
Endocrine
https://doi.org/10.1007/s12020-018-1573-9

ORIGINAL ARTICLE

Role of the ubiquitin/proteasome system on ACTH turnover in rat
corticotropes

Antonella Sesta1 ● Maria Francesca Cassarino1
● Francesco Cavagnini1 ● Francesca Pecori Giraldi 1,2

Received: 16 November 2017 / Accepted: 26 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
Purpose A large number of studies has investigated proopiomelanocortin processing in anterior pituitary corticotropes but
little is known on proopiomelanocortin/ACTH degradation within these cells. The ubiquitin-proteasome system is an
intracellular protein degradation pathway which has garnered considerable interest in recent times, given its role in main-
tenance of protein homeostasis. Aim of the present study was to evaluate the role of the ubiquitin-proteasome system in
proopiomelanocortin/ACTH turnover in pituitary corticotropes.
Methods Rat anterior pituitary primary cultures were treated with 0.01–100 nM MG132, a proteasome inhibitor, or
0.1–100 nM K48R, an inhibitor of polyubiquitylation, for 4 and 24 h and ACTH concentrations in medium and cell lysates
estimated by immunometric assay. Co-immunoprecipitation for ubiquitin and ACTH was carried out to establish ubiquitin-
tagged protein products.
Results Inhibition of proteasome-mediated degradation with MG132 lead to an increase in ACTH concentrations, both as
regards secretion and cell content. Likewise, inhibition of polyubiquitylation was associated with increased ACTH secretion
and cell content. Ubiquitin/ACTH co-immunoprecipitation revealed that proopiomelanocortin was a target of ubiquitylation.
Conclusions We provide the first evidence that the ubiquitin-proteasome system is involved in proopiomelanocortin/ACTH
degradation in corticotropes. Indeed, proopiomelanocortin is a target of ubiquitylation and modulation of ubiquitin-
proteasome system affects ACTH turnover. This study shows that regulation of ACTH proteolytic degradation may
represent a means to control ACTH secretion.
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Introduction

ACTH is a major component of the hypothalamo-pituitary
adrenal axis and, thus, pivotal to survival. ACTH is syn-
thesized in anterior pituitary corticotropes upon processing
of its precursor, proopiomelanocortin (POMC) and indeed
POMC null mice [1] or patients carrying a mutation in the

POMC gene [2] have severe hypocortisolism. POMC, a
241-aminoacid prohormone, is synthesized in the rough
endoplasmic reticulum, sorted in the Golgi complex and
processed to 39-aminoacid ACTH in secretory granules by
prohormone convertase 1/3 (PC1) and cathepsin L [3–5].
ACTH then awaits in mature granules of the regulated
secretory pathway until secretion is triggered by specific
stimuli [6].

On the other hand, intracellular proteolysis also con-
tributes to active peptide concentrations [7, 8] and eukar-
yotic cells possess two main proteolytic systems, the
vacuolar-lysosomal and the ubiquitin-proteasome system
(UPS). The latter, in particular, is deputized to removal of
damaged or misfolded proteins, i.e., protein quality control,
degradation of short half-life peptides [9, 10] and regulation
of intracellular levels of de novo synthesized proteins [11,
12]. Interest in the UPS proteolytic system increased con-
siderably in recent years as impairment in UPS function has
been implicated a variety of degenerative diseases,
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including Parkinson and Alzheimer, as well as neoplasias,
e.g., breast cancer [7, 13–16]. Degradation of proteins by
the ubiquitin-proteasome system is accomplished in two
steps: mono/polyubiquitylation of the target protein fol-
lowed by proteolytic degradation of the ubiquitylated pro-
tein by the 26 S proteasome macromolecular complex [9].
Ubiquitin is attached to its substrate through an enzymatic
cascade, comprising an ubiquitin-activating enzyme (E1),
an ubiquitin conjugase (E2) and an ubiquitin ligase (E3).
These enzymes conjugate the substrate onto ubiquitin via its
lysine residues, i.e., ubiquitylation, and, given that ubiquitin
contains 7 lysine residues, consecutive rounds of ubiquity-
lation can result in the formation of long and diverse ubi-
quitin chains [9, 17]. The tagged protein is then anchored to
the 26 S proteasome and degraded and free, reusable ubi-
quitin released.

Aim of the present study was to evaluate the role of
ubiquitin-proteasome system on ACTH turnover in pituitary
corticotropes. Our study identified POMC as a target of
ubiquitylation and showed that inhibitors of ubiquitylation
and of the ubiquitin-proteasome system increased ACTH
cell content, as well as secretion. It follows, therefore, that
ubiquitylation is directly involved in regulation of intra-
cellular ACTH homeostasis.

Materials and methods

Rat anterior pituitary primary cultures

Anterior pituitaries were obtained by dissection from adult
male Sprague-Dawley rats (rattus norvegicus, Charles River
Laboratories, Calco, Italy) maintained in light-dark cycle
and temperature-controlled rooms with free access to
laboratory chow and tap water. Animals were treated
according to the National Institutes of Health, Office of
Animal Care and Use recommendations and authorization
from the University of Milan Animal Care offices was
obtained prior to the study. Pituitaries were established in
culture using our usual protocol [18, 19]. Briefly, anterior
pituitaries were excised, dispersed with trypsin, cell dis-
persions pooled and cells plated at 4-5 × 10,000 cell/well
density in 12-well polystyrene plates (Corning Inc., Corning
NY, USA). Primary cultures were attached in Dulbecco’s
modified Eagle’s medium (DMEM), containing glucose and
L-glutamine supplemented with 10% fetal bovine serum
and antibiotics and maintained at 5% CO2, 37 °C for 3-5
days.

Treatments

Rat anterior pituitary primary cultures were incubated in
serum-free DMEM+ 0.1% bovine serum albumin (BSA)

containing 0.01–100 nM carbobenzoxy-L-leucyl-L-leucyl-L-
leucinal MG132, a peptide aldehyde which selectively inhibits
chymotrypsin-like proteolysis and the ubiquitin-proteasome
pathway [12, 20], or 0.1–100 nM mutant ubiquitin K48R, an
inhibitor of polyubiquitylation [21]. Co-treatments with 5 µM
cycloheximide, an inhibitor of protein synthesis and transla-
tional elongation, and 0.01–10 nM MG132 were also per-
formed. Control wells were treated with DMEM and 0.1%
BSA alone and each treatment was performed in quad-
ruplicate. After 4 and 24 h, medium was collected and cell
content extracted. Parallel assessments for cell viability were
performed with trypan blue staining [22]. All reagents were
obtained from Sigma-Aldrich, St. Louis MO, USA and stock
solutions dissolved according to the manufacturer’s instruc-
tions, i.e., MG312 in DMSO, K48R in sterile water. Experi-
ments were repeated at least thrice.

Co-immunoprecipitation and Western blotting

Total protein was extracted from control wells by RIPA
Lysis buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1%
NP-40, 1% sodium deoxycholate, 0.1% SDS; Thermo Sci-
entific, Rockford IL, USA) supplemented with protease and
phosphatase inhibitor cocktail (Sigma Aldrich, St. Louis
MO, USA). Protein concentration was measured using
Bradford assay (BioRad, Hercules CA, USA). For co-
immunoprecipitation experiments, cell lysates (150 µg) were
incubated at 4 °C overnight with anti-ubiquitin rabbit poly-
clonal primary antibody (1:2000 dilution; Abcam, Cam-
bridge, UK) and non immune IgG (i.e., non specific control).
Protein complexes were captured on Protein A/G PLUS-
agarose (Santa Cruz Biotechnology Inc. Dallas TX, USA).
Ubiquitin-precipitated pituitary primary culture cell extracts
were separated on SDS-PAGE using a 4-12% gradient
(NuPage gel in Tris-glicine, Life Technologies, Carlsbad
CA, USA) under denaturing conditions. Proteins bands were
transferred to Hybond ECL nitrocellulose membrane (GE
Healthcare, Little Chalfont, UK) and the membrane blocked
with 5% non-fat milk, incubated with anti-ACTH rabbit
polyclonal primary antibody raised against the entire 1-39
sequence (1:1000 dilution; Abcam, Cambridge, UK) fol-
lowed by incubation with horseradish peroxidase-conjugated
secondary goat polyclonal anti-rabbit antibody (1:10000
dilution; Invitrogen, Camarillo CA, USA). Blots were
developed using enhanced chemiluminescence technique.
Bioinformatic prediction of ubiquitylation sites on rat
POMC protein sequence (GenBank Accession #
AAH58443) was perfomed at www.ubpred.org.

Assays

ACTH in cell extracts and media was measured by
immunoradiometric assay (Diasorin S.p.A. Saluggia, Italy).
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This sandwich assay uses two antibodies, one specific
to ACTH 1-17 and the other to ACTH 26-39, thus mea-
sures intact ACTH 1-39. No interference with POMC is
expected given assay methodology. Intraassay coefficient
of variation is 7.9%, and assay sensitivity 1.2 pg/ml.
Responses were normalized to percent of control secretion
(unstimulated secretion= 100%). Prolactin in cell extracts
and media was measured by immunoradiometric assay
(Institute of Isotopes, Budapest, Hungary). Intraassay
coefficient of variation is 3.2%, and assay sensitivity
0.07 ng/tube.

Statistical analysis

Statistical comparisons were performed using ANOVA
followed by Fisher’s PLSD post-hoc test. Statistical sig-
nificance accepted at p < 0.05. Data are described as mean ±
S.E.M.

Results

First, we sought to determine targets of ubiquitylation by
ubiquitin/ACTH co-immunoprecipitation. Western blotting
on ubiquitin-precipitated cell extracts showed that only the
POMC precursor was ubiquitylated as no band corre-
sponding to ACTH was detected in ubiquitin-tagged pre-
cipitates (Fig. 1). As expected, ubiquitylated POMC and
prePOMC presented higher molecular weight compared to
native POMC by approx. 8 kDa corresponding to ubiquitin
moieties. Both isoforms of POMC, i.e., non-glycosylated
and glycosylated fragments, appeared to be targets of ubi-
quitylation as was the 267-aminoacid prePOMC precursor.
The search for canonical ubiquitylation sites on the rat
POMC sequence revealed 4 potential lysine residues at 76,
122, 163, and 184.

We then evaluated the effects of MG132, an inhibitor of
degradation by proteasome, on ACTH levels and observed
an increase in ACTH concentrations in medium and cell
content. The increase in ACTH secretion was evident both
4 h and 24 h (ANOVA F= 2.446, p < 0.05 and F= 3.857,
p < 0.01, respectively), up to twice as high with 0.01 nM
MG132 at 4 h (Fig. 2). The increase in cell content was
significant at both timepoints (F= 5.031, p < 0.005 and F
= 3.261, p < 0.05, for 4 h and 24, respectively) up to 50% of
unchallenged wells (Fig. 2). Specificity of MG132 protea-
some inhibition on POMC/ACTH was assessed by mea-
suring prolactin, as prolactin secretion is known not to be
affected by proteasome inhibitors.[23] Indeed, prolactin
levels in cell extracts and medium did not change following
MG132 treatment (medium: 110.3 ± 6.81% control; extract:
94.5 ± 9.69% control after 24 h incubation, N.S.). No
changes in cell viability were observed during MG132

incubation (Supplementary Table 1) thus observed effects
are not due to toxicity.

Incubation with K48R, an inhibitor of polyubiquityla-
tion, also led to a significant increase in ACTH medium
concentrations after 24 h (F= 5.504, p < 0.05; Fig. 3).
Likewise, ACTH cell content was increased during 24 h
incubation with K48R (F= 3.550, p < 0.05; Fig. 3). No
significant effect was observed after 4 h K48R incubation in
either medium (F= 0.401, N.S.) or cell content (F= 1.498,
N.S.) Lastly, no changes in cell viability were observed
during incubation with K48R, (Supplementary Table 1)
again attesting to lack of toxicity at the doses tested.

In order to establish whether the proteasome acts upon
newly synthetized ACTH, we performed co-incubation
experiments with 5 µM cycloheximide. ACTH medium
concentrations were decreased by some 70% after 24 h
incubation with cycloheximide (F= 278.18, p < 0.001; Fig.
4); as in the previously-described experiments without
cycloheximide, MG132 co-incubation brought about an
increase in ACTH concentrations (F= 8.827, p < 0.01, Fig.
4) indicating that proteasome inhibition acts in absence of
de novo synthetized ACTH. Inhibition by cyclohexamide
was less evident at 4 h (F= 6.907, p < 0.05) and the
counteracting effects of MG132 did not reach significance
(F= 0.979, N.S.; Fig. 4). No effect of cycloheximide
incubation on cell content was observed at either timepoint
(4 h: F= 1.293, N.S.; 24 h: F= 0.210, N.S.) thus no
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Fig. 1 Ubiquitin/ACTH co-immunoprecipitation in rat anterior pitui-
tary primary cell extracts. Left lane shows input blotted for ACTH:
prePOMC (∼39 kDa), POMC (∼29 kDa) and ACTH (∼6 kDa) are
visible. Middle lane shows ubiquitin-tagged ACTH-blotted fragments:
Asterisk (*) identfies two bands for ubiquitylated POMC (i.e.,
∼32 kDa non-glycosylated and ∼37 kDa glycosylated POMC) and
prePOMC ubiquitylated fragments (∼45 kDa and over). No band was
observed at the expected size for ubiquitylated ACTH. Right lane
shows ubiquitin immunoprecipitation without ACTH blotting: arrow
identifies IgG light chains (~ 23 KDa) visible in both middle and right
lanes
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counteracting effect of MG132 could be observed (4 h: F=
0.318, N.S.; 24 h: F= 0.455, N.S.).

Discussion

Our study provides the first demonstration that the POMC
peptide is degraded by the ubiquitin-proteasome system
(UPS) in corticotrope cells and that modulation of the UPS
system directly affects ACTH turnover and secretion.
Indeed, while there is a considerable body of studies on
POMC processing to ACTH and other POMC-derived
peptides, such as ß-lipotropin, α- and ß-melanocyte-stimu-
lating hormones, little is known on degradation of POMC or
its derived peptides.

The ubiquitin-proteasome system is a highly selective
cytosolic protein degradation mechanism [9] whose main
function is removal of abnormal proteins, which may prove
toxic if accumulated, and of rapidly acting regulatory pro-
teins, whose short half-lives have evolved to facilitate reg-
ulation of their activity [10, 17, 24]. Thus, it participates in
wide array of cellular processes including cell signaling, cell

cycle progression, differentiation and apoptosis [9].
Derangement of UPS has been implicated in neurodegen-
erative disorders such as Parkinson’s disease, [13] Alzhei-
mer’s disease [25], in nephrotic disease [26] and,
importantly, neoplasia [15]. In fact, proteasome inhibitors
are a relatively new target-treatment class for cancer [12]
and some compounds, e.g., bortezomib, have already been
approved for use in hematologic malignancies and offer
promise for solid tumors [14, 16].

In physiological conditions, the ubiquitin-proteasome
system together with the lysosomal apparatus subserve
protein degradation to maintain appropriate intracellular
protein stores, the so-called “proteostasis” [17]. The
importance of proteases in maintaining overall intracellular
ACTH metabolism has previously been shown for cysteine
and aspartyl proteases [27]. In our study, we demonstrate
for the first time that the UPS is involved in corticotrope
POMC/ACTH turnover.

We observed a clear increase in ACTH concentrations in
intracellular stores and incubation medium during incuba-
tion with MG132, an UPS-protease inhibitor. Similar effects
were observed with the mutant ubiquitin K48R, an inhibitor
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Fig. 2 ACTH concentrations in medium and cell content in rat anterior
pituitary primary cell cultures treated with 0.01–100 nM MG132 for
4 h and 24 h (white bars). Each treatment was carried out at least thrice

on quadruplicate 4-5 × 10,000 cells/well. Dashed line represent
unchallenged wells set at 100% (control; gray bar). Asterisk (*)
denotes p < 0.05 vs. control as assessed by Fisher’s PLSD post-hoc test
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of polyubiquitylation, which proves that attachment of
ubiquitin chains is required for POMC/ACTH degradation.
In order to identify targets of ubiquitylation, we performed
ubiquitin/ACTH co-immunoprecipitation studies and can
report that proteins in the molecular weight range of POMC
and prePOMC were ubiquitylated whereas ACTH itself did
not appear a target of ubiquitylation. Of note, the POMC
peptide contains four lysine residues -canonical ubiquitin
target sites- and an abundance of cysteines, serines and
threonines which may represent alternative ubiquitylation
sites [28].

Given that POMC is transported from the endoplasmic
reticulum to the transGolgi network [3, 6], it is likely that
POMC is subject to endoplasmic reticulum-associated
degradation (ERAD), a process that allows proteins to be
back-transported out of the endoplasmic reticulum to the
cytoplasm and thus degraded by cytoplasmic UPS [29, 30].
ERAD was initially discovered as a mechanism for removal
of misfolded proteins from the endoplasmic reticulum but
was subsequently also demonstrated to occur also for
regulated proteins [11, 31]. POMC would therefore be tar-
geted by ubiquitin ligases located in endoplasmic reticulum
membrane and delivered to the cytoplasm via the retro-
translocation complex [31]. Any change in ACTH, which is
formed downstream to the endoplasmic reticulum, would
thus be secondary to ubiquitylation of its prohormone prior
to PC1 cleavage [3, 6]. On the other hand, ubiquitylation
has recently been demonstrated to promote also lysosomal
sorting [32], thus ubiquitylated POMC could also be
directed towards lysosomal degradation. In fact, protein
substrate sorting to either proteasomes or lysosomes
depends on ubiquitylated lysines, as well as length and type
of polyubiquitin chain branching [33]. Given that MG132
and K48R clearly increased ACTH concentrations,
ubiquitin-mediated lysosomal degradation may come into
play as an additional proteolytic process.

An increase in ACTH secretion was observed already
after 4 h incubation with MG132, suggesting reduced
degradation of the ready releasable pool of POMC/ACTH
[6]. Indeed, the effect of MG132 was evident also during
cyclohexamide blockade, indicating that UPS-proteases do
not require newly synthesized ACTH, but act upon protein
moieties already present within the cell. In this context,
although co-immunoprecipitation experiments proved that
POMC is a direct target for ubiquitylation, additional factors
may come into play given the complexity of POMC
synthesis and processing [3, 6]. Inhibition of ubiquitylation
may interfere with proteolytic degradation of any factor
involved in POMC-to-ACTH processing, e.g., PC1, cathe-
psin L [4, 6], thus leading to increased activity of these
enzymes. Of note, MG132 has been shown to inhibit pro-
teolysis of mutated PC1 [34] but whether the convertase is
target of ubiquitin-mediated proteasomal degradation in
physiological conditions remains to be seen. In this context,
it is worth noting that the effect of both agents on ACTH
homeostasis was more pronounced in the pico- and low
nanomolar range and less in the high nanomolar range. This
suggests that MG132 and K48R act upon several intracel-
lular ubiquitylation targets -possibly with contrasting func-
tions- which ultimately affect ACTH synthesis/secretion.

Our findings on the role of UPS in POMC/ACTH turnover
are of particular interest given the recent reports on gain-of-
function mutations in the thiol protease deubiquitinase USP8
gene in patients with ACTH-secreting pituitary adenomas, i.e.,
Cushing’s disease [35–37]. Deubiquitinases are enzymes which
remove ubiquitin moieties from a given substrate thus steering
proteins tagged for proteolysis away from their intended fate
[17]. Mutations in the USP8 14-3-3 binding motif lead to
increased catalytic activity [35, 36] and USP8 mutants result in
increased deubiquitination of ligand-activated epidermal growth
factor (EGF) receptor [35, 36], a factor involved in tumoral
corticotrope pathophysiology [38, 39]. Ultimately, USP8
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mutants lead to inhibition of EGF signaling downregulation and
increased Pomc expression and ACTH secretion [35, 36]. In
addition to this effect of tumoral corticotrope secretory activity,
UPS also appear involved in tumoral corticotrope proliferation
as silencing of cullin4A, a core subunit of E3 ubiquitin ligase,
led to decreased proliferation of AtT-20 cells [40].

In conclusion, our study provides evidence that the
POMC peptide is degraded by the ubiquitin-proteasome
pathway and that inhibition of ubiquitylation increases
ACTH concentrations. These results show that modulation
of the UPS affects ACTH turnover in corticotrope cells and
pave the way to novel avenues of research in both normal
and neoplastic ACTH-secreting cells.
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