24

, five CTL individuals, three ADV patients, 

one DYS patient, and one DNV patient were excluded from further analysis because of an 

apneahypopnea index (AHI) > 5 (Fig. 1A).  

For technical reasons, vPSG-hdEEG recording failed in one DNV and one ADV patient (Fig. 

1A).  

Therefore, seven of 12 CTL individuals, seven of nine DNV patients, nine of 13 ADV patients, 

and 11 of 14 DYS patients were included in the final sleep analysis. In addition, in two DNV 

patients and in one DYS patient, the vPSG-hdEEG recording was corrupted by artifacts (Fig. 1A) 

and excluded from the SWA analysis. Moreover, one DNV, one ADV, and one DYS patient did 

not undergo actigraphic monitoring due to technical failure.  

 

Data analysis 

Actigraphy 

Wrist actigraphy has been established as a valid and reliable method for assessing the 

sleepwake cycle 
25

. A wristwatch-like device (Respironics Actiwatch 2, Philips, Best, The 

Netherlands) was attached to the subject‟s nondominant wrist and data were recorded 

continuously using 30-s sampling epochs. Actigraphy sleep data were scored by a validated 

algorithm included in the commercial software to obtain the estimated total sleep time (eTST), 

estimated time in bed (eTB), estimated sleep efficiency (eSE), and estimated sleep latency (eSL). 

 

Whole night video polysomnographyhigh-density EEG recording 

Nocturnal vPSG-hdEEG was performed in a standard sound-attenuated sleep laboratory room. 

Subjects were not allowed to drink caffeinated beverages 6 hours before the beginning of PSG 
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and were allowed to sleep until their spontaneous awakening in the morning. Lights-out time was 

based on the individual‟s usual bed time and ranged between 10.30 and 11.30 p.m. All 

polysomnographic recordings included 256 EEG channels (Net Station System 200, v.4.0, 

Electrical Geodesics Inc., Eugene, OR, USA), submental electromyogram, electrooculogram, 

electrocardiogram, cardiorespiratory channels, and electromyogram of the right and left tibialis 

anterior muscles (bipolar derivations with two electrodes). The presence of REM sleep behavior 

disorder (RBD) was scored on the polysomnographic synchronized videotaped recording. Slow 

wave sleep (SWS) was defined as the deepest stage (N3) of NREM sleep. Sleep staging was 

performed according to standard scoring criteria, creating a monopolar montage with reference at 

the contralateral mastoid (A1 or A2), by an accredited clinical polysomnographist (M.M.), who 

was blind to the subject group to reduce the interscorer variability. 

 

EEG analysis 

EEG data were sampled at 250 Hz. Recordings were offline bandpass FIR filtered (0.540 Hz). 

NREM sleep data were extracted, epochs containing arousals were excluded, and the remaining 

data were subdivided into 10 equal segments. We measured the percentage of N3 in each 

segment and selected the second segment (T2) as the first segment of early sleep to consider in 

order to observe a constant decline of SWS content because it contained the greater amount of 

N3 in each group of subjects or when pooled together. Sleep fragmentation during the falling 

asleep phase might be the reason for the delay in N3 peak expression. Therefore, the 2nd, 3rd, 

and 4
th

 segments and the 7
th

, 8
th

, and 9
th

 segments were designated as early and late sleep, 

respectively, and analyzed further (Fig. 1B) using EEGLAB 
26

 and custom-made MATLAB 

codes. The recordings were visually reviewed to exclude artifacts (total time excluded: 3.9%). 
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Bad channels were rejected and replaced using spherical interpolation. The fast Fourier 

transform (FFT) was separately calculated for the low (1.52.0 Hz) and high (2.04.0 Hz) δ 

frequency band, re-referenced to the average, downsampled (to 128 Hz) 6-second EEG epochs 

with a 4-second overlap, and tapered with a Hamming window. Individual absolute band power 

was normalized to the total power. The SWA topographical distribution was obtained.  

A source analysis was performed for each frequency band to obtain a 3D cortical distribution of 

the electric neuronal generators, using low-resolution brain electromagnetic tomography 

(sLORETA) 
27

. The inverse solution was computed within a three-shell spherical head model, 

including the scalp, skull, and brain. The three-layer head model was coregistered to the 

Talairach human brain atlas 
28

. The gray matter compartment was subdivided into 6340 voxels, 

with a spatial resolution of 5 mm. 

 

Statistical analysis 

Data were first examined for normal distribution using the ShapiroWilk test. Parametric data 

were assessed by one-way analysis of variance (ANOVA), and in case of significance, 

differences between pairs of groups were assessed by means of Tukey‟s post hoc tests. When not 

normally distributed, the KruskalWallis test followed by a post hoc MannWhitney U test was 

used. Comparisons were considered statistically significant at a level of P < 0.05. Correlation 

analyses were performed by means of the nonparametric Spearman‟s test. All tests were 

performed using IBM Statistics version 20 (IBM Inc., Armonk, NY, USA).  

Differences in SWA in scalp topography among and between groups were investigated by means 

of a nonparametric method, based on permutation 
29

, with false discovery rate (FDR) correction 

for multiple comparisons, where a common corrected threshold, identified as the last significant 
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threshold, obtained using the Holms correction, was applied to all P values. The same 

comparison was also performed on data from a reduced montage corresponding to the 

frontocentral areas. 

Differences at the source level were investigated using sLORETA with a statistical 

nonparametric voxel-wise comparison within the CTL, DNV, ADV, and DYS groups for each 

frequency band. The level of significance was set at P < 0.05. 

All the results in the text, in the tables, and the figures are presented as the mean ± SEM.  

 

Results 

Demographics of control subjects and Parkinson’s disease patients 

Demographic data are detailed in Table 1.  

The mean H&Y stage score was significantly lower for DNV than for ADV and DYS patients 

(KruskalWallis, χ
2

(2) = 16.787, P < 0.001; MannWhitney, DNV < ADV: U = 4.00, Z = -3.31, 

P < 0.001; DNV < DYS: U = 4.50, Z = -3.46, P < 0.001). 

The mean LEDD was significantly different among groups by one-way ANOVA (F(2,27) = 

25.365, P = 0.00; Tukey‟s post hoc test: DNV > ADV: P = 0.003; DNV < DYS: P < 0.001; 

ADV < DYS: P = 0.006). 

The motor experiences of daily living (MDS-UPDRS II) showed a significant difference among 

the three patient groups (KruskalWallis, χ
2

(2) = 6.032, P = 0.049; at post hoc: U = 12.00, Z = -

2.12, P = 0.34; DNV < DYS). Regarding the motor assessment (MDS-UPDRS III) in the “on” 

state, no significant difference was observed among the patient groups. 

 

Subjective measures of depression and sleep quality 
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All measurements are presented in Table 2. There was no difference among the four groups. 

 

Descriptive polysomnography data 

All descriptive sleep measures are presented in Table 3. There was no difference among the four 

groups. 

RBD and/or REM without atonia were found in six of 27 patients (22.2%): one DNV (14.2%), 

three ADV (33.3%), and two DYS (18.1%) patients  

 

Correlation between sleep measures and clinical data 

Among the examined polysomnographic and clinical data, we found that TST, SE, and SWS 

showed significant correlations with disease duration and LEDD (Figs. 2 and 3). 

In the patients as a whole (n = 27), disease duration was negatively correlated with TST 

(Spearman‟s test, rs = -0.527, P = 0.005; Fig. 2A), but no such correlation was found when 

examining each group separately (DNV: n = 7; Spearman‟s test, rs = -0.250, P = 0.589; ADV: n 

= 9; rs = -0.517, P = 0.154; DYS: n = 11; rs = -0.241, P = 0.474; Fig. 2A). 

Similarly, in the patients as a whole (n = 27), there was a negative correlation between disease 

duration and SE (Spearman‟s test, rs = -0.659, P < 0.001; Fig. 2B). When considering subgroups 

of patients, this correlation was maintained only in DYS patients (n = 11; Spearman‟s test, rs = -

0.664, P = 0.026), while no correlation between disease duration and SE was found in DNV (n = 

7; Spearman‟s test, rs = -0.143, P = 0.760) or ADV patients (n = 9; Spearman‟s test, rs = -0.333, 

P = 0.381; Fig. 2B). 

No significant correlation between disease duration and SWS was found in the whole patient 

group (n = 27, Spearman‟s test, rs = 0.043, P = 0.823; Fig. 2C). However, when examining the 
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three groups separately, we found that both DNV and ADV groups showed a clear positive 

correlation (DNV n = 7; Spearman‟s test, rs = 0.786, P = 0.036; ADV n = 9; rs = 0.783, P = 

0.013; Fig. 2C), while the DYS group demonstrated a significant negative correlation between 

disease duration and SWS (n = 11; Spearman‟s test, rs = -0.761, P = 0.007; Fig. 2C).  

A negative correlation between TST and LEDD was observed in patients with motor fluctuations 

(ADV and DYS groups, n = 20, Spearman‟s test, rs = -0.475, P = 0.026; Fig. 3A). In these 

patients, LEDD was negatively correlated with SE (ADV and DYS, n = 20; Spearman‟s test, rs = 

-0.495, P = 0.026; Fig. 3B). When evaluating the patient groups individually, this negative 

correlation was still significant in the DYS group (n = 11; Spearman‟s test, rs = -0.633, P = 

0.036; Fig. 3B) but not in the ADV group (n = 9; Spearman‟s test, rs = 0.000, P = 1.000).  

Moreover, LEDD was negatively correlated with SWS only in the DYS group (n = 11; 

Spearman‟s test, rs = -0.682, P = 0.021), while no SWSLEDD correlation was observed in the 

ADV (n = 9; Spearman‟s test, rs = 0.077, P = 0.845) and combined ADV and DYS groups (n = 

20; Spearman‟s test, rs = -0.302, P = 0.195) (Fig. 3C). 

 

Descriptive actigraphy data 

All the descriptive actigraphic measures are presented in Table 3. All the measures were similar 

in all four groups (CTL, DNV, ADV, DYS). 

 

Dyskinesia and motor fluctuations correlate inversely with eTST  

We found a negative correlation between eTST and AIMS (DYS: Spearman‟s test, n = 9; rs = -

0.733, P = 0.035) and between eTST and MDS-UPDRS IV (DYS: Spearman‟s test, n = 9; rs = -

0.817, P = 0.007; Fig. 4A).  
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We did not observe any correlation of the AIMS and MDS-UPDRS IV scores with eSE (DYS: 

Spearman‟s test, n = 9; rs = -0.536, P = 0.137 and rs = -0.221, P = 0.567, respectively; Fig. 4B).  

 

Changes in slow-wave activity during early and late sleep 

In early sleep, control subjects showed a significantly greater amount of SWA, diffused over the 

whole scalp, compared to PD patients (P < 0.01; FDR adjusted), as a whole group and 

separately. Moreover, delta power was greater in DNV compared to the other patients‟ groups (P 

< 0.01; FDR adjusted) and in ADV compared to DYS (P < 0.01; FDR adjusted), with the DYS 

group having the lowest content of SWA. As expected, the decrease was mainly in the high δ 

frequency band (2.04.0 Hz) 
30

 (Fig. 5AC). When comparing within groups, we found a 

significant difference between early and late sleep in the CTL (n = 7), DNV (n = 5), and ADV 

groups (n = 9; P < 0.01; FDR adjusted) but not in the DYS group (n = 10, Fig. 5B).  

In late sleep, when contrasting between groups selecting only frontocentral channels, delta power 

was lower in DNV compared to the other groups (P < 0.01; FDR adjusted) and in ADV 

compared to DYS (P < 0.01; FDR adjusted), with the DYS group having the greatest content of 

SWA among PD patients. 

The voxel-wise comparison (sLORETA) between groups showed a decrease in SWA between 

early and late sleep, reaching significance only in the CTL group (n = 7; P < 0.01), localized 

over frontocentral regions (Brodmann areas: 4, 6, 13, 24, 31, Fig. 6). 

 

Discussion 

Levodopa is currently the most effective available treatment for motor symptoms in PD, but its 

use is complicated by the development of motor fluctuations and LID. These abnormal 
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movements are mild at the beginning but become disabling as the disease progresses, interfering 

with quality of life and being a source of morbidity. The pathogenesis of LID is largely 

unknown, but the onset of PD symptoms at an earlier age 
31

, disease duration 
32

, and higher 

cumulative dosage of levodopa 
33

 are well-known risk factors for LID development. The 

involvement of age at onset suggests an underlying genetic background for a dysfunction in brain 

plasticity, as confirmed by several experiments 
34

.  

Sleep has a function in modulating brain plasticity 
11,12

, but its characteristics in relation to the 

clinical phenotype of PD have not yet been addressed.  

Herein, we provided evidence of a close relationship between sleep and several clinical features 

in a population of patients with PD at different stages, afflicted by motor fluctuations with or 

without LID. We show the correlation of sleep architecture with disease duration and LEDD and 

of actigraphic data with the severity of dyskinesia. Importantly, we found an overnight 

physiological decline in SWA in CTL, DNV, and ADV subjects but not in DYS subjects, who 

showed a persistent level of SWA throughout the night. 

Polysomnographic studies of PD have shown conflicting results 
35

. For instance, some authors 

have described changes in SE, TST, SL, and sleep stages in PD patients compared to age-

matched healthy controls, 
36

, while others have not found significant differences 
37

. However, 

compared to these previous studies, in this study, we examined sleep architecture with respect to 

the disease stage and with respect to the presence/absence of motor fluctuations and LID. We 

would suggest that this patient classification allows a more accurate detection of those 

differences that would otherwise not be clearly defined in a heterogeneous group. For instance, 

in the whole PD patient cohort, we found that both the TST and SE were negatively correlated 

with disease duration, as has been already described and that while the correlation between SWS 
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and disease duration was positive in both DNV and ADV patients, it was surprisingly negative in 

DYS patients. Diederich and colleagues (2005) found a negative correlation between SWS and 

disease duration, but they did not take the presence of motor fluctuations or LID into account. 

Since the patient sample was older and featured a longer disease duration than our population, it 

is likely that they investigated mainly advanced PD patients 
38

. Although far from conclusive, the 

positive correlation between SWS and disease duration in both DNV and ADV patients might 

reflect compensatory mechanisms within the SHY framework aimed at maintaining an 

appropriate homeostatic process, which could be ineffective in DYS patients. However, the 

amount of SWS does not directly reflect a more efficient SWA-mediated downscaling process 
14

.  

As mentioned above, the risk of developing dyskinesia or motor fluctuations is closely linked to 

the levodopa cumulative dose 
33

. Therefore, we extended our correlation analysis to sleep 

parameters and LEDD. We found an intriguing negative correlation of TST and SE with LEDD 

in all patients with motor fluctuations (ADV and DYS groups). Notably, SWS was negatively 

correlated with LEDD only in patients demonstrating LID. The impact of levodopa therapy on 

sleep is not well defined and has been the subject of only few studies. Levodopa, in fact, may 

have a direct effect on sleep macrostructure or may improve sleep by improving motor nocturnal 

performance. In a small sample of PD patients, reduced SWS and REM sleep with prolonged SL 

and WASO was observed following the initiation of levodopa treatment.
39

 However, some 

studies 
40

 conducted in larger populations of patients did not detect significant changes in SWS 

and REM sleep, although both SL and WASO were reduced after levodopa treatment. Similar to 

our findings, a casecontrol polysomnographic study revealed reduced TST associated with 

increased LEDD 
36

, although motor fluctuations and LID were not assessed. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



17 

 

Although association does not imply causality, the notion of cumulative LEDD as a risk factor 

for LID suggests that levodopa use, especially in a daynight pulsatile manner, could be the 

cause of reduced TST, subsequently enhancing LID. In fact, our 1-week actigraphy data 

demonstrated a clear negative correlation between eTST and the severity of dyskinesia. Indeed, 

poor nighttime sleep has been positively associated with LID in a recent study with a large 

cohort of patients 
41

. Along these lines, sleep deprivation has been shown to enhance LID in a 

rodent model 
6
 and in PD patients 

42
. On the other hand, subjective clinical amelioration after 

sleep is frequently mentioned by patients, mainly in those with long disease duration and motor 

fluctuations 
43,44

.  

The third main finding of our study concerns SWA. Notably, all groups, except the DYS group, 

manifested a clear-cut physiological decrease in SWA between early and late sleep. The degree 

of overnight SWA reduction was notable in CTL individuals, in whom we also found earlylate 

sleep differences in the source reconstruction analysis. The earlylate difference was still 

significant in both the DNV and ADV groups. 

The lack of a significant difference between early-late SWA in DYS patients could be due either 

to impaired downscaling or to a lower buildup in these patients. Indeed, DYS patients, start from 

a lower early SWA level compared to the rest of ADV and DNV subjects. However, the 

observed SWA reduction in early sleep could be a consequence of a chronic deficit of synaptic 

downscaling during the night in dyskinetic patients.
41

 In these respects, chronic sleep deprivation 

has been associated with an impairment of synaptic potentiation.
45

  

We are inclined to believe that our results support a disruption of homeostatic process per se. In 

fact, DNV patients have late sleep SWA content lower than ADV and DYS patients, and, even 

more important to our argument against a flooring effect, lower than CNT participants. 
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Moreover, DYS patients showed a greater amount of SWA in the late sleep compared to the 

other groups. Therefore, if our results were due to an overall SWA impairment and to a floor 

effect rather than to a disrupted homeostatic process, we would not have expected to observe the 

lowest level of early sleep SWA in DYS together with the highest level of late sleep SWA in 

these patients, but rather a similar content of SWA in the late sleep among the groups. 

Since dyskinesia is a motor phenomenon, the same analysis performed selecting only the frontal 

channels heightened the difference between DYS and ADV, and the alteration of homeostatic 

processes is also confirmed by the results obtained using a frontal low-density EEG channel 

montage. 

The SWA analysis allowed the recognition of differences between CTL individuals and PD 

patients as well as between advanced patients with or without LID. None of the participants had 

cognitive impairment, which is usually related to the presence of cortical pathology 
46

. Therefore, 

our results suggest that cortical SWA changes may be associated with the development of LID 

rather than with a structural pathology.  

Levodopa-treated dyskinetic rats manifest aberrant corticostriatal synaptic plasticity that 

impaired the ability of the striatum to discriminate between relevant and irrelevant cortical inputs 

2
. From the SHY prospective, the homeostatic changes of net synaptic strength across the sleep–

wake cycle define the threshold for associative plasticity; therefore, a reduction of sleep-related 

synaptic downscaling can hide an abnormal saturation of the corticostriatal network. 

Certainly, our findings related to cortical plasticity do not exclude an impaired top-down 

corticostriatal input, which induced pathological plasticity in the striatum 
47

, or even that an 

intrinsic trait in cortical plasticity may predispose a subgroup of patients to LID.  
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Supporting this view, normal motor-skill learning and synaptic plasticity require normal 

dopaminergic input within the primary motor cortex (M1) 
13

. Dopamine projections to the cortex 

arise mainly from the ventral tegmental area (VTA) 
48

, which is involved later in the course of 

the disease 
49

. The timing of the neurodegenerative process that is reflected by the dopamine 

content in the cortex might underlie the impaired plasticity and the subsequent development of 

LID 
4,5

. Of note, several lines of evidence have linked LID with impulse-control disorders, which 

are notoriously associated with VTA dysfunction 
50

.  

In conclusion, these results support our preclinical findings of a clear association between sleep 

and LID at the electrophysiological, behavioral, and biochemical levels.  

Although our findings do not imply a causative role for the lack of SWA reduction in the 

emergence of LID, in light of the SHY framework, they do suggest an association between sleep 

and some clinical phenotypes of PD and suggest a relationship between sleep disruption and 

LID. Additional studies are warranted to establish a causative relationship between an abnormal 

sleep-related downscaling process and LID development. The small size of our sample, although 

homogenous and well characterized, represented a limitation of our study, and a larger 

confirmatory study is needed to support this theory, which will pave the way for pioneering 

SWA-enhancing therapies in PD.  
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 Table 1 Demographics of cohorts 

  CTL (n = 7) DNV (n = 7) ADV (n = 9) DYS (n = 11) 

Age (years) 56.1 ± 2.98 52.6 ± 3.13 61.6 ± 3.56 61.4 ± 2.84 

Disease duration (years) NA 2.30 ± 0.60
*
 7.05 ± 1.55 9.98 ± 1.73 

H&Y NA 1.14 ± 0.14
**

 2.11 ± 0.11 2.18 ± 0.12 

MDS-UPDRS I NA 5.00 ± 2.06 3.25 ± 0.92 5.00 ± 1.04 

MDS-UPDRS II NA 3.66 ± 0.80
⸸
 4.75 ± 1.34 8.36 ± 1.43 

MDS-UPDRS III NA 15.28 ± 2.17 20.00 ± 3.33 13.18 ± 3.34 

MDS-UPDRS IV NA NA 2.00 ± 1.00 4.36 ± 0.59 

LEDD (mg) NA 57.6 ± 20.2
§ǂ
 495.0 ± 56.4

†
 846.6 ± 96.4 

AIMS NA NA NA 4.36 ± 0.98 

H&Y: Hoehn and Yahr staging; MDS-UPDRS: Movement Disorder Society-sponsored revision 

of the Unified Parkinson Disease Rating Scale; LEDD: Levodopa-equivalent daily dose; CTL: 

control; DNV: De Novo patients; ADV: Advanced patients; DYS: Dyskinetic patients; NA: not 

applicable 

* P < 0.05 vs ADV and DYS Mann-Whitney post hoc test; ** P < 0.001 vs ADV and DYS 

Mann-Whitney post hoc test; ⸸
 
P < 0.05 vs DYS Mann-Whitney post hoc test; § P < 0.05 vs 

ADV Tukey post hoc test; ǂ P < 0.001 vs DYS Tukey post hoc test¸† P < 0.05 vs DYS Tukey 

post hoc test 

 

Table 2 Subjective measures of depression and sleep quality   

  CTL (n = 7) DNV (n = 7) ADV (n = 9) DYS (n = 11) KruskalWallis 

χ
2 

P 

values 

mBDI 5.14 ± 1.71 8.42 ± 2.89 5.11 ± 2.01 9.00 ± 2.13 3.096  0.377 

ESS 5.11 ± 0.98 7.00 ± 1.90 7.33 ± 1.53 8.27 ± 1.23 2.105  0.551 
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PSQI 5.42 ± 1.19 5.85 ± 1.47 5.22 ± 0.87 8.00 ± 1.03 3.707  0.295 

CTL: control; DNV: De Novo patients; ADV: Advanced patients; DYS: Dyskinetic patients; 

mBDI: Beck depression scale; ESS: Epworth sleepiness scale;  

PSQI: Pittsburgh sleep quality index 
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Table 3 Descriptive polysomnographic data   

  CTL (n = 7) DNV (n = 7) ADV (n = 9) DYS (n = 11) KruskalWallis 

χ
2
 

P values 

TST (min) 297.4 ± 23.4 351.0 ± 9.68 309.3 ± 15.0 271.3 ± 27.4 5.434 0.143 

SL (min) 77.88 ± 28.2 12.32 ± 2.48 42.28 ± 18.7 32.45 ±13.6   

SE  0.62 ± 0.05 0.77 ± 0.29 0.65 ± 0.45 0.55 ± 0.05 8.155 0.043 

WASO (min) 106.0 ±28.9 89.7 ± 15.5 106.4 ± 21.7 154.8 ± 19.9 5.268 0.153 

Wake (%) 25.48 ± 6.74 19.92 ± 3.04 24.15 ± 4.57 36.60 ± 5.06 4.730  0.193 

SWS (%) 18.52 ± 1.41 21.84 ± 4.19 21.87 ± 5.37 16.95 ± 2.76 0.648  0.885 

REM (%) 14.04 ± 3.47 15.37 ± 2.41 12.82 ± 2.40 8.40 ± 2.24 4.648 0.198 

CTL: control; DNV: De Novo patients; ADV: Advanced patients; DYS: Dyskinetic patients; 

TST: total sleep time; SL: sleep latency; SE: sleep efficiency; WASO: wakefulness after sleep 

onset; SWS: slow wave sleep; REM: rapid eye movement. 

 

 

Table 4 Descriptive actigraphy data   

 CTL (n = 7) DNV (n = 

6) 

ADV (n = 

8) 

DYS (n = 

10) 

KruskalWallis χ
2
 P values 

eTST 

(min) 

348.9 ± 

50.5 

423.9 ± 8.6 408.9 ± 

24.5 

371.0 ± 14.5 4.823 0.183 

eSL (min) 21.50 ± 

8.85 

11.5 ± 4.29 13.46 ± 

2.97 

19.06 ± 4.27 1.953 0.582 

eSE 89.78 ± 

1.47 

88.4 ± 2.05 83.05 ± 

3.65 

80.44 ± 2.67 4.747 0.191 

eTB (min)     1.282  0.733 

CTL: control; DNV: De Novo patients; ADV: Advanced patients; DYS: Dyskinetic patients; 

eTST: estimated total sleep time; eSL: estimated sleep latency; eSE: estimated sleep efficiency 
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Figure Legends 

Fig. 1: Design of the study and segments of nonrapid eye movement (NREM) that were 

subjected to analysis. A) Schematic flow chart of the study and number of subjects enrolled and 

tests and/or examinations performed. After the screening visit, participants began the 1-week 

actigraphy study. Subsequently, the first sleep laboratory habituation night coincided with the 

last actigraphic day; on the following day, whole-night video polysomnographyhigh-density 

EEG (vPSG-hdEEG) recording was performed, and the recordings were assessed and scored. 

Participants with SRBDs at sleep assessment were excluded from further analysis. Three 

additional patients were excluded from the SWA analysis for misdiagnosis (suspected Lewy 

body dementia and multiple system atrophy) or for technical reasons. B) Whole-night NREM 

sleep was extracted, epochs containing arousals were excluded, and the remainder was 

subdivided into 10 equal segments. The 2
nd

, 3
rd

, and 4
th

 segments and the 7
th

, 8
th

, and 9
th

 

segments were selected, as early and late sleep, respectively, and were analyzed further. 

Fig. 2: Correlation analysis between selected polysomnographic parameters and disease duration. 

A) Total sleep time (TST) showed a clear negative correlation with disease duration only in the 

whole pool of patients (n = 27, Spearman‟s test, rs = -0.527, P = 0.005), while no correlation was 

found within individual patient groups. B) Sleep efficiency (SE) was negatively correlated with 

disease duration in all patients (n = 27, Spearman‟s test, rs = -0.659, P < 0.001) and in DYS 

patients specifically (n = 11, Spearman‟s test, rs = -0.664, P = 0.026). C) Regarding the 

relationship between slow wave sleep (SWS) and disease duration, there was a positive 

correlation in both DNV (n = 7; Spearman‟s test, rs = 0.786, P = 0.036) and ADV (n = 9; 

Spearman‟s test, rs = 0.783, P = 0.013) groups, but a negative correlation in DYS patients (n = 

11; Spearman‟s test, rs = -0.761, P = 0.007).  
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Fig. 3: Correlation analysis between selected polysomnographic parameters and levodopa-

equivalent daily dose (LEDD) in ADV, DYS, and combined ADV and DYS groups. A) Total 

sleep time (TST) showed a clear negative correlation with LEDD only in ADV+DYS patients (n 

= 20; Spearman‟s test, rs = -0.682, P = 0.021). B) Sleep efficiency (SE) was negatively correlated 

with LEDD both in DYS patients (n = 11, Spearman‟s test, rs = -0.659, P < 0.001) and 

ADV+DYS patients (n = 20, Spearman‟s test, rs = -0.664, P = 0.026). C) Slow wave sleep (SWS) 

was negatively correlated with LEDD only in DYS patients (n = 11, Spearman‟s test, rs = -0.682, 

P = 0.021).  

Fig. 4: Selected actigraphic parameter correlation analysis with the Abnormal Involuntary 

Movement Scale (AIMS) and Movement Disorder Society-sponsored revision of the Unified 

Parkinson Disease Rating Scale (MDS-UPDRS) IV in DYS patients. A) The 1-week estimated 

TST (eTST) was negatively correlated with AIMS and MDS-UPDRS scores (Spearman‟s test, n 

= 9; rs = -0.733, P = 0.035; rs = -0.817, P = 0.007, respectively). B) No correlations of the 1-

week estimated SE (eSE) and AIMS or MDS-UPDRS IV scores were found (Spearman‟s test, n 

= 9; rs = -0.536, P = 0.137 and rs = -0.221, P = 0.567, respectively).  

 

Fig. 5: Slow wave activity during nonrapid eye movement (SWA-NREM) sleep analysis. A) 

Topography and power maps at 2, 3, and 4 Hz during early and late sleep in healthy control 

individuals (CTL) and Parkinson‟s disease patients at various stages of disease (DNV, ADV, 

DYS). B) We found a significant difference between early and late sleep in CTL (n = 7), DNV (n 

= 5), and ADV individuals (n = 9; P < 0.01) but not in DYS patients (n = 10), which remained 

significant after correction for multiple comparisons. C) Plots of the mean power of high-density 

(HD, empty dots) or low-density EEG (LD, green dots) in each group of subjects during early 
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and late sleep (CTL, DNV, ADV, and DYS). Lines are the mean of all HD (black) or LD (green) 

channels. All groups, except the DYS group, showed a difference between early and late sleep.  

 

Fig. 6: Changes in slow wave activity (SWA) content in each group of subjects during early and 

late sleep (CTL, DNV, ADV, and DYS). The SWA content in early (dark-blue line) and late 

(light-blue line) sleep in each group of subjects by selecting all the high-density EEG (all HD, 

upper plot) or only the frontal high-density channels (frontal HD, middle plot) for the SWA 

analysis. In the lower plot, only the frontal low-density EEG channels were analyzed (frontal 

LD).  

§ P < 0.01 vs CTL; # P < 0.01 vs DNV; ‡ P < 0.01 vs ADV; † P < 0.01 vs DYS. 

 

Fig. 7: Slow wave activity during nonrapid eye movement (SWA-NREM) sleep source analysis 

in control individuals (CTL). sLORETA analysis showed a decrease in SWA between early and 

late sleep, only in the CTL individuals (n = 7; P < 0.01), which was localized over the 

frontocentral regions (Brodmann areas: 4, 6, 13, 24, 31). 
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