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Abstract

Background: Deep learning is a ground-breaking technology that is revolutionising many research and industrial fields.
Generative models are recently gaining interest. Here, we investigate their potential, namely conditional generative
adversarial networks, in the field of magnetic resonance imaging (MRI) of the spine, by performing clinically relevant
benchmark cases.

Methods: First, the enhancement of the resolution of T2-weighted (T2W) images (super-resolution) was tested.
Then, automated image-to-image translation was tested in the following tasks: (1) from T1-weighted to T2W
images of the lumbar spine and (2) vice versa; (3) from T2W to short time inversion-recovery (STIR) images; (4)
from T2W to turbo inversion recovery magnitude (TIRM) images; (5) from sagittal standing x-ray projections to
T2W images. Clinical and quantitative assessments of the outputs by means of image quality metrics were
performed. The training of the models was performed on MRI and x-ray images from 989 patients.

Results: The performance of the models was generally positive and promising, but with several limitations. The number
of disc protrusions or herniations showed good concordance (κ = 0.691) between native and super-resolution images.
Moderate-to-excellent concordance was found when translating T2W to STIR and TIRM images (κ ≥ 0.842 regarding
disc degeneration), while the agreement was poor when translating x-ray to T2W images.

Conclusions: Conditional generative adversarial networks are able to generate perceptually convincing synthetic
images of the spine in super-resolution and image-to-image translation tasks. Taking into account the limitations
of the study, deep learning-based generative methods showed the potential to be an upcoming innovation in
musculoskeletal radiology.

Keywords: Lumbar vertebrae, Machine learning (deep learning), Magnetic resonance imaging, Neural network
(computer), X-rays

Key points

� Deep learning-based generative models are able to
generate convincing synthetic images of the spine

� Generative models provide a promising
improvement of the level of detail in MRI images of
the spine, with limitations requiring further research

� The availability of large radiological datasets is a key
factor in improving the performance of deep
learning models

Background
Artificial intelligence and deep learning are ground-
breaking technologies that are revolutionising several re-
search and industrial fields. The most notable current
uses of deep learning include tasks such as computer
vision, pattern recognition of images and classification of
complex data, which are increasingly commonly used in
sophisticated applications such as robotics, self-driving
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cars and automated computer programming [1, 2].
Among deep learning technologies, generative models, i.e.
computer programs able to generate novel data rather than
classify or process existing data, are recently gaining
interest due to major technical innovations which are dra-
matically improving their performance [3–5]. The use of
conditional generative adversarial networks (GANs) has re-
cently become a standard for supervised image-to-image
translation, i.e. the automatic conversion between two types
of images [4]. For example, conditional GANs have been
used to colourise black and white pictures and to generate
photorealistic images from schematic ones and vice versa
[6]. A decisive factor for the current popularity of such
technologies is the free availability of most of these
computer codes, which are usually written in the
popular Python language, as well as of the underlying
computational libraries, such as Tensorflow (https://
www.tensorflow.org/), Caffe (http://caffe.berkeleyvisio-
n.org/), Torch (http://torch.ch/) and PyTorch (https://
pytorch.org/). Besides, the training of small- and
medium-scale deep learning models does not require
specialised hardware, as it can be performed on a
standard personal computer equipped with a modern
graphics processing unit.
Nowadays, the application of deep learning techniques

and generative models in musculoskeletal radiology is still
in its infancy. Regarding spine imaging, several studies de-
scribed the use of simpler machine learning methods such
as multilayer perceptron and support vector machines for
regression and classification problems, such as the identi-
fication of landmarks and the grading of intervertebral
disc degeneration [7–9]. More clinically oriented studies—
for example, those aimed at the prediction of postopera-
tive complications and patient satisfaction or at the spinal
alignment after spine deformity correction surgery—have
also been published [10–12]. However, the most recent
deep learning techniques, including generative models,
did not significantly impact the methods and procedures
employed in musculoskeletal radiology so far.
We recently explored the use of conditional GANs for

the generation of synthetic radiological images of the
spine, namely coronal and sagittal x-rays to be used in in
silico trials, i.e. simulated trials aimed to predict the clin-
ical performance of novel implants and surgical tech-
niques before the final validation in a real clinical trial
[13]. Nevertheless, generative models likely have the po-
tential to be also employed in the standard diagnostic
imaging, by improving the quality of the outputs of the
imaging systems as well as by providing additional infor-
mation which is not accessible in the original images.
The aim of the present study was, therefore, to test the
potential of generative models in diagnostic musculo-
skeletal imaging by performing a small set of clinically
relevant benchmark cases in the field of spine imaging.

Methods
Ethical committee approval for this retrospective study
has been obtained and patients’ informed consent was
waived. All magnetic resonance imaging (MRI) examina-
tions were performed using one of two 1.5-T systems in-
stalled at our institution (Avanto, gradient strength 45
mT/m, slew rate 200 T/m/ms; or Espree, gradient
strength 33 mT/m, slew rate 170 T/m/ms; Siemens
Medical Solutions, Erlangen, Germany).
Two distinct potential applications of conditional

GANs in the field of spinal imaging were tested in the
present work. First, the enhancement of the resolution
of T2-weighted (T2W) images (super-resolution) was
performed. Then, the automated translation between
different imaging modalities, referred to in the follow-
ing paragraphs as virtual multimodal imaging, was
attempted. The sizes of the training, validation and test
datasets for each task are summarised in Table 1.

Conditional GANs and Pix2pix
Standard, i.e. unconditional, GANs consist of two
components: a model, named the discriminator, which
is trained to discriminate whether an image is real or
fake; and a generator, which learns to create realistic
new data trying to fool the discriminator, with the
final aim of ‘making the output indistinguishable from
reality’ [4, 5]. In other words, the discriminator
teaches the generator how to create a realistic output,
while simultaneously learning how to discriminate real
and fake data. Unconditional GANs have been used
for image-to-image translation problems by designing
a loss function, such as L1 or L2 regression or more
complicated application-specific functions, to link the out-
put of the GANs to the input [14, 15]. Regression-based
loss functions consider each pixel in the output as inde-
pendent, not accounting for its relation to the surround-
ing parts of the image, and thus favours the optimisation
on a pixel-to-pixel basis rather than of the image structure
as a whole.
Whereas in unconditional GANs the generator does not

see the input image, in conditional GANs both generator
and discriminator receive as input the image to be trans-
lated [4, 16]. The loss function of conditional GANs is

Table 1 Sizes of training, validation, and test datasets for all the
considered tasks

Task Training Validation Test

Super-resolution 767 192 30

T1-weighted to T2-weighted 767 192 30

T2-weighted to T1-weighted 767 192 30

T2-weighted to STIR 284 71 30

T2-weighted to TIRM 305 77 30

Sagittal x-ray to T2-weighted 363 91 30
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learned, rather than predefined. Research showed that these
architectural improvements provided clearly superior per-
formances with respect to GANs using only traditional re-
gression loss functions [4], which tend to produce blurry
outputs [17]. Indeed, conditional GANs now constitute the
state-of-the-art for image-to-image translation.
In this work, we used pix2pix [4], the original formula-

tion of conditional GANs for image-to-image translation,
in its Tensorflow implementation (available at https://
github.com/affinelayer/pix2pix-tensorflow), which closely
follows the original implementation published by the au-
thors based on Torch (https://github.com/phillipi/pix2-
pix). This port does not include the ‘U-Net’ architecture
with skips for the generator [18] described in the original
paper [4], and allows for combining the conditional GAN
objective function with a L1 regression loss, as desired by
the user. As suggested by Isola et al., we used a combin-
ation of loss weights (1 for the conditional GAN loss, 100
for the L1 loss) which were shown to ensure a sharp out-
put while limiting the occurrence of visual artifacts. Since
the original implementation only supports images with a
size of 256 × 256 pixels, for the task involving images of
512 × 512 pixels we enlarged the encoder–decoder net-
works of both the generator and the discriminator to
allow the processing of such images. All models were
trained from scratch on a Linux workstation equipped
with a NVIDIA Titan Xp GPU. Source codes and
pre-trained models used and developed in this study are
publicly available at https://goo.gl/xAgkbd.

Super-resolution
From a large set of high quality T2W images of the lumbar
spine available in the picture archive and communication
system (PACS) of IRCCS Istituto Ortopedico Galeazzi, 989
midsagittal images with a size of 512 × 512 pixels were col-
lected. All images were linearly down-sampled to a size of
128 × 128 pixels and then linearly re-upscaled to 512 × 512
pixels to obtain a low-resolution image containing no fine
details. Conditional GANs were then trained to reconstruct
a sharp image of 512 × 512 pixels, starting from the corre-
sponding low-resolution one.

Virtual multimodal imaging
The same technique used for super-resolution, i.e. the
standard image-to-image translation by means of condi-
tional GANs, was tested in the automated translation be-
tween different imaging modalities. Five tasks were
attempted with this technique: (1) the translation from
T1-weighted (T1W) to T2W images of the lumbar spine;
(2) the reverse translation, i.e. from T2W to T1W images;
(3) from T2W to short tau inversion recovery (STIR) im-
ages; (4) from T2W to turbo inversion recovery magni-
tude (TIRM) images; (5) from sagittal standing x-ray
projections to T2W images. For the first four tasks, the

training datasets were created based on a database of 989
patients subjected to T1W and T2W imaging of the lum-
bar spine for the investigation of low-back pain available
in our PACS. In the image database, STIR imaging was
available for 385 individuals, while TIRM images were ac-
quired for 412 patients. All images had a size of 256 × 256
pixels. To maximise the size of the training datasets, in
addition to the midsagittal images of the lumbar spine, the
adjacent images were also included, for a total of three im-
ages for each patient.
For the fifth translation task aimed at the generation

of T2W images from sagittal standing x-ray projections,
484 patients for whom images acquired in both modal-
ities were available in our PACS were identified. After
resizing all images to 256 × 256 pixels, all planar radio-
graphic projections were registered to the corresponding
midsagittal MR image, so that the corners of the verte-
bral body of L5 were approximately in the same location
in both images (Fig. 1). To this aim, an in-house C++
computer program which allows for the manual identifi-
cation of the corner points of L5 and then performs a
Euclidean transformation of the images was developed
and used to align each couple of images for the 484 pa-
tients. Subsequently, a generative model able to translate
the radiographs to the registered T2W midsagittal MR
images was trained.

Quantitative validation
All image-to-image translation models were tested on
30 images for which the ground truth, called ‘target’,
was available. The quality of the generated outputs
was assessed by means of commonly employed metrics
such as the mean squared error (MSE), the peak
signal-to-noise ratio (PSNR), the structural similarity
index (SSIM) [19] and the visual information fidelity
in pixel domain (VIPF) [20], taking as reference the
target image. Furthermore, the cumulative probability
of blur detection (CPBD) [21], which does not require
a reference image for its calculation, was determined
to provide a quantitative assessment of the image
sharpness. MSE, PSNR and SSIM were evaluated with
the implementations available in scitik-image (https://
scikit-image.org/), whereas scikit-video (http://scikit--
video.org) was used for the calculation of VIPF. CPBD
was determined by using the Python module available
at https://ivulab.asu.edu/software/cpbd. For the super-
resolution task, the quality of the generated images
was determined by means of PSNR, SSIM, VIPF and
CPBD. As a baseline for comparison with PSNR, SSIM
and VIPF, the down-sampled images of 128 × 128 pixels
were upscaled to 512 × 512 pixels by both linear and
cubic resampling. The other image-to-image transla-
tions tasks were quantitatively assessed by means of
MSE, PSNR and SSIM.
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Clinical evaluation
A musculoskeletal radiologist with four years of experi-
ence evaluated the synthetic images of 30 anonymised
and randomly selected patients. Specifically, the number
of disc protrusions or herniations and the presence of
artifacts were assessed in the images generated with
super-resolution. The presence of L4-L5 degenerative
disc disease, L5-S1 degenerative disc disease and L4-S1
Modic-type endplate changes [22] was assessed for the
T1W-to-T2W translation and the reverse translation, as
well as T2W-to-STIR and T2W-to-TIRM translation
tasks. Finally, the presence of abnormal numbering and
body compression fractures of the lumbar vertebrae
were assessed on the x-ray to T2W translated images.
After a delay of 14 days aimed at minimising the recall
of given studies, the same musculoskeletal radiologist
evaluated the target images (i.e. the native images) of the
same patients. Specifically, the features previously evalu-
ated in the synthetic images, except the super-resolution
task-related artifacts, were assessed. Concordance be-
tween the synthetic and target images was calculated
using κ-statistics and interpreted as follows: < 0.20, poor;

0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, good;
0.81–1.00, excellent [23].

Results
Conditional GANs improved image sharpness and visible
details in the T2W images in the super-resolution task
(Fig. 2). The generative model was able to add realistic de-
tails which were not visible in the low-resolution images.
Additional visual information with a potential to be clinic-
ally relevant can be easily depicted in the intervertebral
discs (including protrusions), in the spinal cord and even
in the adipose tissue. However, the super-resolution im-
ages are affected, in a variable measure, by inaccuracies
visually resembling truncation artifacts. Unexpectedly, the
quantitative evaluation of the quality of the outputs, as
compared with standard linear and cubic upsampling, did
not result in a better performance of the GANs based on
PSNR, SSIM and VIPF (Fig. 3). Nevertheless, the genera-
tive models were superior in restoring the image sharp-
ness with respect to the ground truth, based on the
assessment with the CPBD metric.

Fig. 1 The manual registration procedure used for the alignment of the sagittal x-ray projections and the midsagittal T2W MRI scans. First, the
vertebral corners of L5 are manually identified on both images. Then, a rigid registration is performed and the pair of registered images is
added to the training dataset
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Fig. 2 Six examples of the use of GANs for the super-resolution task. input: original low-resolution image; output: output of the generative model;
target: original high-resolution image. Multiple parallel edges similar to truncation artifacts are visible in proximity of high-contrast boundaries
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In the tasks related to virtual multimodal imaging, the
performance of the conditional GANs can be judged as
generally positive and promising; however, a deeper analysis
of the outputs revealed several limitations. The translation
between T1W and T2W images and vice versa (Fig. 4)
demonstrated that the used generative model was able to
deal well with the general features and differences between
the two imaging modalities, such as the distinct grey levels
in the spinal cord and in the nucleus pulposus of the inter-
vertebral discs. However, healthy discs with high water con-
tent tended to have a slightly brighter representation in the
nucleus, even in the synthetic T1W MR images, in contrast
with the original images in which discs have a rather
homogeneous grey level independently on the disc
height or degeneration degree. On the other side, syn-
thetic T2W images clearly depicted protruded discs and
the correspondent compression of the spinal cord, which
were less evident in the T1W images used as inputs.
Degenerated discs tended to be correctly darker than
healthy ones in synthetic T2W images. As expected, the

generative model was generally not able to deal correctly
with Modic changes; in general, the signal alteration found
in the original image was directly translated to the syn-
thetic image, i.e. whereas type II changes were correctly
represented, type I changes appeared similar to type III
ones in the T1W-to-T2W translation.
From a qualitative point of view, the performance of

the conditional GANs in translating T2W scans to
TIRM and STIR scans appeared to be excellent (Fig. 5).
Similar to the T1W-to-T2W translation, the model was
capable of dealing well with the general features of the
images, such as the fat suppression and signal alterations
in the pathologic vertebrae.
The challenging translation from sagittal x-ray projec-

tions to T2W midsagittal MRI scans provided very interest-
ing results which included a few evident errors in the
depiction of the anatomy of the patient, but on the other
hand highlighted the enormous potential of generative
models (Fig. 6). Indeed, the synthetic MRI images showed
in numerous cases incorrect anatomies, such as

Fig. 3 Quantitative comparison among the outputs of GANs (GANs), linear resampling (linear) and cubic resampling (cubic) by means of the
metrics PSNR (a), SSIM (b), VIPF (c) and CPBD (d). For CPBD, the value of the metric calculated for the target image (target) is also shown for the
sake of comparison
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Fig. 4 Representative results (three slices for three different patients) of the translation from T1W to T2W MRI and vice versa. In the first patient, Type II
Modic changes were correctly represented in both synthetic images, whereas for the Type I change in the third patient the synthetic T2W image
showed a low signal instead of a high one. The L4-L5 disc protrusion of the second patient was accurately represented in the synthetic T2W image
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unrealistically long or short vertebral bodies, especially in
regions not clearly visible on the x-ray projections, such as
the thoracolumbar junction. Nevertheless, the conditional
GANs were able to create realistically looking MR images
which include a basically correct depiction of the spinal
cord, of the intervertebral discs and of the layer of adipose
tissue on the back. The lower lumbar lordosis due to the
different posture (standing in the sagittal x-ray examination
versus supine in MRI) was also realistically captured.

The quantitative evaluation of the image quality with
respect to the ground truth revealed a consistent pattern
among the three considered metrics MSE, PSNR and
SSIM (Fig. 7). The translation of T1W images into T2W
images and vice versa gave the most accurate results,
followed by the translation from T2W to TIRM and
STIR images respectively. As expected, the translation of
sagittal x-ray projection to MRI consistently resulted in
the worst quantitative performance.

Fig. 5 Representative results of the translation from T2W MRIs to TIRM (left) and to STIR (right) images. input: original T2W image; output: TIRM/
STIR image created by the generative model; target: original TIRM/STIR image. Images from six exemplary patients are shown for each translation

Galbusera et al. European Radiology Experimental  (2018) 2:29 Page 8 of 13



With regard to clinical evaluation, the number of
disc protrusions or herniations showed good concord-
ance (κ = 0.691) between the native images and those
generated with super-resolution. The median percent-
age of truncation artifacts amounted to 20%. Table 2
reports the concordance between the native images
and those generated with virtual multimodal imaging.
Moderate-to-excellent concordance was found when
translating T2W to STIR and TIRM images, while the

agreement was poor when translating x-ray projec-
tions into T2W images.

Discussion
In this paper, we explored the use of generative models,
namely conditional GANs, for the creation of synthetic im-
ages of the spine and for the improvement of the quality of
existing images. Despite several inaccuracies in the outputs,
including some evident mistakes such as in the number of

Fig. 6 Representative results (12 patients) of the translation from sagittal x-ray projections to T2W midsagittal MRI scans. input: original x-ray image,
registered to match the alignment of the original MRI; output: synthetic T2W midsagittal MRI; target: original T2W midsagittal MRI. A few gross errors in
the anatomy can be identified: the L1 in the first and fourth patients on the left; the sacrum in the first patient on the right; the thoracolumbar junction
in the third patient on the right; L1 and the sacrum in the fourth patient on the right
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vertebrae, the general performance of the method should
be judged as positive and very promising in light of future
applications. As a matter of fact, no similar results have
ever been reported in the available literature, neither with
deep learning-based methods nor with other techniques. A
paper describing a similar approach was aimed at the gen-
eration of synthetic images to be used in in-silico trials [13],
rather than to proper clinical applications. Recent research
highlighted the potential of conditional GANs for other
radiological tasks, such as the improvement of the quality
of low-dose positron emission tomography imaging [24]
and noise reduction in low-dose computed tomography
(CT) [25].
Taking into account the constant, fast advance of

deep learning techniques for image synthesis and the
large number of options for the technical refinement
of the methods discussed in the present work, we fore-
see an enormous improvement of the quality of the
generated data in the next future. It should be noted
that the present work was not aimed at developing
novel techniques for radiological image synthesis, but
rather at exploring the potential of the methods
currently available, knowing that research targeted
specifically to radiology may provide even better re-
sults soon.
Although a preliminary quantitative assessment of the

validity of the outputs of the generative models has been
provided, the current work should still be intended as an

exploratory proof of concept. As a matter of fact, the ac-
tual value of any innovative technique should be evalu-
ated based on the impact that it can give on the
practical applications rather than simply on the technical
evaluation of its outputs such as the one here reported.
Nevertheless, such a ground-breaking method opens
new perspectives, in terms of potential applications,
which still need to be explored.
Concerning spine imaging, possible clinically relevant

uses include the grading of disc degeneration from planar
x-ray imaging whenever an MRI scan is not available, the
correction of the spinal shape due to different postures (e.g.
standing versus supine), the improvement of the resolution
of images acquired with low-field MRI scanners and the
prediction of the effect of loading on the soft tissues, for ex-
ample for the study of disc protrusions under loading. Add-
itionally, virtual multimodal imaging may be ultimately
integrated in PACS clients and Digital Imaging and COm-
munications in Medicine (DICOM) viewers, to allow for a
preliminary analysis of patients for which incomplete data
are available. In case of diagnostic CT or MRI exams in
which only a few slices have been acquired, the use of gen-
erative models may allow for synthetic re-slicing and thus
high-quality visualisation also in the non-acquired orienta-
tions. Besides, we may foresee an MRI protocol for spine
imaging using a single sequence or three sequences with
different weighting composed by few slices. From that, such
a model may generate a full set of MRI sequences, thus

Table 2 Concordance (expressed as κ-value) between the native images and those generated with virtual multimodal imaging

L4-L5 disc disease L5-S1 disc disease L4-S1 Modic-type endplate changes

T1-weighted to T2-weighted 0.455 (moderate) 0.221 (fair) 0.406 (moderate)

T2-weighted to T1-weighted 0.086 (poor) 0.270 (fair) 0.286 (fair)

T2-weighted to STIR 0.842 (excellent) 1.000 (excellent) 0.592 (moderate)

T2-weighted to TIRM 0.842 (excellent) 0.933 (excellent) 0.691 (good)

Lumbar vertebrae number Lumbar vertebral body fractures

Sagittal x-ray to T2-weighted 0.065 (poor) 0.051 (poor)

Fig. 7 Quantitative evaluation of the quality, based on different metrics (MSE (a), PSNR (b) and SSIM (c)) of the various image-to-image translation
tasks: super-resolution (SR), T1W to T2W MRI images (T1-T2), T2W to T1W images (T2-T1), T2W to STIR images (T2-STIR), T2W to TIRM images (T2-
TIRM), sagittal standing x-ray projections to T2W images (Xrays-T2)
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remarkably reducing exam duration and MR system occu-
pation. A similar approach has been recently reported on
the knee, although based on a different technology [26].
For diagnostic purposes, the synthesis of a new image

may not always be the optimal solution to achieve an im-
provement of the sensitivity and/or specificity of the diag-
nosis. Indeed, if the information required for the clinical
evaluation is already available in the original image (e.g.
information about intervertebral disc degeneration in a
planar x-ray projection), the generation of a complete syn-
thetic MRI scan showing the degenerative features of the
disc may be deemed as superfluous for the diagnosis and
grading of the disorder. Although we believe that several
practical cases in which image synthesis can provide a
clear benefit to musculoskeletal imaging, even from the
clinical point of view, will definitely emerge as time goes
by, it should be noted that simpler solutions may still be
clinically advantageous for specific applications.
To our knowledge, the only application in which syn-

thetic imaging data are nowadays used is MRI-only radi-
ation therapy treatment planning [27]. In conventional
radiation treatment, both MRI and CT images are acquired
and used for planning and verification of the patient posi-
tioning. The simultaneous use of both imaging modalities
requires a registration step, which introduces a systematic
error not negligible from a clinical point of view. To elimin-
ate it, an MRI-only workflow has been introduced, in which
a synthetic CT is generated based on the MRI data. Various
algorithms have been proposed for the generation of syn-
thetic CTs, ranging from simple override techniques [28] to
atlas-based ones [29, 30] and finally to sophisticated statis-
tical models [31, 32]. The potential of conditional GANs
for this specific application, possibly in combination with
other consolidated approaches, is evident.
Although affected by artifacts, the super-resolution

task provided very good results from a perceptual point
of view. As a matter of fact, super-resolution is not a
new concept and several algorithms have been proposed
[33], with a special focus on MRI [34, 35]. Since the de-
tection of small lesions may challenge even modern MRI
scanners, this topic gains a specific clinical relevance.
With respect to the classical MRI super-resolution tech-
niques which rely on specific acquisition and reconstruc-
tion techniques, deep learning-based super-resolution
can be applied as post-processing any time after the
image reconstruction, with obvious advantages. Besides,
generative models may add details not directly visible in
the original images, based only on patterns found in
similar patients, such as a specific shape, grey level or
texture. The possible impact of these added details on
the future clinical applications, either positive or nega-
tive, should not be neglected, since they can lead to mis-
diagnosis if they refer to non-existent pathological
features. The clinical evaluation conducted in this study

highlighted that such artifacts indeed affected the out-
puts of the generative models, such as the number of
vertebrae visible in the generated images and the occur-
rence of fractures in the translation from x-ray projec-
tion to T2W MRI. It should be noted that visual
artifacts may be avoided or reduced by optimising the
loss function of the model, for example by increasing the
weight of the L1 regression with respect to the conditional
GAN loss or by introducing a L2 loss term. Besides, such
optimisation may benefit the quality metrics findings,
whose results were not up to our expectations. As a matter
of fact, the weights in the loss function used in this study
arguably favoured sharpness over similarity to the target,
with a clear negative impact on the metrics. These aspects
were not investigated in the present paper, in which the
weights of the two terms of the objective functions were
kept fixed but need to be further analysed in future studies.
The results of image-to-image translation tasks also

highlighted the potential of the generative framework. Simi-
lar to super-resolution, the novel methods can be applied in
post-processing, since they do not require any modification
to the acquisition and reconstruction stages. In this respect,
generative models substantially differ from another docu-
mented MRI technique, synthetic MRI (SyMRI), providing
a similar output, i.e. generating synthetic contrast-weighted
images after the acquisition of the data [36–38]. Indeed,
SyMRI dictates the use of a specific protocol creating a raw
image which can then be post-processed to generate T1W,
T2W and proton density maps and cannot be used on
existing datasets acquired with other MRI protocols. It
should be noted that, despite the generally convincing vis-
ual appearance of the translated images, a more extensive
validation as well as an optimisation of the technique for
the specific radiological applications are necessary before
any clinical use of the novel techniques. The validation tests
should address directly the specific clinical questions for
which sequences such as STIR and TIRM are used, such as
the diagnosis of soft-tissue tumours [39] and osteomyelitis
[40], rather than being limited to a general evaluation of
the quality of the synthetic images.
Due to its preliminary nature and its novelty, the present

work suffers from several limitations, the most important of
which is indeed the limited extent of the clinical validation.
Furthermore, we decided to use an available implementa-
tion aimed to general image-to-image translation, without
customising it to the specific application. As mentioned
above, even simple optimisations such as the adjustment of
the weights in the loss function may have a positive impact
on the quality of the results. Another limitation pertains to
the limited size of the training datasets, which has been
constrained by practical issues related to the availability and
traceability of the images. We expect that increasing the
number of images constituting the training data would in-
volve a major improvement in the quality of the outputs.
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Conclusions
In conclusion, this proof of concept study showed that con-
ditional GANs are able to generate perceptually convincing
synthetic images of the spine, in super-resolution and
image-to-image translation tasks. With respect to other
methods providing analogous outputs, conditional GANs
do not require specific acquisition and reconstruction tech-
niques, and they can be employed in post-processing to any
existing images. Although a clinical validation is still
missing, we believe that conditional GANs, and deep
learning-based generative methods in general, have the
potential to be an upcoming innovation in musculoskeletal
radiology.
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