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Abstract

Malware has been around since the 1980s and is a large and expensive
security concern today, constantly growing over the past years. As our so-
cial, professional and financial lives become more digitalized, they present
larger and more profitable targets for malware. The problem of classi-
fying and preventing malware is therefore urgent and it is complicated
by the existence of several specific approaches. In this paper, we use an
existing malware taxonomy to formulate a general, language independent
functional description of malware as transformers between states of the
host system and described by a trust relation with its components. This
description is then further generalised in terms of mechanisms, thereby
contributing to a general understanding of malware. The aim is to use
the latter in order to present an improved classification method for mal-
ware.

1 Introduction

In the era of cyber-physical systems and the Internet of Things, miscomputa-
tion is an urgent issue for computer scientists, technologists and laymen alike.
The situation is worse because miscomputations can be produced by errors, but
also induced by targeted attacks. A full description of miscomputations requires
considering their different layers: from design, through specification and imple-
mentation, up to use. [16] offer such an analysis, considering the different Levels
of Abstraction and the agents involved at each such level.

The more focused task of identifying and preventing malfunctions in the
software of a computing system, is one objective within the computer correct-
ness literature. This large research area includes formal verification by model
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checking and theorem proving; formal methods with dedicated systems like sep-
aration logic [17, 35]; and empirical analyses like testing and fuzzing [8]. These
contribute to the common aim of obtaining more reliable and secure systems.

In [15], the authors perform a conceptual analysis of the problem of mis-
computation, extending the existing literature in the philosophy of technology
on the problem of misfunctioning for non-computational artefacts. This tradi-
tion has already played an important role in providing taxonomical formats and
policy advice on errors of functioning in the technological context. For compu-
tational artefacts, and for software in particular, a similar analysis is possible
but requires specific qualifications: a software token dysfunctions when either
does not (sometimes) or cannot (ever) do what it is supposed to; a software
token misfunctions when it may do what it is supposed to but, at least occa-
sionally, it also yields some unintended and undesirable effects. When software
is understood at the type level (i.e. not as individual instances of running pro-
grams, but as the equivalence class of such programs), it may misfunction in
some limited sense, but cannot dysfunction. This analysis both clarifies the
level of abstraction at which correctness problems need to be tackled, as well as
illustrates the extent of different qualifications of software errors.

These analyses rely on software with specifications defined by a set of well-
defined functions, and the assumption that errors are unintended interruptions
of such functionalities, due to programming or designing mistakes. Alterna-
tively, this paper focuses on software whose intended function and use is pre-
cisely the temporary or indefinite suspension of other systems’ functionalities:
hence not bugs, but rather malware. Stealth malware refers to a large class of
malicious software [29, p.105]:

Definition 1 (Malicious Software) Software that harmfully attacks other soft-
ware, where to harmfully attack can be observed to mean to cause the actual
behaviour to differ from the intended behaviour.

More precisely, at code level one speaks of malicious logic [44]:

Definition 2 (Malicious Logic) Hardware, firmware, or software that is in-
tentionally included or inserted in a system for a harmful purpose.

Malware growth over the past years has been constant, reaching over 600,000,000
units in 2017 [3], including the following types:

• virus, a malicious software characterised by a replicating structure affect-
ing non-mobile files, requiring user action to propagate, see [48];

• worm, identified as self-propagating across networks, exploiting security
or policy flaw, see [50];

• trojan, a type of malware that is often disguised as legitimate software,
but has a backdoor, used to gather information or to damage software,
see [42, p. 9];
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• spyware, software that secretly monitors and collects information, such as
keystrokes and screen dumps, and sends it to a third party without the
user’s knowledge or consent, see [42, p. 10];

• rootikit, a set of binaries, scripts and configuration files that allows some-
one covertly to maintain access to a computer so that he can issue com-
mands and scavenge data without alerting the system’s owner, see [39].

It is essential to characterise misfunctioning and dysfunctioning behaviours
in computational systems that are induced by a program that ‘deliberately tries
to conceal its presence in the system’, [14, p.3]. The problem of classifying mal-
ware has been ongoing since the end of the 1980s. Modern efforts seek classifi-
cations that are complete and exhaustive. However, how malfunctions induced
by hidden programs are defined, structured, analysed and understood requires
more conceptual work, providing more solid strategies for malware analysis and
incident response. In particular, existing classifications and languages do not
consider systems in their generality, but rather aim at detailed description of ob-
jects. This strategy leads to difficulty with generalising properties of objects in
relation to the type of malfunctioning they induce and common traits of errors.
This aim is not purely conceptual: abstract, automatable support for deciding
on the nature of potential malware is a goal of the security community. In this
context, one is missing a general decision procedure that can be implemented on
top of existing tools. Such a procedure would require well-defined, concise and
conceptually clear tools that are feasible for formal translation. In this light,
the present work has several aims:

1. we explicate an existing taxonomy of malware – presented in [41] – in
terms of a general property of trust for the relation between a system and
its components;

2. we use this basic property to clarify how malware act as transformers from
functional to (several types of) non-functional systems;

3. we revisit the mentioned theory of software malfunctioning from [15] in
the light of the above results;

4. we contribute, through the above, to a general, abstract mechanistic ex-
planation of malware operations, complementing the approach to malware
attacks presented in [46], and illustrate how this can provide useful indi-
cations for an improved and simplified classification of malware.

We therefore will offer a functional reading of malware types in terms of what
type of damage they induce and use mechanisms to support it conceptually and
(eventually) formally.

The present work intersects theoretical research in security and philosophy of
computing. For the latter, our work is motivated by the need of establishing cri-
teria of functionality for computational systems and their limits, in line with the
analysis offered in [16, 15]. This task originates in the philosophy of technology
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and earlier still in the philosophy of science. In the security domain, our goal
is to provide a level of abstraction that is amenable to both logical decision-
making as well as heuristics for mechanism discovery involving malware. As
argued by [38], reasoning in computer science benefits tremendously when the
logical model and the scientific model (e.g., the mechanistic model) can be gen-
uinely aligned. In particular, malware categorization through specific languages
is extensive and it offers a detailed identification of all properties of malware
artifacts. However, because of this level of detail, it cannot explain what makes
certain software to be malware: existing languages do not provide any general
qualification of the dynamic and static properties of the objects under investi-
gation that can robustly be used to contribute to our general knowledge about
malware. Any such generalizations are left as purely manual, human tasks. It
is desirable, given the scale of malware samples, to provide decision support
to malware analysts in the form of automatable suggestions about categorizing
malware. This is a longstanding goal of the security community, and deserves a
fundamental new approach, as the detail-oriented attempts by practitioners have
not yet yielded such a decision support framework. Our contribution will lay
the foundation for a language that can appropriately abstract decision-making.
This aim requires a more concise definition of categories that can be translated
into operational tools, for example by rendering the concepts essential for a
logical translation. A logical translation should also, ultimately, align with the
practitioner’s mechanistic explanation heuristics for malware. Hence, a more
technical aim of this paper is to prepare for a formal logic of malware as entities
and functions. A first aproach of this type is offered in [29]. Our treatment of
malware classification should be able to provide a more solid basis to extend
their formal understanding. We leave this task to future research.

The structure of the paper is as follows. We first provide an overview of
related work in Section 2. In Section 2.5 we overview the existing languages for
malware classification. We then introduce in Section 3 an existing taxonomy
of malware from [41] and provide clarifications on how it applies to several
examples. In this Section, we further qualify a malware ontology in terms of
trust and offer a functional analysis of their behaviour as transformer from
functional to (several types of) non-functional systems. In Section 4 we use
this description to improve the analysis of malware as a mechanism, extending
and improving previous work in [46]. We conclude with indications on how this
conceptual description can facilitate the task of malware classification.

2 Related Work

This section brings together related work on philosophy of technology, infor-
mation security, malware analysis, and malware classification all relevant to the
present analysis. This presentation provides the conceptual frame to understand
the present contribution.
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2.1 Philosophy of Technology

The Philosophy of Technology has investigated at large the concept of function
and its implications.1 In this respect, the notion of malfunction is crucial. In
[30], malfunction statements are intended as normative statements made about
technical artefacts and related theories have to account for those. Possible
approaches include a privative stand (a malfunctioning F is not an F ) or a
subsective one (a malfunctioning F is a subset element of F ), see [26, 27]. In
[49, ch. 2], a mechanistic approach is applied to the ascription of functions
in engineering. Mechanistic explanation is based on the identification of the
phenomenon to be explained, its decomposition into entities and activities so
as to identify the organization of them which produces the phenomenon, see
[24]. This task is based on role function ascription, i.e. the description and
representation of roles played by each entity and activity in the mechanism.
Hence, for technical artefacts the mechanistic approach aims at explaining their
functioning by identifying basic and complex functions, the entities performing
them and how these are organised, see also [10]. [49] argues that role function
alone is insufficient for the individuation of mechanisms in engineering, and it
should be supported by behaviour function, where functions are specified in
terms of I/O flows referring to specific physical behaviours and effect function,
without reference to their requirements.

The notion of mechanism, even in its most simple understanding, is well-
suited to the explanation of computing systems, namely as mechanisms whose
function is to generate output strings from input strings and internal states,
according to rules (expressed as computable functions), see [36]. The assumption
at the basis of the present work is that exploiting the extensive and solid analysis
in the definition of mechanisms originating in the philosophy of science and
applying it in the philosophy of computing, in particular focusing on malware as
mechanisms, can be helpful in their classification. This task extends an already
started trend in applying this type of methodology in the field of computer
security, by referring in particular to both complete behaviour and their effects.
Our focus is, obviously, on the use of mechanism for the explanation of induced
malfunctions.

2.2 InfoSec and Malware Analysis

The task of interpreting malware as mechanisms in order to facilitate and sup-
port their classification, should be understood in the context of the established
area of information security. The intuitive meaning of security in this field is
captured by the following definition [44, p. 265]:

Definition 3 (Security Architecture) A plan and set of principles that de-
scribe

(a) the security services that a system is required to provide to meet the needs
of its users,

1For a general introduction see [21].
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(b) the system components required to implement the services, and

(c) the performance levels required in the components to deal with the threat
environment.

Our focus is on computer security,2 often articulated in two main phases, mon-
itoring and response:

Definition 4 (Computer Network Defence) Actions taken to defend against
unauthorized activity within computer networks. CND includes monitoring, de-
tection, analysis (such as trend and pattern analysis), and response and restora-
tion activities.3

Definition 5 (Incident Response) Actions taken to resolve or mitigate an
incident [i.e., cyberattack], coordinate and disseminate information, and imple-
ment follow-up strategies to prevent the incident from happening again.4

Malware analysis is one of many sub-fields within computer security and
often, but not always, occurs as part of responding to a computer security
incident. That is, a defender wants to figure out what a malware sample can do
or has done to their system. Two fundamental approaches to malware analysis
are available: static and dynamic:5

Definition 6 (Static Analysis) Static Analysis consists of examining the mal-
ware without running it. This includes simple brief identification work, such as
file sizes and fingerprinting (for example, to compare to lists of known-bad files),
or it may include involved analysis of the structure of the file, disassembling its
instructions to guess at their purpose.

Definition 7 (Dynamic Analysis) Dynamic Analysis involves running the
malware and observing its behaviour. Such analysis is usually performed on a
specially protected and instrumented system to study the malware more safely.
The objective might be to simply observe the inputs and outputs during the mal-
ware execution, or it might take the more involved step of using special software
(debuggers) or specially-designed reactive environments to extract additional in-
formation.

Further analysis of malfunctioning software includes determining its propagation
techniques.

2An organization might also have security violations in administrative, communications,
personnel, or physical security, for example. Security is from the perspective of the system to
be secured, i.e. there is not one absolute concept.

3NIST glossary entry: https://csrc.nist.gov/Glossary/?term=5475.
4See [2, p.3]. The goal is to handle the situation in a way that limits damage and reduces

recovery time and costs.
5See e.g. [45, Ch.0].
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2.3 Malware Propagation

Malware authors organize their efforts in to ‘campaigns’ [23], i.e. systematic sets
of attacks to breach a system’s security. A campaign is a collection of attacks
that share important properties, such as their techniques, targets, or infras-
tructure [7]. There has been a tremendous amount of work within information
security to pin down the various types of attacks and how they work, see, e.g.
[22, 33, 44]. We focus on malware, which is a technical attack subverting the
computer and is opposed to ‘social engineering’, in which the adversary achieves
their goals via “e.g., blackmail, bribery, coercion, impersonation, intimidation,
lying, or theft” [44]. Phishing, for example, is a type of impersonation and/or
lying, albeit via a technical medium, that (by a strict definition) does not involve
malware.

Despite a number of taxonomies proposed over the years (see next subsec-
tion), there is no consensus on what features of malware should be considered.
For example, a malware attack can be usefully characterised by what vector
is used to initiate the attack (e.g., the Internet, websites, local networks, USB
drives, or email [1]). Alternatively, one can subdivide malware propagation
techniques by whether human interaction is necessary.

2.4 Classifications

The problem of classifying malware is crucial and ongoing since the end of the
1980s.6 Previous formulations of malware taxonomies (or of a significant subset
of this family) have been built around malware functionality. For example, [50]
defines a taxonomy of worms around the following elements:

• Target discovery: The mechanism by which a worm discovers new targets
to infect. It includes scans, fixed lists, externally and internally generated
target lists.

• Carrier: The mechanism the worm uses to propagate to the target. Propa-
gation modes include self-carry, secondary channels, and embed in normal
communication channels.

• Activation: The mechanism by which the worm’s code begins operating
on the target. Options include user action (either directly or indirectly),
scheduled process activation, or self-activation.

• Payloads: Other actions that are not propagation that accomplish the
author’s goal. Payloads include non-functional actions (in turn comply-
ing with our definition of dysfunctioning), spam relays, HTML proxies,
perform Denial of Service attacks, collect or damage data, manipulate
cyber-physical systems, conduct further reconnaissance, and maintenance.

6For early classifications see [9] and [13].
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Another taxonomical approach is to use behaviour; that is, to identify the
action performed by the malware rather than its syntactic markers. Cohen [9]
introduced two such approaches:

1. model the behaviour of legitimate programs and measure deviations from
this reference. The complication in this approach is to reach a common
general description of well-behaved programs;

2. model and detect suspicious behaviours. The problem here is that un-
known malware can remain undetected as long as they use innovative
methods.

[25] formulates a taxonomy dedicated to behavioural detection, based on
program testing and divided into simulation-based and formal verification. For
each, [25] illustrates data collection and monitoring conditions, interpretation,
algorithm, definition of the behavioural model and signature generation. [25]
then offers a list of behavioural detectors along these criteria. The main as-
pect that we preserve from behavioural detection is the classification of systems
transformation induced by malware attacks in view of trust relations.

More ambitious malware classification endeavors appeared as the problem
grew in both importance and complexity. A 2012 review identified multiple fail-
ings in experiment design surrounding malware, and suggested methodological
improvements [40]. We endorse this work, but our focus is on methodology. In
order to lay the ground for a general improvement on current methodology, we
overview the most important among the existing specific languages for malware
classification.

2.5 Languages

Malware detection and characterization requires determining behaviours and
attributes, typically through static and dynamic analysis, as Section 2.2 dis-
cussed. During the 2010s, these processes became increasingly automated. As
humans involvement declined, machine-readable languages have become practi-
cal necessities for malware classification. Current machine-readable languages
generally do not support provable or verifiable reasoning about malware, which
is what we are building towards in Sections 3 and 4. This section continues with
a survey of existing languages. The challenge that will become clear is how to
develop unambiguous definitions and characterizations of malware.

2.5.1 MMDEF

The goal of MMDEF7 is to provide a format to share information relevant to
anti-virus software, including metadata of benign files. Conceptually, knowing
all benign files would be a tremendous advantage, as anything else would be
malware. In practice, we cannot list all benign programs. However, making

7See https://standards.ieee.org/develop/indconn/icsg/mmdef.html.

8



<mmdefb

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="mmdef-v2"

xsi:schemaLocation="mmdefb-v1 mmdefb-1-0-schema.xsd">

<subject md5="35ed51749a8987b8dcda050647f6c8d7" size_in_bytes="18087"/>

<action_findings>

<file pid="352" action="create" name="i1ru74n4.exe" normalized_path="csidl_system"/>

<registry_key pid="352" action="write" hive="HKEY_LOCAL_MACHINE"

key="Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"

value_name="Common Desktop" value_data="C:\Documents and Settings\All Users\Desktop"/>

<process pid="440" parent_pid="352" action="create" filename="i1ru74n4.exe"/>

<mutex pid="440" action="create" name="CTF.Asm.MutexDefaultS-1-5-21-1229272821-

1004336348-527237240-1003"/>

</action_findings>

</mmdefb>

Figure 1: An example of MMDEF bundle

sure an anti-virus program does not block a benign file that is critical to the
function of the system is still valuable. MMDEF provides structured reporting
of items such as hashes, filenames, installation paths, signature information, and
file versions. The aim is to provide a system for content creators and third-party
providers to check the nature of files and ascertain whether they are potential
malware [19]. In this regard, one might see MMDEF as a language for sharing
information about software generally, not just malware.

Figure 1 presents an example of a MMDEF bundle.8 The first lines declare
the MMDEF file format. What follows is the subject file’s MD5 hash, or fin-
gerprint, and the file size to help with quick identification; details of a new file
the subject creates, with the pid, name and normalized path; and the data the
subject writes to an existing system file, suspiciously a registry key targeted by
the action.

2.5.2 MAEC

MAEC [5], like MMDEF, distinguishes between static and dynamic elements
in malware detection and characterization. MAEC distinguishes three separate
dynamic elements, as Figure 2 indicates:

• capabilities: high-level, what the malware is capable of producing, ad-
dressing the abilities of groups of behaviours;9

• behaviours: mid-level, how the malware operates, addressing the purpose
of groups of actions;

8See http://grouper.ieee.org/groups/malware/malwg/Schema1.2/full_clean_file_

example.xml.
9It is interesting to note that MAEC capabilities where first called mechanisms.
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• actions: low-level, malware system actions. Described without addressing
intention. Actions can be viewed as syntactic analysis of the software’s
linguistic constructs, or as semantic analysis of what those constructs do
when abstracted from language specifics.

Figure 2: MAEC Bundle Overview [5]

MAEC also includes three types of static elements [5, pp.10-11]:

• attributes: a descriptive characteristic of malware. Attributes can be low-
level Actions, mid-level Behaviours, the categories of the high-level Capa-
bilities, or metadata.

• objects: a CybOX (Cyber Observable Expression, another Mitre language)
entity with object details; for example, of a file, registry key, or process.

• indicators: information such as importance, author, and target informa-
tion.

Figure 3 demonstrates a sample with actions and objects. The example is
a Windows executable file. The description of the object states the name, size,
and hash. The actions it has been observed to take are to create a file and
write to process memory. The language provides fields for the names, types,
associated objects, sub-actions, and the object created.

MAEC can capture various details during static malware analysis. Details
range from static attributes of a binary file, such as on the packaging style
and obfuscation techniques defeated, to interesting code snippets from manual
reverse engineering [5, pp.16-17]. MAEC can also capture various details dur-
ing dynamic analysis, at flexible levels of abstraction. Lower-level information
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Figure 3: Stand-alone Bundle example (excerpt) with separate object

includes specific machine-like operations and code instructions. Higher-level in-
formation might be a malicious functionality, such as ‘keylogging’, that summa-
rizes the purpose of myriad possible implementations [5, pp.16-17]. MAEC can
capture information on the analysis process as well. For example, the language
includes fields for findings, tools used, and the analysis environment. As such,
MAEC permits the analysis of a malware instance to be described in a standard
fashion and captured in a single document, the MAEC Package. In practice,
the content of some MAEC fields is unstructured text; as such, MAEC is a
combination of suggestions to humans and actual machine-readable language.
Sections 3 and 4 jointly provide an improvement on the formulation of this
MAEC bundle, demonstrating the practical import of an abstract, well-defined
malware categorization.

2.5.3 STIX

STIX provides a mathematical graph to represent an attack. The graph is com-
prised of domain objects as nodes and relationships as edges. Examples (static)
domain objects include attack pattern, campaign, course of action, identity, in-
trusion set, and report. Importantly, one of the static objects can be a MAEC
object, as described in Section 2.5.2. Relationships are generic and associated
to objects, e.g. the ‘indicator’ object has an associated ‘indicates’ relation.
STIX objects subsume malware description objects, among others, and so is a
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way of describing a higher-level type of knowledge than malware; the idea is to
structure comprehensive information about a threat.

Figure 4: STIX Threat Actor profile

Figure 4,10 shows a scenario representing a threat actor group named “Disco
Team” using the Threat Actor SDO (STIX Domain Object). Information rele-
vant to threat actors can be captured within this object; there are various other
SDO for other information. This example uses the Identity SDO.

The difference between MMDEF, MAEC, and STIX is clear. MMDEF and
MAEC provide classification which directly targets malware, although MMDEF
focuses its approach on whitelists. STIX has a more general focus, on attacks,
including e.g. the kill chain [23]. However, all of the available languages are
both practical, specific, and operationally contingent. Our work is intended to
offer a more general contribution, independent of the mentioned approaches and
therefore useful to all.

3 Malware as Malfunction-inducing Artefacts

In order to clarify what types of malfunction malware may induce, one should
first understand by what relevant kinds of attacks malware can be categorized.
The distinction between worms, viruses, etc., is traditional in information secu-
rity, but the distinction is not informative about exploitation methods. MAEC
and MMDEF are not helpful in taxonomizing exploitation strategies, as they are
documentation languages. And efforts such as the common weakness enumer-
ation (CWE) are likewise too fine-grained and not quite on target. Therefore,
we seek an orthogonal taxonomy of malware based on exploit strategy.

The taxonomy offered in [41] classifies malware into four ground types, based
on the way the software enacts the exploitation and installation phases to attack
the system. The purpose of the taxonomy is pragmatic; the four types would be
detected and defended against very differently. We summarise the classification
as follows:

• Type 0: an attack of the system limited to monitoring activities and
possibly data leaks, without inducing any interruption of the system’s

10See https://oasis-open.github.io/cti-documentation/examples/

identifying-a-threat-actor-profile.
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functionalities. While not actually “malware from the system compromise
detection,” Type 0 malware can still use or abuse features of the system
to perform malicious actions [41, p. 2].11

• Type I: the attack occurs by breaking the integrity of constant resources,
like in-memory code sections of the running kernel and/or processes. Type
I malware is common and destructive, but is a tractable problem because
detecting changes in things that are not supposed to change is feasible,
though practically hard.

• Type II: breaks the integrity of dynamic resources, such as pointers in
memory. Type II is a “much more dangerous and challenging” problem
than Type I, in a practical sense, because it is nearly impossible to detect
malicious changes in amongst all the regular changes that happen to dy-
namic resources [41, p.6]. However, like Type I, Type II malware attack
the system itself.

• Type III: represent a conceptually different attack. The system software
and data are themselves untouched; however, the malware inserts itself as a
layer mediating access between the system and the hardware. It becomes a
virtualization layer, which allows the malware to observe or change system
behaviour essentially and arbitrarily. From this position, the malware is
in principle invisible to the system, and must be detected and remediated
from a different perspective. Such malware is more difficult to make and
install than the other three types.

Note that, in [41], whether a resource is static or dynamic is based on its
changeability from the perspective of the system under attack. So we do not
need a complete classification of static and dynamic resources, we just need to
be able to “divide [resources] to those which are (or at least should be) relatively
constant (‘read-only’) and to those which are changing all the time” [41, p. 3].

For our purposes, this classification also groundly divides three sorts of mal-
ware, fitting well with the definition of malfunctioning software offered in [15],
when this is applied to the target system. Recall from Section 1 that malfunc-
tioning software (tokens) can be divided into those whose functionalities are
(temporarily or indefinitely) interrupted (dysfunctioning software), and those
presenting (additionally or in alternative) unintended functionalities (misfunc-
tioning software). When we consider this behaviour as the result of malicious
activity, we can map to the following sorting:

• Type 0: no compromise of target system functionalities (no side-effects,
no dysfunctioning) but production of additional, unintended functionali-
ties (misfunctioning)

11Writing in 2006, [41] marks this type as uninteresting. The more recent prevalence of
ransomware, which uses normal system features to disrupt the user’s tasks to extort money,
indicates that Type 0 malware can nonetheless significantly harm an organization’s security
architecture.
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• Type I-II: dysfunctioning creating software in different parts of the target
system, possibly accompanied by misfunctioning.

• Type III: either dysfunctioning or misfunctioning of the system may
occur because the malware has virtualized the whole system.

In order to explain the four types of malware, and then eventually char-
acterize them individually, we need to associate more precisely malfunctioning
(in the two forms here considered) to system properties that are affected by
the malicious software. When considering malware, the most relevant system
property is computer security. Computer security refers to “measures to im-
plement and assure security services in a computer system, particularly those
that assure access control service” [44, p. 74].12 Computer security contributes
to a security architecture that is essentially concerned with the protection of
data from unauthorized disclosure (confidentiality), unauthorised modification
(integrity) and unjustified limitation of functionalities (availability).

In line with standard terminology, we can adapt correctness (i.e. well-
functioning) criteria to security criteria under control and establish these in
the form of authorizations. Accordingly, system correctness is bound to secu-
rity and therefore we assume that unless a system can be totally proven correct
(an impossible task), it cannot be totally secure.

Definition 8 (Secure system) A system S is secure if authorizations are de-
fined for every component ci, . . . , cj.

Definition 9 (Partially secure system) A system S is partially secure if
authorizations are defined only on some components ci, . . . , cj.

Notice that this understanding of computer security as authorization com-
pleteness is necessary, but not sufficient to guarantee that no alterations of
functionalities occur. First, security is not a fixed property: with every new
component, a new authorization is required. But even if the system admin-
istrator can guarantee completeness is always obtained, by ensuring that an
appropriate authorization is defined for each newly added component, another
necessary property is precision with respect to valid authorizations for all com-
ponents, see [43]. An imprecise system refers to one that does not identify a
component for what it is, but rather for something else. Malicious software aims
at establishing a trustful relation with its target system, to acquire certification:
malware aims at finding hooks to avoid being blocked. Hence authorization im-
precision can be better translated into a relation of trust. The notion of trust
in a computational setting has received much attention in several fields and,
accordingly, various definitions of trust are available. For the present purposes,
we need a generic and abstract definition of trust as a property of the relation
of access control between a software and its host system:13

12For a canonical perspective on defining access control, see [6].
13The following definition is formulated as a special case of the more general one provided

in [37].
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Definition 10 (Trust) Given a first-order relation of access control between a
software component c and its host system S functional to a I/O process according
to the specification of S, if S can achieve the intended output through the task
performed by c, and if S deems secure to delegate to c performing such task,
then the relation has a second-order property of trust.

While conceptually it is appropriate to say that the host system instantiates a
trustworthy functional relationship with each of its components, for brevity we
will often say that a software component c is trustworthy or trusted.

In this sense, systems can be imprecise according to two trust-related aspects.
We believe such trust aspects could be formally connected to well-known notions
from the information security literature used to define program correctness [31,
p.125]: safety and liveness properties. We give an informal introduction to
safety and liveness, but leave the formal translation for future work on a logic
for malware:

• A safety property is one which states that something (usually something
bad) will not happen. For example, the partial correctness of a single
process program states that if the program is started with the correct
input, then it cannot stop if it does not produce the correct output.

• A liveness property is one which states that something must happen. For
example, the statement that a program will terminate if its input is correct.

The relationship between safety, liveness, and trust can be formulated roughly
as follows. In a safety breach, an untrusted component is taken as a trusted
one, thereby allowing that something which should not happen does in fact hap-
pen. In a liveness breach, a trusted component is taken as an untrusted one,
thereby allowing that something which should happen does in fact not happen.
In this sense, a liveness breach refers to cases of unjustified denial of service or
access. This is the category that has been mainly analysed in [15] in terms of
malfunctioning software tokens.

On this basis, the standard general definition of correct system can be for-
mulated in view of safety and liveness:

Definition 11 (Correct system) A system S is correct if it presents no safety
or liveness breaches and authorizations are fully defined (per Definition 8) in
accordance with the relevant security architecture.

Definition 12 (Incorrect system) A system S is incorrect if it presents a
safety or liveness breach or authorizations are only partially defined (per Defi-
nition 9) in accordance with the relevant security architecture.

We have now characterised the ontology of software systems by properties of
security (by authorization), safety and liveness, with the latter ones identified
by trust qualification of components. On their basis we can offer a tentative
ontological definition of malware:
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Definition 13 (Malware) Malware refers to a software component inducing
unjustified trust authorization for itself or denial of justified trust for another
component.

To link this abstract definition of malware, characterised in terms of autho-
rizations and trust, with the taxonomy offered by [41], we note that malware
of Type 0 are misfunction inducing, while Type I-II are dysfunction-inducing
and malware of Type III may induce either. Then a further qualification is
possible in view of Definition 13:

Definition 14 (Malware of Type 0) Malware of Type 0 refers to a soft-
ware component that abuses the trust it has been granted by a system to induce
misfunctioning in the system.

Definition 15 (Malware of Type I-II) Malware of Type I-II refers to soft-
ware components acquiring unjustified trust from an incorrect system to induce
dysfunctioning in the system.

Definition 16 (Malware of Type III) Malware of Type III refers to a soft-
ware component that takes control of a system by mediating its trust relationships
at a level of abstraction outside the system, usually ‘closer’ to the hardware.
Such malware may induce dysfunctioning or misfunctioning.

The reason to offer a definitional description of malware in terms of trust is
to prepare for a better, more general and comprehensive approach to detection.
Therefore, this approach can be qualified as a contribution to the tools of Com-
puter Networks Defense (CND). In view of Incident Response (IR) practices,
our aim is to bind the previous definitional description of malware to a corre-
sponding functional qualification. Such an analysis can be given if we qualify
the notion of safety breach by appropriate transformations of relevant system
states through trust operations.

Let us consider a malware m as a software component inducing a transition
S

m−→ S′ from a system S to a variant system S′, where the former is considered
before the successful deployment of the attack, and the latter after it. Qualifying
m means now to associate the security statuses of S and S′ (in terms of control)
with their safety and liveness (i.e. in terms of correctness). We provide in Figure
5 the set of formal transitions obtained by these combinations.

Transformation 1 considers a partially secure system S as by Definition
9 with authorization over some components; if a safety breach of S occurs
induced by a malware m of Type 0, then the resulting transition according to
m induces a misfunctional system S′. Transformation 2 considers a partially
secure system and a breach of S by a malware m of Type I or Type II; it
results in a dysfunctional system S′. Transformation 3 considers a system S
which is controlled by a malware m of Type III at a lower level, e.g. a rootkit,
and which therefore can be considered not secure; it results in a misfunctional
or dysfunctional system S′.
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Transformation 1:

partiallysecure(S)
T0−→ misfunctional(S′)

Transformation 2:

partiallysecure(S)
TI/II−−−→ dysfunctional(S′)

Transformation 3:

¬secure(S)
TIII−−−→ mis/dysfunctional(S′)

Figure 5: Transformations

This approach allows us to explain malware attacks by understanding dis-
played behaviour, identifying the transformation at stake and thus informing
an incident response strategy (see, e.g., [2]). This ontological and functional
analysis of malfunction inducing software offers the chance to reconsider the
definitions of dysfunctioning and misfunctioning software (token and type) from
[15] and to reformulate them in view of malfunctioning inducing software, i.e.
malware. In this attempt, we can make use of all the tools developed in this
section, concerning safety, liveness, and computer security.

Recall from [15] that software dysfunctioning and misfunctioning at the to-
ken level t (i.e. an instance of a program) is considered impossible when analysed
in isolation: in the first case, because a program instance cannot be less reliable
or effective in performing its function F compared with other tokens of the same
type T independently of the supporting hardware used to run it; in the second
case, this is due to the fact that all instances will inherit the same software
design D of the corresponding type T . This obviously does not hold for induced
malfunctioning, which most of the time targets individual instances of software.
Instead, it is perfectly possible to associate individual software instances with
misfunctioning and dysfunctioning behaviours, due to an appropriate breach:

Thesis 1 (Induced misfunctioning of a Software Token) A software to-
ken t can suffer induced misfunction if it is hosted on a system S following a
malware transformation m and it produces undesired side-effects on such a sys-
tem compared to the design D of t in common with other tokens of the same
type T hosted on secure systems.

Thesis 2 (Induced dysfunctioning of a Software Token) A software to-
ken t can suffer induced dysfunction if it is hosted on a system S following a
malware transformation m and t has becomes less reliable or efficient in per-
forming its function F compared with other tokens of the same type T .

Moreover, in [15] it was argued that misfunctioning can be assessed com-
paratively at the type level, where two software with similar functionalities can
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be compared as tokens of a more general category of software (e.g. LibreOffice
Writer and MS Word in the category of word processors). A similar comparison
can be made for induced misfunctioning by malware, when system protection is
taken into account and which can be viable for a type of software but not for
another comparable one:

Thesis 3 (Induced Misfunctioning of a Software Type) A software type
Tx can suffer induced misfunction comparatively, when any of its tokens tx
hosted on a system S following a malware transformation m is subject to side-
effects which are not produced on the same system S by tokens ty of a (possible)
type Ty, where Tx and Ty are tokens of a higher order type T0, if Tx is exposed
to a safety breach from which Ty is protected (e.g. because a patch exists).

The above analysis shows that it is correct to talk about induced malfunc-
tioning for software, both in terms of dysfunctioning and of misfunctioning.
Induced malfunctions count as genuine cases of misfunction and dysfunction, in
which malicious software manipulates trust relationships, or violates safety or
liveness properties.

4 Malicious Software as Mechanism

In the Philosophy of Science, the mechanistic approach is one useful tool for
explaining and understanding phenomena, see, e.g., [11]. The mechanism dis-
covery literature is also a rich source of heuristics for generating hypotheses and
how to test them, see, e.g., [4, 12]. These benefits begin from the notion of
what a mechanism is, so that we know what an explanation should contain or
what we are missing that needs to be discovered. A recent synthesis dubbed
‘minimal’ proposes [18]:

“[a] mechanism for a phenomenon consists of entities (or parts)
whose activities and interactions are organised so as to be responsi-
ble for the phenomenon”.

In this larger context, the attempt at using mechanisms to explore and un-
derstand information security is very recent. In [46], the authors take a prac-
titioner view and use mechanistic modeling of computer security incidents to
clarify and improve the existing model. In [47], the authors take a philosophical
view, synthetise the existing mechanisms literature into a view of how a mech-
anistic approach builds general knowledge, and argue that good practices in
information security already exemplify building general mechanistic knowledge,
though the process is painstaking. The final step in the present contribution
is to connect our definition of malware as malfunction-inducing artefacts to a
mechanistic explanation of malware attacks. The goal is to implement mech-
anistic explanation on malware attacks, so as to facilitate malicious software
classifications.
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Malicious software classifications have several synergies with mechanism dis-
covery. The two broad categories of methods, static and dynamic analysis in-
troduced above in Section 2.2, approach the problem of classification rather
differently. In this context, we leverage the distinction between code as data
and code as program. [47] notes that malware analysis makes use of the etiology
of the malware’s mechanism. Here, we will focus on the instructive properties of
the entities and activities of the mechanism instead. [20] proposes a connection
between the practical security task of differentiating whether information is a
data element or executable code with the mechanism discovery task of determin-
ing whether to model an aspect of a phenomenon as an entity or an activity. Our
descriptions shall illustrate the difference between static and dynamic analysis
in regards to mechanism discovery heuristics related to entities and activities,
respectively.

1. static analysis: In this style of analysis, code is treated and understood
as an entity. Typically the analyst searches for clues that can help dis-
covering the origin, purpose and operational working of the malware. For
example, static analysis of the Stuxnet malware identified strings of bits
that match the product codes of specific Siemens industrial control prod-
ucts [34]. This serves a clue to its purpose, because we learn that the mal-
ware wants to know something about specific Siemens products. There is
a whole discipline of reverse engineering malware, for example using the
ROSE decompiler [32] to do tasks such as recovering software-development
objects to make the static analysis more intelligible [28].

2. dynamic analysis: In this style of analysis, a controlled environment (sand-
box) is deployed that is both instrumented document of what the malware
does and architected to draw out as much of the malware’s behaviour as
plausible. Code is understood as an activity, and the controlled environ-
ment is used to measure or test hypotheses made on its functioning. This
process is part of an arduous creation of general knowledge, situating the
activity in relation to the phenomenon and mechanism of the attack [47].
Again as an example, consider the attack scenario elicited by dynamic
analysis of Stuxnet by the Symantec Security Response Team, see [34].

A useful example model of a malware attack on a computer is the kill chain,
first proposed by the US defense contractor Lockheed Martin as a summary of
the steps taken to attack its systems [23]. The kill chain is useful because it
informs the incident respondent what kinds of artefacts or activities to look for if
certain other things have already been observed, both in the past to explain how
the adversary got in, and into the future to try to prevent further damage.14 For
our purposes, it is enough to understand that the central activity in the model
is ‘exploitation,’ or in our terms, to induce a malfunction in the system, see
Figure 6. The rest of the kill chain either describes how the adversary gets to this

14See [46] and [47] for detailed discussion of the kill chain and its role in building knowledge
in InfoSec.

19



Recon

Weaponize

Delivery

Exploit

Install

ControlActions
on goal

Each attack progresses in this order

Figure 6: The seven steps of the intrusion kill chain [23].

point, or what the adversary does once successful. Static and dynamic analysis
are useful in unique ways, and provide interlocking support for discovering the
mechanism by which exploitation happens, and what happens afterwards.

An advantage of a mechanistic model is that it can be applied at several
levels, and its granularity depends on how coarse or fine the system to be mod-
elled is. In that respect, the aim of using mechanisms to identify malware seems
to be strictly related to the type of taxonomy one is using. Functional-based
taxonomies like the one in [50] require the whole attack to be considered as a
mechanism; behaviour-based taxonomies like the one in [9] and [25] require not
just the modelling of the full attack, but also the inclusion of a comparison ac-
tivity with legitimate programs. A structural taxonomy like in [41], has allowed
us to consider the trust relationships between malicious software and the host
system to investigate the type of transformations induced. Such a situation is of
interest for attacks whose origin is harder to qualify, or which at the beginning
do not offer elements in that respect. Therefore, one might be forced to focus on
a fragment of the attack model, and to determine the elements of that fragment
as a mechanism in itself. We shall be doing so with reference to entities and
activities extracted directly from the taxonomy of Section 3. With the available
notion of induced malfunction, one way to apply it is in terms of constraints on
a finer-grained part of the kill chain, namely exploitation. The different types of
malware will offer different constraints on the rest of the kill chain. For example,
Type 0 malware can only induce misfunction, and so the actions on objectives
available to the adversary are limited to misfunction of the system.

Let’s consider a small example of how mechanistic thinking might be used
to understand the transformations malware can induce.15 At a high level of
generality, let’s say all the analyst knows of the system entities is:

1. the system in the initial state S;

2. the assumed trustworthy component ci;

15We do not claim this is the only way to analyze, or describe the analysis of, the situation.
Some of these steps will be intuitive to professional malware analysts or program verification
logicians. We view this similarity as a main contribution. By casting malware analysis in this
mechanistic lens, we can see similarities between fields in biology and computer science that
otherwise appear starkly dissimilar.
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3. the system in the final state S′.

Two critical activities that protect a system are (definitions based on [44]):

1. Authentication: the activity by which the component ci has its identity
verified by the system S;

2. Authorization: the activity by which the system S grants access (to a
system resource, potentially a component cj) to some component ci.

We could instantiate each of these activities, as [12] calls the heuristic, and
describe in detail the mechanism by which the activity of authentication is
achieved in, for example, Kerberos version 5 on Ubuntu Linux version 18.04.
But for the purposes of this example we view them as activities playing a role in
describing malfunction. Malware does not exploit (that is, induce malfunction)
in just any system activity, but preferentially targets either the authentication
or authorization functionalities of a system. Especially Type I and II malware
are in practice the types most interesting from a system compromise prevention
(e.g., including program verification) perspective. In Type I and II malware,
system components (either static or dynamic, respectively) that should not have
been modified are modified. That is, either the authentication or authorization
process protecting that component dysfunctioned. At this level of abstraction,
exploitation is the phenomenon to be explained. The three types of transfor-
mations illustrated in Figure 5 provide distinct but interrelated possible man-
ifestations of that phenomenon – that is, a cluster of mechanisms [12]. This
helps guiding the explanation effort by giving options for the analyst to test or
attempt to gather evidence for or against.

With these new definitions of malware transformations and our situated
mechanistic understanding of them available, it becomes possible to better qual-
ify the type of description presented above in the kill chain, Figure 6. Exploita-
tion can be explained in terms of types of transformations and unwarranted
or misused trust, probably by causing dysfunction in certain important system
functionalities (in the case of the common Type I and II malware). This level of
description is amenable to logical analysis. Logical analysis would be tremen-
dously helpful if it could be applied to scale up malware analysis, either static
or dynamic. We hypothesize that, like other general knowledge in InfoSec, such
a logic would need to be painstakingly built up out of myriad cases carefully
unified across clusters of mechanisms [47]. Thus, it is no small task to build
up a precise, automatable account of malware’s transformations. Like in other
areas, the logic would almost certainly need to be carefully tooled to match the
scientific or engineer’s model of malware [38].

However, the work presented so far can be immediately applied to improve
existing malware documentation, such as MAEC and MMDEF. The purpose
of this is to enable the careful knitting together of specific MAEC objects into
mechanistic clusters, so similarities can be drawn out and applied to explanation
of such malware in future work. In Section 2.5.2, we looked at an example of the
MAEC language, with a clear distinction between actions and objects, see Figure
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<Bundle id="maec-example-bnd-1" schema_version="4.0.1" defined_subject="true">

content_type="dynamic analysis tool output"

Malware_Instance_Object_Attributes

Properties type="WindowsExecutableFileObjectType"

File_Name=dg003_improve_8080_V132.exe

Size_In_Bytes=196608

Hashes

Hash

Type=MD5 type="HashNameVocab"

Simple_Hash_Value=4EC0027BEF4D7E1786A04D021FA8A67F

Behaviours

Behaviour id="Transformation_2"

Associated_Breach="safety"

Associated_Malfunction="dysfunction"

Actions

Action id="maec-example-act-1"

Name=create file type="FileActionNameVocab"

Associated_Object idref="maec-example-obj-1"

Association_Type=output type"ActionObjAssocVocab"

Action id="maec-example-act-2"

Name=write to process memory type="ProcessMemoryActionNameVocab"

Associated_Objects

Associated_Object idref="maec-example-obj-1"

Association_Type=input type="ActionObjAssocVocab"

Objects

Object id="maec-example-obj-1"

Properties type="WindowsExecutableFileObjectType"

File_Name=msvcr.dll

Figure 7: An example of MAEC bundle improved with a Behaviours category

3: while this description stops at a lower level of abstraction, our analysis offers
the possibility to add a further layer expressing the kind of transformation tak-
ing place, the associated breach and malfunction (misfunction and/or dysfunc-
tion). The malware under consideration is called dg003 improve 8080 V132,
is a Windows executable object, which creates a file and writes to program
memory. This is obviously a breach as an untrusted component is taken as a
trusted one, and this matches Transformation 2, where we start from a par-
tially secure system and end up in a mis/dysfunctioning system. In Figure 7,
we have added a new category to the existing bundle from Figure 3: the cate-
gory behaviour extends the bundle with the information explained previously,
leading to a more complete and comprehensive understanding of the malware.
We can now clearly distinguish between objects, actions and behaviours, the as-
sociated breach is safety, the associated malfunction is of the dysfunction type
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according to Transformation 2.

5 Conclusions

In this paper we analysed several malware taxonomies and discussed the current
languages for malware classification. A taxonomy of malware is generalised
based on a trust relation between system and components, and an appropriate
functional description of malware as transformers between states of the host
system has been introduced. This was done to present an improved classification
method for malware, based on a mechanistic explanation. We showed how this
can be used to facilitate the existing malware classifications, by extending an
example of the MAEC langage. We are convinced that the present treatment
of malware classification can provide a more solid basis to extend their formal
understanding. Next, we aim at formulating such a formal treatement in terms
of a logic of malware.
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