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Reliance upon ancestral mutations is maintained
in colorectal cancers that heterogeneously
evolve during targeted therapies
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Attempts at eradicating metastatic cancers with targeted therapies are limited by the
emergence of resistant subclones bearing heterogeneous (epi)genetic changes. We used
colorectal cancer (CRC) to test the hypothesis that interfering with an ancestral oncogenic
event shared by all the malignant cells (such as WNT pathway alterations) could override
heterogeneous mechanisms of acquired drug resistance. Here, we report that in CRC-
resistant cell populations, phylogenetic analysis uncovers a complex subclonal architecture,
indicating parallel evolution of multiple independent cellular lineages. Functional and phar-
macological modulation of WNT signalling induces cell death in CRC preclinical models from
patients that relapsed during the treatment, regardless of the drug type or resistance
mechanisms. Concomitant blockade of WNT and MAPK signalling restrains the emergence
of drug-resistant clones. Reliance upon the WNT-APC pathway is preserved throughout
the branched genomic drift associated with emergence of treatment relapse, thus offering the
possibility of a common therapeutic strategy to overcome secondary drug resistance.
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harmacological blockade of oncogenic mutations (such as

EGFR or BRAF alterations) has not only shown clinical

effectiveness in advanced colorectal cancer (CRC), but also
in melanoma, lung and other tumour types!. Unfortunately,
clinical response is often transitory and almost all patients suc-
cumb to the disease due to acquired drug resistance. Preclinical
studies have shown that blockade of oncogenic signalling with
targeted agents may lead to the clonal expansion of pre-existing
low frequency cell clones carrying alterations conferring drug
resistance, which eventually become dominant in the population
leading to treatment failure>™. We and others have previously
found that resistance mechanisms to agents blocking oncogenic
proteins can be molecularly heterogeneous, and often include
genetic alterations in downstream effectors of the same pathway,
and/or activation of parallel bypass pathways>>~’. This phe-
nomenon has also been observed in patients, whereby individual
metastatic lesions were shown to independently evolve distinct
resistance mechanisms, which translated into lesion-specific
response to subsequent lines of therapy and consequent clinical
failure®®. It has been proven extremely difficult to engage with
subsequent lines of therapy the heterogeneous mechanisms of
resistance and the subclonal pattern of tumour cell populations
that emerge upon drug selection®. CRC displays molecular het-
erogeneity during tumourigenesis and therapeutic treatment!%-13,
In analogy with the structure of the trees, trunk mutations
represent the complement of genetic alterations that occur in first
cell division during tumour development, thus being present in
all malignant cells (clonal mutations). All mutations that occur
after the most recent appearance of a common ancestor are
instead subclonal (branched mutations)!41°.

We reasoned that molecular determinants shared by every cell
subclone (trunk) might be better suited as therapeutic targets than
heterogeneous events in the branches, as the former remain
present in each drug-resistant cell independently from its genetic
drift. In line with this, WNT/p-catenin signalling in CRC is a
paradigmatic example of cancer trunk pathway, as mutations
affecting its molecular switches occur at the adenoma stage and
are present in all cells when the disease becomes metastatic!®!”.

The adenomatous polyposis coli (APC) gene is a key negative
regulator of the canonical WNT signalling pathway, by providing a
scaffold for the destruction complex that stimulates phosphorylation
and subsequent ubiquitin-dependent degradation of B-catenin.
Loss of function (LOF) mutations in the APC gene or gain of
function (GOF) mutations in the CTNNBI gene (encoding for
B-catenin protein) are found in more than 80% of the sporadic
CRCSI6’18_21.

Most of cancer-linked APC variants are nonsense mutations,
occurring in the mutation cluster region resulting in premature
stop codons and a truncated gene product lacking the carboxy-
terminus of the proteinzo’zz. Because these truncations cause loss
of the domains required for binding to -catenin, APC inacti-
vation leads to accumulation of nuclear B-catenin, which in turn
activates the WNT signalling target transcription factors (T-cell
factor or Tcf) and the lymphoid enhancer factor (LEF)%,
resulting in hyperactivation of the pathway.

In addition to APC and P-catenin, the E3 ubiquitin ligases
ring-finger protein 43 (RNF43), and zinc and ring finger 3
(ZNRF3) also negatively regulate WNT signalling by promoting
ubiquitination and subsequent degradation of the Frizzled and
LRP5/6 WNT pathway receptors’®?>, The secreted WNT ago-
nists of the R-spondin family, RSPO1-4, in turn, negatively reg:
ulate RNF43/ZNRF3. LOF mutations of RNF43/ZNRF3 genes*®*’
and GOF gene fusions involving RSPO2 and RSPO32%? lead to
increased cell surface abundance of WNT receptors and conse-
quently constitutive activation of WNT signallin% in the 15-20%
of CRC that lack APC or CTNNBI alterations?%!.
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CRC cells are known to rely on constitutively active WNT/p-
catenin signalling, since restoration of wild-type (WT) APC
function affects their proliferation’” and can suppress their
tumourigenicity>’.

On the other hand, CRC displays molecular heterogeneity!'%-13;
whether and to what extent CRCs, developing subclonal distinct
molecular lineages as a result of the drug treatment, remain
dependent on the truncal WNT signalling hyperactivation is
largely unknown.

We report that the functional and pharmacological modulation
of WNT signalling in CRC cells and patient-derived models
restricts cell growth and leads to cell death, despite multiple pro-
survival mechanisms acquired previously under treatment with
clinically relevant targeted agents. We further find that con-
comitant blockade of the MAPK and WNT pathways restrains
clonal evolution, and prevents the onset of resistance.

Results

Treatment with targeted agents fuels molecular heterogeneity.
To test whether dependency on WNT signalling was maintained
in CRC cell populations that developed multiple heterogeneous
mechanisms of targeted drug resistance, we first generated
populations of cells resistant to the BRAF inhibitor dabrafenib,
alone or in combination with the anti-EGFR monoclonal
antibody cetuximab (Supplementary Fig. la, b; Supplementary
Table 1), as combination regimens have shown promising activity
in BRAF-mutated metastatic colorectal cancer (mCRC)
patients®!. Whenever possible, multiple independent resistant
models for each cell line were obtained. To extend our findings
beyond BRAF-mutant CRC, we also characterised a previously
established collection of RAS/BRAF WT cell lines, which were
made resistant to the blockade of oncogenic kinases including
anti EGFR antibodies and the NTRK inhibitor entrectinib (Fig. 1
and Supplementary Table 1)>3>7:32,

Molecular profiling of resistant cells unveiled that in most
instances several, often concomitant, mechanisms of drug
resistance emerged affecting either the drug target (such as
secondary mutations in EGFR or NTRK1) or effectors in the same
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Fig. 1 Heterogeneous mechanisms of secondary resistance to targeted
therapies in colorectal cancer (CRC) cells. Indicated CRC cells were made
resistant to single targeted agents or combination of them (see
Supplementary Table 1). Trunk alterations in the WNT pathway are
depicted in the lower brown box. The upper blue box illustrates multiple,
often co-occurring, genetic alterations acquired at secondary resistance.
SNV indicates Single Nucleotide Variance. Ex stands for exon. ECD stands
for extra-cellular domain
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Fig. 2 Clonal evolution of CRC cell populations upon secondary resistance to targeted agents. Phylogenetic evolutionary maps illustrate the development of
sub clonal populations after acquisition of secondary resistance to the targeted therapies. The bioinformatic tool EXPANDS was used to infer the clonal
architectures using gene copy number, synonymous and non-synonymous somatic mutations, as described in detail in the Material and Methods section.
Each circle represents a subclonal population, numbers indicate non-synonymous variations defining clonal sweeps. Length of the branches is proportional
to the number of variants (synonymous and non-synonymous) acquired by individual clones, while ancestral branches define the main colour of its
subclones. Subpopulations carrying somatic alterations known to drive drug resistance are highlighted (see Supplementary Table 1). The dashed line

indicates KRAS amplification

or in parallel pathways (Fig. 1). Trunk genomic alterations in the
WNT/B-catenin pathway were maintained in resistant cell
populations. These changes included stop codon and indel
mutations, leading to a premature C-terminus of APC protein
or molecular alterations in upstream components of the WNT
pathway (Fig. 1 and Supplementary Table 1).

Phylogenetic subclonal structures of CRC resistant cells. Exome
analyses revealed that—beyond putative key driver events in onco-
genic kinase signalling responsible for drug resistance—several novel
genetic alterations were acquired following selective pressure of the
targeted agents. Of these, some were shared (common), while most
were “private”, suggesting parallel independent patterns of evolution
under drug-induced selective pressure (Supplementary Fig. 1c, d).
We applied bioinformatic tools to the exome data to infer the clonal
architecture of each resistant population. Using clone phylogenetic
tracking, we found that resistant cell populations displayed complex
subclonal architecture, indicating concomitant evolution of multiple
cellular lineages during treatment, each associated with specific sets
of molecular alterations (gene copy number, synonymous and non-
synonymous somatic alterations) (Fig. 2). This phenomenon
occurred independently from the type or the number of drugs
applied to achieve resistance (Supplementary Table 1).

While some of the evolutionary branches displayed well-
known resistant mutations (such as RAS, MAP2KI and EGFR
extracellular mutations), others did not (Fig. 2). This is in
agreement with mutant allele frequencies determined by exome
analysis (Supplementary Table 2) and suggests that additional
mechanisms of drug escape remain to be characterised.

To verify the mutation's co-occurrence/exclusivity patterns pre-
dicted by phylogenetic tracking, we performed single cell dilution of
the resistant populations. Droplet digital PCR (ddPCR) analysis of
the individual clones isolated from HT29 RI revealed either EGFR
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p.S492R or KRAS p.E63K mutations (Supplementary Table 3). In
clones isolated from JVE109 R3, we detected KRAS p.G12D or the
MAP2K]1 p.J103N variants (Supplementary Table 3), confirming the
patterns inferred by bioinformatic analysis. Occasionally we found
wells containing both mutations (Supplementary Tables 3), in these
instances, the different fractional abundance suggested the presence
of a mixed population of cells likely associated with imperfect single
cloning procedures (Supplementary Table 4).

Restoration of WT APC overcomes acquired drug resistance.
We sought to investigate whether colorectal tumours that had
developed subclonal distinct molecular lineages as a result of drug
treatment remained dependent on WNT signalling. At the present
time, APC is not directly druggable, and approaches aimed at tar-
geting the upstream components of the WNT/B-catenin pathway
would have minimal effect in APC-mutant cancers. As a proof of the
concept strategy, we therefore decided to ectopically reintroduce WT
APC in CRC cells carrying APC-inactivating mutations. Restoration
of functional WNT signalling impaired growth of both parental and
derivative resistant APC-defective cells, leading to rapid cell death 48 h
after APC nucleoporation (Fig. 3; Supplementary Fig. 2). By contrast,
ectopic expression of a truncating inactive form of APC (p.G97*) only
marginally affected the cell growth. Notably, WNT signalling
restoration inhibited the growth of drug-resistant cells independently
of the molecular mechanisms of resistance or the oncogenes and
pathways involved in drug escape (Supplementary Fig. 2).

Inhibition of WNT signalling in drug-resistant CRC cells.
While the development of therapeutic strategies directly targeting
APC remains challenging, other key nodes of the WNT pathway
in CRCs may be amenable to pharmacological approaches>. For
instance, inhibition of porcupine (PORCN), an acyltransferase
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Fig. 3 Functional restoration of WTAPC induces cell death in CRC cells carrying distinct mechanisms of secondary resistance. a-¢ Parental and resistant-
derivatives CRC cells were electroporated with plasmid encoding for WTAPC or an inactive APC version (G97*). Electroporation buffer alone was used as
control (mock). After 48 h, cells were stained with Hoechst 3342 /Propidium lodide (PI) to detect cell death. Representative images of single 96-wells are
shown for each condition. d-f Relative quantification of Hoechst/PI positive cells was made using Imagel software and normalised against mock cells.

Results represent means + SD of three independent wells

required for intracellular transport, secretion, and activity of
WNT ligands, has been remarkably effective in CRCs carrying
RSPO2/3 re-arrangements or RNF43/ZNRF3 truncating muta-
tions>»%>, To test the impact of modulating the WNT signalling
pathway in CRC after failure of targeted therapies, we used
LGK974, a clinical-stage (NCT01351103) porcupine inhibitor?®.
We identified three CRC cell lines harbouring trunk alterations in
RSPO3% or ZNRF3 genes with exquisite sensitivity to LGK974
(Supplementary Fig. 3a, b) and which lack mutations in APC and
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CTNNBI (B-catenin) (Fig. 1). We then measured the {-catenin-
dependent transcriptional activity of Tcf/LEF transcription fac-
tors. Treatment with LGK974 severely reduced the (-catenin
activity in RSPO3/ZNRF3 altered cells (Supplementary Fig. 3c). In
CRC cells, AXIN2 is transcriptionally induced following recep-
tion of a WNT/B-catenin signal, and represents a marker of WNT
pathway functionality>”. Porcupine inhibition promoted on-
target gene modulation, as shown by reduced expression of
AXIN2 (Supplementary Fig. 3d).
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Fig. 4 Pharmacological blockade of WNT signalling is effective in molecularly heterogeneous populations of drug-resistant CRC cells. a BRAF-mutated
VACO6 and JVE109 CRC cells were treated for 5 days with increasing concentrations of porcupine inhibitor LGK974 (WNT inhib.). Cell viability was
assayed by the ATP assay. Data points represent means + SD of at least three independent experiments. b JVE109 parental and resistant-derivatives cells
were treated with LGK974 for 5 days. After that, active cleaved caspase-3 was detected by immunofluorescence (green). Nuclei are stained with DAPI
(blue) and actin with Phalloidin (red). Scale bar: 50 pm. ¢ JVE109 parental and resistant-derivatives cells were treated with LGK974 for 4 days.
Representative confocal microscopy images showing f-catenin distribution (red) are reported. Nuclei are stained with DAPI (blue). Scale bar: 25 pm.

d WNT inhibitor LGK974 induces a strong downregulation of p-catenin-dependent transcriptional activity of Tcf/LEF luciferase reporter construct in CRC
parental and resistant-derivatives cells. Results represent means = SD of at least two independent experiments. Single points indicate results of single
experiments. ***p < 0.007 (Student's t test)
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Fig. 5 Cells and organoids from drug-resistant CRC patients rely on the WNT/B-catenin pathway. a Primary 2D cell lines, established from the tissue
specimen collected from a CRC patient whose tumour developed secondary resistance to anti-EGFR therapy (see detailed methods section), were
electroporated with a plasmid encoding for WT APC or an inactive APC version (G97*). Electroporation buffer was used as the control (mock). After 48 h,
cells were stained with Hoechst 3342 /Propidium lodide (PI) to detect cell death. A representative image of a single 96-well is shown for each condition.
b Relative quantification of Hoechst/PI positive cells was made using ImageJ software and normalised against mock cells. Results represent means + SD of
three independent wells. ¢ 3D organoids established from a CRC patient whose tumour developed secondary resistance to EGFR-BRAF combinatorial
treatment (see detailed methods section), were treated with LGK974 for 2 weeks. Representative confocal microscopy images showing active cleaved
caspase-3 (green) are shown. Nuclei are stained with DAPI (blue) and actin with Phalloidin (red). Maximum projection of a 10 image stack along the z-axis.
Scale bar: 50 pm. d Patient-derived mice models (xenopatient) were established from a tumour obtained from a metastatic colorectal cancer patient (PZ-2)
resistant to EGFR/BRAF combinatorial treatment. Upon successful engraftment, mice were randomised to vehicle (n=6) or LGK974 (WNT inhibitor)
(n=6) treated arm. Results represent tumour mass volume (mm3, mean = Cl of individual tumour volume)

Derivative cell populations with heterogeneous secondary
resistance alterations to MAPK pathway inhibition retained the
same level of sensitivity of their parental counterparts to
modulation of the WNT pathway. LGK974 impaired cell growth
(Fig. 4a) and promoted cell death through caspase 3/7 activation
in a dose-dependent manner in resistant cells, regardless of the
molecular evolution, which occurred during previous target drug
exposure (Fig. 4b; Supplementary Fig. 4).

To further assess the molecular mechanisms of action of LGK974
in drug resistant cells, both distal and proximal WNT signalling
events were examined. We found that LGK974 downregulated
phosphorylation of the WNT co-receptor LRP6 and in parallel
triggered the accumulation of Axinl (Supplementary Fig. 5a), a
member of the P-catenin destruction complex, which with APC
promote, the ubiquitin-dependent proteasomal degradation of
B-catenin via CKla- and GSK3p-mediated phosphorylation of
B-catenin®®~0, Nuclear exclusion of B-catenin occurred both in
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parental and resistant derivatives (Fig. 4c), and resulted in strong
reduction of B-catenin-dependent Tcf/LEF transcriptional activity
(Fig. 4d). The marked response to the inhibition of WNT ligands
secretion was associated with a corresponding decrease in the
expression of WNT target genes AXIN2 and LGR5 indifferently in
parental and resistant derivatives (Supplementary Fig. 5b, c).

Reliance upon WNT-APC pathway in patient-derived CRC
models. To extend the cell-based findings to more clinically
relevant models, we exploited the patient-derived cancer cells and
organoids, which we established from two patients with mCRC
who initially responded, and then progressed upon treatment
with the targeted therapies. A tissue biopsy was collected when a
patient with an initial RAS/BRAF WT tumour developed sec-
ondary resistance to anti-EGFR-based therapy. Based on our
previous experience and to improve chances of establishing
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patient-derived models, the biopsy was divided in two fragments,
one of which was used to generate a primary cell line (patient-
derived cell line, -HL) (Fig. 5a), while the other was transplanted
subcutaneously in an immunocompromised mouse. Upon suc-
cessful engraftment of the latter, the tumour (PDX, patient-
derived xenograft or xenopatient) was excised and employed to
derive another primary cell line (PDX-derived cell line, -XL).
Different (sub-clonal) mechanisms of resistance were identified in
the two cell models. While both cell lines harboured the same
APC ancestral mutations indicating a clonal origin (Supplemen-
tary Table 1), one displayed a KRAS p.G12D mutation, whereas
the other showed a BRAF p.V600E variant (Fig. 1; Supplementary
Table 1). Remarkably, ectopic restoration of the WT APC led to
cell death in both patient-derived cell models, regardless of the
resistance mechanisms that emerged in the tumour during clin-
ical treatment (Fig. 5a,b; Supplementary Fig. 3).

A second biopsy was gathered from a mCRC patient whose
tumour carried genetic alterations in RNF43 and BRAF genes, and
clinically responded and then relapsed to EGFR blockade with
cetuximab in combination with the BRAF inhibitor encorafenib.
The biopsy was first transplanted subcutaneously in an
immunocompromised mouse (see Methods). After successful
engraftment and growth, the tumour was excised and fragmented
to generate cohorts of mice bearing patient-derived tumourgrafts
(xenopatients), while one fragment was used to derive in vitro 3D
organoids cultures. In these organoid models with acquired
resistance to combinatorial EGFR and BRAF target inhibitors,
inhibition of the WNT pathway by the porcupine inhibitor
LGK974 promoted apoptosis in a dose-dependent manner, as
indicated by caspase-3 staining (Fig. 5c¢). The patient-derived
tumourgrafts generated from this BRAF-mutant tumour grew
very rapidly, emphasising and reflecting the aggressiveness of

the malignancy (Fig. 5d black line) from which it originated.
Due to this rapid growth rate, vehicle-treated mice had to be
sacrificed 14 days after initiation of treatment, according to
ethical guidelines. Nevertheless, inhibition of constitutively active
WNT pathway markedly delayed tumour growth in the
xenopatient cohort treated with porcupine inhibitor LGK974,
inducing a prolonged tumour mass stabilisation (Fig. 5d blue
line).

WNT pathway modulation in CRC cells. To characterise the
efficiency of WNT inhibition, MAPK-resistant CRC cells were
treated with the porcupine inhibitor LGK974 in a long-term
assay. While progressive growth impairment was detected from
day 5 to day 16 (Supplementary Fig. 6), in most cell lines, a slight
increase in the cell viability was observed at day 21, suggesting the
presence of ‘persister’ cells that might have survived the WNT
pathway inhibition. Indeed, the induction of caspase activity
declines after 3 weeks of treatment (Supplementary Fig. 6).
Based on this finding, we wondered whether genetically
defined sub-clones—identified prior to LGK974 treatment
(Fig. 2)—might persist upon WNT pathway modulation. We
therefore treated the CRC-resistant cells with WNT inhibitor for
2 weeks and then extracted gDNA from the cells that survived
pharmacological treatment. ddPCR analysis unveiled that the
fractional abundance of pre-existing mutant alleles remains sub-
stantially unchanged between the untreated and the LGK974-
treated cells over 2 weeks (Fig. 6). Modest fluctuations of fractional
abundance of mutated alleles were detected also in untreated cells
in different biological replicates (Fig. 6), supporting the possibility
that WNT-related cell death in CRC cells is largely independent
from the oncogenic alterations they had acquired.
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Fig. 6 Cell death associated with porcupine blockade is independent from MAPK alterations. MAPK-resistant CRC cells were treated with 1TuM LGK9S74
(WNTi) for 2 weeks. After that, gDNA was extracted from the control untreated (NT) and the LKG974-treated cells. ddPCR analysis was performed to
measure the fractional abundance of the mutated alleles, previously identified as mechanisms of secondary resistance to MAPK inhibition. Results
represent means + SD of two independent technical replicates. a and b indicate the independent biological replicates of the experiment
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Fig. 7 Concomitant blockade of WNT and MAPK signalling restricts the emergence of drug resistance. a APC-mutated CRC cells and their MAPK-resistant
derivatives were transfected with plasmid expressing intact WT APC or control electroporation buffer (mock). After transfection, the cells were seeded in
48-wells plates with or without cetuximab (DIFI cells), dabrafenib 4 cetuximab (WIDR cells). After 48 h, cell viability was assayed by ATP assay.
Representative graphs of two independent experiments for each cell line are reported. Results represent means £ SD of three independent wells. Single
points indicate results of single experiments. b BRAF-mutated CRC cells were treated with dabrafenib (BRAFinhib.), dabrafenib + cetuximab (EGFRinhib.),
LGK974 (WNTinhib.), or dabrafenib + LGK974, until secondary resistance emerged

Inhibition of WNT-MAPK pathways prevents secondary
resistance. Tantalised by the above results, we tested whether
combinatorial inhibition of WNT and MAPK pathways might be
effective on cells that had already acquired resistance to targeted
therapies. To test the hypothesis, we treated BRAF-mutant CRC
cells made resistant to MAPK inhibitors with LGK974 alone or in
combination with the BRAF inhibitor dabrafenib. In most of the
cell models, BRAF inhibition reduced the effectiveness of WNT
blockade on restricting growth (Supplementary Fig. 7). The only
exception was JVE109 R2 in which horizontal inhibition of MAPK
and WNT pathways induced a more efficient inhibitory effect. We
noted that this is the only resistant population without RAS
mutations (Supplementary Tables 1 and 2). We speculate that in all
the other resistant models carrying concomitant BRAF V600E and
RAS mutations, BRAF inhibition can paradoxically stimulate pro-
liferation by promoting a known paradox biochemical activation of
the MAPK pathway*!. This may explain the partial rescue in cell
viability we observed when dabrafenib is added to LGK974 in cells
with acquired RAS resistance mutations.

In line with this, inhibition of MAPK pathway increases the
efficacy of functional APC restoration in parental (MAPKi-
sensitive) cell lines, while does not further enhance the impact of
WNT pathway modulation when secondary resistance is already
established (Fig. 7a).

Prompted by these results, we tested whether ‘ab initio’ (that is
before onset of secondary resistance) blockade of the WNT and
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MAPK pathways could instead prevent or delay the evolution of
resistant clones. To test this possibility, we performed an assay we
previously developed to assess in preclinical models development of
resistance over time, in analogy to the time to progression (TTP)
value usually recorded in patients*’. BRAF-mutant VACO6 and
JVE109 cells were treated with the BRAF inhibitor dabrafenib or
WNT inhibitor LGK974 alone, or in combination and the
emergence of resistant subpopulations was monitored over time.
This TTP assay showed that although inhibition of WNT pathway
or MAPK pathway alone was initially effective, resistant clones
emerged. On the contrary, concomitant suppression of WNT and
MAPK signalling pathways prominently delayed the onset of
relapse, with no resistant clones emerging even up to 9 months after
treatment initiation (Fig. 7b). Remarkably, such a combinatorial
approach was more effective than vertical dual inhibition of the
MAPK pathway with BRAF and EGFR inhibitors, which is
currently undergoing clinical evaluation (Fig. 7b).

Discussion

The awareness that solid tumours are molecularly heterogeneous
poses a formidable therapeutic challenge. We and others
have previously shown, both in preclinical and clinical studies,
that potentially aggressive subclones may be present at low fre-
quency in the primary tumour and remain almost undetectable
providing a heterogeneous reservoir to fuel resistance in response to
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treatment selective pressures>®!>*3, In addition, stressful condi-
tions such as drug treatment can induce acquisition of novel
mutations, as well as ‘genome chaos’, contributing to molecular
heterogeneity”*4.

The polyclonal landscape of CRC can result from several
processes including: multi-step accumulation of genetic and
epigenetic aberrations, alterations by Darwinian selection, neutral
acquisition of passenger variants over prolonged time, and short
periods of genomic instability, resulting in concomitant occur-
rence of several molecular changes!"!”*>~47_ The specific com-
binations of molecular alterations within a tumour thus affect not
only the natural course of the disease, but also the clinical
response to therapeutic regimens.

We find that the treatment with targeted therapies, although
initially effective, fuels clonal evolution and further amplifies
molecular diversity. Phylogenetic tracing of CRC populations that
acquired drug resistance, unveiled the coexistence of numerous
inter-mixed molecular lineages, each characterised by specific
mutational signatures. Importantly, such complex sub-clonal
architecture was observed not only in CRC cells treated with a
single agent (such as EGFR inhibitor cetuximab or BRAF inhi-
bitor dabrafenib), but also when combinatorial regimens of drugs
targeting different pathways were administered.

In principle, deciphering the complete genomic profiles of each
tumour would be crucial for precision medicine, in order to allow
targeting of all genetically driver alterations concomitantly pre-
sent in the tumour bulk. However, this remains difficult to
achieve, as bioinformatic tools designed to infer phylogenetic
tumour structures data are still being optimised.

Of note, exome analysis, although highly sensitive, did not reveal
a readily recognisable mechanism of resistance in some of the
subclonal populations highlighted by phylogenetic investigation.
This is consistent with what is observed in patients. Treatments
aimed at targeting acquired oncogenic nodes present in tumour
branches, are active only on a subset of the tumour lesions, con-
ceivably as a consequence of coexistence of multiple resistance
mechanisms, some of which are often not molecularly defined or
detectable. Indeed, the independent development of different
resistance mechanisms in distinct metastases translates in lesion-
specific response to subsequent lines of therapy and consequent
clinical failure®’.

Therefore, what limits further progress in the field of targeted
therapies is not the emergence of resistance -per se- but the fact
that relapses are driven by parallel genomic evolution of multiple
cell lineages, which become extremely difficult to eradicate.

Virtually all CRCs display aberrant WNT signalling as the initial
tumourigenic event!”2°, The impact of constitutive WNT pathway
activation on colorectal tumourigenesis has been well characterised.
It is known that restoration of APC function could revert an ade-
noma to normal colonic tissue’’, highlighting the importance of
continuous WNT pathway activation for CRC maintenance. Much
less is known as to whether reliance on the WNT pathway is pre-
served in later phases of colorectal carcinogenesis when tumours
face genomic bottlenecks and evolution driven by administration of
chemotherapy and targeted therapies.

Our results provide functional and pharmacological evidence
that dependency upon deregulation of the WNT/APC/B-catenin
signalling axis is maintained through the distinctive stages that
characterise the emergence of resistant clones: cytotoxic bottle-
neck, clonal selection, adaptation, neutral evolution, acquisition of
multiple molecular aberrations and expansion; thus offering
broadly applicable therapeutic options to override heterogeneity.

We demonstrated that interference with WNT pathway hyper-
activation through reintroduction of functional APC led to cell
death in all the resistant CRC populations analysed, bypassing the
multiple pro-survival mechanisms acquired under previous drug
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exposure. Notably, the cytotoxic effect of wild-type APC re-
expression is rapid; suggesting that even partial inhibition of
constitutively active trunk signalling could result in powerful anti-
tumour effects.

Although restoration of wild-type APC function in CRC
patients is currently therapeutically unfeasible, our results suggest
that small molecules aimed at blocking constitutive WNT sig-
nalling at different levels, might achieve similar effects in defined
patients subpopulations. In this regard, our findings indicate that
CRCs harbouring trunk alterations in upstream components of
the WNT pathway (such as RSPO3, RNF43 and ZNRF3) retain
strong sensitivity to porcupine blockade despite acquisition of
complex sub-clonal structure. Importantly, cell death secondary to
inhibition of ancestral pathway hyperactivation occurs in the cell
population, independently from the oncogenic alterations
acquired under selective pressure of targeted agents. We cannot
exclude that other mechanisms, for example epigenetic alterations,
can also play a role in conferring resistance to LGK974 treatment.

The activity of WNT signalling depends on the accumulation
and translocation of P-catenin to the nucleus, one of the hall-
marks for the initiation of tumourigenesis in a variety of human
cancers, including CRC?®. We find that pharmacological blockade
of WNT ligand secretion resulted in translocation of B-catenin
from the cytoplasm and nucleus to the plasma membrane,
decreased P-catenin dependent Tcf/LEF transcriptional activity,
and cell growth impairment despite massive molecular evolution
of resistant derivatives.

Metastatic CRC patients with BRAF mutant tumours are
characterised by poor response rates to the anti-EGFR mono-
clonal antibodies (moAb) panitumumab and cetuximab and poor
prognosis, with a median overall survival of only about 9 to
12 months. Despite important clinical benefit recently achieved
by combinatorial treatment with BRAF, EGFR and MEK inhi-
bitors, clinical responses are short-lived due to acquisition of
secondary resistance. Preclinical and clinical findings unveiled
molecularly heterogeneous mechanisms by which cells evade
BRAF targeted therapies>*$~>1, that in turn calls for subsequent
rounds of therapy, based on the novel molecular landscape
acquired. Recent studies highlighted co-occurrence of genetic
alterations in RNF43 and BRAF in CRCs>?, identifying a subset of
patients with putative selective sensitivity to pharmacological
blockade of the WNT pathway.

Indeed, we observed that a BRAF-mutated patient tumour,
which rapidly developed secondary resistance to dual blockade of
MAPK pathway, retained strong WNT pathway dependency.
Here, interference with the activity of WNT ligands limited
tumour growth both in vitro (patient-derived organoids) and
in vivo (xenopatient).

Comprehensive analyses of CRCs carried out by the Cancer
Genome Atlas consortium highlighted that molecular changes
lead to deregulation of four main signalling routes including
TP53, TGF-beta, WNT and the Receptor Tyrosine Kinase (RTK)-
RAS pathway?’. Blockade of oncogenic receptor tyrosine kinases
in advanced CRC patients is hampered by intrinsic and acquired
resistance, even when vertical combinations of inhibitors (for
instance EGFR, BRAF and MEK triplet combinatorial regimens)
are applied®!. Recent preclinical data indicate that acquired
resistance to WNT pathway modulation by the porcupine inhi-
bitor LGK974 can also emerge®®. The functional consequences of
simultaneous targeting distinct signalling nodes known to be
deregulated in colorectal tumours are much less investigated.

Interference with ancestral WNT pathway mutations per se,
although effective, does not exert prolonged control of tumour
growth (both in vitro and in vivo) and horizontal inhibition of
MAPK and WNT pathways was not effective when resistance to
MAPK was already established. On the contrary, we found that
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dual blockade ab initio (before onset of heterogeneous mechan-
isms of resistance) led to a strong and durable effect and can be
therefore exploited to restrain clonal evolution, and prevent onset
of resistance. This suggests that addition of WNT inhibitors to
clinically approved kinase inhibitors might provide long-term
clinical benefits for CRC patients.

The peculiar oncogene dependence of CRC perhaps reflects the
requirement of normal colonic tissue for high WNT activity,
retained when cells transform and remaining in place even after
profound genomic and biological drifts associated with develop-
ment of drug resistance. Whether this phenomenon could be
observed in other tumour types request further investigations.

In summary the remarkable dependency of CRCs upon
ancestral oncogenic alterations offers the rationale for the
development of novel cancer therapies and combinatorial stra-
tegies designed to suppress, or even prevent, the emergence of
resistance in colorectal tumours.

Methods

Cell culture and generation of resistant CRC cells. All cell lines were maintained
in their original culturing conditions according to supplier guidelines. Cells were
ordinarily supplemented with FBS at different concentrations, 2mM L-glutamine,
antibiotics (100 U/mL penicillin and 100 mg/mL streptomycin) and grown in

a 37°C and 5% CO, air incubator. Cells were routinely screened for absence of
Mycoplasma contamination using the Venor® GeM Classic kit (Minerva biolabs).
The identity of each cell line was last checked no less than 3 months before
performing experiments by PowerPlex® 16 HS System((Promega), throught Short
Tandem Repeats (STR) at 16 different loci (D5S818, D13S317, D7S820, D16S539,
D21S11, vWA, THO1, TPOX, CSF1PO, D18S51, D3S1358, D8S1179, FGA,

Penta D, Penta E and amelogenin). Amplicons from multiplex PCRs were sepa-
rated by capillary electrophoresis (3730 DNA Analyser, Applied Biosystems) and
analysed using GeneMapper v.3.7 software (Life Technologies).

JVE109 CRC cells were obtained by Dr. T. van Wezel, Department of
Pathology, Leiden, University Medical Center. Origin of the other parental cell
lines was previously published in ref. >3. BRAF V600E mutant VACO6 and JVE109
resistant derivatives were generated by continuous treatment with dabrafenib
(300 nM) alone, combination of dabrafenib and cetuximab (50 pg/mL), LGK974
(250 nM), or combination of dabrafenib and LGK974 until resistant derivatives
emerged. HT29 resistant cells were generated by constant treatment with
dabrafenib 5 uM and cetuximab 5 pg/mL. All the other resistant cell lines employed
in this study have been previously described>>>732,

Exome analysis of CRC resistant to targeted therapies. Genomic DNA (gDNA)
was extracted using ReliaPrep® gDNA Tissue Miniprep system System (Promega)
and sent to IntegraGen SA (Evry, France) that performed library preparation,
exome capture, sequencing and data demultiplexing. Final DNA libraries were pair-
end sequenced on Illumina HiSeq4000 and FASTQ files produced by IntegraGen
were analysed at Candiolo Cancer Institute. Raw data showed a 145x median depth
and a 97.5% mean coverage. Data alignment were performed using BWA-mem
algorithm® on hg38 human reference genome. Resulting files were cleaned of PCR
duplicates by “rmdup” samtools command®”. For each cell line, somatic mutation
analysis was performed subtracting variations found in parental (sensitive) sample
to resistant counterpart accordingly to what has been previously published®®. For
each resistant cell line, gene copy number (GCN) was computed as follow: first the
median read depth of the target regions was calculated; next, for each gene the
median read depth was obtained and then divided by the former value.

Clonal evolution analysis. Tumour evolution of resistant cell lines was inferred
through EXPANDS®’. This tool estimates tumour cellular prevalence and the
number of clonal expansions from nucleotides and gene copy number alterations.
EXPANDS results were processed in order to build the trees using the matrix of
mutations that inhabit each subpopulation. Clonal evolution has been built as
follows: clones containing variations that appear for the first time are defined as
father; next, subpopulations containing the same alterations and new ones are
assigned to their respective ancestor; and so on, recursively.

Drug proliferation assays. CRC cell lines were seeded at different densities (2-5 x
103 cells/well) in medium containing 10% FBS in 96 or 48-well plastic culture
plates at day 0. The following day, serial dilutions of the indicated drugs were
added to the cells in serum-free medium, while DMSO-only treated cells were
included as controls. Plates were incubated at 37 °C in 5% CO, for indicated time.
Cell viability was assessed by measuring ATP content through Cell Titer-Glo®
Luminescent Cell Viability assay (Promega). Apoptosis was measured by mea-
suring Caspase 3/7 activity by Caspase-Glo® 3/7 Assay (Promega). Luminescence
was measured by TECAN Spark® Plate reader.
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Establishment of primary colorectal cancer and organoids. Primary colorectal
cancer 2D cell lines and 3D organoids were established from tumour tissues
obtained from patient’s biopsy and patient derived xenografts. Tumour tissues were
dissociated into single-cell suspension by mechanical dissociation using the gen-
tleMACS Dissociator (Miltenyi Biotec) and enzymatic degradation of the extra-
cellular matrix using the Tumour Dissociation Kit (Miltenyi Biotec) according to
the manufacturer’s instructions. The cell suspension was then centrifuged three
times at 1200 rpm for 5 min. Supernatants were removed and cell pellets were
resuspended with DMEM/F12 medium containing 10% FBS.

To generate 2D primary cell culture, the cell suspensions were passed through a
70-um cell strainer (Falcon) and resuspended with culture medium DMEM-F12
containing 2 mmol/L L-glutamine, antibiotics (100 U/mL penicillin and 100 ug/mL
streptomycin), 50 pg/mL gentamicin, and 10 umol/L ROCK inhibitor Y-27632
(Selleck Chemicals Inc.) and cultured on collagen-coated dish (Corning) at 37 °C in
5% CO,.

In order to generate tumour-derived 3D organoids, the final cell suspension was
centrifuged and washed with PBS twice and the cell pellet was embedded in
Basement Membrane Extract (BME; Cultrex BME RGF type 2). Different densities
of tumour cells were plated and left to solidify before tumour organoid medium
was added and tumour cells were incubated at 37 °C. The composition of Tumour
Organoid medium is: DMEM/F12 + Hepes medium supplemented with
antibiotics, 1x Primocin (InvivoGen), 1% GlutaMax (Invitrogen), 1 x
B27 supplement (Invitrogen), 1.25 mM N-acetyl-cysteine (Sigma Aldrich), 10 mM
nicotinamide (Sigma Aldrich), 50 ng/mL human EGF (PeproTech), 100 ng/mL R-
spondin (R&D), 100 ng/mL Noggin (PeproTech), 10 nM gastrin (Sigma), 500 nM
TGFb type I receptor inhibitor A83-01 (Sigma Aldrich), 10 uM p38 MAPK
inhibitor SB202190 (Sigma Aldrich) and 10 nM prostaglandin E2 (Tocris). Fresh
medium was replaced every 2-3 days. Outgrowing organoids were passaged every
10-15 days after mechanical and enzymatic disruption.

Droplet digital PCR analysis. Genomic DNA (gDNA) was extracted using
ReliaPrep® gDNA Tissue Miniprep system System (Promega) or Wizard SV96
Genomic DNA Purification System (Promega). Isolated gDNA was amplified using
ddPCR Supermix for Probes (Bio-Rad) using KRAS, EGFR and MAP2K1 (Pri-
mePCR ddPCR Mutation Assay, Bio-Rad or custom designed) ddPCR assays for
point mutations. ddPCR was then performed according to manufacturer’s protocol,
and the results were reported as the percentage or fractional abundance of mutant
DNA alleles to total (mutant plus wild-type) DNA alleles. Five to ten microliter of
DNA template was added to 10 uL of ddPCR Supermix for Probes (Bio-Rad) and
2 uL of the primer and probe mixture. Droplets were generated using the Auto-
mated Droplet Generator (Auto-DG, Bio-Rad) where the reaction mix was added
together with Droplet Generation Oil for Probes (Bio-Rad). Droplets were then
transferred to a 96 well plate and then thermal cycled with the following condi-
tions: 10 min at 95 °C, 40 cycles of 94 °C for 30, 55 °C for 1 min followed by 98 °C
for 10 min (Ramp Rate 2.5 °C/s). Droplets were analysed with the QX200 Droplet
Reader (Bio-Rad) for fluorescent measurement of FAM and HEX probes. Gating
was performed based on positive and negative controls, and mutant populations
were identified. The ddPCR data were analysed with QuantaSoft analysis software
(Bio-Rad) to obtain Fractional Abundance of the mutated DNA alleles in the wild-
type or normal background. Fractional Abundance is calculated as follows: F.A.%
= (Nmut/(Nmut + Nwt)) x 100), where Nmut is the number of mutant events and
Nwt is the number of wild-type events per reaction. The number of positive and
negative droplets is used to calculate the concentration of the target and reference
DNA sequences and their Poisson-based 95% confidence intervals. ddPCR analysis
of normal control DNA (from cell lines) and no DNA template controls were
always included. The experiments were repeated at least twice in independent
experiments to validate the obtained results.

Mutational analysis in cell lines. Genomic DNA samples were extracted by
Wizard® SV Genomic DNA Purification System (Promega). For Sanger Sequen-
cing, all samples were subjected to automated sequencing by ABI PRISM 3730
(Applied Biosystems). Primer sequences for ZNRF3 gene are: FW 5-AGTATGC
TCAGCCCTGCCTA-3’; REV 5'- TAGCTGAGGCCCTGGAAGTA-3'.

Genetic restoration of APC. CRC cells were detached and seeded in growth
medium without antibiotics 18-24 h before electroporation for optimal 70-80%
confluence cell density at the time of electroporation. The day after cells were
harvested and counted: 1 x 10° cells/mL for each cell line were resuspended in 100
uL Ingenio solution (Ingenio® Electroporation Kits, Mirus) and electroporated with
2 ug of plasmids encoding for wild-type APC or indicated mutant using Amaxa®
Nucleofector®. After that, cells were seeded in different 96-well plates in triplicates
for multiple readouts. Plates were incubated at 37 °C in 5% CO, for 48 h. After that,
cell viability was assessed by measuring ATP content through Cell Titer-Glo®
Luminescent Cell Viability assay (Promega). Cell death was measured by Cell
TOX-Green-Cytotoxicity® Assay (Promega). Luminescence and fluorescence were
measured by TECAN Spark® Plate reader. Images of Hoechst 3342/Propidium
iodide staining were acquired using Cytation3 Imaging Reader® (Biotek) with a 4x
objective and analized with Image] software. At least two independent experiments
were performed for each cell line and condition.

| DOI: 10.1038/541467-018-04506-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Immunofluorescence. Organoids embedded in BME (Cultrex® Basement Mem-
brane Matrix BME) were grown as domes arranged in 8-well chamber

slides, in DMEM/F12 10% FBS and treated with LGK974 1 uM. Drug was refreshed
every 4 days. After 14 days, organoids were fixed in 4% paraformaldehyde for

30 min at room temperature (RT) and permeabilized with 0.5% Triton-X100 in
PBS for 30 min RT. After that, organoids were treated with 1% BSA in PBS for
30 min and incubated overnight at 4 °C with the following primary antibodies
diluted in PBS containing 1% of BSA and 1% of donkey serum: mouse monoclonal
anti-B-catenin (BD Transduction, CA) or rabbit monoclonal anti-Cleaved
Caspase-3 (asp175) (D3E9) (Cell Signalling Technology, USA). After washing,
organoids were fluorescently labelled, according to the primary antibody used, with
an Alexa Fluor® 555 donkey anti-mouse antibody or Alexa Fluor® 488 donkey anti-
rabbit antibody (Molecular Probes, Eugene, USA) diluted 1:400 in PBS
containing 1% BSA and donkey serum for 1h. Nuclei were stained with DAPI. F-
actin was stained with Alexa Fluor® 647 Phalloidin (50 pug/mL). Slides were then
mounted using the fluorescence mounting medium (Dako, Glostrup, DK) and
analysed using a confocal laser scanning microscope (TCS SPE II; Leica,
Wetzlar, D).

Cells, grown on glass coverslip, were fixed in 4% paraformaldehyde for 20 min
at RT and permeabilized with 0.1% Triton-X100 in PBS for 2 min on ice. Then cells
were treated at RT with 1% BSA in PBS for 30 min and incubated for 2 h at RT
with the same antibodies and following the same procedures used for organoids.

Luciferase reporter assay. CRC cell lines were seeded at 5 x 10* cells/well in 400 uL
growth medium without antibiotics in 24-well plates. The day after, cells were
transfected with 0.5 pg of either TOP or FOP expression plasmids using Lipofecta-
mine3000 according to the manufacturer’s instructions (Life Technologies). Twelve
hours after transfection, cells were treated with LGK974 1-2 uM for 24 h prior to
luciferase activities being measured using a Glomax-96® Luminometer (Promega).
The TOP/FOP ratio was used as a measure of B-catenin driven transcription.

Q-RT-PCR. Total RNA was extracted from CRC cells using Maxwell® RSC miRNA
Tissue Kit (Promega), according to the manufacturer’s protocol. The quantification
and quality analysis of RNA was performed by Thermo Scientific Nanodrop 1000
and Bioanalyser 2100 (Agilent). DNA was transcribed using iScript RT Super Mix
(BioRad) following the manufacturer’s instructions. Q-RT-PCR was performed in
triplicate on ABI PRISM 7900HT thermal cycler (Life Technologies) with SYBR
green dye. The mRNA expression levels of the AXIN2 and LGR5 genes

were normalised to TBP, SDHA and HPRT genes expression. The sequences

of the primers (IDT) used for gene expression analyses were: AXIN2 FW
5'-CGGGCATCTCCGGATTC-3’; AXIN2 REV 5'- TCTCCAGGAAAGTTCGGA
ACA -3'; LGR5 FW 5-CAAGCCATGACCTTGGCCCTG-3'; LGR5 REV,
5-TTTCCCAGGGAGTGGATTCTATT -3; HPRT FW 5-TCAGGCAGTATAA
TCCAAAGATGGT-3’; HPRT REV 5-AGTCTGGCTTATATCCAACACTTC
G-3’; SDHA FW 5'- TGGGAACAAGAGGGCATCTG-3'; SDHA REV 5'- CCAC
CACTGCATCAAATTCATG-3'; TBP FW 5'- CACGAACCACGGCACTGAT

T -3’; TBP REV 5'- TTTTCTTGCTGCCAGTCTGGAC -3".

Western blotting analysis. Prior to biochemical analysis, all cells were grown in
their specific media supplemented with 10% FBS. Indicated cells were treated with
1 uM LGK974 for 24 h or with 100 ng/mL of recombinant human WNT-3a (R&D
Systems) for 1 h. After that, total cellular proteins were extracted by solubilizing the
cells in EB buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1% Triton X-100, 10%
glycerol, 5mM EDTA, 2 mM EGTA; all reagents were from Sigma-Aldrich, except
for Triton X-100 from Fluka) in the presence of 1 mM sodium orthovanadate,
100 mM sodium fluoride and a mixture of protease inhibitors. Extracts were
clarified by centrifugation, normalised with the BCA Protein Assay Reagent kit
(Thermo). Western blot detection was performed with enhanced chemilumines-
cence system (GE Healthcare) and peroxidase conjugated secondary antibodies
(Amersham). The following primary antibodies were used for western blotting
(all from Cell Signalling Technology, except where indicated): anti-pLRP6
(Ser1490) (1:1000); anti-LRP6 (C5C7) (1:1000); anti-Axinl (C76H11) (1:1000);
anti-actin (Santa Cruz) (1:3000).

Patient-derived mouse model. All animal procedures were approved by the
Ethical Committee of the Institute and by the Italian Ministry of Health. The
methods were carried out in accordance with the approved guidelines. Tissue
biopsy was subcutaneously implanted in 7-week-old NOD-SCID mouse (Charles
River Laboratory). After engraftment, the tumour was passaged and expanded until
production of two cohorts. The experiments were designed to include the mini-
mum amount of mice per group to be scientifically and statistically valid. No
statistical methods were used to predetermine sample size. Mice were randomised
to an average tumour size of 350-400 mm?. All the animals were included in the
randomisation that was considered valid if the differences between the two
averages were lower than 10%. There were no data exclusion. Mice were then dosed
by oral gavage with vehicle or LGK974 (Catalog No.S7143; Selleck Chemicals)
resuspended in 0.5% methylcellulose/0.5% Tween 80 and administered to mice
7.5mgkg ™! daily. Tumour size was measured twice a week and calculated using
the formula: V = ((d)2 x (D))/2 (d = minor tumour axis; D = major tumour axis)
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and reported as tumour mass volume (mm?>, mean # CI of individual tumour
volume). The investigators were not blinded. The measures were acquired before
identification of the cages.

Statistical analyses. Statistical significance was determined by unpaired two-tailed
Student’s t-test. P < 0.05 was considered statistically significant. Assumption that
the data are sampled from populations that follow Gaussian distributions has been
tested using the method Kolmogorov and Smirnov.

Data availability. Sequencing data generated during our study are available in the
European Nucleotide Archive (ENA) with the following accession code
PRJEB25113.
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