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Abstract

Background: In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the
anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy
in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the
microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72)
genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy
before the appearance of symptoms.

Methods: Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic
mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were
analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions
of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior
cortical areas).

Results: Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis
demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region
for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe
involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72.
Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the
visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers.

Conclusions: These simple-to-use and reproducible scales may be useful tools in the clinical setting for the
discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy
prior to onset in those with MAPT mutations.
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Background
Frontotemporal dementia (FTD) is a neurodegenerative
disease characterized clinically by changes in behaviour
or language. Up to one-third of cases are caused by
mutations in one of three major causal genes identified
so far: microtubule-associated protein tau (MAPT), pro-
granulin (GRN) and chromosome 9 open reading frame
72 (C9ORF72) [1–3].
Structural neuroimaging is recommended as part of

the clinical evaluation in all patients with suspected de-
mentia and forms part of the diagnostic criteria of FTD
[4, 5]. Previous studies have shown that each mutation
has a distinct pattern of atrophy: Mutations in MAPT
have been associated with atrophy predominantly in the
anteromedial temporal lobes [6, 7], whereas mutations
in GRN are associated with an asymmetric pattern of
atrophy that involves the frontal, temporal and parietal
lobes [6, 8]; C9ORF72 mutation carriers have relatively
widespread cortical atrophy, including posterior areas
[1, 9, 10]. However, such studies have relied on volu-
metric ROIs or voxel-wise analyses that are difficult to
translate into routine clinical practice, where visual
evaluation remains the primary diagnostic method [11].
To provide reliable identification and interpretation of

imaging findings, different visual rating scales have been
developed over time (see [12] for a review). Recently, in
a multi-centre pathologically confirmed series, we have
shown that visual rating scales can improve the accuracy
of clinical diagnosis of different dementias [13]. How-
ever, only one study of visual rating scales has investi-
gated the genetic forms of FTD so far [14], and only in
symptomatic patients in one genetic subtype, C9ORF72.
The objective of the present study was therefore to
determine specific visual patterns of atrophy in genetic
FTD, in both symptomatic and presymptomatic muta-
tion carriers, and in all three of the major genetic forms:
GRN, MAPT and C9ORF72.

Methods
Participants
Subjects were recruited from the Genetic Frontotemporal
Dementia Initiative (GENFI) study, which in the first phase
consisted of 13 centres in the United Kingdom, Canada,
Italy, The Netherlands, Sweden and Portugal. We included
participants who were either known carriers of a patho-
genic mutation in MAPT, GRN or C9ORF72, or family
members at risk of carrying a mutation. In the at-risk
group, those who had positive genetic testing were in-
cluded in the pre-symptomatic group, and those that had
negative genetic testing were included in the control group.
In this way control subjects shared a similar environmental
background but differed from carriers only for the absence
of a pathogenic mutation in MAPT, GRN or C9ORF72.
Participants were genotyped at their local site. Between

January 2012 and April 2015, we enrolled 365 subjects, 343
of whom had a usable volumetric T1-weighted magnetic
resonance imaging (MRI) scan. Local ethics committees at
each site approved the study, and all participants provided
written informed consent at enrolment.

Procedures
All participants underwent a standardized clinical assess-
ment and a full neuropsychological battery (for details, see
Rohrer et al., 2015 [3]). Participants were scanned at their
local site on scanners from three different manufacturers
(Philips Healthcare, GE Healthcare Life Sciences, Siemens
Healthcare Diagnostics). Magnetic field strength was 3 T
for 295 scans (86%) and 1.5 T for 48 scans (14%). The
protocol, designed to match across scanners as much as
possible, included a volumetric T1-weighted MRI scan.

Visual rating scales
A protocol of 6 visual rating scales was applied in the
cohort by two raters (GGF and PB), blinded to all clin-
ical and demographic information, after a training set of
15 scans that included 5 cases with a clinical diagnosis
of behavioural variant FTD, 5 with primary progressive
aphasia and 5 control subjects. The training set was not
included in the main analysis. The protocol made use of
previously validated scales with particular attention to
areas known to show atrophy in FTD [13]. The following
scales were chosen: orbitofrontal (OF), anterior cingulate
(AC), frontoinsula (FI), anterior temporal (AT), medial
temporal (MTA) and posterior (PA). With the OF, AC
and FI scales, we looked at the widening of a single
sulcus. Raters looked at the olfactory sulcus for the OF
region, the anterior part of cingulate sulcus for AC
region and the circular sulcus for the FI region. For all
three scales, a four-part grading system was used: grade
0, representing no atrophy (no cerebrospinal fluid [CSF]
visible within the sulcus); grade 1, mild widening of the
sulcus (CSF just becomes visible); grade 2, moderate
widening; and grade 3, severe widening (with the sulcus
assuming a triangular shape). In order to ensure that the
same areas were being reviewed on each scan, specific
anatomical landmarks were used. The olfactory and
cingulate sulci were reviewed in the coronal plane on
the most anterior slice in which the corpus callosum
was visible, whilst the circular sulcus was assessed also
in the coronal plane, on the most anterior slice in which
the anterior commissure was visible, as well as the two
slices immediately posterior to this [13]. The AT scale
looked at the aspect of the temporal pole in coronal
view, using a 5-point system: grade 0 representing nor-
mal appearances, grade 1 only slight prominence of
anterior temporal sulci, grade 2 definite widening of the
temporal sulci, grade 3 severe atrophy and ribbon-like
nature of the gyri, and grade 4 a simple linear profile of
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the temporal pole [15, 16]. The MTA is a 5-point graded
scale that looks at the medial temporal lobe in coronal
view: grade 0 is normal; grade 1 a widened choroidal
fissure; grade 2 an increased widening of the choroidal
fissure, widening of temporal horn and opening of other
sulci; grade 3 pronounced volume loss of the hippocam-
pus; and grade 4 end-stage atrophy [17]. The last scale
used was PA, a 4-point scale evaluating posterior cortical
atrophy using three views (coronal, axial and sagittal):
grade 0 representing closed posterior cingulate and
parieto-occipital sulci; grade 1 mild widening of the
posterior cingulate and parieto-occipital sulci, with mild
atrophy of the parietal lobes and precuneus; grade 2 sub-
stantial widening of the posterior cingulate and parieto-
occipital sulcus, with substantial atrophy of the parietal
lobes and precuneus; and grade 3 end-stage atrophy with
evident widening of both sulci and knife-blade atrophy
of the parietal lobes and precuneus [18].
The software used for the visualization of the images was

MRIcron [19]. Images were rated in native space, in keep-
ing with standard clinical reads. To aid rating consistency,
reference images for each scale were provided to the raters.
Right and left sides were assessed separately. The mean
score of the two raters for each subject was calculated by
averaging a combined right- and left-sided score in each
rating scale. An asymmetry index was calculated as the
sum of the absolute differences between the two sides for
each scale. The raters re-rated a subset of 35 subjects ran-
domly chosen in the main group to calculate intra-rater
reliability.
To explore the relationship between each rating

scale and the pattern of grey matter (GM) density,
voxel-based morphometric analysis was performed
using Statistical Parametric Mapping 12 [12]. T1-
weighted images were normalized and segmented into
GM, white matter and CSF probability maps by using
standard procedures and the fast-diffeomorphic image
registration (DARTEL) algorithm [20]. GM segments
were affine-transformed into the MNI (Montreal
Neurological Institute) space, modulated and
smoothed using a Gaussian kernel with 6-mm FWHM
before analysis. The GM tissue maps were fitted to a
multiple regression model to identify the correlations
with the six rating scales (OF, AC, FI, AT, MTA, PA).
Age, sex and total intracranial volume were entered
as covariates. The family-wise error rate for multiple
comparisons correction was set at 0.05.

Statistical analysis
All the statistical analyses were performed using IBM
SPSS Statistics version 22 for Windows software (IBM,
Armonk, NY, USA). Differences in age and education
were assessed with the t test, and differences in sex were
evaluated with the χ2 test. Differences in the visual

rating scale scores between groups were assessed using
the Mann-Whitney U test. Inter- and Intra-rater reliabil-
ity of each rating scale was determined using a two-way
random, absolute, single-measure intra-class correlation
coefficient (ICC).

Results
Demographics
The cohort consisted of 343 subjects, including 132
presymptomatic and 63 symptomatic individuals as
well as 148 control subjects (see Table 1). Symptom-
atic subjects were older than control subjects, inde-
pendently of the mutation status. Moreover, the
MAPT symptomatic carriers were younger than GRN
and C9ORF72 symptomatic carriers, as were MAPT
presymptomatic carriers compared with the other two
groups of asymptomatic carriers. Regarding sex,
symptomatic MAPT and C9ORF72 carriers were sig-
nificantly different (p < 0.05) from control subjects
and GRN symptomatic carriers.

Intra- and inter-rater reliability
All the scales demonstrated good inter-rater reliability
(ICC > 0.73) (see Table 2), with the MTA scale per-
forming best overall. Considering the intra-rater
scores, rater 1 ICCs were greater than 0.82 for all the
scales, whereas rater 2 had scores greater than 0.89
for all the scales.

Mean visual rating scores
All the scales and the asymmetric index were significantly
higher in the three symptomatic groups than for the
respective control subjects (Table 1, Fig. 1). Symptomatic
carriers of MAPT had higher scores in the AT region (2.38)
than the other two groups (GRN, 1.53; p = 0.002; C9ORF72,
1.44; p = 0.001) and in the MTA scale (2.60) than GRN
(1.40; p = 0.005), with a trend in comparison with
C9ORF72 (1.82; p = 0.061). By contrast, symptomatic car-
riers of GRN obtained higher scores in the OF scale (1.99)
than the other two groups (MAPT, 1.43; p = 0.016;
C9ORF72, 1.54; p = 0.043) and in the AC (2.09), FI (2.24),
and PA (1.79) scales compared with MAPT (AC, 1.35;
p = 0.004; FI, 1.80; p = 0.014; PA, 0.77; p < 0.001) but
not C9ORF72. GRN symptomatic carriers also showed
the highest asymmetry index scores (4.41) compared
with the other two groups (C9ORF72, 2.92; p = 0.009;
MAPT, 2.20; p < 0.001), with C9ORF72 showing a
significantly higher index than MAPT (p = 0.036).
Symptomatic carriers of C9ORF72 scored higher than
MAPT only in the PA scale (C9ORF72, 1.66; MAPT,
0.77; p < 0.001).
In the presymptomatic group, MAPT carriers scored

significantly higher than the control subjects in the
MTA scale (MAPT, 0.51; CON, 0.28; p = 0.029) but
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not the other scales. No differences were found in the
comparison of the other two presymptomatic groups
(GRN and C9ORF72) with control subjects. There
were also no differences between presymptomatic
groups in terms of scores on the visual scales or on
the asymmetry index.

Voxel-based morphometric analysis
The voxel-based morphometric analysis revealed a
negative correlation of each visual rating scale score
with an area of GM atrophy in the same (expected)
region (see Fig. 2). No positive correlations were
found.

Discussion
Using simply applied visual rating scales, we have
identified typical patterns of atrophy for each group
of mutation carriers: anterior and medial temporal for
MAPT, asymmetric frontal (orbitofrontal, cingulate,

frontoinsular) and parietal for GRN and widespread
for C9ORF72 (see Fig. 2). This is consistent with pre-
vious studies on patients with genetic FTD using
voxel-based morphometry [6, 9, 10], even with the
limitations of a semiquantitative assessment of atro-
phy. We also validated the visual rating scales using
voxel-based morphometry, with each scale correlating
with the specific brain region that the scale was de-
signed to assess.
Only one previous study has investigated visual rating

scales in genetic FTD: Devenney et al. used seven visual
rating scales to describe the features of symptomatic
C9ORF72 carriers, but they did not find any statistical
differences between C9ORF72 and control subjects;
they observed only a trend toward greater precuneus
atrophy [14].
It has recently been demonstrated that GM

changes can be identified years before the expected
onset of symptoms in adults at risk of genetic FTD
[3]. In particular, in individuals with MAPT muta-
tions, atrophy was first noted in the hippocampus
and amygdala, followed by the temporal lobe and
later the insula; in GRN mutation carriers, differ-
ences started in the insula, followed by the temporal
and parietal lobes and thereafter the striatum; in the
C9ORF72 group, changes were found very early in
subcortical areas, the insula and the occipital cortex,
then the frontal and temporal lobes and subse-
quently the cerebellum. This differential neuroana-
tomical involvement within the three genetic groups

PAMTAATFIACOF

M
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2,00

1,00

0,00

MAPT Symptomatic
C9ORF72 Symptomatic
GRN Symptomatic
MAPT Presymptomatic
C9ORF72 Presymptomatic
GRN Presymptomatic
Controls

Group

Fig. 1 Mean score of each visual rating scale in each group

Table 2 Intra and inter rater agreement scores

OF AC AT FI MTA PA

Interrater Raters 1–2 0.82 0.74 0.77 0.75 0.88 0.73

Intrarater Rater 1 0.89 0.82 0.95 0.82 0.90 0.93

Rater 2 0.97 0.90 0.96 0.91 0.96 0.89

Abbreviations: OF Orbitofrontal rating scale, AC Anterior cingulate rating scale,
AT Anterior temporal rating scale, FI Frontoinsula rating scale, MTA Medial
temporal atrophy rating scale, PA Posterior atrophy rating scale
Inter- and intra-rater agreement intraclass correlation coefficient score for each
visual rating scale is shown

Fumagalli et al. Alzheimer's Research & Therapy  (2018) 10:46 Page 5 of 9



is likely to represent differently vulnerable large-scale
neural networks, with pathological protein spread
through those networks as the disease progresses.

However, the underlying biology of this differential
vulnerability is not yet understood. In our study, we
demonstrated that presymptomatic MAPT carriers
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Fig. 2 Representative coronal (for all scales except posterior atrophy scale) and sagittal (posterior atrophy scale) T1-weighted magnetic resonance images
of symptomatic carriers of GRN, MAPT, and C9ORF72 mutations (top three rows). Voxel-based morphometric analysis showing areas of significant negative
correlation between the scales and grey matter. Maps showing z-scores were rendered on a study-specific template in MNI (Montreal
Neurological Institute) space (bottom row). Images are shown with the left hemisphere on the left side of the figure
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without symptoms had more medial temporal lobe at-
rophy than control subjects. However, we could not
find any presymptomatic difference for individuals
with GRN or C9ORF72 mutations. There may be
multiple reasons for this, including the nature of the
cohort (with a number of cases far from expected on-
set), the pattern of atrophy (involvement of areas
such as striatum, thalamus and cerebellum not identi-
fied by such scales), and the lack of sensitivity of the
technique (which is likely to be more so for some re-
gions than others).
Asymmetric atrophy is confirmed as one of the

main features of GRN patients, but we could not
find it in presymptomatic GRN carriers [3], probably
because the changes are mild and are seen just a few
years before the onset of the disease, whereas in our
study we considered the group of presymptomatic
cases as a whole, without stratifying by expected age
at onset. Unexpectedly, we found C9ORF72 patients
to be more asymmetric than MAPT, although less
than GRN. This is in contrast to previous studies
that showed a relatively symmetric atrophy in
frontal, temporal and parietal lobes in C9ORF72 pa-
tients [9, 21, 22]. A possible explanation can be that
visual rating scales measure sulcal opening, which
can reflect not only the amount of cortical GM atro-
phy but also other factors, such as CSF or white
matter, that can be different in C9ORF72. Neverthe-
less, our study’s aim was to replicate real-life visual
assessment of MRI scans using scanners of different
types and field strengths and not requiring any ex-
pensive software or time-consuming post-processing
techniques. The raters adopted a naturalistic ap-
proach, independently identifying the slices for the
rating. This can result in rating different slices, but
the scores obtained by the two raters in terms of
intra- and inter-rater reliability are in line with the
literature or better in the case of MTA [23].

Conclusions
We have demonstrated differences among groups of
mutations using a simple-to-use, reproducible and
validated set of visual rating scales. Patterns of atro-
phy can be useful to help differentiate these groups
and help predict the presence of a gene mutation in
subjects with FTD. Clinicians can integrate the infor-
mation obtained using MRI data with clinical features
(e.g., psychosis in C9ORF72) and family history to
tailor an approach to genetic testing [9, 14]. Further
studies of visual rating scales of other important re-
gions (such as subcortical areas) may add to our find-
ings in improving differentiation between different
mutations in FTD.
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