
UNIVERSITÀ DEGLI STUDI DI MILANO 

Dipartimento di Scienze Cliniche e di Comunità 

Laboratorio di Statistica Medica, Biometria ed Epidemiologia “G. A. Maccacaro” 

 
 

 

 

Corso di Dottorato di Ricerca in  

Epidemiologia, Ambiente e Sanità Pubblica 

XXXI Ciclo - Settore scientifico disciplinare MED/01 

 

Cancer mortality data analysis and prediction 
 

 

 

 

Dottoranda: Greta CARIOLI (n° matr R11439) 

 

 

 

 

 

Tutor: Chiar.mo Prof. Carlo LA VECCHIA 

Coordinatore del Dottorato: Chiar.mo Prof. Carlo LA VECCHIA 

 

 

 

 

 

 

A.A. 2017/2018



 

 



 

2 
 

Index 

INDEX ..................................................................................................... 2 

ABSTRACT .............................................................................................. 4 

INTRODUCTION ..................................................................................... 7 

MORTALITY RATE ................................................................................ 10 

INTRODUCTION .............................................................................................................................................. 10 

INSTANTANEOUS RISK .................................................................................................................................. 10 

CRUDE MORTALITY RATE ............................................................................................................................. 16 

STANDARDIZED RATES ................................................................................................................................. 18 

Direct standardization ...................................................................................................................... 19 

RATE PROBABILITY DISTRIBUTION AND CONFIDENCE INTERVALS ....................................................... 23 

MORTALITY TREND ANALYSIS ........................................................... 27 

ESTIMATED ANNUAL PERCENT CHANGE .................................................................................................. 27 

JOINPOINT REGRESSION MODEL ................................................................................................................ 28 

Statistical model ................................................................................................................................... 29 

PREDICTIVE ANALYSIS ....................................................................... 32 

INTRODUCTION .............................................................................................................................................. 32 

JOINPOINT REGRESSION ON THE NUMBER OF DEATHS .......................................................................... 34 

Exponential Family of Distribution and Generalized Linear Models ........................... 36 

COMPARISON TESTS ...................................................................................................................................... 44 

APPLICATION TO REAL DATA .............................................................. 46 

DATA AND METHODS .................................................................................................................................... 46 

HYBRID MODEL ............................................................................................................................................. 48 

PREDICTIVE ANALYSIS RESULTS ................................................................................................................. 52 

The EU ....................................................................................................................................................... 53 

The USA .................................................................................................................................................... 56 

Japan ......................................................................................................................................................... 59 

Comprehensive analysis ................................................................................................................... 62 

CONCLUSIONS ..................................................................................... 68 

REFERENCES ....................................................................................... 72 



 

3 
 

SUPPLEMENTARY MATERIAL ............................................................. 75 

TABLES ............................................................................................................................................................ 75 

  



 

4 
 

Abstract 
 

Descriptive epidemiology has traditionally only been concerned with the definition of 

a research problem’s scope. However, the greater availability and improvement of 

epidemiological data over the years has led to the development of new statistical 

techniques that have characterized modern epidemiology. These methods are not only 

explanatory, but also predictive. In public health, predictions of future morbidity and 

mortality trends are essential to evaluate strategies for disease prevention and 

management, and to plan the allocation of resources. 

During my PhD at the school of “Epidemiology, Environment and Public Health” I 

worked on the analysis of cancer mortality trends, using data from the World Health 

Organization (WHO) database, available on electronic support (WHOSIS), and from 

other databases, including the Pan American Health Organization database, the 

Eurostat database, the United Nation Population Division database, the United States 

Census Bureau and the Japanese National Institute of Population database. 

Considering several cancer sites and several countries worldwide, I computed age-

specific rates for each 5-year age-group (from 0–4 to 80+ or 85+ years) and calendar 

year or quinquennium. I then computed age-standardized mortality rates per 100,000 

person-years using the direct method on the basis of the world standard population. I 

performed joinpoint models in order to identify the years when significant changes in 

trends occurred and I calculated the corresponding annual percent changes. 

Moreover, I focused on projections. I fitted joinpoint models to the numbers of certified 

deaths in each 5-year age-group in order to identify the most recent trend slope. Then, 

I applied Generalized Liner Model (GLM) Poisson regressions, considering different 

link functions, to the data over the time period identified by the joinpoint model. In 

particular, I considered the identity link, the logarithmic link, the power five link and 
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the square root link. I also implemented an algorithm that generated a “hybrid” 

regression; this algorithm automatically selects the best fitting GLM Poisson model, 

among the identity, logarithmic, power five, and square root link functions, to apply 

for each age-group according to Akaike Information Criterion (AIC) values. The 

resulting regression is a combination of the considered models. 

Thus, I computed the predicted age-specific numbers of deaths and rates, and the 

corresponding 95% prediction intervals (PIs) using the regression coefficients 

obtained previously from the four GLM Poisson regressions and from the hybrid GLM 

Poisson regression. Lastly, as a further comparison model, I implemented an average 

model, which just computes a mean of the estimates produced by the different 

considered GLM Poisson models. 

In order to compare the six different prediction methods, I used data from 21 countries 

worldwide and for the European Union as a whole, I considered 25 major causes of 

death. I selected countries with over 5 million inhabitants and with good quality data 

(i.e. with at least 90% of coverage). I analysed data for the period between 1980 and 

2011 and, in particular, I considered data from 1980 to 2001 as a training dataset, and 

from 2002 to 2011 as a validation set. To measure the predictive accuracy of the 

different models, I computed the average absolute relative deviations (AARDs). These 

indicate the average percent deviation from the true value. I calculated AARDs on 5-

year prediction period (i.e. 2002-2006), as well as for 10-year period (i.e. 2002-2011). 

The results showed that the hybrid model did not give always the best predictions, and 

when it was the best, the corresponding AARD estimates were not very far from the 

other methods. However, the hybrid model projections, for any combination of cancer 

site and sex, were never the worst. It acted as a compromise between the four 

considered models. The average model is also ranked in an intermediate position: it 

never was the best predictive method, but its AARDs were competitive compared to the 
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other methods considered. Overall, the method that shows the best predictive 

performance is the Poisson GLM with an identity link function. Furthermore, this 

method, showed extremely low AARDs compared to other methods, particularly when 

I considered a 10-year projection period. 

Finally, we must take into account that predicted trends and corresponding AARDs 

derived from 5-year projections are much more accurate than those done over a 10-

year period. Projections beyond five years with these methods lack reliability and 

become of limited use in public health. 

 

During the implementation of the algorithm and the analyses, several questions 

emerged: Are there other relevant models that can be added to the algorithm? How 

much does the Joinpoint regression influence projections? How to find an “a priori” 

rule that helps in choosing which predictive method apply according to various 

available covariates? All these questions are set aside for the future developments of 

the project. 

Prediction of future trends is a complex procedure, the resulting estimates should be 

taken with caution and considered only as general indications for epidemiology and 

health planning. 
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Introduction 
 

Descriptive epidemiology and its statistical techniques are fundamental instruments 

for exploratory studies in order to generate new hypotheses and/or verify them. 

Descriptive epidemiology is usually considered a first approach to define the purpose 

and scope of a research investigation. 

The basic techniques of descriptive epidemiology were borrowed from demography 

and the key descriptive tools were morbidity and mortality rates. Their comparison and 

their standardization were and are still the main methods used; however, statistical 

variability was rarely taken into account, sometimes producing serious errors and 

misleading interpretations 1. 

Over the years, especially cancer registries have improved the quantity and the quality 

of data, also working on the standardization of definitions/classifications and on 

registration procedures. Cancer incidence and mortality data are routinely recorded in 

cancer registries, and became the basic data for cancer surveillance. On the other hand, 

demographic data were also published on a more regular basis and became available 

for an increasing number of populations 2. 

The improvement and the greater availability of epidemiological and time based 

mortality data over the years brought the development of techniques that characterized 

modern descriptive epidemiology. These new techniques, mainly based on 

mathematical modelling, were developed focusing on the analysis of time series. They 

aimed to identify different factors that underlie the changes in rates. Specifically, 

historical oncologic data recorded in cancer registries could provide us with rich 

information on the changes of cancer incidence and mortality over the years; the trends 

of changing rates reflect the changes of the underlying risks. Thus, the collection of 

increasingly detailed morbidity and mortality data, and the creation of data systems 
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which allow cases and deaths to be located in time and space, have provided a solid 

basis for the evaluation of time series trends, in turn requiring the development of 

appropriate statistical methods. These methods are not only explanatory, but also 

predictive 1. 

Prediction of a future event is a complex process subject to large uncertainties and, for 

many aspects, questionable. However, in several human activities and working areas, 

it is useful to obtain information on future trends, even if uncertain or imprecise. In 

demography, for example, it is common practice to produce population structure 

projections for future decades, although it is known that the fertility, mortality and 

migratory patterns may vary considerably in relatively short periods, and thus 

substantially modify the subsequent population structure. Regarding oncologic data, 

which are at the basis of this thesis, the prediction of future cancer mortality rates is 

essential to plan the allocation of resources and to evaluate strategies for prevention 

and cancer management. Indeed, the actual available data are, usually, 2-3 or more 

years old 3. 

During my PhD studies in the school of “Epidemiology, Environment and Public 

Health” I worked on the analysis of cancer mortality trends; my focus was on 

projections. Over the first year of my PhD I implemented a predictive method that I 

continued to investigate and improve during the second and third years. I started 

developing an algorithm to compute a “hybrid” regression, that was a mixture of linear, 

log-linear, power five, and square root regressions. This algorithm automatically chose 

the best model to apply for predictions according to R-squared values. I compared the 

hybrid regression results to those from linear and log-linear regressions. Then, during 

my second year, I replaced the simple linear regressions with more appropriate 

models: I considered Poisson Generalized Linear Model (GLM) regressions with 

different link functions (identity, logarithmic, power five and square root) and refined 
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the algorithm that automatically, now on the basis of Akaike information criterion 

(AIC) values instead of R-squared ones, selected the best fitting model to use, 

generating the hybrid regression. 

All these models have been applied to the European Union (EU) data, including several 

cancer sites. Data referred to the period 1980-2011; I used data from 1980 to 2001 as 

a training dataset so that I could “predict” data for the following period 2002-2011 

(validating dataset). Then, I compared the predicted data with the observed with the 

aim to identify the most performing model. 

A further step that I have achieved during my third year of PhD was to extend the 

database to other 21 countries besides the EU, and to other several causes of death, for 

a total of 25, obtaining a more consistent database and, as a consequence, estimates. 

Then, in addition to reviewing the algorithm, I also added an average model, which just 

computes a mean of the estimates produced by the different considered GLM Poisson 

models. 

Thus in this thesis, I will describe the methods and modelling techniques I used to 

study and project mortality rates in detail. I will also describe the main results obtained 

by applying the six different models previously described: the GLM Poisson models 

with the identity, logarithmic, power five, and square root link functions, the hybrid 

regression and the average regression.  
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Mortality rate 
 

Introduction 
 

In epidemiology, there are several indicators and measures to describe different 

aspects of a population’s health. The rate is the most widely used. It measures the 

instantaneous change of a quantity (for example the switch from health to sickness or 

from living to dead) compared to the change in unit of another quantity (time). 

If the event of interest is the number of deaths occurring in a population for a given 

cause in a certain period, the most suitable indicator is the mortality rate. 

 

Instantaneous risk 
 

To identify factors that cause an event (for example the disease onset or the death of 

an individual) it is necessary to calculate its risk, i.e. the probability of that event, which 

will depend on either individual characteristics, such as age, or environmental factors. 

The risk function determines how the risk of an event’s occurrence changes over time 

or with age. 

To give a definition of risk it is necessary to specify a time scale to measure it against 

an initial time point from which the risk will be measured. In epidemiology (as well as 

in demography), time can be measured in three ways: age, calendar period, and cohort 

of birth. The first two time indices correspond to the Lexis diagram axes 1. 
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Figure 1. Lexis diagram. 

 

Figure 1 illustrates the Lexis diagram structure. Every segment of oblique lines in this 

graph represent the observable fraction of an individual life, from the starting 

observation and the event realization (i.e. the interval of time and age during which an 

event of interest can occur). The left extremity of the segment represents the start of 

observation (for example the date of birth or the time of treatment initiation), the right 

one is the end of observation (the date and age at which either the event under study 

occurred or the subject stopped being observed). In order to obtain a measure of the 

time from initial observation since the occurrence of the event, you can project the 

oblique segment on one of the two axes of the diagram. 

 

Once a time scale is established, the distribution of the time between the starting 

observation and the occurrence of the event is of fundamental importance. If for 

example the interest is in studying the risk of dying after a cancer diagnosis, 
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distribution knowledge of the time elapsing between diagnosis and death, would allow 

to calculate the risk of death within a year of diagnosis, or the probability of surviving 

up to a given age. 

Thus, an appropriate mathematical model to calculate these risks is essential. The main 

assumption is that the event under study is a non-recurring event, i.e. once it has 

occurred, it cannot be repeated another time for the same individual. Death is 

obviously a non-recurring event, while the onset of a disease is not necessarily so. 

 

Consider the following quantities: 

 𝑻 - is a random variable representing the time before the occurrence of a specific 

event for a subject in a certain population. 𝑇 must be positive (𝑇 > 0), i.e. at the 

beginning of observation the individual must not have experienced the event. 

 𝒇(𝒕) - is the density function of 𝑇 and 𝑭(𝒕) = 𝑃(𝑇 ≤ 𝑡) is the probability 

distribution (𝐹′(𝑡) = 𝑓(𝑡)). 

 𝑺(𝒕) - is the survival function, that is the probability that a subject experiences 

the event over a certain time t. 𝑺(𝒕) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡). 

 

The instantaneous rate or risk function is defined as: 

 

𝜆(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

1

∆𝑡
 𝑃𝑟(𝑡 ≤ 𝑇 < 𝑡 + ∆𝑡|𝑇 ≥ 𝑡) 

 

The previous formula is the ratio between the conditional probability that the event 

occurs at time 𝑡 and the corresponding time interval ∆𝑡 4.  

The instantaneous rate 𝜆(𝑡) is not a probability, but a probability per unit time, also 

called probability rate. 
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The event of interest, for mortality data analysis, is death and it is called the 

instantaneous mortality rate. The higher 𝜆(𝑡), more likely a death will occur between t 

and the next instant, therefore 𝜆(𝑡) provides a measure of the force of mortality at time 

𝑡. 

 

It is possible to rewrite 𝜆(𝑡) with the following formula: 

 

𝜆(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

1

∆𝑡

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

1 − 𝐹(𝑡)
 

 

Which, replacing 1 − 𝐹(𝑡) with 𝑆(𝑡), becomes: 

 

𝜆(𝑡)𝑆(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝐹(𝑡 + ∆𝑡) − 𝐹(𝑡)

∆𝑡
 

 

𝜆(𝑡)𝑆(𝑡) = 𝐹′(𝑡) 

 

Thus, the probability that an event occurs before a certain time t, 𝜋(𝑡), can be written 

as: 

 

𝜋(𝑡) = ∫ 𝐹′(𝑢)𝑑𝑢
𝑡

0

 

or also as: 

 

𝜋(𝑡) = ∫ 𝜆(𝑢)𝑆(𝑢)𝑑𝑢
𝑡

0
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The probability of death,  𝜋, between age 𝑡0 and 𝑡1, can be define as: 

 

𝜋 = ∫ 𝜆(𝑢)𝑆(𝑢)𝑑𝑢
𝑡1

𝑡0

 

 

Where 𝜆(𝑢) is the age-specific rate and 𝑆(𝑢) the probability of survival without disease 

1. 

 

The main interest focuses on the calculation of the conditional probability of death, 𝜋𝑐, 

between the age 𝑡0 and 𝑡1 given that a subject is still at risk at age 𝑡0. This probability is 

not influenced by overall survival until the age 𝑡0 and, if the range between 𝑡0 and 𝑡1 is 

small, influenced very little by survival. 

Then, it is possible to calculate 𝜋𝑐 using the following formula: 

 

𝜋𝑐 = ∫ 𝜆(𝑢)
𝑆(𝑢)

𝑆(𝑡0)

𝑡1

𝑡0

𝑑𝑢 

 

Under the assumption that the interval [𝑡0; 𝑡1] is small enough, 𝜆(𝑢) and 𝑆(𝑢) can be 

considered constant - 𝜆(𝑡0), 𝑆(𝑡0), then the equation can be rewritten in the following 

form: 

 

𝜋𝑐 ≈ 𝜆(𝑡0)(𝑡1 − 𝑡0) 

 

If 𝑒 is the number of observed events between 𝑡0 and 𝑡1, and 𝑛𝑡0
 the number of subjects 

at risk at time 𝑡0, then the following formula gives the 𝜋𝑐 estimate: 
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𝜋𝑐̂ =
𝑒

𝑛𝑡0

 

And the estimate for 𝜆 is: 

 

𝜆̂(𝑡0) ≈
𝑒

𝑛𝑡0
(𝑡1 − 𝑡0)

 

 

Consequently, dividing the number of observed events by the number of person years 

(𝑚) accumulated between 𝑡0 and 𝑡1, you obtain the more familiar estimate formula of 

the instantaneous rate at time 𝑡0: 

 

𝜆̂(𝑡0) ≈
𝑒

𝑚
 

 

If 𝜆(𝑢) varies markedly between 𝑡0 and 𝑡1, or if the ratio 𝑆(𝑢) 𝑆(𝑡0)⁄  is very different 

from unity, this approximation does not hold 1. 

 

We can define the instantaneous rate as 4: 

 

𝜆 =  
𝑝

𝑡
 =  

𝑒
𝑛⁄

𝑡
 =  

𝑒

𝑛 ∗ 𝑡
 

 

That is: 

𝜆 =  
𝑒𝑣𝑒𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑒𝑣𝑒𝑛𝑡𝑠
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘⁄

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 = 

 

       =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 ∗ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
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Thus, the rate is an instantaneous quantity because the observation time is only used 

as an operational element, to make the calculations (average rate). However, since the 

follow-up time appears directly in the rate definition, the rate takes into account the 

events that occurred and the time during which they occurred 4. 

 

Crude mortality rate 
 

The crude mortality rate measures the frequency of deaths observed in a population in 

a given period of time (conventionally a calendar year) and is the easiest to calculate. 

 

Formal definition of mortality rate: 

The ratio between the number of deaths from a certain cause that occurred in the study 

population in a given period (= numerator) and the total population at risk in the same 

period considered (= denominator). 

 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 =  

 𝑛° 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑎𝑢𝑠𝑒 
𝑡ℎ𝑎𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑
𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑠𝑜𝑛 − 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑟𝑖𝑠𝑘 

𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑔𝑖𝑣𝑒𝑛 𝑝𝑒𝑟𝑖𝑜𝑑

 

 

The mortality rate indicates the average speed with which a group of individuals 

switches from a state of risk to a state of death in the time unit. 

 

In the specific case of annual mortality rates, the numerator of the rate is the number 

of deaths for the observed condition during the calendar year, while the denominator, 

consists of the population estimates derived from the census. In other words, the 
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person-years are expressed as the number of individuals present in mid-year (or the 

yearly average). 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒

=

 𝑛° 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑎 𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑐𝑎𝑢𝑠𝑒 
𝑡ℎ𝑎𝑡 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑦𝑒𝑎𝑟
 

(𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 + 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑎𝑡 𝑟𝑖𝑠𝑘 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑)
2

 

 

Since each population can be considered as a set of different homogeneous subgroups, 

the value of the generic rate can be seen as an average of the values measured in every 

subgroup.  

These values are weighted by the size of the specific subgroup: the larger the subgroup, 

the greater the influence on the crude measurement. 

 

Consider a population composed by age-subgroups, where: 

 𝑵 - is the total size of the population at risk; 

 𝑫 - is the total number of deaths observed in the population; 

 i - indicates i-th stratum; 

 𝒏𝒊 - is the size of the population in the i-th stratum; 

 𝒅𝒊 - is the number of deaths observed in the i-th stratum. 

 

The sum of all 𝑛𝑖 gives the total size of the population (𝑁), while the sum of all 𝑑𝑖 gives 

the total number of deaths (𝐷). The crude mortality rate is given by the ratio 𝐷 𝑁⁄ , that 

is the weighted average of the stratum specific mortality rates (
𝑑𝑖

𝑛𝑖
⁄ ). Each specific 

mortality rate contributes with a weight proportional to its stratum population (
𝑛𝑖

𝑁⁄ ): 
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𝐷

𝑁
=  

∑ 𝑑𝑖
𝑛
𝑖=1

𝑁
=  

∑ 𝑛𝑖 (𝑑𝑖/𝑛𝑖)𝑛
𝑖=1

𝑁
=  ∑ (

𝑛𝑖

𝑁
)

𝑛

𝑖=1

(
𝑑𝑖

𝑛𝑖
) =  ∑ 𝑤𝑖

𝑛

𝑖=1

(
𝑑𝑖

𝑛𝑖
) 

 

wi represent the weights and their sum is equal to unity: 

 

 ∑ 𝑤𝑖

𝑛

𝑖=1

= ∑ (
𝑛𝑖

𝑁
)

𝑛

𝑖=1

 =
∑ 𝑛𝑖 

𝑛
𝑖=1

𝑁
=

∑ 𝑛𝑖 
𝑛
𝑖=1

∑ 𝑛𝑖 
𝑛
𝑖=1

= 1 

 

Since mortality is strongly associated with age, age-specific mortality rates vary 

strongly with age. The crude rate does not account for this heterogeneity. This is a 

significant limit if the aim is to compare rates between different populations or 

between different periods: part of the observed differences could be due to this 

heterogeneity and variability between strata. 

The goal of the methods that will be presented in the next section is to obtain 

comparable measures between different populations. 

 

Standardized rates 
 

Since different intrinsic features characterize a population, the comparison of crude 

rates of different populations and different periods is inappropriate. In fact, each 

population differs from the other for socio-demographic, geographic, genetic, 

occupational, dietary, health and environmental aspects. There are significant 

differences regarding the distribution by age, sex, social class, occupation, etc. 

In order to compare mortality rates between different geographical regions, groups or 

calendar periods it is necessary to consider those factors in the calculation of the rates. 

It is essential to take into account variables which are already recognized as possible 
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explanations of observed differences in rates. Among these factors, age plays a key role 

and its effects are large. As mentioned in the previous paragraph, particularly for 

mortality rates, the age distribution of the individuals may change between the 

compared populations. If, for example, older age-groups are dominant in a population, 

the crude mortality rate will be higher compared to populations where there is a higher 

proportion of young people and children. This is simply because the risk of death in 

older people is greater than in the young 1, 5. 

Thus, “standardization” procedures are fundamental in order to make rates calculated 

on different populations comparable. Through standardization, it is possible to control 

certain known characteristics that can affect the value of the rates, obtaining estimates 

of weighted rates, based on a reference population, defined as a “standard population”. 

Since the occurrence of many health conditions is related to age, the most common 

standardization for data concerning public health is standardizing by age. 

There are two standardization techniques: direct standardization and indirect one. 

Below, the direct method is described 1, 6. 

 

Direct standardization 
 

This method aims to determine the annual rate that would be observed in a standard 

(or reference) population with a given age structure if it was subjected to the same 

mortality pressure of the studied population. 

This procedure calculates the expected number of cases (deaths) in each age-group of 

the standard population, applying the person-years of the standard population to the 

corresponding specific estimated rates of the studied population. Then, the total 

number of expected cases is divided by the total number of person-year in the reference 

population 1, 5. 
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The resulting rate indicates the frequency of an event if study population had the same 

age structure as the reference population. 

 

Consider: 

 𝒈 – the number of age-groups considered; 

 𝑳 – the size of standard population; 

 𝑳𝒊 – the size of the i-th age-group of the standard population; 

 𝒅𝒊 – the number of cases observed in the i-th age-group of the population 

under study; 

 𝒎𝒊 – the number of person-year accumulated in the i-th age-group of the 

population under study; 

 𝝀𝒊 =
𝑑𝑖

𝑚𝑖
⁄  – the specific rate of the i-th age-group of the population under 

study. 

 

The following formula gives the standardized rate with the direct method: 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑟𝑎𝑡𝑒 = 𝛬 =
1

𝐿
∑ 𝐿𝑖𝜆𝑖

𝑔

𝑖=1

 

 

𝐿𝑖𝜆𝑖 represents the number of expected cases that might be observed in one year in the 

i-th age-group of the standard population if it was exposed to a level of risk defined by 

the rate 𝜆𝑖. 
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Let: 

𝒘𝒊 – be the weight (proportion of subjects) of the i-th group of the standard 

population, equal to 𝐿𝑖/𝐿. 

The previous formula may be also written as: 

 

𝛬 = ∑ 𝑤𝑖𝜆𝑖

𝑔

𝑖=1

 

 

∑ 𝑤𝑖

𝑔

𝑖=1

= ∑ (
𝐿𝑖

𝐿
)

𝑔

𝑖=1

 =
∑ 𝐿𝑖 

𝑔
𝑖=1

𝐿
=

∑ 𝐿𝑖 
𝑔
𝑖=1

∑ 𝐿𝑖 
𝑔
𝑖=1

= 1 

 

The standardized rate 𝛬 is a weighted average of age-specific rates (𝜆𝑖); the weights are 

the proportion of individuals in the various age-groups of the standard population 5. 

Moreover, if two populations are characterized by the same age-specific rates, using 

the same standard population, the standardized rate will be the same regardless of 

their age structure. 

 

Reference populations are not necessary real populations, but can also be theoretical 

ones. 

The choice of the standard population depends on the study aim and influences the 

numerical results. When comparison among rates takes place in countries where age 

structures are similar to those of developed countries, the European population is 

suitable as a standard population, while the African population can be used as a 

reference for developing countries. It is also possible to restrict the standard 

population – truncated population – to certain age-groups, i.e. adult, when there is a 

specific interest. One of the most used reference populations is the world standard 
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population; the WHO provides it in order to make international comparisons easier. 

Its age structure and corresponding weights are reported below: 

 

Age - 

group 

Standard 

population 1960  

(* 100,000) 

Age - 

group 

Standard 

population 1960 

(* 100,000) 

0-4 12 45-49 6 

5-9 10 50-54 5 

10-14 9 55-59 4 

15-19 9 60-64 4 

20-24 8 65-69 3 

25-29 8 70-74 2 

30-34 6 75-79 1 

35-39 6 80-84 0.5 

40-44 6 85 + 0.5 

Total   100 

 

Table 1. World standard population age structure (1960 version) 7. 

 

Age - 

group 

Standard 

population 2001  

(* 100,000) 

Age - 

group 

Standard 

population 2001 

(* 100,000) 

0-4 8.86 45-49 6.04 

5-9 8.69 50-54 5.37 

10-14 8.60 55-59 4.55 

15-19 8.47 60-64 3.72 

20-24 8.22 65-69 2.96 

25-29 7.93 70-74 2.21 

30-34 7.61 75-79 1.52 

35-39 7.15 80-84 0.91 

40-44 6.59 85 + 0.63 

Total   100 

 
Table 2. World standard population age structure based on world average population between 2000-

2025 7. 
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Rate probability distribution and 

confidence intervals 
 

The age-specific rates, and consequently the standardized rates, are estimated from 

observations which are subject to a certain amount of random variability. This 

variability affects the estimate of the standardized rates and can bring to biased 

conclusions if the observed differences between standardized rates are mainly due to 

random variation. In order to evaluate the importance of this kind of variation the 

standardized rate 𝛬 should be presented with its standard error or its confidence 

interval 4, 8. 

The exact probability distribution for the rate is complicated due to the presence of 

censored data. For each unit 𝑖 observed over the time 𝑡𝑖, the events are distributed 

according to the Poisson probability distribution. Since events have a constant 

probability over time, the occurrence of an event does not influence the next one and 

the probability that two events occur at the same instant is zero. 

If this reasoning is extended to the whole study, you can assume to have many small 

Poisson processes. Assuming that all the experimental units are independent (as for 

mortality data), the study can be thought of as a set of independent Poisson processes: 

the result will be a Poisson distribution relative to the total number of events 4, 9. 

 

Let: 

 𝑫 – be the total number of deaths; 

 𝝀 – be the mortality rate; 

 𝒎 – be the total observed person time. 
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𝑝𝑟(𝑑 = 𝑥|𝐷) =
𝑒−𝐷 ∙ 𝐷𝑥

𝑥!
=

𝑒−𝜆𝑚(𝜆𝑚)𝑥

𝑥!
 

𝐸(𝐷) = 𝜆𝑚 

𝑉𝑎𝑟(𝐷) = 𝜆𝑚 

 

If 𝜆 is sufficiently small, and 𝐷 is much smaller than 𝑚, the Poisson distribution is a 

good approximation of the exact rate probability distribution. Moreover, the variability 

of the rate is considered to only be associated to its numerator (observed events), while 

the denominator (the population - time) is considered fixed and therefore not affected 

by random variability. Therefore, the accuracy of a rate only depends on the variability 

of the number of observed cases (𝐷) 1. 

When events are sufficiently numerous (≥20), the rate probability distribution is 

approximately Gaussian with mean: 

 

𝜇 =
𝐷

𝑚
 

 

and variance: 

 

𝜎2 =
𝐷

𝑚2
 

 

Thus, considering this approximation, the variance of the rate estimator 𝜆̂ = 𝐷
𝑚⁄  is: 

 

𝑉𝑎𝑟(𝜆̂) = 𝑉𝑎𝑟 (
𝐷

𝑚
) =

𝑉𝑎𝑟(𝐷)

𝑚2
=

𝜆

𝑚
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Its estimate is obtained by replacing 𝜆 with 𝐷 𝑚⁄ : 

 

𝑉𝑎𝑟̂(𝜆̂) = 𝑉𝑎𝑟 (
𝐷

𝑚
) =

𝐷

𝑚2
=

𝜆̂2

𝐷
 

 

So, the variance of the specific rate 𝜆̂𝑖 is: 

 

𝑉𝑎𝑟(𝜆̂𝑖) =
𝑉𝑎𝑟(𝐷𝑖)

𝑚𝑖
2 =

𝜆𝑖

𝑚𝑖
 

 

For the standardized rate it is: 

 

𝑉𝑎𝑟(𝛬̂) = ∑ 𝑤𝑖
2𝑉𝑎𝑟(𝜆̂𝑖)

𝑔

𝑖=1

= ∑ 𝑤𝑖
2 (

𝜆𝑖

𝑚𝑖
)

𝑔

𝑖=1

 

 

𝜆𝑖 being unknown, this variance must be estimated by replacing 𝜆𝑖 by its estimate 
𝑑𝑖

𝑚𝑖
⁄  

in the above expression 1. Then: 

 

𝑉𝑎𝑟̂(𝛬̂) = ∑ (
𝑤𝑖

2

𝑚𝑖
2) 𝑑𝑖

𝑔

𝑖=1

 

 

If the standardized rate is denoted by: 

 

µ = 𝛬̂ = ∑ 𝑤𝑖𝜆𝑖

𝑖
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and if 𝑠 is the estimate of its standard error, then (𝛬̂ − 𝜆𝑆𝐷) 𝑠⁄  approximates a standard 

normal variable. Therefore, it is possible to calculate the approximate confidence 

interval (IC) for µ: 

 

𝐼𝐶1−𝛼(𝛬) = [𝛬̂ − 𝑧
1−

𝛼
2

√𝑉𝑎𝑟̂(𝛬̂) , 𝛬̂ + 𝑧
1−

𝛼
2

√𝑉𝑎𝑟̂(𝛬̂)] 

 

Where 1 − 𝛼 is the chosen confidence level and 𝑧1−
𝛼

2
 is the quantile of level 1 −

𝛼

2
 of a 

standard normal distribution - 𝑁(0,1). 

For practical purposes rates are usually given as 𝛬̂ per 100,000 person years (105 × 𝛬̂), 

consequently the variance needs to be presented as 1010 × 𝑉𝑎𝑟̂(𝛬̂).  
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Mortality trend analysis 
 

Estimated Annual Percent Change 
 

In order to describe mortality rate trends over time, it is useful to calculate the annual 

percent change (EAPC). 

The assumption is that the rates change constantly from year to year. Rates that change 

with a constant percentage every year change linearly on a logarithmic scale. For this 

reason, to estimate the EAPC of a series of data, the following regression model is used: 

 

log(𝜆𝑥) = 𝑏0 + 𝑏1𝑥 

 

Where log(𝜆𝑥) is the natural logarithm of the rate for the year 𝑥. 

 

The EAPC between the year 𝑥 and the year 𝑥 + 1 is equal to: 

 

𝐴𝑃𝐶𝑥,𝑥+1 = [
(𝜆𝑥+1 − 𝜆𝑥)

𝜆𝑥
] × 100 = [

(𝑒𝑏0+𝑏1(𝑥+1) − 𝑒𝑏0+𝑏1𝑥)

𝑒𝑏0+𝑏1𝑥
] × 100 = (𝑒𝑏1 − 1)  × 100 

 

However, it is unreasonable to describe the pattern of an entire data series in detail 

with a single EAPC, for this reason, it is useful apply a joinpoint regression model 10. 

This model, through statistical criteria, determines when and how often the EAPC 

changes significantly over the considered period 11. 

In mortality rates, the model is estimated through log-linear segments joined to each 

other. For example, rates can rise mildly for a certain period, have a strong upward 

trend during next years, to, then, decrease for the remaining time of the study. 
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Implementing the joinpoint model which best describes the data, is fundamental in 

order to determine how long the EAPC remains stable and when there is a change in 

trends. 

 

Joinpoint regression model 
 

The joinpoint regression model, proposed by Kim HJ et al 10, identifies the years 

characterized by a statistically significant change in mortality rates during the study 

period. This model is one of the most used and, moreover, is implemented by the 

Joinpoint software from the National Cancer Institute and freely available 12. 

Briefly, the joinpoint regression model assumes that the trend of the logarithm of the 

rate is linear. A linear segment can approximate a curve quite well, provided that it has 

the appropriate length. The joinpoint model identifies linear segments that fit the 

observed rates best, minimizing the sum of the squares of the distances between the 

points and the segments themselves 13. The points of statistically significant change in 

rates are called “joinpoints”. The number of segments that make up the trend can’t be 

more than the number of joinpoints arbitrarily set before the analysis. The year in 

which the joinpoint occurred is the year that identifies a change in trends. 

 

The software implements two different methods to obtain the model estimates: Grid 

Search and Hudson. The first method considers the observed values as discrete 

numbers and allows joinpoints to fall precisely on an observation. A better estimate 

can be obtained refining the grid, changing the program settings on the number of 

points to be placed between the X values observed in the grid (“Grid Search”) to a 

number greater than 0. In this way, the “Grid Search” method creates a grid of all 

possible positions in which the so-called joinpoints can fall, as specified in the settings, 
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and test the minimum sum of squared errors (SSE) for each model at k joinpoints, 

determining the best estimate. For low numbers of points between the observed values, 

this method is more efficient from a computational point of view. 

Hudson search considers the observed data as continuous and is more computationally 

intensive. 

The Joinpoint program also computes the EAPCs with the 95% confidence intervals 11. 

 

Statistical model 
 

The joinpoint regression for couple of observations (𝑥𝑖, 𝑦𝑖), for i= 1, ..., n, where 𝑦𝑖 

represents the observed mortality rates at the time 𝑥𝑖, can be written in the following 

way. 

 

Let: 

 k – be the number of unknown joinpoints; 

 𝝉𝒌 – be the k-th unknown joinpoint. 

 

𝐸[𝑦|𝑥] = 𝛽0 + 𝛽1𝑥 + 𝛿1(𝑥 − 𝜏1)+ + ⋯ +  𝛿𝑘(𝑥 − 𝜏𝑘)+ = 𝛽0 + 𝛽1𝑥 + ∑ 𝛿𝑖

𝑘

𝑖=1

(𝑥 − 𝜏𝑖)
+ 

 

(𝑥 − 𝜏𝑘)+ = {
𝑥 − 𝜏𝑘    𝑝𝑒𝑟 𝑥 > 𝜏𝑘

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

In the literature, many authors studied this kind of non-linear model previously; it has 

been called in different ways, for example “piecewise regression”, “segmented 

regression”, “broken line regression” or “multi-phase regression” with a continuity 

constraint 14. 
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The parametrized log-linear model: 

 

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝛿1(𝑥 − 𝜏1)+ + ⋯ +  𝛿𝑘(𝑥 − 𝜏𝑘)+ + 𝑒𝑟𝑟𝑜𝑟 

 

where 𝑦 = log (𝑟𝑎𝑡𝑒). 

 

In the case of a model without joinpoints the equation reduces to a simple linear model 

with intercept 𝛽0 and slope 𝛽1. While the terms 𝛿𝑖(𝑥 − 𝜏𝑖)+ represent the change in 

slope for any subsequent segments and are equal to zero in the years prior to the 

joinpoints. 

 

For example, to determine up to 2 joinpoints, you must test a null hypothesis of no 

change with the alternative of 2 joinpoints. 

 

 𝐻0: 𝐸[𝑦|𝑥] = 𝛽0 + 𝛽1𝑥 

𝐻1: 𝑒𝑥𝑖𝑠𝑡 𝜏1 𝑎𝑛𝑑 𝜏2 (𝜏1 < 𝜏2) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸[𝑦|𝑥] = 𝛽0 + 𝛽1𝑥 + 𝛿1(𝑥 − 𝜏1)+ +  𝛿2(𝑥 − 𝜏2)+ 

 

 If the null hypothesis is rejected, the same procedure is applied to a hypothesis 

test with 1 joinpoint versus 2 joinpoints; 

 

 If the null hypothesis is not rejected, it is tested against the 1 joinpoint 

alternative hypothesis. 

 

The best model is identified by a permutation test algorithm, which involves 

comparisons among models with different numbers of joinpoints. The first comparison 

is between the model without joinpoints and the model with a number of joinpoints 
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equal to the fixed maximum number. The final model is the model with the fewest 

parameters, for which the addition of a further parameter (joinpoint) does not lead to 

significant improvements. 

 

Once the best model is selected the EAPC estimate for each segment is: 

 

𝐴𝑃𝐶(𝜏𝑗,𝜏𝑗+1) = (𝑒𝑏1+𝛿1+⋯+𝛿𝑗 − 1) × 100 

 

The Joinpoint program provides the EAPCs and the corresponding confidence 

intervals. 

 

Figure 2. Example of joinpoint output for lung cancer in men aged 40-44 years old. 

  

β1 

β2 = β1 + 𝛿1 
𝛕𝟐 

𝛕𝟏 

β3 = β1 + 𝛿1 + 𝛿2 
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Predictive analysis 
 

Introduction 
 

The prediction of future trends in incidence and mortality is essential to generate the 

epidemiological information necessary for resource allocation in health planning. 

This report focuses on cancer mortality rates. Cancer is a significant health issue with 

a huge burden on global population. Health specialists, planners and policy makers 

need information on the future cancer burden in order to prioritize prevention 

activities, allocate health services and resources, and evaluate the impact of 

interventions and treatments 3, 15. 

In general, for health planning, which is an integral part of cancer control programs, 

having information on future trends is a necessity. This is why projection methods are 

so important and accurate projections of future burden of cancer are essential. 

Statistical methods for cancer projections, which are commonly used when 

information on risk factors is not available, can be implemented in two steps: 

1) using historical data to model trends of cancer risk; 

2) extrapolating the trends into the future to project the numbers and rates. 

Statistical modelling of past trends allows to project cancer incidence and mortality 

trends by extrapolating time trends from observed rates. The number of new cancer 

cases or deaths is calculated by applying the estimated rates to projected population 

numbers. Projections based on the extrapolation of trends in cancer incidence and 

mortality over time assume that trends in risk behaviour will remain stable, no 

intervention or screening program will be started, and there is no change in diagnostic 

techniques. However, this assumption of unchanged trends in rates is very strong and 

may not be realistic 15. 
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Trends in cancer incidence or mortality may be described as trends over age at 

diagnosis or at death, year of diagnosis or death (period), and/or year of birth (cohort). 

Age is the most important time scale that affects cancer risk; it characterizes the 

cumulative exposure of the body to carcinogens over time. Period effects correspond 

to events that change incidence risk regardless of the age-group and are usually due to 

an environmental change. Cohort effects involve risk factors that a specific generation 

shared 3, 16. The trend of observed rates reflects the unobserved trend in cancer risk. 

Usually, the trend can be classified as (overall or age-specific) period trend and/or 

cohort trend, which lead to two classes of models: age-period models and age-period-

cohort models. In general, the period effects can modify the risk of cancer in both the 

short- (usually less than 5 years ahead) and the long-term (around 25 years ahead), 

cohort effects on the risk of cancer are more important for a long period than for a short 

period. So in general, the short-term projections are based on age-period models, while 

the long-term projections take cohort effects into account and are based on age-cohort 

or age-period-cohort models. 

Mathematically, trends can be described as linear or non-linear, and different 

statistical modelling techniques including parametric, semi-parametric and non-

parametric models can be used. Because different statistical methods can result in 

different cancer projections, it may be difficult to determine which method is more 

appropriate. Thus, appropriate statistical modelling is fundamental to obtain valid 

cancer projections 15. 

The literature proposes many statistical models for cancer projections, each focusing 

on different issues and aspects. Among these, short-term techniques include Poisson 

regression methods, those based on ARIMA models (Autoregressive Integrated 

Moving Average) for time series and Joinpoints. The most used long-term predictions 

methods rely on age-period-cohort models such as Nordpred 15, 17-21. 
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The following sections will present different models/projection methods, all based on 

an age-period model with joinpoints, that are used in an applicative scenario. 

 

Joinpoint regression on the number of 

deaths 
 

The trend analyses performed with joinpoint regression models can be used to predict 

mortality trends. 

This prediction method proceeds as follows: a joinpoint regression model is fit to the 

logarithm of the number of age-specific deaths for each 5-year age-group to identify 

the most recent trend segments (a). Subsequently, a regression model is applied to the 

mortality data for each age-group over the period identified by the last segment of the 

joinpoint model, in order to estimate the regression coefficients (b). This model is then 

used to predict mortality for future years, to calculate the number of expected age-

specific deaths and the corresponding 95% prediction intervals (IPs), that is, the 

confidence intervals for the prediction of each future value. These are calculated with 

a standard error that takes the variability of the new observation into account (c) 22, 23. 

Age-standardized mortality rates, with corresponding 95% PIs, are calculated using the 

number of expected age-specific deaths and the projected population data for the 

period of interest (d). 

 

During the statistical analysis for the paper titled “European cancer mortality 

predictions for the year 2016 with focus on leukaemia”, the authors noted that, for the 

0-14 years age-group , the model that best fit the leukaemia data was logarithmic, while 

for the other age-groups (all ages, 15-44, 45-69) the linear one worked well. Also for 
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these situations, I decided to implement an algorithm that would combine the four 

aforementioned models and select the best for each specific age-group automatically. 

In order to obtain projections of mortality data, I considered GLM Poisson regression 

models with four different link functions: the identity, logarithmic, power five and 

square root link. Furthermore, I implemented an algorithm that blends the above 

regression models, creating a new “hybrid” regression. This method calculates the 

number of expected age-specific deaths for each of the previous models; then for each 

age-group, sex and cancer site, the algorithm chooses the model with the best fit, based 

on the Akaike information criterion (AIC) statistic values. Thus, the algorithm chooses 

the best fitting model for each cause of death, sex and age-group, so the resulting total 

number of deaths and age-standardized rate could be calculated with different 

underlying link functions. The idea is that this hybrid model, automatically selects the 

best fitting model for each age-group, hopefully producing more accurate predictive 

estimates than the others. 

AIC statistic was chosen to compare the different model performances. Another useful 

statistic to compare models is the Bayesian information criterion (BIC). 

In addition to the previous models, I also considered a further simple model for 

projections: after obtaining the predicted estimates from the four GLM Poisson 

models, I computed the corresponding mean estimates, generating the average model. 

 

The following section describes the main characteristics of the Generalized Linear 

Models, considering different distributions and link functions. GLM Poisson 

regressions with identity, logarithmic, power five and square root link functions were 

used for projections, in the algorithm and in order to obtain the average model, 

assuming that the number of deaths over the last segment identified by the joinpoint 
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model followed this distribution and hence were projected according to this class of 

models. 

 

Exponential Family of Distribution and Generalized 

Linear Models 
 

Introduction 

The generalized linear model (GLM), as defined by Nelder and Wedderburn 24, could 

be considered as an extension of the classic linear regression model. GLMs aim to 

expand the classic linear regression to response variables (Y) which have distributions 

other than the Normal distribution. Since a non-Gaussian distribution is considered, 

the variance of Y is a function of its mean, thus the hypothesis of homoscedasticity at 

the basis of the linear regression collapses. 

The Bernoulli, Binomial, Poisson and the Negative Binomial are typical examples of 

random variables on which GLMs perform well. The common characteristic of all 

previous random variables is that the dependent variable distribution belongs to a 

wider class of distributions called Exponential Family of Distributions (EF). This class 

of distributions shares many properties from the Normal distribution. 

 

Exponential Family of Distribution 

A single random variable Y has a probability function, if it is discrete, or a probability 

density function, if continuous, and belongs to the exponential family (EF) if follows 

the form: 

 

𝑓(𝑦;  Ѳ, 𝜙) = 𝑒𝑥𝑝 {
𝑦Ѳ − 𝑏(Ѳ)

𝑎(𝜙)
+ 𝑐(𝑦, 𝜙)} 
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Where: 

- Ѳ is the canonical or natural parameter (Ѳ ∈ 𝛩 ⊆ ℝ); 

- 𝜙 is the dispersion parameter (𝜙 ∈ Ф ⊆ ℝ⁺); 

- 𝑎(•), 𝑏(•), 𝑐(•) are specific functions that identify a specific distribution function 

belonging to EF. 𝑎(•) depends only on the parameter 𝜙; 𝑏(•) depends only on 

Ѳ;  𝑐(•) depends on 𝑦 and 𝜙. Usually, 𝑎(𝜙) is defined as 
𝜙

𝜔⁄ , where 𝜔 is a known 

constant (𝜔 > 0). 

If 𝜙 is known, the 𝑓(𝑦;  Ѳ, 𝜙) is called canonical of natural form of the exponential 

family. 

 

Since 𝑏(Ѳ) is twice differentiable in Ѳ, its first derivative is an invertible function of Ѳ, 

and since 𝛩 is a convex set, the expected value of Y is: 

𝐸(𝑌) = 𝜇 =
𝑑𝑏(Ѳ)

𝑑Ѳ
= 𝑏′(Ѳ) 

 

And the variance of Y is:  

 

𝑉𝑎𝑟(𝑌) =
𝑑2𝑏(Ѳ)

𝑑Ѳ2
𝑎(𝜙) = 𝑏′′(Ѳ)𝑎(𝜙) =

𝑑𝜇

𝑑Ѳ
𝑎(𝜙) = 𝑉(𝜇)𝑎(𝜙) 

 

where the quantity: 

𝑑𝜇

𝑑Ѳ
= 𝑉(𝜇) 

 

is called variance function and it expresses the dependence between the variance and 

the mean of Y. In particular, if 𝑎(𝜙) = 1 the variance overlaps the variance function. 
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Moreover, under the same regularity conditions considered for 𝑏(Ѳ), the following 

relation is true: 

 

𝑑Ѳ

𝑑𝜇
=

1

𝑉(𝜇)
 

 

Many well-known distributions belong to the exponential family. For example, 

considering the probability function of a Bernoulli random variable: 

 

𝑓(𝑦;  𝜋) =  𝜋𝑦(1 −  𝜋)1−𝑦 = (1 − 𝜋) (
𝜋

1 − 𝜋
)

𝑦

 

 

Where 𝜋 represents the success probability. 

Applying the transformation: 

 

𝑓(𝑦;  𝜋) = 𝑒𝑥𝑝{ln (𝑓(𝑦;  𝜋)} 

 

We obtain: 

 

𝑓(𝑦;  𝜋) =  𝑒𝑥𝑝 {𝑙𝑛 [(1 − 𝜋) (
𝜋

1 − 𝜋
)

𝑦

]} = 𝑒𝑥𝑝 {𝑦 𝑙𝑛 (
𝜋

1 − 𝜋
) + ln (1 − 𝜋)} 

 

In this case the correspondence between parameters is: 

Ѳ = Ѳ(𝜋) =  𝑙𝑛 (
𝜋

1−𝜋
)  with Ѳ ∈ (−𝑖𝑛𝑓, +𝑖𝑛𝑓) 

𝑎(𝜙) = 𝜙 = 1   

𝑏(Ѳ) = 𝑙𝑛(1 + 𝑒Ѳ)  
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𝑐(𝑦, 𝜙) = 1  

 

The expected value is: 

 

𝐸(𝑌) = 𝜇 =
𝑑𝑏(Ѳ)

𝑑Ѳ
=

𝑑

𝑑Ѳ
[ln (1 + 𝑒Ѳ)] =

𝑒Ѳ

1 + 𝑒Ѳ
 

 

The variance (equal to the variance function) is: 

 

𝑉𝑎𝑟(𝑌) = 𝑉(𝜇) =
𝑑𝜇

𝑑Ѳ
=

𝑑

𝑑Ѳ
[

𝑒Ѳ

1 + 𝑒Ѳ
] = 𝜋(1 − 𝜋) 

 

Similarly, for the Binomial random variable: 

 

𝑓(𝑦; 𝑛, 𝜋) = (
𝑛
𝑦) 𝜋𝑦(1 −  𝜋)𝑛−𝑦 

𝑦 = 0,1,2, … , 𝑛   and   0 < 𝜋 < 1 

 

Where n is the number of independent sets. 

 

The correspondence among parameters is: 

Ѳ = Ѳ(𝜋) =  𝑙𝑛 (
𝜋

1−𝜋
)  con Ѳ ∈ (−𝑖𝑛𝑓, +𝑖𝑛𝑓) 

𝑎(𝜙) = 𝜙 = 1   

𝑏(Ѳ) = 𝑛 𝑙𝑛(1 + 𝑒Ѳ)  

𝑐(𝑦, 𝜙) = ln (
𝑛
𝑦)  
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The expected value is: 

 

𝐸(𝑌) = 𝜇 =
𝑑𝑏(Ѳ)

𝑑Ѳ
=

𝑑

𝑑Ѳ
[𝑛 ln (1 + 𝑒Ѳ)] = 𝑛

𝑒Ѳ

1 + 𝑒Ѳ
= 𝑛𝜋 

 

The variance (equal to the variance function) is: 

 

𝑉𝑎𝑟(𝑌) = 𝑉(𝜇) =
𝑑𝜇

𝑑Ѳ
=

𝑑

𝑑Ѳ
[𝑛

𝑒Ѳ

1 + 𝑒Ѳ
] = 𝑛𝜋(1 − 𝜋) 

 

Considering the Poisson random variable: 

 

𝑓(𝑦; 𝜆) =
𝜆𝑦𝑒−𝜆

𝑦!
 

𝜆 > 0 

Applying the transformation: 

 

𝑓(𝑦;  𝜆) = 𝑒𝑥𝑝{ln (𝑓(𝑦;  𝜆)} = 𝑒𝑥𝑝{𝑦 𝑙𝑛𝜆 − 𝜆 − 𝑙𝑛(𝑦!)} 

We obtained the following correspondence: 

Ѳ = Ѳ(𝜆) =  𝑙𝑛 𝜆  with Ѳ ∈ (−𝑖𝑛𝑓, +𝑖𝑛𝑓) 

𝑎(𝜙) = 𝜙 = 1   

𝑏(Ѳ) = 𝑒Ѳ  

𝑐(𝑦, 𝜙) = −ln (y!)  

 

The expected value is: 
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𝐸(𝑌) = 𝜇 =
𝑑𝑏(Ѳ)

𝑑Ѳ
=

𝑑

𝑑Ѳ
[𝑒Ѳ] = 𝑒Ѳ = 𝜆 

 

The variance (equal to the variance function) is: 

 

𝑉𝑎𝑟(𝑌) = 𝑉(𝜇) =
𝑑𝜇

𝑑Ѳ
=

𝑑

𝑑Ѳ
[𝑒Ѳ] = 𝑒Ѳ = 𝜆 

 

Generalized Linear Models 

Consider Y a dependent random variable belonging to the Exponential Family of 

Distributions. The GLM models are specified by three components: 

1) the random component, which regards the dependent variable and its 

distribution; 

2) the systematic component, which regards the linear predictor (η=𝑥𝑡𝛽) that is 

the set of covariates (qualitative, quantitative or both). Usually the maximum 

likelihood method is used for parameter estimation; 

3) the link function (g), which specifies the relation between the expected value of 

Y and the systematic component. More precisely, the link is the function of the 

E(Y) which, in the model, will be equal to the linear predictor. It establishes a 

relation between the random component and the systematic one: 

 

𝑔(𝜇) = 𝜂 = 𝑥𝑡𝛽 

 

The link function must be monotonous and differentiable, thus an inverse link function 

(𝑔−1) exists such that: 

 

𝜇 = 𝐸(𝑌) = 𝑔−1(𝜂) = 𝑔−1(𝑥𝑡𝛽) 
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The link function choice and the Y distribution choice are independent. Given a specific 

Y distribution and a set of covariates, it is possible to define different link functions, 

and consequently different GLMs. 

However, some matches between the link function and the distribution of Y have 

particular properties. One of the most frequent link choice is the canonical link (Ѳ =

𝜂), which connect the canonical parameter and the linear predictor linearly: 

 

𝑔(𝜇) = Ѳ(𝜇) = Ѳ = 𝜂 = 𝑥𝑡𝛽 

 

In the previous formula, the canonical parameter depends from the mean 𝜇 and: 

 

𝜇 = 𝐸(𝑌) = Ѳ−1(𝜂) = Ѳ−1(𝑥𝑡𝛽) 

 

The identity link (𝜇 = 𝜂 = 𝑥𝑡𝛽) is a particular link function that specifies a linear 

model. 

 

In the case of a dependent variable with a Poisson distribution (𝑌 ∼ 𝑃𝑜𝑖(𝜆)), the 

canonical parameter is: 

 

Ѳ = Ѳ(𝜆) = ln (𝜆) 

and 𝜆 = 𝐸(𝑌) =  𝜇 

 

Then, the GLM model using the canonical link is the following: 

 

𝑔(𝜆) =  Ѳ(𝜆) = ln 𝜆 = 𝜂 = 𝑥𝑡𝛽 
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The previous is called log-linear Poisson model and it is usually used for count data 

response variables. 

 

Another possible link function is the probit link: 

 

𝜂 = ф−1[𝐸(𝑌)] 

 

where ф is the standardized Normal distribution function. 

 

In addition to the identity and logarithmic link, for the present report I also considered 

the power five link: 

𝑔(𝜇) = Ѳ(𝜇) = Ѳ1/5 = 𝜂 = 𝑥𝑡𝛽 

and the square root link: 

𝑔(𝜇) = Ѳ(𝜇) = Ѳ2 = 𝜂 = 𝑥𝑡𝛽 

 

The link function results in a linear transformation on the population averages and not 

on the values of the dependent variable. Unlike methods of transformation, the link 

function takes advantage from the source distribution of the response variable, 

allowing the results to be expressed in the source scale. 

It is crucial to identify the link function that can better interpret the response variable 

and its relation to the set of explanatory variables. Indeed, if the GLM model is not 

correctly specified, the results distribution and any inference drawn from them are not 

valid. 
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Comparison tests 
 

To measure the accuracy of the predicted figures and to compare the performance of 

the different projection methods, the prediction error is estimated by computing the 

predicted minus the observed values in absolute terms for every projected year. Then 

the ratio between the prediction error and the observed count is calculated (when the 

observed count is zero, it is necessary to add 0.5 to the denominator to avoid numerical 

errors). The ratio is the percentage error of the prediction, compared to the observed 

count 25, 26: 

 

𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 =
|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡|

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡 (+0.5 when denominator is 0)
 

 

Finally, the average absolute relative deviation (AARD) is computed as the average of 

these error ratios: 

𝐴𝐴𝑅𝐷 =
1

𝑁
∑

|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖|

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑐𝑜𝑢𝑛𝑡𝑖 + 0.5

𝑁

𝑖=1

 

 

where i =1 … N indicates a specific scenario. 

 

The AARD indicates the average percent deviation from the true value (number of 

observed deaths) relative to the true value. This measure attempts to take the relative 

differences in observed mortality counts and assess the extent to which the estimates 

deviate from the observed. 
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Smaller values of AARD indicate the predicted estimates are close to the observed 

value. In general a prediction is considered reliable when the AARD value is less than 

5% 18. 

Similar considerations of the number of deaths apply to rates. 

 

In particular in this thesis AARDs are computed for the six projection methods 

considered (Poisson GLM model with identity, logarithmic, power five and square root 

link, the hybrid regression and the average one); more specifically for each 

combination among cause of death, sex and projection methods, and also for categories 

of the mortality counts, from the rarest causes of deaths to the most common 25, 26.  
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Application to real data 
 

In this section the previously described projection methods are applied to real 

mortality data. 

 

Data and methods 
 

I obtained official cancer death certification data from 1980 to 2011 from the World 

Health Organization (WHO) database, available on electronic support (WHOSIS) 27. 

Figures were derived for 22 countries worldwide, including the European Union (EU) 

as a whole (28 countries as defined in July 2013, minus Cyprus due to data 

unavailability), and for 25 major causes of death (23 cancer sites and 2 cardiovascular 

diseases). I only selected countries with over 5 million inhabitants and with data 

coverage above 90% 28. 

Mortality data was coded according to the ICD - International Classification of 

Diseases, developed by the WHO. During the calendar period considered, three 

different Revisions of the International Classification of Diseases were used, the eighth 

(ICD-8), the ninth (ICD-9) and the tenth revision (ICD-10) 29, 30, 31. Since coding 

differences between various revisions were generally minor, all cancer deaths were 

recoded according to the tenth Revision of the ICD. 

From the WHO database, I obtained estimates of the resident population for the 

corresponding calendar periods, based on official censuses. When population data 

were missing for some European countries, they were derived from Eurostat 32. For the 

USA I retrieved population estimates from the Pan American Health Organization 

database (PAHO) 33. 
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I split the data: I used observed data from 1980 to 2001 as a training dataset, to which 

I applied the projection methods in order to predict data for the 2002-2011 period, and 

I used observed data from 2002 to 2011 as a validation dataset, to compare the different 

methods results. 

From the matrices of certified deaths and resident population, I computed age-specific 

observed rates for each 5-year age-group (from 0–4 to 80+ or 85+ years) and calendar 

year or quinquennium. I then computed age-standardized mortality rates per 100,000 

using the direct method on the basis of the world standard population. For the 

calculation of the EU rates, if data was missing for one or more calendar years within 

a country, I performed extrapolations using the nearest available data. 

Projections were derived by fitting a joinpoint model to the number of certified deaths 

in each 5-year age-group in order to identify the most recent trend period. 

Subsequently, Poisson GLM regressions with identity, logarithmic, power five and 

square root link functions and the hybrid regression (a combination of the previous 

four models), were applied to the mortality data in each age-group over the time period 

identified by the joinpoint model. I thus computed the predicted age-specific number 

of deaths, and the 95% prediction intervals (PIs) using the previously obtained 

regression coefficients and simulated standard error. Predicted standardized mortality 

rates, and their 95% PIs, were computed using the 2002-2011 populations. In this 

specific case, I applied the joinpoint regression model to the certified numbers of 

deaths over the 1980-2001 period, with the following constraints: 

 the number of available years following the last estimated joinpoint must be at 

least equal to 5; 

 the number of years between two subsequent joinpoints must be at least equal 

to 4; 

 the maximum number of joinpoints, decided before the analysis, is 5. 
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These constraints were set in order to consider more stable periods; however, it is 

possible that if there were significant changes in slope in more recent periods, the 

joinpoint couldn’t detect them. The last constraint, in particular, was set because I was 

working on the number of deaths, which has more fluctuation than rates. 

After obtaining predicted rates and the PIs for the models under study, I computed the 

average model, obtaining the corresponding average estimates. 

I then compared the performance of the different projection methods using the AARD 

score. 

 

The datasets submitted to the Joinpoint program were created with SAS 9.4 software, 

while for the projections, including the implementation of the hybrid model algorithm, 

I used R 3.2.3 software. 

 

Hybrid model 
 

In this paragraph, I explain the inner workings of the predictive algorithm. 
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Figure 3. A piece of the R program - “modPlog” function for the Poisson GLM logarithmic link 
function. 

 

In R, I constructed a function for each of the four Poisson GLM regressions considered. 

This function requires as arguments: a dataset containing the population estimates, 

the certified deaths, the age-standardized observed rates by cause of death, sex, year, 

age-group (Figure 4) and a dataset only containing the years for the predictions. 
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Figure 4. Example of dataset required in the Poisson GLM function (EU data). 

 

I used the “glm” function in R with a Poisson family, with the corresponding link 

functions. 

 

Then, I constructed a loop that, for each combination of cause of death, sex and age, 

submits the four GLM Poisson functions and compares the AIC values (Figure 5). 

 

 

Figure 5. A piece of the R program, the algorithm for predictions. 
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On the basis of the AIC values, the program choses which of the previous models to 

apply to each specific time series defined by cause of death, sex and age (i.e. 5 year age-

group) variable combinations. For each combination, I obtained parameter estimates 

with their accuracy measures (Figure 6). 

 

 

Figure 6. Dataset obtained after running the algorithm. 

 

Moreover, in the resulting dataset there is “model”, a variable that indicates which 

model, among the four considered, fits the data better in a specific cause of death, sex, 

and age-group combination. The previous figures show that for the predicted year 

2002, for the cause of death 1 (corresponding to the “Oral cavity and Pharynx” cause), 

for men aged 0-4 years the logarithmic link function model fit better according to the 

AIC statistic. Instead, in the 5-9 age-group, in the same cause of death and sex, the 

square root link function regression had a lower AIC. 

This new dataset was used to calculate the rates with their accuracy measures; in the 

end, we sum the projections by cancer site, and sex over all the age-groups. 
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The procedure for the Poisson GLM regressions with the four different link functions 

is similar, with the difference that each combination of age, cause of death, and sex, 

had the same model. 

I repeated the whole process for every country, sex and cause of death considered. 

 

Predictive analysis results 
 

Below, I will show and comment the most significant results obtained from the 

comparison of the six different projection methods (other specific comparisons are 

available in the supplementary material). Firstly, I compare results from specific 

cancer site and country in order to make the comprehension of more general tables 

easier. Then, I will analyse the more general results in detail, without country 

distinction. 

 

When I considered specific causes of death and specific countries, the resulting best 

prediction models are different. In order to make comparisons, I selected results from 

lung cancer, one of the major cause of deaths, for the EU, the USA and Japan. 

Moreover, I distinguished between 10-years projection (Table 3a) and 5-years 

projection, i.e. up to 2006 (Table 3b). From these specific tables, 5-years prediction are 

more precise and produced lower AARDs. Nevertheless, AARDs from 10- years 

projection are, most of the times, lower or around 5%, indicating good predicted 

estimates. 
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Table 3a. AARDs on rate by projection method, and sex in the EU, in the USA and in Japan 

(projections up to 2011). 

 

AARD 

Men Women 

Hybrid Identity Log Average Power5 

Square 

Root Hybrid Identity Log Average Power5 

Square 

Root 

EU 0.00320 0.01113 0.01241 0.00305 0.00725 0.00276 0.04161 0.07846 0.03301 0.05394 0.04485 0.05944 

USA 0.05465 0.06605 0.05091 0.05721 0.05373 0.05814 0.05024 0.05492 0.04007 0.04394 0.04129 0.04514 

Japan 0.02231 0.05043 0.03335 0.01575 0.01810 0.01773 0.06243 0.02182 0.10163 0.06360 0.08147 0.05447 

 

Table 3b. AARDs on rate by projection method, and sex in the EU, in the USA and in Japan 

(projections up to 2006). 

 

AARD 

Men Women 

Hybrid Identity Log Average Power5 

Square 

Root Hybrid Identity Log Average Power5 

Square 

Root 

EU 0.00249 0.00339 0.00733 0.00326 0.00537 0.00281 0.02600 0.04384 0.02158 0.03147 0.02673 0.03371 

USA 0.06116 0.06649 0.05956 0.06246 0.06088 0.06290 0.06367 0.06578 0.05626 0.06042 0.05834 0.06128 

Japan 0.00853 0.03739 0.00800 0.01623 0.01001 0.01956 0.04575 0.02606 0.07281 0.05108 0.06239 0.04735 

 

The EU 
 

Considering the whole projection period, in the EU, the lowest AARD for men was that 

of square root link function model with an AARD (computed on rate) of 0.00276. 

However, also the hybrid and the average model worked very well (AARDs around 

0.003). At a graphical level (Figure 7a, d, f), observing these three models, it is possible 

notice that the continuous black line (the predicted trend) overlaps the points of the 

observed rates perfectly. Moreover, it seems that, in the final hybrid model, the square 

root and power five link functions are predominant. The square root and power five 

link figures (Figure 7e, f) in men are very similar to the hybrid one, even if the PIs, in 

particular for the square root, are slightly closer. Instead, the Poisson GLM identity 

and logarithmic link function model produced worse predictions with very similar 

AARD of about 0.012. 
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In EU women, over the 10-years period, the logarithmic link function predicted trend 

produced the lowest AARD, with a value of 0.03301. The predicted trend remained 

closer to the real one, but they did not overlap, however, the real trend is at least 

included in the PIs (Figure 7c). The hybrid model (AARD of 0.04161) was mainly 

influenced by the logarithmic link and by the power five link, this latter showed an 

AARD of 0.04485. Also in women, the identity link function produced the worst AARD 

(0.07846) and in Figure 7b it is possible to see that the predicted estimates 

underestimated the real trend. The square root link function model and the average 

model had AARDs of about 0.059 and 0.054 respectively, showing non-satisfactory 

predicted trends and PIs (Figure 7d, f). 

For this tumour and this country, the prediction intervals in men tended to contain the 

true rates, while in women the PIs are often at the limit. The AARDs for this cancer site 

are equal or lower than 5% (with the exception of identity link in women), thus the 

projections are quite good. Overall, in women the AARDs are higher than those of men. 

 

 

 

Hybrid regression 

 

Figure 7a. Projected lung cancer trends with the hybrid regression in men and women from the EU. 
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Poisson GLM – identity link 

 

Figure 7b. Projected lung cancer trends with the Poisson GLM identity link function in men and 
women from the EU. 

 

 

Poisson GLM – logarithmic link 

 

Figure 7c. Projected lung cancer trends with the Poisson GLM logarithmic link function in men and 
women from the EU. 

 

 

Average 

 

Figure 7d. Projected lung cancer trends with the Average model in men and women from the EU. 
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Poisson GLM – power five link 

 

Figure 7e. Projected lung cancer trends with the Poisson GLM power five link function in men and 
women from the EU. 

 

 

Poisson GLM – square root link 

 

Figure 7f. Projected lung cancer trends with the Poisson GLM square root link function in men and 
women from the EU. 

 

 

The USA 
 

In the USA, the 10-years predicted trends derived from Poisson GLM logarithmic link 

regression models are better than the other projection methods in both sexes, with 

AARDs of 0.05091 and 0.04007, in men and women respectively. In Figure 8c, it is 

possible to notice that the predicted estimates from this model followed the real rates 

quite well. 

The highest AARDs, in both sexes were for the identity link function model with values 

of 0.06605 in men and 0.05492 in women. 
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In men, the hybrid model, had an AARD value of about 0.055, very similar to the power 

five AARD and lower than the square root one (Figure 8a, e, f). 

In women, the hybrid regression was strongly influenced by the identity one, indeed 

the corresponding AARD is the second highest (0.05024). Instead AARDs for the 

average model, the power five and the square root are lower than 5%, the predicted 

trends are quite close to the real rate and the PIs are at the limits (Figure 8d, e, f). 

Overall, in women the AARDs are lower than in men. 

 

 

 

Hybrid regression 

 

Figure 8a. Projected lung cancer trends with the hybrid regression in men and women from the USA. 

 

 

Poisson GLM – identity link 

 

Figure 8b. Projected lung cancer trends with the Poisson GLM identity link function in men and 
women from the USA. 
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Poisson GLM – logarithmic link 

 

Figure 8c. Projected lung cancer trends with the Poisson GLM logarithmic link function in men and 
women from the USA. 

 

 

Average 

 

Figure 8d. Projected lung cancer trends with the Average model in men and women from the USA. 

 

 

Poisson GLM – power five link 

 

Figure 8e. Projected lung cancer trends with the Poisson GLM power five link function in men and 
women from the USA. 
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Poisson GLM – square root link 

 

Figure 8f. Projected lung cancer trends with the Poisson GLM square root link function in men and 
women from the USA. 

 

 

Japan 
 

In males from Japan, the best predictive method over the period 2002-2011 is the 

average model, with an AARD of 0.01575. The predicted trend overlaps the observed 

rates very well (Figure 9d); similarly, the Poisson GLM power five and square root link 

function regression methods work well with AARD values of around 0.018. The hybrid 

model was influenced negatively by the logarithmic link function, AARDs of 0.02231 

and 0.03335 respectively; the predicted trends from these models tended to 

overestimate the real data (Figure 9a, c), however, the data is within the PI limits. The 

identity link function regression produced the worst AARD, indeed the predicted trend 

substantially did not overlaps the real data, underestimating them (Figure 9b). 

In women, the more performant projection method is the Poisson GLM identity link 

function regression (AARD of 0.02182). As it is possible to see from Figure 9f, also the 

square root link function produced quite good predicted estimates (AARD of 0.05447). 

The hybrid model predicted slightly better than the average one with AARDs around 

0.06. The worst projections were from the logarithmic and power five link function; 

for these latter models the PIs did not include the real data (Figure 9c, e). 
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Hybrid regression 

 

Figure 9a. Projected lung cancer trends with the hybrid regression in men and women from Japan. 

 

 

Poisson GLM – identity link 

 

Figure 9b. Projected lung cancer trends with the Poisson GLM identity link function in men and 
women from Japan. 

 

 

Poisson GLM – logarithmic link 

 

Figure 9c. Projected lung cancer trends with the Poisson GLM logarithmic link function in men and 
women from Japan. 

 

 

 

 



 

61 
 

Average 

 

Figure 9d. Projected lung cancer trends with the Average model in men and women from Japan. 

 

 

Poisson GLM – power five link 

 

Figure 9e. Projected lung cancer trends with the Poisson GLM power five link function in men and 
women from Japan. 

 

 

Poisson GLM – square root link 

 

Figure 9f. Projected lung cancer trends with the Poisson GLM square root link function in men and 
women from Japan. 

 

In general, as can be seen in the various figures, the predicted estimates are more 

accurate when considering a 5-year period. The predicted line overlaps the observed 

rates more precisely and the PIs completely include the real trends more often.   
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Comprehensive analysis 
 

Considering the whole database (all countries, sex and causes of death), the AARD 

estimates are worse, probably due to the high data variability. Despite this, I obtained 

more consistent results than those for single country. Analysing the total AARDs 

computed on number of deaths over the entire period 2002-2011, the Poisson GLM 

regression with identity link function shows the lowest AARD value (0.16674), while 

the logarithmic link function has the highest AARD value (0.99326). The average 

regression has intermediate value (Table 4a). 

 

Table 4a. AARDs on number of deaths by projection method. 

AARD 

Hybrid Identity Log Average Power5 
Square 

Root 

0.92669 0.16674 0.99326 0.38447 0.21846 0.18069 

 

AARDs from 5-years projection are clearly lower (Table 4b), indicating definitely better 

predicted estimates. However, the best performance remains that from the identity 

link function method. The greater improvements passing from the AARDs computed 

on 10-years projection to those computer on 5-year projection are for the hybrid model 

and for the logarithmic link function method, that are also the worse ones. 

 

Table 4b. AARDs on number of deaths by projection method (projections up to 2006). 

AARD 

Hybrid Identity Log Average Power5 
Square 

Root 

0.15823 0.12932 0.17311 0.14416 0.14652 0.13479 
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Compared to the total AARDs computed on number of deaths, the ranking among 

AARDs computed on rates is the same, for both projections period (Table 5a and 5b). 

Over the whole period 2002-2011, the Poisson GLM regression with identity link 

function shows the lowest AARD value (0.22997), while the logarithmic link function 

has the highest AARD value (1.73099). 

 

Table 5a. AARDs on rate by projection method. 

AARD 

Hybrid Identity Log Average Power5 
Square 

Root 

1.64702 0.22997 1.73099 0.62624 0.30994 0.25376 

 

Also for 5-years projections, the identity link function method shows the best predicted 

estimates with an AARD value of 0.19064. The hybrid and the logarithmic AARDs 

strongly decrease considering a short projection period. 

 

Table 5b. AARDs on rate by projection method (projections up to 2006). 

AARD 

Hybrid Identity Log Average Power5 
Square 

Root 

0.23828 0.19064 0.25712 0.21487 0.21881 0.20229 

 

The following tables show the AARDs by projection method, sex and cause of death 

computed on numbers of deaths (Table 6) and on rates (Table 7) focusing on five-year 

projections; there is no by country distinction. In both tables and in both sexes, the 

identity link function most frequently presented lower AARDs as compared to the 

other link function models. For AARDs computed on numbers of deaths (Table 3), the 

square root link function model follows the identity link as the second best model for 

prediction for men, while in women the second best model was the hybrid. In men, the 
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power five model, and in women, the logarithmic and the average one were never the 

best model for any causes of deaths considered. Regarding AARDs calculated on rates 

(Table 7), in women, the logarithmic link function model, the average prediction 

method and the power five link were never the best. 

From these results it would seem that none of these methods are appropriate, since the 

best result shows AARDs over 10% for deaths and around 20% for rates. 
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Table 6. AARDs on number of deaths by projection method, sex and cause of death (projections up to 2006). 

 

AARD 

Men Women 

Hybrid Identity Log Average Power5 
Square 

root 
Hybrid Identity Log Average Power5 

Square 

root 

ORAL CAVITY, PHARYNX 0.07262 0.06155 0.08511 0.07212 0.07700 0.06896 0.15308 0.12232 0.16828 0.14393 0.15369 0.13823 

OESOPHAGUS 0.07133 0.07512 0.07368 0.06856 0.06930 0.06839 0.14795 0.12162 0.17686 0.15135 0.16165 0.14399 

STOMACH 0.07223 0.09342 0.06420 0.07319 0.06644 0.07415 0.06437 0.08217 0.06489 0.06540 0.06409 0.06612 

INTESTINE (COLON AND RECTUM) 0.03912 0.03621 0.04201 0.03710 0.03892 0.03608 0.05858 0.05600 0.07177 0.06216 0.06584 0.05994 

GALLBLADDER AND BILE DUCTS 0.14349 0.14056 0.15491 0.14180 0.14649 0.13904 0.13800 0.14606 0.15459 0.13229 0.13601 0.13183 

PANCREAS 0.05757 0.06728 0.05260 0.05599 0.05357 0.05754 0.05130 0.05142 0.06169 0.05115 0.05440 0.04986 

OTHER DIGESTIVE ORGANS 1.38842 0.81078 1.46002 1.06020 1.02685 0.90199 0.58909 0.49725 0.62150 0.54329 0.54489 0.52369 

LARYNX 0.10403 0.09904 0.12830 0.10965 0.11418 0.10387 0.49016 0.42971 0.51526 0.48485 0.49302 0.46360 

LUNG 0.03284 0.03474 0.03660 0.03365 0.03453 0.03328 0.04851 0.06969 0.05821 0.05508 0.05348 0.05695 

BONE & ARTICULAR CARTILAGE 0.22357 0.22299 0.23907 0.23094 0.23167 0.22588 0.31135 0.26414 0.34306 0.29235 0.29004 0.27036 

SKIN INCLUDING MELANOMA 0.13714 0.10573 0.15014 0.11730 0.12201 0.10840 0.08844 0.08431 0.09946 0.08890 0.09307 0.08659 

BREAST . . . . . . 0.04232 0.03512 0.05327 0.04143 0.04682 0.03945 

UTERUS (CERVIX AND CORPUS) . . . . . . 0.06198 0.06281 0.06685 0.06109 0.06320 0.06011 

PROSTATE 0.07282 0.06390 0.08249 0.07099 0.07503 0.06815 . . . . . . 

BLADDER 0.11233 0.07651 0.12230 0.08503 0.08071 0.07513 0.09444 0.09540 0.11690 0.10080 0.10583 0.09824 

KIDNEY AND OTHER URINARY SITES 0.12198 0.07792 0.13996 0.09885 0.09859 0.08532 0.11427 0.08205 0.12966 0.10121 0.10922 0.09327 

BRAIN AND NERVES, BENIGN OR MALIGNANT 0.07920 0.06313 0.08949 0.07049 0.07744 0.06570 0.08079 0.07778 0.09621 0.07630 0.08260 0.07345 

THYROID 0.27272 0.19900 0.28689 0.24014 0.24684 0.22153 0.21924 0.17783 0.23825 0.19805 0.20117 0.18736 

HODGKIN'S DISEASE 0.26370 0.28292 0.28640 0.26527 0.26317 0.25691 0.57478 0.36638 0.59919 0.44173 0.43186 0.38608 
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AARD 

Men Women 

Hybrid Identity Log Average Power5 
Square 

root 
Hybrid Identity Log Average Power5 

Square 

root 

MULTIPLE MYELOMA 0.12009 0.09531 0.18267 0.13341 0.14672 0.11850 0.13512 0.10900 0.16121 0.13423 0.14504 0.12763 

LEUKEMIAS 0.10111 0.07495 0.12112 0.09628 0.10630 0.08958 0.09162 0.06242 0.11609 0.08885 0.09939 0.08166 

ALL CANCERS (malignant and benign) 0.03104 0.02730 0.03364 0.02918 0.03102 0.02833 0.03674 0.02951 0.03894 0.03417 0.03642 0.03319 

ALL CAUSES 0.03035 0.03602 0.02864 0.03058 0.02922 0.03083 0.04413 0.04429 0.04628 0.04452 0.04530 0.04427 

CHD (CORONARY HEART DISEASES) 0.06321 0.07187 0.06490 0.06225 0.06306 0.06237 0.06278 0.06585 0.07141 0.06487 0.06771 0.06411 

CVD (CEREBROVASCULAR DISEASES) 0.09642 0.08349 0.10787 0.09579 0.10114 0.09304 0.07860 0.07900 0.08606 0.07999 0.08305 0.07941 

 

Table 7. AARDs on rate by projection method, sex and cause of death (projections up to 2006). 

 

AARD 

Men Women 

Hybrid Identity Log Average Power5 
Square 

root 
Hybrid Identity Log Average Power5 

Square 

root 

ORAL CAVITY, PHARYNX 0.08685 0.07052 0.10284 0.08615 0.09385 0.08256 0.21148 0.16990 0.23104 0.20067 0.21403 0.19373 

OESOPHAGUS 0.07450 0.07583 0.08200 0.07354 0.07622 0.07231 0.26010 0.21376 0.29004 0.25281 0.26807 0.24383 

STOMACH 0.06707 0.09041 0.06342 0.06963 0.06442 0.07043 0.06539 0.07187 0.07580 0.06785 0.07057 0.06743 

INTESTINE (COLON AND RECTUM) 0.04331 0.03643 0.04842 0.04195 0.04472 0.04052 0.06612 0.05889 0.07757 0.06740 0.07183 0.06533 

GALLBLADDER AND BILE DUCTS 0.18946 0.17490 0.21373 0.19332 0.20293 0.19074 0.19530 0.15859 0.22735 0.18158 0.19218 0.16922 

PANCREAS 0.05080 0.05955 0.05027 0.05058 0.04982 0.05149 0.06200 0.05672 0.06899 0.05851 0.06076 0.05678 

OTHER DIGESTIVE ORGANS 2.07846 1.36193 2.15328 1.64826 1.61948 1.46753 1.03143 0.82767 1.08501 0.93199 0.94094 0.88373 

LARYNX 0.15079 0.13833 0.17478 0.15283 0.16214 0.14828 1.01596 0.95679 1.04293 1.00179 1.01758 0.99147 
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AARD 

Men Women 

Hybrid Identity Log Average Power5 
Square 

root 
Hybrid Identity Log Average Power5 

Square 

root 

LUNG 0.03573 0.03904 0.03820 0.03692 0.03699 0.03680 0.05882 0.06312 0.07398 0.05756 0.05960 0.05490 

BONE & ARTICULAR CARTILAGE 0.26898 0.26509 0.28674 0.27286 0.27804 0.26981 0.50321 0.42584 0.56015 0.47836 0.48385 0.44901 

SKIN INCLUDING MELANOMA 0.15280 0.10337 0.17464 0.12906 0.13621 0.11638 0.12384 0.11533 0.13534 0.12470 0.12940 0.12292 

BREAST . . . . . . 0.04116 0.03911 0.04680 0.03961 0.04308 0.03921 

UTERUS (CERVIX AND CORPUS) . . . . . . 0.07315 0.06902 0.08053 0.07188 0.07498 0.07032 

PROSTATE 0.08702 0.07091 0.10015 0.08427 0.08951 0.08075 . . . . . . 

BLADDER 0.14718 0.07789 0.15881 0.09710 0.08867 0.07856 0.17785 0.15203 0.20240 0.17588 0.18513 0.16955 

KIDNEY AND OTHER URINARY SITES 0.13912 0.08243 0.15562 0.10635 0.10353 0.09019 0.14026 0.11729 0.15498 0.13486 0.14201 0.13032 

BRAIN AND NERVES, BENIGN OR MALIGNANT 0.08826 0.07132 0.09641 0.07992 0.08514 0.07607 0.10102 0.07960 0.10699 0.08796 0.09145 0.08243 

THYROID 0.49748 0.43418 0.51711 0.47629 0.48819 0.46597 0.51653 0.39189 0.54625 0.45269 0.45688 0.42257 

HODGKIN'S DISEASE 0.33115 0.33212 0.39608 0.34502 0.35679 0.33964 1.15592 0.65710 1.20671 0.84497 0.82199 0.71912 

MULTIPLE MYELOMA 0.16202 0.13072 0.21126 0.16728 0.18135 0.15479 0.21172 0.17681 0.23699 0.20895 0.22110 0.20267 

LEUKEMIAS 0.10453 0.07941 0.12279 0.09867 0.10895 0.09338 0.09370 0.08592 0.11023 0.09265 0.10039 0.08964 

ALL CANCERS (malignant and benign) 0.03313 0.03048 0.03546 0.03228 0.03367 0.03164 0.02785 0.02534 0.03086 0.02715 0.02878 0.02681 

ALL CAUSES 0.03630 0.04679 0.03503 0.03867 0.03608 0.03916 0.03780 0.04431 0.03899 0.03846 0.03815 0.03865 

CHD (CORONARY HEART DISEASES) 0.05349 0.06672 0.05634 0.05303 0.05395 0.05320 0.06354 0.07371 0.07697 0.06839 0.07190 0.06766 

CVD (CEREBROVASCULAR DISEASES) 0.09670 0.08037 0.10850 0.09460 0.10101 0.09176 0.07486 0.07353 0.08655 0.07730 0.08216 0.07682 
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Conclusions 
 

Cancer mortality trend analyses are important for public health, but current year and 

future rate trend predictions are essential in order to allocate resources and health 

services wisely and to prioritize specific prevention activities. 

This report aims to describe statistical techniques used in mortality trend analyses, 

both for descriptive (the EAPC) and inferential (the joinpoint model and the 

projection) studies. Moreover, it describes and compares projections obtained through 

six different models: Poisson GLM regressions with identity, logarithmic, square root, 

power five link functions, a “hybrid” model and an “average” model. The hybrid model 

is the results of an algorithm implemented in the R software that combines, in the final 

standardized rate, estimates from the four previous Poisson GLM model (identity, 

logarithmic, square root, power five link function regression models), choosing the 

more performing model for each age-group, sex, and cancer site according to the AIC 

statistic. The average model, simply computes a mean of the predicted estimates 

obtained from the same four models. 

 

The overall results show that, differently from what I expected, the hybrid model does 

not give the best predictions, and when it does, the corresponding AARD estimate is 

not very far from the AARDs of the other methods. However, the hybrid model 

projections, for any combination of cancer site and sex, are never the worst. Rather, it 

appears as a compromise of the four models considered, though heavily influenced by 

the logarithmic model. In the examples from this thesis, its predictive trend does not 

perfectly overlap the observed trend, but it is not very far off. The average model 
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predicted estimates are in general better than the hybrid ones, even if they were never 

the best. 

 

Overall, the AARDs from the six methods are quite similar, there was a strong 

difference only in a few cases. Moreover, it is possible to notice that, often, the hybrid 

regression shows AARDs closer to those of Poisson GLM logarithmic link function 

regression, compared to the other methods. Checking the data, I saw that the algorithm 

that generated the hybrid model, selected the logarithmic function more frequently as 

this function fits the data better more often. In any case, the Poisson GLM logarithmic 

link function method turns out to be a bad predictive function, in spite of fitting 

existing data better. 

Paradoxically, the method that shows the best predictive performance is the Poisson 

GLM with the identity link function. This method showed much lower AARDs 

compared to other methods, even when I considered a 10-years projection period. 

Annually, my research group produced projection estimates for major cancer site in 

Europe and worldwide using a simple identity model. The results from this thesis 

encourage continuing to produce predicted estimates through an identity method; 

furthermore my research group predicts only for very short periods. 

 

Some more general considerations. Projection methods which apply joinpoint 

regression models to the number of deaths, produce better predicted estimates on 

number of deaths compared to rates. Considering small countries and minor causes of 

deaths, i.e. low numbers, causes unreliable projections regardless of the methods used. 

Finally, we must take into account that predicted trends and corresponding AARDs 

estimates derived from 5-year projections are definitely better than those on long 
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periods. Projections over more than five years lack accuracy and, become less relevant 

to discussions. 

 

One of my aims, through the application to greater more varied data, was to be able to 

classify problems in order to select the most accurate predictive model according to 

geographic area, cause of death, sex, age structure and other available covariates. 

Instead, the results from specific analyses, single country and single cancer sites, are 

quite discordant. There is no model that emerges as the best in predictive 

performances. This suggest that there is still a lot to do in order to find an “a priori” or 

mechanic rule that helps in choosing which predictive method to apply according to 

various covariates. 

 

During the implementation of the algorithm and the analyses, several interesting 

angles for further analysis emerged. 

To compare and choose the best model for each age-group, sex, and cancer site, the 

algorithm uses the AIC statistic, but there may be better statistics for comparing the 

different models? 

We retrieved the four transformations used in the algorithm from the literature, are 

there other relevant and more performant models? 

How much does the Joinpoint program influence the projections? It would be 

interesting to use the Joinpoint program for all the data available through 2011 and 

then break the dataset to 2001. In this way, the last segment identified by the joinpoint 

could lead to different coefficient estimates. Furthermore, are the 5 years following the 

last estimated joinpoint too many? 

All these questions are set aside for future development of the project. 
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In conclusion, prediction of future trends is a complex procedure; hence the resulting 

estimates should always be taken with caution and considered only as a general 

indication for epidemiology and health planning.  
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Supplementary material 
 

Tables 
 

Table 1S. AARDs on rate by cancer site and projection method (projections up to 2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

ORAL CAVITY, PHARYNX 0.14916 0.12021 0.16694 0.14341 0.15394 0.13815 

OESOPHAGUS 0.16730 0.14480 0.18602 0.16318 0.17215 0.15807 

STOMACH 0.06623 0.08114 0.06961 0.06874 0.06749 0.06893 

INTESTINE (COLON AND RECTUM) 0.05472 0.04766 0.06299 0.05468 0.05827 0.05292 

GALLBLADDER AND BILE DUCTS 0.19238 0.16674 0.22054 0.18745 0.19755 0.17998 

PANCREAS 0.05640 0.05813 0.05963 0.05455 0.05529 0.05414 

OTHER DIGESTIVE ORGANS 1.55495 1.09480 1.61915 1.29012 1.28021 1.17563 

LARYNX 0.58337 0.54756 0.60885 0.57731 0.58986 0.56988 

LUNG 0.04728 0.05108 0.05609 0.04724 0.04830 0.04585 

BONE & ARTICULAR CARTILAGE 0.38609 0.34547 0.42344 0.37561 0.38094 0.35941 

SKIN INCLUDING MELANOMA 0.13832 0.10935 0.15499 0.12688 0.13280 0.11965 

BREAST 0.04116 0.03911 0.04680 0.03961 0.04308 0.03921 

UTERUS (CERVIX AND CORPUS) 0.07315 0.06902 0.08053 0.07188 0.07498 0.07032 

PROSTATE 0.08702 0.07091 0.10015 0.08427 0.08951 0.08075 

BLADDER 0.16251 0.11496 0.18061 0.13649 0.13690 0.12406 

KIDNEY AND OTHER URINARY SITES 0.13969 0.09986 0.15530 0.12060 0.12277 0.11026 

BRAIN AND NERVES, BENIGN OR MALIGNANT 0.09464 0.07546 0.10170 0.08394 0.08830 0.07925 

THYROID 0.50700 0.41303 0.53168 0.46449 0.47254 0.44427 

HODGKIN'S DISEASE 0.74354 0.49461 0.80139 0.59499 0.58939 0.52938 

MULTIPLE MYELOMA 0.18687 0.15376 0.22413 0.18812 0.20123 0.17873 

LEUKEMIAS 0.09911 0.08267 0.11651 0.09566 0.10467 0.09151 

ALL CANCERS (malignant and benign) 0.03049 0.02791 0.03316 0.02972 0.03122 0.02923 

ALL CAUSES 0.03705 0.04555 0.03701 0.03856 0.03712 0.03890 

CHD (CORONARY HEART DISEASES) 0.05852 0.07022 0.06665 0.06071 0.06292 0.06043 

CVD (CEREBROVASCULAR DISEASES) 0.08578 0.07695 0.09752 0.08595 0.09159 0.08429 
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Table 2S. AARDs on number of deaths by cancer site and projection method (projections up to 

2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

ORAL CAVITY, PHARYNX 0.11285 0.09193 0.12669 0.10803 0.11535 0.10359 

OESOPHAGUS 0.10964 0.09837 0.12527 0.10995 0.11548 0.10619 

STOMACH 0.06830 0.08779 0.06454 0.06929 0.06526 0.07014 

INTESTINE (COLON AND RECTUM) 0.04885 0.04611 0.05689 0.04963 0.05238 0.04801 

GALLBLADDER AND BILE DUCTS 0.14075 0.14331 0.15475 0.13705 0.14125 0.13543 

PANCREAS 0.05444 0.05935 0.05715 0.05357 0.05398 0.05370 

OTHER DIGESTIVE ORGANS 0.98876 0.65402 1.04076 0.80174 0.78587 0.71284 

LARYNX 0.29709 0.26437 0.32178 0.29725 0.30360 0.28373 

LUNG 0.04067 0.05221 0.04741 0.04437 0.04401 0.04512 

BONE & ARTICULAR CARTILAGE 0.26746 0.24357 0.29106 0.26165 0.26085 0.24812 

SKIN INCLUDING MELANOMA 0.11279 0.09502 0.12480 0.10310 0.10754 0.09750 

BREAST 0.04232 0.03512 0.05327 0.04143 0.04682 0.03945 

UTERUS (CERVIX AND CORPUS) 0.06198 0.06281 0.06685 0.06109 0.06320 0.06011 

PROSTATE 0.07282 0.06390 0.08249 0.07099 0.07503 0.06815 

BLADDER 0.10339 0.08595 0.11960 0.09291 0.09327 0.08669 

KIDNEY AND OTHER URINARY SITES 0.11812 0.07998 0.13481 0.10003 0.10390 0.08930 

BRAIN AND NERVES, BENIGN OR MALIGNANT 0.07999 0.07046 0.09285 0.07340 0.08002 0.06958 

THYROID 0.24598 0.18842 0.26257 0.21910 0.22401 0.20444 

HODGKIN'S DISEASE 0.41924 0.32465 0.44280 0.35350 0.34752 0.32149 

MULTIPLE MYELOMA 0.12760 0.10215 0.17194 0.13382 0.14588 0.12307 

LEUKEMIAS 0.09637 0.06869 0.11860 0.09256 0.10284 0.08562 

ALL CANCERS (malignant and benign) 0.03389 0.02840 0.03629 0.03168 0.03372 0.03076 

ALL CAUSES 0.03724 0.04016 0.03746 0.03755 0.03726 0.03755 

CHD (CORONARY HEART DISEASES) 0.06299 0.06886 0.06815 0.06356 0.06539 0.06324 

CVD (CEREBROVASCULAR DISEASES) 0.08751 0.08125 0.09696 0.08789 0.09209 0.08622 
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Table 3S. AARDs on rate by sex and projection method (projections up to 2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

Men 0.21457 0.16912 0.23211 0.19103 0.19375 0.17869 

Women 0.26100 0.21127 0.28110 0.23772 0.24284 0.22493 

 

 

Table 4S. AARDs on number of deaths by sex and projection method (projections up to 2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

Men 0.16006 0.12534 0.17409 0.14160 0.14253 0.13017 

Women 0.15647 0.13313 0.17217 0.14661 0.15035 0.13923 

 

 

Table 5S. AARDs on rate by categories of mortality counts and projection method (projections up to 

2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

≤50000 1.14924 0.79471 1.21027 0.94256 0.93480 0.85250 

50000-100000 0.44655 0.37925 0.47756 0.42005 0.42674 0.40184 

100000-500000 0.19836 0.17060 0.21839 0.19114 0.19930 0.18436 

>500000 0.06931 0.06469 0.07756 0.06676 0.06909 0.06458 

 

 

Table 6S. AARDs on number of deaths by categories of mortality counts and projection method 

(projections up to 2006). 

 

AARD 

Hybrid Identity Log Average Power5 

Square 

Root 

≤50000 0.70400 0.48933 0.74178 0.57762 0.56669 0.51717 

50000-100000 0.25672 0.21599 0.27682 0.24037 0.24243 0.22628 

100000-500000 0.13278 0.11481 0.15116 0.12848 0.13453 0.12206 

>500000 0.06285 0.06079 0.07005 0.06174 0.06372 0.06008 

 


