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Abstract

The main goal of this doctoral work was to develop theoretical advances of the semiclas-

sical theory applied to molecular spectroscopy. In particular, the attention was centered

at the coherent states based Time Averaging Semiclassical Initial Value Representation

(TA-SCIVR) approximation to the vibrational spectral density. This approach is a solid

way to access accurate vibrational spectra of molecular systems at a quantum approxi-

mate level. Nevertheless, it is affected by some criticalities as numerical issues and the

so-called curse of dimensionality problem. Both represent an important stumbling block

for the exploitation of the methodology towards molecules of increasing dimensions and

complexity, preventing its application to general problems in the vibrational spectroscopy

field. In my doctoral work we tried to face both issues, taming the numerical issues of

the spectral density by introducing analytic and numerical approximations, and later de-

veloping with the group the Divide and Conquer Semiclassical dynamics (DC-SCIVR),

a method which exploits the standard semiclassical formalism, but it works in reduced

dimensional subspaces, with the aim of overcoming the curse of dimensionality. The ad-

vances first have been tested on simple molecules and then they have been employed to

study spectroscopic relevant molecules. Main results show that it is possible to recover vi-

brational spectra even of those molecules affected by significant numerical issues, as well

as high-dimensional ones, retaining the same accuracy of TA-SCIVR. In this thesis I first

present some basics of the Semiclassical theory, with focus on vibrational spectroscopy,

and then are shown the advances proposed, with applications on some relevant molecular

systems in vibrational spectroscopy as supramolecular systems made by clusters of water

and protonated glycine dimer, or high-dimensional molecules as benzene and C60.



3

To all those who have supported and believed in me



4

List of publications

Publications directly related to this work

Results shown in this document are reported in details in:

• “Protonated Glycine Supramolecular Systems: the need for quantum dynamics” F.

Gabas, G. Di Liberto, R. Conte, M. Ceotto, Chem. Sci. 9, 7894 (2018).

• “Divide-and-conquer semiclassical molecular dynamics: An application to water

clusters” G. Di Liberto, R. Conte, M. Ceotto, J. Chem. Phys. 148, 104302 (2018).

• “Divide and conquer semiclassical molecular dynamics: A practical method for

spectroscopic calculations of high dimensional molecular systems” G. Di Liberto,

R. Conte, M. Ceotto, J. Chem. Phys. 148 , 014307 (2018).

• “Semiclassical Divide-and-Conquer Method for Spectroscopic Calculations of High

Dimensional Molecular Systems” M. Ceotto, G. Di Liberto, and R. Conte Phys. Rev.

Lett. 119, 010401 (2017).

• “The importance of the pre-exponential factor in semiclassical molecular dynamics”

G. Di Liberto and M. Ceotto, J. Chem. Phys. 145, 144107 (2016).

Other Publications submitted during the doctorate

• “A quantum mechanical insight into SN2 reactions: Semiclassical initial value repre-

sentation calculations of vibrational features of the Cl−· · ·CH3Cl pre-reaction com-

plex with the VENUS suite of codes” X. Ma, G. Di Liberto, R. Conte, W.L. Hase,

and M. Ceotto J. Chem. Phys. 149, 164113 (2018).

• “Atomistic Explanation for Interlayer Charge Transfer in Metal–Semiconductor Nanocom-

posites: The Case of Silver and Anatase” G. Di Liberto, V. Pifferi, L. Lo Presti, M.

Ceotto, and L. Falciola, J. Phys. Chem. Lett. 8, 5372 (2017).



5

• “A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials

and its degradation pathway: an experimental and theoretical study” D. Meroni, L.

Lo Presti, G. Di Liberto, M. Ceotto, R. G. Acres, K. L. Prince, R. Bellani, G. Soliveri

and Silvia Ardizzone, J. Phys. Chem. C 121, 430 (2016).

Other Publications submitted before the doctorate

• “Impregnation versus bulk synthesis: How the synthetic route affects the photocat-

alytic efficiency of Nb/Ta: N codoped TiO2 nanomaterials” L. Rimoldi, C. Ambrosi,

G. Di Liberto, L. Lo Presti, M. Ceotto, C. Oliva, D. Meroni, S. Cappelli, G. Cappel-

letti, G. Soliveri, and S. Ardizzone J. Phys. Chem. C 119, 24104 (2015).

• “Unraveling the cooperative mechanism of visible-light absorption in bulk N, Nb

codoped TiO2 powders of nanomaterials” C. Marchiori, G. Di Liberto, G. Soliveri,

L. Loconte, L. Lo Presti, D. Meroni, M. Ceotto, C. Oliva, S. Cappelli, G. Cappelletti,

C. Aieta, and S. Ardizzone, J. Phys. Chem. C 118, 24152 (2014).



Contents

1 Molecular Dynamics, from the beginning to nowadays 8

2 Introduction to Path Integral 11

3 Semiclassical approximation to the quantum propagator 15
3.1 Initial Value Representation of the quantum propagator . . . . . . . . . . 17
3.2 Coherent state representation of the semiclassical propagator . . . . . . . 18

4 Semiclassical dynamics for molecular spectroscopy 22
4.1 Semiclassical formulation of vibrational spectral density . . . . . . . . . 22
4.2 Time Averaging Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 The Multiple Coherent State approach . . . . . . . . . . . . . . . . . . . 24

5 The importance of the pre-exponential factor 28
5.1 A “poor” person pre-exponential factor . . . . . . . . . . . . . . . . . . . 29
5.2 The adiabatic approximation . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Log-derivative formulation of the pre-exponential factor . . . . . . . . . 31

5.3.1 Existing approximations . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1.1 The harmonic approximation . . . . . . . . . . . . . . 32
5.3.1.2 The Johnson Multichannel Approximation . . . . . . . 33

5.3.2 New analytical and numerical approximations . . . . . . . . . . . 33
5.3.2.1 An iterative strategy to improve the harmonic approxi-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2.2 Monodromy matrix regularization . . . . . . . . . . . 36

5.4 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.1 A) Bi-dimensional Henon-Heiles potential . . . . . . . . . . . . 37
5.4.2 B) Bi-dimensional quartic-like potential . . . . . . . . . . . . . . 43
5.4.3 c) H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.4 d) CO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.5 e) CH2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.4.6 f) CH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Divide-and-Conquer Semiclassical dynamics 56
6.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Subspace’s spectral density . . . . . . . . . . . . . . . . . . . . . . . . . 58

6



CONTENTS 7

6.3 Proofs of concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.1 a) Three uncoupled Morse oscillators . . . . . . . . . . . . . . . 60
6.3.2 b) Two coupled Morse oscillators . . . . . . . . . . . . . . . . . 62
6.3.3 c) H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.4 d) CH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Application to Benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.5 Application to Fullerene model . . . . . . . . . . . . . . . . . . . . . . . 68

7 How to select the subspaces? 73
7.1 Hessian matrix method . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Wherle, Sulk, Vanicek method (WSV) . . . . . . . . . . . . . . . . . . . 75
7.3 Jacobi method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Applications to variously sized molecular systems . . . . . . . . . . . . . 76

7.4.1 a) H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4.2 b) CH2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.3 b) CH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.4 c) CH2D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.5 Application to Benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.6 Application to Zundel cation . . . . . . . . . . . . . . . . . . . . . . . . 87
7.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8 Vibrational investigation of water clusters 93
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.1.1 Computational setup . . . . . . . . . . . . . . . . . . . . . . . . 96
8.1.2 A three body version of the Potential Energy Surface . . . . . . . 97

8.2 Water Dimer (H2O)2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.3 Water trimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4 Water hexamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.5 Water decamer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 (Gly)2 H+ vibrational features by means of DC SCIVR 113
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2 AIMD with NWCHEM . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.3 DC-SCIVR applied on CS01 . . . . . . . . . . . . . . . . . . . . . . . . 117
9.4 DC-SCIVR applied on CS02 . . . . . . . . . . . . . . . . . . . . . . . . 121
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

10 Conclusions 125

11 Appendix 127
11.1 Derivation of the Herman-Kluk propagator from Van-Vleck . . . . . . . . 127
11.2 Time Averaged Semiclassical spectral density . . . . . . . . . . . . . . . 133
11.3 Harmonic oscillator pre-exponential factor . . . . . . . . . . . . . . . . . 136

12 Acknowledgments 147



Chapter 1

Molecular Dynamics, from the

beginning to nowadays

The deep understanding at the atomistic level of processes involving molecular systems

has gained increasing attention in the last decades, with the aim of providing a better

physical interpretation, reliable predictions and to complement and explain experimen-

tal results. With the help of calculators, the numerical integration of atoms’ equations

of motion become possible, leading to the era of molecular dynamics. The dimensions

of systems under examination increased with the years, going parallel with the improve-

ment in the computational power, that nowadays allows to simulate even systems with

thousands of atoms.

Pioneering simulations in this sense were reported by Rahman in 1964 and Vherle in

1967 by simulating liquid Argon (864 atoms in a cubic box), moving under a Lennard-

Jones potential.[1, 2]

Molecular dynamics today is largely widespread and it is used to simulate nanomaterials,[3,

4, 5] big proteins,[6, 7] DNA sequences,[8, 9] and to design drugs by optimizing the in-

teraction with target sites. Generally, in the simulation of such high dimensional systems

the atoms are moved by solving classical Newton’s equations, i.e. atoms are treated as

classical objects.
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CHAPTER 1. MOLECULAR DYNAMICS, FROM THE BEGINNING TO NOWADAYS9

Despite the potentiality of this approach in terms of applications to several cases of

study, spreading from a bunch of degrees freedom to thousands, classical mechanics

misses several aspects that in principle can be not negligible, arising from quantum ef-

fects. It is noteworthy that this shortcoming is not a weakness of classical simulations but

it is just an intrinsic limitation of the theory; simply because it is not written to account for

them. In atomistic simulations of nuclei, quantum effects can become relevant[10] and

classical mechanics can provide insights and a sound of physics interpretation, but not a

complete one. Thus, a different formalism is necessary to provide an undisputed interpre-

tation, that in the limit of negligible quantum effects has to resemble classical mechanics

results.

Nuclear quantum effects can be accounted by only exploiting a proper quantum for-

malism, that instead of solving Newton equations of motions, relies on solving the Schrödinger

equation. Now, in this framework the Hamiltonian of the system is fully quantum mechan-

ical, and can be resolved by means of different methods, such as grids, and perturbative

approaches to name a few.[11, 12, 13, 14] Within quantum mechanical formalism every

kind of quantum effect is in principle accounted. However, very often a stumbling block

is again around the corner. In this case, there are no limitations in the theory (exclud-

ing relativistic effects), but practical ones, due the computational demand. A quantum

mechanical simulation usually implies costs several order of magnitude higher than a

classical one, that often exponentially increase with the system’s dimensionality, leading

to the exponential scaling problem also called curse of dimensionality. Because of it,

exact quantum dynamics simulations are nowadays limited

to few bunches of degrees of freedom.[14]

The exponential scaling problem poses the need of alternative strategies able from

one side to grasp quantum mechanical effects in molecular dynamics, and from the other

one to overcome, or at least reduce, the high computational demand. A possible so-

lution to such limitations comes from Feynman’s path integral formulation of quantum
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mechanics,[15] which is the basis of several methods. One of them is Semiclassical the-

ory (SCIVR) developed by Miller and Heller.[16, 17, 18, 19] In this PhD thesis, the focus

was placed on Semiclassical theory, while more details about other methods and their

outstanding results can be found in the Literature.[20, 21, 22, 23, 24]

Semiclassical dynamics attempts to reproduce qualitatively and quantitatively quan-

tum effects with the cost of (many) classical simulations. Differently from pure quantum

simulations it only requires the evolution of classical trajectories which are less demand-

ing to be computed than quantum wavepackets. It relies on Feynman’s path integral for-

mulation of quantum mechanics,[15] where the quantum propagator is approximated by a

collection of classical paths, and quantum effects come from the fluctuations around them

as well as their overlap.[25]

Several scientists devoted their research toward the progress of semiclassical theory,

making it nowadays a practical route to study molecular systems.[26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45] Today it is widespread, and

many works are published every year in different fields of chemistry, and physics, making

semiclassical dynamics one the most promising methods to provide a clear, undisputed

and insightful physical interpretations of atomistic processes.

In this PhD thesis semiclassical theory is exploited for spectroscopic calculations of

tailored models and real molecular systems. In particular, two criticalities of the semi-

classical approximation to the quantum propagator are faced, with the aim of making

semiclassical calculations doable for systems of high dimensionality and complexity.



Chapter 2

Introduction to Path Integral

Within the standard formulation of quantum mechanics the state of a system under the

Hamiltonian Ĥ is fully described by the solution |ψ〉 of the Schrodinger equation

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 . (2.0.1)

If we express the state in the coordinate representation, we can it write as

ψ (q, t) =

〈
q

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψ (q, 0)

〉
, (2.0.2)

where ψ (q, 0) is given by the initial conditions of Eq. (2.0.1). By adding an identity

relation I =
´
dq′
∣∣∣q′〉〈q′

∣∣∣ the previous equation can be written in the new basis |q′〉 as

ψ (q, t) =

ˆ 〈
q

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q′〉ψ (q′, 0) dq′ (2.0.3)

The matrix elements
〈

q

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q′〉 describe the probability for going from |q′〉 to |q〉

at time t and their knowledge coincides to solving Eq. (2.0.1).

The basic idea of Feynman path integral formulation is to find an exact expression of

the quantum propagator
〈
q

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q′〉 in terms of “paths” which link q′ with q. To start

off we look at the shape assumed by the propagator in the case of a free particle, i.e. an

11
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Hamiltonian under a constant potential V0. In this particular case, the Hamiltonian has

only a kinetic contribution

Ĥ =
p̂2

2m
+ V0. (2.0.4)

By substituting the Hamiltonian expression into the quantum propagator, we obtain

〈
q

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q′〉 =

〈
q

∣∣∣∣e− i
h

ˆ
p2

2m
t

∣∣∣∣q′〉e− i
h
V0t, (2.0.5)

where the potential contribution can be moved out the overlap since it is a constant. The

quantity inside the brackets can be solved the momenta basis I =
´
dp |p〉 〈p|, in this

way we can write the previous equation in a more suitable way

ˆ ˆ
dpdp′

〈
q

∣∣∣∣p〉〈p

∣∣∣∣e− i
h

ˆ
p2

2m
t

∣∣∣∣p′〉〈p′
∣∣∣∣q′〉, (2.0.6)

〈
q

∣∣∣∣p〉= 1√
(2π~)F

e
i
~pq,

〈
p′
∣∣∣∣q′〉= 1√

(2π~)F
e−

i
~p′q′ , and

〈
p

∣∣∣∣e− i
h

ˆ
p2

2m
t

∣∣∣∣p′〉 =

〈
p

∣∣∣∣p′〉e− i
h

p′2
2m

t.

As an overall result, the quantum propagator for the free particle will be

〈
q

∣∣∣∣e− i
h

ˆ
p2

2m
t

∣∣∣∣q′〉e− i
h
V0t = e−

i
h
V0t

ˆ ˆ
dpdp′

1√
(2π~)F

e
i
~pq

〈
p

∣∣∣∣p′〉e− i
h

p′2
2m

t 1√
(2π~)F

e−
i
~p′q′

=
1

(2π~)F
e−

i
h
V0t

ˆ
dpe

− i
~

[
p2

2m
−p(q−q′)

]
. (2.0.7)

Now the integral is reduced to be a simple Gaussian integral leading to

〈
q

∣∣∣∣e− i
h

ˆ
p2

2m
t

∣∣∣∣q′〉e− i
h
V0t =

√( m

2πi~t

)F
e
i
~ [m2t (q−q′)2−V0t]. (2.0.8)

Eq. (2.0.8) is the expression of the quantum propagator for the free-particle system. Un-

fortunately, Eq. (2.0.8) can not be generalized to a general potential V ; nevertheless can

be used as a starting point.

For a generic Hamiltonian with a non-constant potential, the whole quantum propaga-
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tor can be subdivided into N time slices

e−
i
h
Ĥt = e−

i
h
Ĥ∆te−

i
h
Ĥ∆t...e−

i
h
Ĥ∆te−

i
h
Ĥ∆t, (2.0.9)

where ∆t = t
N

. If now we call q0 = q′ and qN = q one can write the quantum propagator

as 〈
qN

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
=

ˆ
dq1dq2...dqN〈

qN

∣∣∣∣e− i
h
Ĥ∆t

∣∣∣∣qN−1

〉 〈
qN−1

∣∣∣∣e− i
h
Ĥ∆t

∣∣∣∣qN−2

〉
...

〈
q1

∣∣∣∣e− i
h
Ĥ∆t

∣∣∣∣q0

〉
, (2.0.10)

where we have added N identity relations. For each time slice
〈

qi

∣∣∣∣e− i
h
Ĥ∆t

∣∣∣∣qi−1

〉
by

expliciting the Hamiltonian we have
〈

qN

∣∣∣∣e− i
h

(
p2

2m
+V

)
∆t

∣∣∣∣∣qN−1

〉
. Now in the limit of a

infinitesimal time slice, one can reasonably assume that

〈
qN

∣∣∣∣e− i
h

(
ˆ
p2

2m
+V̂

)
∆t

∣∣∣∣∣qN−1

〉
=

√( m

2πi~∆t

)F
e
i
~

[
m

2∆t
(q−q′)2−

(
V (qN )+V (qN−1)

2

)
∆t

]
,

(2.0.11)

because the potential will be slowly variant. By expliciting every slice, the expression of

the quantum propagator will be

〈
qN

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
=

(√
m

2πi~∆t

)3N

ˆ
e
i
~ [ m

2∆t

∑N
i=1(qi−qi−1)2]e−

i
~∆t[ 1

2
(V (qN )+V (q0))+

∑N
i=1 V (qi)]

N∏
i=1

dqi. (2.0.12)

This apparently very complicate expression, in the limit of N →∞ or ∆t→ dt becomes

easier because

e
i
~ [ m

2∆t

∑N
i=1(qi−qi−1)2] = e

i
~

[
m
2

´
( dqdt )

2
dt
]

(2.0.13)

and

e−
i
~ [
´
dtV (q)] = e−

i
~∆t[ 1

2
(V (qN )+V (q0))+

∑N
i=1 V (qi)], (2.0.14)
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thus 〈
qN

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
=

√( m

2πi~t

)F ˆ
℘ [qt] e

i
~St(qN ,q0). (2.0.15)

Eq. (2.0.15) can be interpreted as a summation over all possible paths connecting the

initial point q0 and the final one qt = qN , where each path is weighted by an oscillating

term depending by its action. Although Eq. (2.0.15) is exact in principle, it is very tough

to be put into practice because of the huge amount of required paths to be taken into

account to numerically converge the equation, since the weighting function is usually

strongly oscillating.



Chapter 3

Semiclassical approximation to the

quantum propagator

The semiclassical approximation to the quantum propagator can be obtained by expanding

the action along classical paths in Eq. (2.0.15). In such a way, the first terms different

from the zero-th order ones are the second order variations of the action, since the first

order is equal to zero because of the Hamilton’s principle.

〈
qt

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
∼
√( m

2πi~t

)F ˆ
℘ [qt] e

i
~

[
SClt (qt,q0)+ 1

2

δ2SClt (qt,q0)

δq2
t

δq2
t

]
(3.0.1)

The second order fluctuations of the action can be written in terms of the eigenvalues

(λn) of the Jacobi force field operator.[25] Now, by the following change of variables,∏
n dqn =

∏
n an

(
λ0
n

2πi~

) 1
2

Eq. (3.0.1) can be analytically integrated, since now the inte-

grand assumes a Gaussian shape.

〈
qt

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
∼
√

m

2πi~t
∑

Cl paths

ˆ ∏
n

dane

i
~

SClt (qt,q0)+ 1
2

∑
n λn

∣∣∣∣an∣∣∣∣2
(

λ0
n

2πi~

)F
2

(3.0.2)
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CHAPTER 3. SEMICLASSICAL APPROXIMATION TO THE QUANTUM PROPAGATOR16

We observe that the zero-th order contribution can be moved out the integral, and inside

the integral only the second order terms are remaining. The previous equation becomes

〈
qt

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉
∼
√

1

2πi~
∑

Cl paths

e
i
~S

Cl(qt,q0) {det (M)}
1
2 . (3.0.3)

In this version of the propagator, called Van Vleck propagator,[46] the zero-th order terms

contribute with oscillations depending on the action of each path, that in the semiclassi-

cal approximation is a classical one. The second order terms which describe the quan-

tum fluctuations around the classical paths are accounted into a pre-exponential factor

Ct (qt,q0) = {det (M)}
1
2 . The pre-exponential factor depends on the determinant of the

monodromy matrix, which means a dependency from the second derivative of the action

since M = − ∂2S
∂qt∂q0

. In the previous section we have showed that the second order fluctu-

ations of the action can undergo a change of sign, and such change has a peculiar physical

meaning, i.e. the trajectory finds a caustic point. Passing from it, the determinant of the

monodromy matrix has to change sign, and to highlight this feature, we can write the

pre-exponential factor as

Ct (qt,q0) =

{
det

(
− ∂2S

∂qt∂q0

)} 1
2

=

∣∣∣∣∣det
(
− ∂2S

∂qt∂q0

)∣∣∣∣∣
1
2

e−
1
2
πν , (3.0.4)

where we have separated the contribution of the modulos of the pre-exponential from a

function e−
1
2
πν that accounts from the sign, since the index ν, called Morse or Maslov

index, assumes only integer values leading to e−
1
2
πν = ±1. Now, we can better under-

stand what happens to the pre-exponential factor, because from one side the Morse index

accounts for the change of sign, while on the other, the modulus goes to infinity. When

a classical trajectory has a very chaotic behavior, a caustic point is very easily to happen,

and consequently the trajectory becomes “unstable” or very hard to be numerically man-

aged. A further drawback of the Van Vleck propagator lies into the so-called “root search

problem” which means that, since it depends from initial and final coordinates (q0,qt),
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one has to evolve trajectories from initial conditions q0, and after has to look only for

those ending at time t at the final coordinates qt. This latter problem was overcome by

the development of Miller’s Initial Value Representation of the semiclassical propagator,

while the first issue was deeply investigated in the past by Semiclassical pioneeres, a small

contribution within this topic is also presented below in the text.

3.1 Initial Value Representation of the quantum propagator

In the past years W.H. Miller pioneered the Initial Value Representation (SCIVR) of the

quantum propagator,[47, 48] and it allowed later to make semiclassical able to deal with

molecular systems. In SCIVR, the root search problem is substituted by a cheaper and

computationally easier integral over the initial conditions. In particular, starting from the

Van Vleck propagator

〈
ψ2

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψ1

〉
∼
ˆ ˆ

dq0dqt

〈
ψ2

∣∣∣∣qt〉 〈qt

∣∣∣∣e− i
h
Ĥt

∣∣∣∣q0

〉〈
q0

∣∣∣∣ψ1

〉
. (3.1.1)

the pre-exponential factor Ct (qt,q0) =
{
det
(
− ∂2S
∂qt∂q0

)} 1
2

of the Van Vleck can be

written as Ct (qt,q0) =
{
det
(
∂qt
∂p0

)}− 1
2
. Now, if one wants to depend only from initial

conditions has to move from (q0,qt) to (q0,p0). To do that, the integral over the final

coordinates qt has to be replaced by an integral over p0.

∑
Cl paths

ˆ
dqt =

ˆ
dp0

∣∣∣∣∂qt (q0,p0)

∂p0

∣∣∣∣ (3.1.2)

The initial value representation of the propagator in Eq. (3.1.1) will be

〈
ψ2

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψ1

〉
∼
√

1

2πi~

ˆ ˆ
dq0dp0

〈
ψ2

∣∣∣∣qt〉〈q0

∣∣∣∣ψ1

〉∣∣∣∣∂qt (q0,p0)

∂p0

∣∣∣∣ 12 e i
~S

Cl(q0,p0)e−
1
2
πν . (3.1.3)
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Finally, the initial value representation time evolution operator will be

e−
i
h
Ĥt =

√(
1

2πi~

)F ˆ ˆ
dq0dp0

∣∣∣∣∂qt (q0,p0)

∂pt

∣∣∣∣ 1
2

e
i
~S

Cl(q0,p0)e−
1
2
πν

∣∣∣∣qt〉〈q0

∣∣∣∣.
(3.1.4)

In Eq. (3.1.4) the integral is performed along initial conditions, thus it can be numerically

implemented by using Monte Carlo techniques in which, different initial conditions are

sampled in the phase space.

3.2 Coherent state representation of the semiclassical propagator

Starting from the 80es, E.J. Heller pioneered an extremely flexible and efficient represen-

tation of the semiclassical wavefunction.[49, 32, 50] In the coordinate representation the

wavefunction presents a bound contribution made by a Gaussian shape, and a free-particle

one. 〈
q

∣∣∣∣∣ptqt
〉

=

(
det (Γ)

π

) 1
4

e−
1
2

(q−qt)Γ(q−qt)
T+ i

~pt(q−qt)
T

(3.2.1)

If the Γ matrix, is chosen to be constant in time, the wavefunction is now defined as

a coherent state with the property that at each time t, the eigenvalues of the position

and momentum operators are the classical position qt and momentum pt, i.e. within

this picture, the wavefunction follows the classical trajectory. In this new coherent state

dressed representation the semiclassical propagator assumes the Heller-Herman-Kluk-

Kay form,[51, 27, 28, 29, 52] where now the wavefunction is is written in terms of coher-

ent states.

e−
i
~Ht =

(
1

2π~

)F ¨
dp0dq0Ct (p0,q0) e

i
~St(p0,q0)

∣∣∣∣∣pt,qt
〉〈

p0,q0

∣∣∣∣∣ (3.2.2)
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In this representation the pre-exponential factor is computed as

Ct (q0,p0) =

√
det
[

1

2

(
Mqq +

1

γ
Mppγ +

i

~γ
Mpq +

~
i
Mqpγ

)]
(3.2.3)

where Mqq, Mqp, Mpq, Mpp are the elements of the Monodromy (or stability) matrix.

M =

 Mpp Mpq

Mqp Mqq

 =

 ∂pt/∂p0 ∂pt/∂q0

∂qt/∂p0 ∂qt/∂q0

 (3.2.4)

A general matrix element
〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 is expressed as

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

(
1

2π~

)F ¨
dp0dq0Ct (p0,q0) e

i
~St(p0,q0)

〈
ψf

∣∣∣∣∣pt,qt
〉〈

p0,q0

∣∣∣∣∣ψi
〉
,

(3.2.5)

where the initial and final wavefunctions are coherent states

∣∣∣∣∣ψi
〉

=

∣∣∣∣∣piqi
〉

and

∣∣∣∣∣ψf
〉

=∣∣∣∣∣pfqf
〉

. The coherent state overlap of Eq. (3.2.5) can be computed by taking advantage

of the coordinate representation of coherent states, i.e.〈
ψf

∣∣∣∣∣ptqt
〉

=

ˆ
dq

〈
ψf

∣∣∣∣∣q
〉〈

q

∣∣∣∣∣ptqt
〉

(3.2.6)

Now, by substituting Eq. (3.2.1) into the latter integral, the coherent state integral results

into 〈
ψj

∣∣∣∣∣pk,qk
〉

=

exp

[
−1

4
(qj − qk)Γ (qj − qk)

T − 1

4~
(pj − pk)

1

Γ
(pj − pk)

T +
i

2~
(pj + pk) (qj − qk)

]
.

(3.2.7)

It was showed that the Herman-Kluk is an alternative formulation of Miller-Van Vleck

propagator; it is associated to a change of basis, from the coordinate one to the coher-

ent states one. In section (11.1) of Appendix we show a derivation that was originally

proposed by Miller.[53] Other derivations can be found in the Literature.[54]
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The most delicate part of Eq. (3.2.2) is the pre-exponential factor of Eq. (3.2.3) since,

when a trajectory becomes more and more chaotic, the modulus of monodromy matrix

elements increases till reaching the numerical precision of the computational machine

making numerically divergent the pre-exponential factor and the propagator itself. In

order to avoid this undesirable inconvenience several ways was proposed to avoid such

failure in the calculation of the propagator. The first one, was proposed by Kay,[28] and

consists into looking at the modulus of the pre-exponential factor, where Dt is a threshold

parameter. ∣∣∣∣∣Ct (q0,p0)

∣∣∣∣∣ ≥ Dt (3.2.8)

If the condition reported in Eq. (3.2.8) is satisfied, the chaotic behavior is considered

excessive and the trajectory is rejected, avoiding the numerical blow up of the propagator.

An alternative way to check the stability of a classical trajectory was proposed by Wang,

Manolopoulos and Miller.[55] They proposed to look at the condition reported in Eq.

(3.2.9), where ε is a threshold value.∣∣∣∣∣
∣∣∣∣∣det (MTM

)∣∣∣∣∣− 1

∣∣∣∣∣ ≥ ε (3.2.9)

It was recently shown that both strategies are roughly equivalent in terms of rejected

trajectories, and it can be a problem for highly chaotic potentials, i.e. with a rejection

ratio higher than 90%.

Going back to Eq. (3.2.4), the monodromy matrix has a very important physical mean-

ing, since it is strongly related to the Liouville theorem. In particular, the conservation of

the classical phase-space volume

dptdqt = dp0dq0det (M) (3.2.10)
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is a direct consequence of the following property

det (M) = 1 ∀t (3.2.11)



Chapter 4

Semiclassical dynamics for molecular

spectroscopy

4.1 Semiclassical formulation of vibrational spectral density

In the Born-Oppenheimer approximation nuclei move on Potential Energy Surfaces. Each

value is the electronic energy at fixed nuclei configuration. For small molecules high level

pre-fitted PES are available,[56, 57, 58, 59, 60] while for high-dimensional systems elec-

tronic energies are provided by ab-anitio methods. Moreover, very accurate models and

methods have been developed in recent years to allow quantum evaluations of electronic

energies for systems embedded by a sorrounding as a solvent or a matrix.[61, 62, 63]

Now, given a potential energy surface (PES) computed at a certain level, and given a

reference state

∣∣∣∣∣χ
〉

, the spectral density or equivalently the power spectrum, is given by

the Fourier transform of the autocorrelation function[64, 65]

I (E) ≡ 1

2π~

ˆ +∞

−∞

〈
χ
∣∣∣e−iĤt/~∣∣∣χ〉 eiEt/~dt. (4.1.1)

The major contribution to the peaks’ intensity will be centered around the energy shell
of the reference state. For chemical systems, a good choice for the reference state is a
coherent state with energy evaluated within the harmonic approximation.[66, 67, 68] In

22
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this spirit,

∣∣∣∣∣χ
〉

can be defined as

∣∣∣∣∣χ
〉

=

∣∣∣∣∣qeqpeq
〉

(4.1.2)

where qeq is the coordinates vector at the equilibrium geometry, while peq is the momenta

vector, i.e. pi,eq =
√

~
m
ωi where ωi is the harmonic frequency of the i-th degree of

freedom. By substituting the Heller-Herman-Kluk-Kay propagator of Eq. (3.2.2) into
(4.1.1), we obtain the working formula for the semiclassical spectra density.

I (E) =

(
1

2π~

)F+1 ˆ +∞

−∞
eiEt/~dt

¨
dp0dq0Ct (p0,q0) e

i
~St(p0,q0)

〈
χ

∣∣∣∣∣pt,qt
〉〈

p0,q0

∣∣∣∣∣χ
〉

(4.1.3)

Eq. (4.1.3) is very slowly convergent with the number of classical trajectories, making

it not suitable for chemical systems with more than few degrees of freedom. It is due to

the high oscillating behavior of the integrand.[69, 70] To overcome this issue, different

filtering procedures were proposed in the past years, in order to reduce the number of

required trajectories to converge Eq. (4.1.3). The most relevant one are the Filinov filter

proposed by Huang, Manolopoulos and Miller,[55] and the Time-Averaging filter pro-

posed by Kaledin and Miller.[64, 65] In particular, the latter one has been showed to be

very accurate for small-sized chemical systems requiring roughly a thousand of classical

trajectories for each degree of freedom to converge.[68, 71, 72, 73, 65]

4.2 Time Averaging Filter

The basic idea of the time averaging filter is to rewrite Eq. (4.1.3) to have a less

oscillating integrand, resulting into a much smaller number of trajectories required for

converging the phase space integration of equation . The original derivation was provided

by Kaledin and Miller,[64] where they also showed its potentiality by performing accurate

vibrational spectra of several molecular systems up to nine degrees of freedom. The final
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working formula of the spectral density is

I (E) =

(
1

2π~

)F ¨
dp (0) dq (0)

1

2π~T

∣∣∣∣∣∣
T̂

0

e
i
~ [St(p(0),q(0))+Et+ϕt] 〈χ |p (t) q (t)〉 dt

∣∣∣∣∣∣
2

.

(4.2.1)

More details about the derivation can be found in Section (11.2). The Time Averaging

filter is exact for harmonic oscillators, while for real potential energy profiles they sug-

gested to employ the so-called separable-approximation, where the pre-exponetial factor

is approximated to be Ct (p0,q0) ∼ e
i
~ϕt , where ϕt = phase [Ct (p0,q0)].

Although an approximation is introduced, the time-averaging formulation leads to ac-

curate vibrational spectra of small and medium sized molecular systems, with an accuracy

of 20-30 wavenumbers with respect to exact levels.[74, 73, 72, 71]

4.3 The Multiple Coherent State approach

The Time Averaging filter has been proved to be a very powerful tool to reduce the

number of required trajectories to converge the quantum propagator. However, still roughly

a thousand of classical trajectories for each degree of freedom are necessary, thus pre-

venting the exploitation of the formalism for ab-initio purposes, where few or even one

classical trajectories are affordable. To overcome this issue, Ceotto proposed a tailored

reference state, making a single trajectory enough for accurate spectra and allowing the

exploitation of coherent state semiclassical calculations for ab-initio purposes.[75, 66, 67,

68, 76]

This “multiple coherent state” approach, as already mentioned, allows to recover accu-

rate vibrational spectra from a handful or even one classical trajectory. The main idea is

to run trajectories with selected initial conditions that lead to the highest contribution into

Eq. (4.2.1). As an overall result, few trajectories are enough to recover accurate peaks.

Such an approach put into practice the exploitation of semiclassical theory into on-the-fly

(or direct) dynamics.[77]
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To understand why few or even one classical trajectories are sufficient to reproduce

most of spectral contribution, which should arise from thousand paths, we have to spend

some words about the coherent state overlap reported in Eq (3.2.7).

In the semiclassical spectral density are present two different overlaps, one involving

the reference state and the initial one, the second instead the wavepacket evolved at time

t and the reference state. To explicit their form we can work in the coordinate represen-

tation, since coherent states presents the very familiar form reported in Eq. (3.2.1). The

overlaps can be calculated taking advantage of the following equations〈
χ

∣∣∣∣∣pt,qt
〉

=

ˆ
dx

〈
χ

∣∣∣∣∣x
〉〈

x

∣∣∣∣∣pt,qt
〉

=

ˆ
dx

〈
x

∣∣∣∣∣χ
〉∗〈

x

∣∣∣∣∣pt,qt
〉

〈
p0,q0

∣∣∣∣∣χ
〉

=

ˆ
dx

〈
p0,q0

∣∣∣∣∣x
〉〈

x

∣∣∣∣∣χ
〉

=

ˆ
dx

〈
x

∣∣∣∣∣p0,q0

〉∗〈
x

∣∣∣∣∣χ
〉
.

After some algebraic passages the coherent state overlap of Eq. (4.1.3) is〈
χ

∣∣∣∣∣pt,qt
〉〈

p0,q0

∣∣∣∣∣χ
〉

=

e−
γ
4

(qt−qeq)
2− γ

4
(q0−qeq)

2− 1
4γ

(pt−peq)
2− 1

4γ
(q0−peq)

2

× e−i[
1
2

(ptqt−p0q0)+
peq

2
(qt−q0)−qeq

2
(pt−p0)] (4.3.1)

As we have reported in Eq. (4.1.2), in the SCVIR framework |χ〉 is chosen according to

an harmonic fashion. Now, if we consider a trajectory starting from (p0,q0) = (peq,qeq),

it will have an high superimposition with |χ〉, resulting into an high contribution to the

phase space integral enhancing the overlap statistics. Conversely, classical trajectories

starting from energy shells far away from the reference state, will contribute less. We can

know understand why instead of running thousand classical trajectories with randomly

initial conditions, it is sufficient to select only few or even one of them. The classi-

cal trajectory starting from (peq,qeq) is called “central trajectory” and is the classical

version of the eigenstate associated to the harmonic Zero Point Energy of the system,
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thus called eigentrajectory. The other classical trajectories resemble vibrationally ex-

cited eigenstates by increasing their initial kinetic energy. In this way a trajectory having

p0 =
(√

ω1,
√
ω2, ..., 3

√
ωi, ...,

√
ωNvib

)
will strongly contribute to the spectroscopic ex-

citation of i − th degree of freedom. In summary, the spectral density of a system made

by Nvib degrees of freedom can be accurately recovered by running Nvib + 1 classical

trajectories instead of approximately 103 · Nvib. This simplification is not costless, since

the high energy excitations (high energetic overtones) could be off the mark, since the few

considered classical trajectories are far in energy from them, while instead this issue is

prevented in a fully converged calculation. However, in vibrational spectroscopy usually

the most important signals concern fundamental and first overtone excitations. Despite the

strong decrease in computational demand, the unambiguous assignment of the excitations

present in a spectroscopic signal can be very hard, especially when the dimensionality of

the system increases, and signals start to superimpose or to hamper each other. This con-

sequence of the curse of dimensionality problem was overcome by Ceotto by extending

the multiple coherent state approach, showing that a reference state of this form∣∣∣∣∣χ
〉

=

Nvib∏
i=1

[∣∣∣∣∣qieq, pieq
〉

+ εi

∣∣∣∣∣qieq,−pieq
〉]

(4.3.2)

allows in principle to select one by one all the possible excitations. It is evident that in

this way a very crowded heap of signals can be resolved by assigning one by one. The

excitations are selected modulating the value of ε; for instance by choosing each value

equal to 1, then Zero Point Energy can be recovered (ZPE), while setting εj = −1 the

fundamental excitation of j − th degree of freedom can be obtained, and so on.

MC-SCIVR was exploited for several applications in the past, allowing to recover ac-

curate vibrational spectra of small molecular systems both in gas and condensed phase.

Furthermore, it has been shown to be able to detect strong quantum effects like Zero Point

Energy, quantum resonances, quantum anharmonicities, and deep tunneling splitting.

However, it exploits huge troubles with chaotic trajectories, since the pre-exponential
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can blow up. Furthermore, the method runs out of steam when the system’s dimensional-

ity overcomes 20-25 because of the curse of dimensionality. These were the topic of this

PhD thesis and are discussed in details below in the text.



Chapter 5

The importance of the pre-exponential
factor

As we have reported in the previous sections, the pre-exponential factor is the semi-

classical quantity stricly connected with the quantum fluctuations. It comes clear that its

correct evalutation is mandatory to account for quantum effects. As we have touched on

above at the end of Section (3.2), the numerical calculation of Eq. (3.2.3) can undergo

severe numerical issue when trajectories get chaotic. More in details, during the classical

dynamics of a system it usually happens that the Monodromy matrix elements assume

high values leading to high value of the modulos of the pre-exponential factor. It is not in

principle a problem, but only a practical one when we calculate it numerically, and num-

bers get close to the numerical precision of the calculator. In this evenience, the estimates

start to be affected by huge errors, and even the quantities overcome the numerical preci-

sion, leading to a numerical divergence. This issue prevents the recovery of spectroscopic

signal from Eq. (4.2.1) and has to be avoided by rejecting the classical trajectory. The

rejection of classical trajectories can be problematic when the computational demand is

high or even when the rejection ratio (the number of rejected trajectories over the total

number) is estremely high, because it becomes very hard to converge Eq. (4.2.1). Above

in the text we have introduced two different rejection criteria, the first one developed by

Kay, and second one by Wang, Manolopoulos and Miller. In the first case, we only look

28
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if the pre-exponential factor becomes huge during the dynamics and if it overcomes a

“safe” threshold value, the trajectory is rejected. In the second case instead, we look at

the conservation of unity of det
(
MTM

)
. Such described rejection criteria ensure the

numerical stability of the pre-exponential factor and in general of the semiclassical inte-

grand; however they do not prevent the rejection event, and if the ratio is extremely high

a lot of computational time is required to converge the integral. Unfortunately “chaotic”

systems, are not few, either in models or even in real molecules.

In the past years various pre-exponential factor numerical approximations were devel-

oped in order to fully avoid the rejection event or even to tame the chaotic behaviour of the

trajectories, preventing their rejection. Many of them rely on the different, but equivalent

to Eq. (3.2.3), Log-Derivative formulation of the pre-exponential factor.[78]

5.1 A “poor” person pre-exponential factor

A very simple but efficient for on-the-fly purposes pre-exponential factor approxima-

tion was proposed in 2011 motivated by the fact that (i) it should be exact for harmonic

systems, (ii) it should not be sensitive to the choice of the coherent states width param-

eter Γ , (iii) it should be local in the potential, (iv) it should retain the normalization

of the pre-exponential factor, (v) and it should be computationally less demanding. All

these points are addressed if the following “poor person” approximation of Eq. (4.1.3) is

employed.[79]

I (E) =

(
1

2π~

)F+1 ˆ +∞

−∞
eiEt/~dtCt (peq,qeq)

¨
dp0dq0e

i
~St(p0,q0)

〈
χ

∣∣∣∣∣pt,qt
〉〈

p0,q0

∣∣∣∣∣χ
〉

(5.1.1)

In this approximation the pre-exponential factor is considered a function of time constant

in the phase-space integral. Ct (peq,qeq) is the pre-exponential factor of the central tra-

jectory, i.e. the trajectory having as initial conditions the equilibrium configuration qeq,

and momenta following an harmonic fashion peq. This choice can be justified by assum-
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ing that such a trajectory will be highly relevant in the semiclassical integrand. Within

the poor-person approximation, rejection events are prevented since the pre-exponential

factor is evaluated along only one trajectory, and it is used for all the remaining. It comes

clear, that if the pre-exponential factor of the central trajectory undergoes numerical is-

sues, the accuracy and reliability of the approximation should be comprimized. Assuming

not relevant this inconvenience, this approximation is very suitable for on-the-fly calcula-

tions, where the evaluation of the hessian matrix, and so of the monodromy matrix, can

be extremely demanding.

5.2 The adiabatic approximation

This approximation developed in Miller group assumes the monodromy matrix ele-

ments to be adiabatic with respect to each other.[80, 81] First of all, we rewrite Eq. (3.2.3)

in terms of two auxiliary variables Qt and Pt defined as
Qt = Mqq − i~Mqpγ

Pt = Mpq − i~Mppγ.

(5.2.1)

Then we can write the pre-exponential factor as

Ct (q0,p0) =

√
det
[

1

2

(
Qt +

i

~γ
Pt

)]
. (5.2.2)

Now, it is noteworthy to observe that not only Pt is the time-derivative of Qt, both are

also coupled via Newton’s type equations
Pt = Q̇t

Ṗt = −KtQt.

(5.2.3)

The second equality of Eq. (5.2.3) can be obtained by applying a further time-derivative
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of Pt indeed

Ṗt =
∂ṗt
∂q0

− i~∂ṗt
∂p0

γ, (5.2.4)

and by taking advantage of Newton’s equations, i.e. ṗt = −Ktqt we obtain

Ṗt = −Kt

[
∂qt
∂q0

− i~ ∂qt
∂p0

γ

]
= −KtQt. (5.2.5)

Now, if we assume that the unitary matrix U that diagonalizes the Hessian matrix, diago-

nalizes also Qt and Pt 

K̃t = UKtU
T

Q̃t = UQtU
T

P̃t = UPtU
T

(5.2.6)

we can write the pre-exponential factor only in terms of diagonal elements of Q̃t and P̃t

Ct (q0,p0) ∼

√√√√Nvib∏
i=1

[
1

2

(
Q̃t (i, i) +

i

~γ
P̃t (i, i)

)]
. (5.2.7)

Within this approximation, we save lot of computational time since we have to solve only

2×Nvib independent differential equations. Moreover, this approximation is expected to

work very well in the case of adiabatic or quasi-adiabatic regimes, while accuracy will be

damped with strong intermode couplings. Finally we highlight that the evolution of Q̃t

and P̃t is still sensitive to the initial conditions, resulting into numerical instability of the

pre-exponential factor reported in Eq. (5.2.7).

5.3 Log-derivative formulation of the pre-exponential factor

We now introduce the Log-Derivative formulation of the pre-exponential factor.[78] In

this formulation, it is not necessary to evolve and to check the stability of the monodromy

matrix. To start off we take the two auxiliary variables Qt and Pt introduced in the

previous section, and since Pt is the time-derivative of Qt , we call Rt = Q̇t

Qt
the Log-
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Derivative of Qt. The pre-exponential factor written in Eq. (5.2.2) can be expressed as a

function only of Rt.

Ct (p0,q0) =

√
det
[

1

2

(
I +

i

~γ
Rt

)]
e

1
2

´ t
0 dτTr(Rt). (5.3.1)

Eq. (5.3.1) states that the knowledge of Rt directly allows the evaluation of the pre-

exponential factor without passing from the Monodromy Matrix. To calculate Rt we

evaluate its time-derivative

Ṙt =
Q̈t

Qt

−

(
Q̇t

Qt

)2

= −Kt −Rt. (5.3.2)

Rt is the solution of a Riccati equation involving the Hessian matrix and having as initial

conditions R0 = −i~γ. Thus, we have to solve the following first-order differential

equation to calculate the pre-exponential factor.
Ṙt = −Kt −Rt.

R0 = −i~γ
(5.3.3)

Unfortunately, for a generical potential Eq. (5.3.2) is not analytically solvable and some

approximations or numerical integrations have to performed. Accurate integrators of Eq.

(5.3.2) can be found in the Literature.[82] On the opposite, this formulation allow to forget

about the evaluation and evolution of the monodromy matrix elements.

5.3.1 Existing approximations

5.3.1.1 The harmonic approximation

A very crude but simple solution of the Riccati equation is obtained if we approximate

the potential to be harmonic close to the minimum. Within this approximation we have

Kt ∼ ω2, where ω2 is the diagonal Hessian matrix around the equilibrium configuration.
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The Riccati equation, in this case is analytically solvable, and has a constant solution,

derived in the appendix section (11.3). The result is Rt = −iω and the pre-exponential

factor becomes

CHO
t (p0,q0) = e−

1
2

∑Nvib
i=1 ωit. (5.3.4)

In the case of harmonic systems, or eventually by employing the approximation, the pre-

exponential factor has always a constant modulos (equal to 1); thus by employing such ap-

proximation all issues concerning the rejection of the classical trajectories are prevented.

Nevertheless, the accuracy of the approximation is sometimes very low, especially for

strongly anharmonic potentials.

5.3.1.2 The Johnson Multichannel Approximation

To make a step further from the harmonic approximation one can assume that for a generic
time-dependent hessian matrix, the first derivative Ṙt is slowly varying, i.e. close to an
harmonic behaviour. In this picture we have to solve{

0 = −Kt −Rt

R0 = −i~γ
(5.3.5)

that is again analytically solvable. Taking into account the initial conditions, the solution
becomes

Rt = −i~
√

Kt. (5.3.6)

The pre-exponential factor will be

CJohnson
t (p0,q0) =

√
det
[

1

2

(
I +

√
Kt

γ

)]
e−

i~
2

´ t
0 dτTr(

√
Kt), (5.3.7)

and assuming γi ∼ ωii ∀iε [1, Nvib], with ωii square roots of the eigenvalues of the hessian
matrix, we obtain a more general but similar expression to Eq. (5.3.4)

CHO
t (p0,q0) ∼ e−

1
2

∑Nvib
i=1 ωi(t)t, (5.3.8)

where now the frequencies are dependent from the dynamics.

5.3.2 New analytical and numerical approximations

5.3.2.1 An iterative strategy to improve the harmonic approximation

The presented pre-exponential factor approximations can undergo numerical instability

in the case of chaotic trajectories. On an opposite side, the harmonic approximation
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prevents such problems, but unfortunately for real molecular system is often inaccurate.

One desires to combine both virtues, aiming to have a pre-exponential factor that from

one side retains accuracy and from the other is numerically stable. We attempt to address

it starting from the harmonic approximation Rt = −i~γ. Then we assume that the real

Riccati solution is slightly different from the harmonic one, and similarly with it (and

with the Johnson’s one) its first derivative is equal to zero. Our ansatz is written as

R
(1)
t = −i~γ + ε (5.3.9)

with Ṙ
(1)
t ∼ 0. If we now substitute Eq. (5.3.9) into the Riccati Equation (5.3.2) we

obtain

0 = (~γ)2 − 2i~γε+ ε2 −Kt, (5.3.10)

and neglecting high order corrections, we obtain

ε = − i
2

(
Kt

~γ
− ~γ

)
. (5.3.11)

The approximate solution is

R
(1)
t = − i

2

(
Kt

~γ
+ ~γ

)
. (5.3.12)

Since hessian and gamma matrices elements are real, the solution will be imaginary for

all times. If we now look at the Log-derivative formulation of the pre-exponential fac-

tor in Eq. (5.3.1), we note that the exponential part is of the type eiϕt ϕtεR, and the

pre-exponential part is instead real. Hence, in the separable approximation, the pre-

exponential factor will be written as e
1
2

´ t
0 dτTr

[
R

(1)
t

]
and will not numerically diverge since

it is an oscillating term. As a result, in the separable approximation even in the case of

chaotic trajectories the numerical instability will be tamed. Such solution was already

proposed by Miller.[78] One now can try to improve the accuracy of the solution by for-

mulating a further ansatz with the same assumptions. In this case the solution will we
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written as

R
(2)
t = R

(1)
t + ε. (5.3.13)

After some algebric passages we obtain that

ε =
i

4

(
~γ − Kt

~γ

)2(
~γ + Kt

~γ

) (5.3.14)

and then

R
(2)
t = − i

2

(
Kt

~γ
+ ~γ

)
+
i

4

(
~γ − Kt

~γ

)2(
~γ + Kt

~γ

) . (5.3.15)

Once again the approximate solution is imaginary and the pre-exponential factor will be

e
1
2

´ t
0 dτTr

[
R

(2)
t

]
with a real pre-exponential part that is simplified in the separable approxi-

mation. We note that R
(2)
t can be written in terms of the original R

(1)
t guess as

R
(2)
t = R

(1)
t +

1

23

(
~γ − Kt

~γ

)2

R
(1)
t

. (5.3.16)

This iterative tentative to improve the approximation can go further if we write

R
(3)
t = R

(2)
t + ε. (5.3.17)

In this case the highest order approximate solution will be written in terms of R
(2)
t and

R
(1)
t as

R
(3)
t = R

(2)
t −

1

27

(
~γ − Kt

~γ

)4

R
(1)2
t R

(1)
t

. (5.3.18)

Similarly if we go on by writing

R
(4)
t = R

(3)
t + ε, (5.3.19)

we obtain

R
(4)
t = R

(3)
t +

1

215

(
~γ − Kt

~γ

)8

R
(1)4
t R

(2)2
t R

(3)2
t

. (5.3.20)
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In this fashion a generic R
(n)
t approximate solution will be described in terms of the lowest

order solutions as

R
(n)
t = R

(n−1)
t +

(−)n

2(2n−1)

(
~γ − Kt

~γ

)2(n−1)

∏n−2
j=0

(
R

(n−1−j)
t

)2j
. (5.3.21)

We stress that this procedure is not a proper perturbative strategy since it does not provide

the exact solution of Eq. (5.3.2) even for n→ +∞ since at avery iteration the assumpion

Ṙ
(n)
t ∼ 0 is introduced. The approximate solution will be more accurate than the har-

monic one for low values of n, while for higher values it probably will deviate, leading to

uncorrect results because of the accumulation of approximations will prevail.

5.3.2.2 Monodromy matrix regularization

All approximations described up to now attempt to provide a pre-exponential factor as

accurate as possible and are analytically obtained by approximating somehow the Ric-

cati equation. In this section is instead described a methodology that does not provide

an analytical approximation, while attemps to tame the exponential growing of the pre-

exponential factor. In other words it relies only on numerical considerations.

More in details one can gain insights about the chaotic behaviour of a trajectory by

looking at the eigenvalues of the monodromy matrix

M = U−1λU. (5.3.22)

To tame the exponential growth of monodromy matrix elements we can campare the mod-

ulos of its eigenvalues with a threshold value. If the highest eigenvalue λk is higher than

the threshold, then we build the “regularized” λ̃, Ũ−1, and Ũ matrices, having set the k-th

element, k-th row, and k-th column of λ, U−1, and U equal to zero respectively.

λ̃ =


...

0

...

 Ũ−1 =


... ... ...

0 0 0

... ... ...

 Ũ =


... 0 ...

... 0 ...

... 0 ...

 . (5.3.23)
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Now, it is possible to go back and to calculate the regularized monodromy matrix as

M̃ = Ũλ̃Ũ−1 (5.3.24)

and the pre-exponential factor

C̃t (q0,p0) =

√
det
[

1

2

(
M̃qq +

1

γ
M̃ppγ +

i

~γ
M̃pq +

~
i
M̃qpγ

)]
. (5.3.25)

Within this procedure, the exponential growth is tamed, and the chaotic behaviour is

quenched. The best way to take advantage of this method is to use a threshold param-

eter as high as possible, regularizing the minimum times as possible the monodromy

matrix, in order to have good spectral densities. In this way the artificial modification of

the monodromy matrix will be minimized and the accuracy of spectra won’t be affected.

5.4 Numerical Tests

The pre-exponential factor approximations are tested against tailored model potential

and real molecular systems. Calculations are performed using TA-SCIVR and standard

Herman-Kluk SCIVR when possible from a computational point of view. Model systems

are designed in order to introduce a high level of chaos, while molecular systems span

from strong inter-mode coupled molecules to extremely chaotic ones. All the tests should

provide a quite broad scenario of applicability and accuracy of the proposed approxima-

tions.

5.4.1 A) Bi-dimensional Henon-Heiles potential

We start from the bi-dimensional Henon-Heiles potential reported in Eq. (5.4.1)

V (q1, q2) =
1

2

(
q2

1 + q2
2

)
+ λx2y − 1

3
λy3. (5.4.1)

The mass and the frequency are unitary (in atomic units scale). We choose the value of

λ parameter equal to 0.11803, which is a value already studied in the Literature.[55, 83]
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Such a potential is known to describe a chaotic behaviour, and within our purposes it

represents a good test for our pre-exponential factor approximations both with standard

SCIVR spectral density and with the Time Averaging filter (TA-SCIVR). Starting from

SCIVR calculations, we run 107 trajectories in order to have converged spectra. The

sampling of the trajectories is done according to the Box-Mueller distribution centered at

(peq,qeq) where peq is the square root of the eigenvalues of the Hessian matrix at the equi-

librium, and qeq is the equilibrium geometry (In Eq. (5.4.1) qeq = (0, 0)). Each classical

trajectory is 50000 atomic units long. Figure (5.4.1) reports our computed spectra with

different pre-exponential factor approximations and in Table (5.1) are reported the corre-

sponding energy levels. Starting by looking at the second and third columns of Table

(5.1) we observe that the Herman-Kluk SCIVR calculations with the two rejection criteria

of the classical trajectories lead to very accurate and comparable results. Also the number

of rejected trajectories is very similar, 28% using Eq. (3.2.9) and 26% using Eq. (3.2.8),

where in our calculations we have set ε = 10−5 and Dt = 107 according with previous

works. When the pre-exponential factor is approximated only 106 classical trajectories are

enough to obtain reliable spectra. The most accurate results are recovered by employing

the Monodromy matrix regularization of Eq. (5.3.25), resulting into 28% of classical tra-

jectories “regularized” at least one time. On the other hand, the most crude approximation

is the harmonic one, with relevant deviations at high energies. When the pre-exponential

factor is calculated using the iterative R
(1)
t approximation (Eq. 5.3.12), the mean absolute

error (MAE) with respect to the exact levels is 0.038, that is reduced to 0.013 when the

higher order R
(2)
t and R

(3)
t approximations are employed (Eqs. 5.3.16,5.3.18). The Poor

person approximation (Eq. 5.1.1) is in this case comparable with R
(2)
t and R

(3)
t , show-

ing a MAE equal to 0.015. Finally the Johnson and adiabatic approximations undergo

numerical issues with this type of chaotic potential.

In the case of TA-SCIVR calculations we ran only 5000 classical trajectories since

roughly 103 classical trajectories per degree of freedom are enough for converged spectra.
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Figure 5.4.1: Energy levels of bidimensional Henon-Heiles potential reported in Eq.
(5.4.1). (a) Black continuous lines are for the rejection criterion of Eq. (3.2.9) with
ε = 10−5; (b) dark green continuous lines for the rejection method of Kay Eq. 3.2.8; (c)
brown for the regularization of the monodromy matrix of Eq. (5.3.25); (d) maroon for the
PPs approximation reported in Eq. (5.1.1); (e) orange for the harmonic pre-exponential
factor approximation pf Eq. (5.3.4); (f) light green spectrum for the approximation R

(1)
t in

Eq. (5.3.12); (g) blue for the pre-exponential factor R
(2)
t in Eq. (5.3.16), and (h) cyan R

(3)
t

in Eq. (5.3.18). Exact quantum mechanical values are indicated by the vertical magenta
lines with a height which is equal to the square of the overlap between the SC reference
state and the exact eigenstate calculated by DVR.[13]
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Table 5.1: Power spectrum of the Henon-Heiles potential in Eq. (5.4.1). Energy levels
are reported in Atomic units. From left to right: Exact DVR values, SC-IVR values us-
ing the rejection criterium 1− det

∣∣MT (t) M (t)
∣∣ > 10−5, SC-IVR calculation using the

ad hoc Kay’s rejection method of Eq.(3.2.8), SC-IVR calculation using the monodromy
matrix regularization (5.3.25), the PPs approximation (5.1.1), the harmonic approxima-
tion (5.3.4), R

(1)
t approximation (5.3.12), and our approximations of Eqs. (5.3.16) and

(5.3.18). In the last row the Mean Average Errors (MAE) are reported.
Exact SCIVR Kay’s method Regularization PPs HO R

(1)
t R

(2)
t R

(3)
t

0.998 0.995 0.995 0.995 0.971 1.003 1.003 0.998 0.998

1.989 1.987 1.987 1.987 1.974 2.004 2.004 1.994 1.994

1.989 1.987 1.987 1.987 1.974 2.004 2.004 1.994 1.994

2.951 2.947 2.948 2.948 2.948 2.979 2.979 2.962 2.961

2.984 2.983 2.983 2.983 2.980 3.012 3.012 2.995 2.994

2.984 2.983 2.983 2.983 2.980 3.012 3.012 2.995 2.994

3.917 3.92 3.920 3.920 3.920 3.958 3.958 3.931 3.931

3.918 3.92 3.920 3.920 3.920 3.958 3.958 3.931 3.931

3.980 3.982 3.982 3.983 3.995 4.025 4.025 4.000 3.999

3.984 3.982 3.982 3.983 3.995 4.025 4.025 4.000 3.999

4.856 4.873 4.873 4.874 4.876 4.907 4.907 4.868 4.864

4.888 4.889 4.889 4.889 4.910 4.942 4.942 4.906 4.903

4.888 4.889 4.889 4.889 4.910 4.942 4.942 4.906 4.903

4.985 4.985 4.985 4.986 5.009 5.041 5.041 5.008 5.007

4.985 4.985 4.985 4.986 5.009 5.041 5.041 5.008 5.007

5.800 5.812 5.811 5.811 5.818 5.849 5.849 5.795 5.783

5.800 5.812 5.811 5.811 5.818 5.849 5.849 5.795 5.783

5.853 5.862 5.862 5.862 5.833 5.863 5.863 5.882 5.878

5.872 5.878 5.878 5.878 5.898 5.928 5.928 5.882 5.878

MAE 0.004 0.004 0.004 0.015 0.038 0.038 0.013 0.013
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Table 5.2: Power spectrum of the Henon-Heiles potential in Eq. (5.4.1). Energy levels
are reported in Atomic units. From left to right: Exact DVR values, SC-IVR values us-
ing the rejection criterium 1− det

∣∣MT (t) M (t)
∣∣ > 10−5, SC-IVR calculation using the

ad hoc Kay’s rejection method of Eq.(3.2.8), SC-IVR calculation using the monodromy
matrix regularization (5.3.25), the adiabatic approximation (5.2.7), the PPs approxima-
tion (5.1.1), the harmonic approximation (5.3.4), R

(1)
t approximation (5.3.12), and our

approximations of Eqs. (5.3.16) and (5.3.18). In the last row the Mean Average Errors
(MAE) are reported.

Exact SC-IVR Kay’s method Regularization Adiabatic PPs HO R
(1)
t R

(2)
t R

(3)
t

0.998 0.995 0.995 0.995 0.998 0.965 1.003 1.003 0.997 0.997

1.989 1.988 1.988 1.988 1.995 1.967 2.004 2.004 1.993 1.993

1.989 1.988 1.988 1.988 2.012 2.001 2.038 2.038 2.007 2.005

2.951 2.901 2.901 2.901 2.923 2.913 2.950 2.950 2.917 2.917

2.984 2.983 2.983 2.982 3.004 2.994 3.031 3.031 2.997 2.996

2.984 2.983 2.983 2.982 3.004 2.994 3.031 3.031 2.997 2.996

3.917 3.893 3.893 3.893 3.916 3.907 3.943 3.942 3.911 3.910

3.918 3.893 3.893 3.893 3.916 3.907 3.943 3.942 3.911 3.910

3.980 3.975 3.975 3.975 3.997 3.987 4.024 4.023 3.993 3.992

3.984 3.975 3.975 3.975 3.997 3.987 4.024 4.023 3.993 3.992

4.856 4.805 4.805 4.805 4.828 4.818 4.854 4.853 4.822 4.821

4.888 4.886 4.886 4.886 4.909 4.899 4.935 4.934 4.902 4.912

4.888 4.886 4.886 4.886 4.909 4.899 4.935 4.934 4.902 4.912

4.985 4.970 4.97 4.97 4.99 4.968 5.005 5.004 4.984 4.984

4.985 4.970 4.97 4.97 5.003 4.968 5.005 5.004 5.002 5.000

5.800 5.798 5.798 5.798 5.820 5.810 5.846 5.845 5.811 5.812

5.800 5.798 5.798 5.798 5.820 5.810 5.846 5.845 5.811 5.812

5.853 5.859 5.859 5.859 5.835 5.857 5.894 5.893 5.874 5.870

5.872 5.879 5.879 5.879 5.902 5.892 5.929 5.927 5.896 5.894

MAE 0.011 0.011 0.012 0.017 0.016 0.033 0.032 0.014 0.015

Table (5.2) reports the computed energy levels by employing different pre-exponential

approximations, while Figure (5.4.2) shows the computed spectra. We observe that in

general we find quite less accurate results with respect to the previous case, according to

the fact that in the parent calculations the separable approximation was introduced. Nev-

ertheless, energy levels are still very accurate. In particular, once again when we do not

approximate the pre-exponential factor, results are unchanged moving from a rejection

criterion to another. When the analytical and numerical pre-exponential factor approxi-

mations are employed, the monodromy matrix regularization is still the best one, showing

energy levels comparable with those obtained with the standard pre-exponential factor.
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Figure 5.4.2: TA-SCIVR Energy levels of bidimensional Henon-Heiles potential reported
in Eq. (5.4.1). (a) Black continuous lines are for the rejection criterion of Eq. (3.2.9)
with ε = 10−5; (b) dark green continuous lines for the rejection method of Kay Eq. 3.2.8;
(c) brown for the regularization of the monodromy matrix of Eq. (5.3.25); (d) violet
for the adiabatic approximation of Eq. (5.2.7); (e) maroon for the PPs approximation
reported in Eq. (5.1.1); (f) orange for the harmonic pre-exponential factor approximation
of Eq. (5.3.4); (g) light green spectrum for the approximation R

(1)
t in Eq. (5.3.12); (h)

blue for the pre-exponential factor R
(2)
t in Eq. (5.3.16), and (i) cyan R

(3)
t in Eq. (5.3.18).

Exact quantum mechanical values are indicated by the vertical magenta lines with a height
which is equal to the square of the overlap between the SC reference state and the exact
eigenstate calculated by DVR.[13]
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Table 5.3: Parameters of the potential reported in Eq. (5.4.2).
ω1/cm−1 ω2/cm−1 D/au λ/au β/au qeq1 =qeq2

3000 1700 0.2 10−6 0.02 0.0

In this case, only 12% of trajectories were regularized at least one time. Similarly to the

previous case, the harmonic approximation of Eq. (5.3.4) comes to be the less accurate

one and it is comparable with the iterative approximation R
(1)
t of Eq. (5.3.12), leading

to 0.032 of MAE. Results improves when the high order R
(2)
t or R

(3)
t approximation are

employed, in this case the MAE decreases to 0.014 and 0.015 respectively. Differently

from the previous calculations the lower number of classical trajectories probably tames

the numerical instability of the adiabatic approximation, that in the case of TA-SCIVR

calculations allows to recover a detectable spectral density. The approximation perfor-

mance is comparable with those of the high order R
(2)
t or R

(3)
t , leading to 0.017 MAE.

Finally, again in this case, the Johnson approximation undergoes numerical issues, not

allowing to obtain a definite signal.

5.4.2 B) Bi-dimensional quartic-like potential

We now look for another bi-dimensional potential made by two Morse oscillators with a

quartic-like term. The potential is

V (q) =

2∑
i=1

D
[
1− e−αi(qi−qeqi )

]2
+ λ

[
1

2

(
(q1 − qeq1 )4 + (q2 − qeq2 )4

)
+
β

4
(q1 − qeq1 )2 (q2 − qeq2 )2

]
(5.4.2)

and the parameters are reported in Table (5.4.2). The quartic like term introduces a ex-

tremely high chaotic regime, as can evinced by looking at the number of rejected classical

trajectories reported below. However, the potential at equilibrium configuration qeq is

described by two Morse oscillators, allowing us to employ all the prexponential factor ap-

proximations, even those based on iterative perturbations of the harmonic approximation.

We run 108 classical trajectories in the case of SCIVR calculations, because of the very

high value of rejection, which approaches 97% and 96% by using Eqs. (3.2.9) and (3.2.8)
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Figure 5.4.3: SCIVR Energy levels of potential reported in Eq. (5.4.2). (a) Black continu-
ous lines are for the rejection criterion of Eq. (3.2.9) with ε = 10−3; (b) dark green contin-
uous lines for the rejection method of Kay Eq. (3.2.8); (c) brown for the regularization of
the monodromy matrix of Eq. (5.3.25); (d) orange for the harmonic pre-exponential factor
approximation of Eq. (5.3.4); (e) light green spectrum for the approximation R

(1)
t in Eq.

(5.3.12); (f) blue for the pre-exponential factor R
(2)
t in Eq. (5.3.16), and (g) cyan R

(3)
t

in Eq. (5.3.18). Exact quantum mechanical values are indicated by the vertical magenta
lines with a height which is equal to the square of the overlap between the SC reference
state and the exact eigenstate calculated by DVR[13]. Vertical cyan dashed dotted lines
are centered at uncoupled energy levels, i.e. assuming λ = 0.

with ε = 10−3 and Dt = 108. When approximations of the pre-exponential factor are em-

ployed, 107 classical trajectories are performed. Similarly to the Henon Heiles potential of

Eq. (5.4.1), each classical trajectory is 50000 au long and the trajectories are sampled by

using a box-muller distribution centered at (peq,qeq), where peq is the square root of the

eigenvalues of the Hessian matrix at the equilibrium. Figure (5.4.3) shows the computed

spectra, where we observe that once again results arising from different rejection crite-

ria are comparable and the Monodromy matrix regularization Eq. (5.3.25) (brown line)

very well behaves into reproducing the first three energy levels. On the opposide side we

find the harmonic approximation, which instead moves toward uncoupled estimates. The
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Figure 5.4.4: TA-SCIVR Power spectrum of the potential (5.4.2) with λ = 10−6 using the
time averaged formula. (a) Black line for the rejection criterium 1−det

∣∣MT (t) M (t)
∣∣ >

10−3, (b) dark green line for the Kay’s rejection method of Eq. (3.2.8), (c) red line for the
Johnson’s approximation spectrum, (d) maroon line for the spectrum computed using the
PPs approximation, (e) orange line for the HO spectrum, (f) light green line for the R

(1)
t

approximation spectrum, (g) blue line for the spectrum computed using Eq.(5.3.16), and
(h) cyan line for the spectrum computed using Eq.(5.3.18). The vertical magenta lines
represent the exact energy levels with an intensity equals to the square of the overlap be-
tween the SC reference state |χ〉 and the exact eigenstate calculated by DVR. The vertical
cyan dash-dotted lines are the uncoupled Morse potential energy levels.

Johnson, the PP and the adiabatic approximations are instead plagued by the high chaotic

regime. When time averaging calculations are employed we need only 80000 classical

trajectories for accurate spectra, and 5000 in the case of approximated pre-exponential

factors. Fig. (5.4.4) reports the power spectra at different semiclassical pre-exponential

factor level of approximation. The (a) spectrum is the original TA-SC-IVR spectrum of

Eq.(11.2.12) using 1 − det
∣∣MT (t) M (t)

∣∣ > 10−3, while the spectrum (b) is obtained

employing the ad-hoc method of Kay (3.2.8). The (c) spectrum is obtained using the

Johnson’s approximation (5.3.8), the (d) spectrum is computed using the PPs approxima-

tion (5.1.1), the (e) spectrum the harmonic approximation (11.3.2), the (f) spectrum using

R
(1)
t approximation (5.3.12), the (g) spectrum using R

(2)
t , and, finally, the (h) spectrum

using R
(3)
t . The exact values are indicated as vertical magenta lines with intensity equals
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to the overlap between the SC reference state |χ〉 and the DVR eigenvector, while the

uncoupled Morse oscillators values are the vertical dot-dashed cyan lines. The adiabatic

approximation and the monodromy matrix regularization couldn’t be applied because of

the chaotic regime. The time averaged spectra reported in black and dark green lines are

quite approximated according with the toughness of the potential. In all cases, only the

first three energy levels are recovered and for some approximations, as R
(1)
t , the spec-

trum is too noisy to judge. However, even in the case of an extremely chaotic potential,

which can not describe realistic pictures, pre-exponential factor approximations hold, al-

lowing to recover a spectroscopic signal. For this reason we believe in the case of realistic

potentials, they can better mimic the exact spectroscopic sequence.

5.4.3 c) H2O

We now move toward real molecular systems, starting from the water molecule. Despite

its low dimensionality it represents a very tough challenge for pre-exponential factor ap-

proximations, because of its high anharmonicity. We perform TA-SCIVR calculations by

running 8000 trajectories. Each classical trajectory is evolved for 30000 atomic units un-

der the potential energy surface of Bowman et al,[56] for which exact vibrational energy

levels are available. The trajectories are sampled by using the Husimi distribution cen-

tered at (peq,qeq) where peq is the square root of the eigenvalues of the Hessian matrix

at the equilibrium, and qeq is the equilibrium configuration. Each classical trajectory is

propagated up to 30000 atomic units. When the pre-exponential factor is not approxi-

mated the chaotic regime leads to an high fraction (56%) of trajectories to be rejected, by

employing ε = 10−5. When instead the pre-exponential factor is evaluated by means of

the monodromy matrix regularization only 2.1% undergo a correction, suggesting that the

chaotic trajectories that are rejected using Eq. (3.2.9) do no affect, but instead contribute

to the accuracy of the spectra. The estimated energy levels are reported in Table (5.4),

while the symmetry decomposed A1 and B2 computed spectra of C2v point group are
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Table 5.4: Vibrational energy levels of H2O. Wavenumbers unit. First column reports
the spectroscopic terms, second column reports the exact quantum mechanical values,
third column reports the results computed with TA-SCIVR using the rejection criterium
1− det

∣∣MT (t) M (t)
∣∣ > 10−5, fourth column SCIVR calculation using the ad hoc Kay’s

rejection method of Eq.(3.2.8), and the others with the different pre-exponential factor
approximations named as above. In the last row is reported the Mean Absolute Error
(MAE) of each column.

State Exact[56] SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R
(1)
t R

(2)
t R

(3)
t

ZPE 4631.6 4636 4640 4639 4592 4612 4604 4784 4704 4616 4612

A1 (11) 1591.2 1584 1580 1583 1556 1564 1616 1620 1576 1564 1564

A1 (12) 3146.1 3132 3132 3133 3124 3092 3196 3196 3124 3098 3096

A1 (21) 3655.4 3672 3680 3681 3596 3604 3752 3756 3724 3620 3606

B2 (31) 3751.1 3764 3760 3761 3808 3708 3730 3848 3808 3706 3707

A1 (13) 4662.5 4650 4628 4627 4564 4596 4723 4726 4648 4507 4652

A1 (1121) 5230.5 5248 5248 5245 5216 5152 5348 5352 5284 5157 5152

B2 (1131) 5322.4 5300 5300 5301 5344 5216 5242 5424 5352 5232 5215

A1 (1221) 6768.9 6764 6768 6770 6688 6666 7005 7008 6804 6678 6655

B2 (1231) 6858.8 6804 6800 6808 6848 6692 6738 6996 6844 6721 6693

A1 (22) 7202.3 7240 7228 7229 7068 7088 7392 7392 7300 7113 7092

B2 (2131) 7254.4 7282 7266 7267 7328 7144 7176 7488 7372 7165 7148

A1 (32) 7438.2 7424 7404 7405 7572 7300 7620 7624 7516 7317 7288

A1 (1122) 8767.5 8768 8772 8773 8702 8600 8603 8976 8832 8608 8596

B2 (112131) 8812.1 8816 8800 8803 8860 8632 8672 9040 8872 8662 8642

A1 (1132) 8990.4 8924 8920 8916 9004 8970 9108 8890

MAE 20 22 22 57 90 107 140 53 89 92

reported in Figure (5.4.5). We can observe that the accuracy remains almost unchanged

moving from a rejection criterion to another. Furthermore, and most importantly, the

monodromy matrix regularization of the pre-exponential factor provides energy levels

comparable with the reference ones. Moreover, the adiabatic approximation is quite ac-

curate while the Johnson’s one is comparable with the iterative perturbative solutions of

Eqs. (5.3.16) and (5.3.18). Surprisingly, moving from R
(1)
t to R

(2)
t an increment of accu-

racy is not observed problably because of the high level of anharmonicy of the molecule,

which is not properly accounted if a further perturbation (with harmonic assumptions) of

an already approximate solution of Eq. (5.3.2) is considered. However, all the approx-

imations perform much better than the poor person’s and the harmonic ones, whose are

expected to show high deviations, simply because they are not designed to be accurate for
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Figure 5.4.5: H2O spectra. (a) Black line for the separable SC-IVR (11.2.12) spectrum
using the rejection criterium 1 − det

∣∣MT (t) M (t)
∣∣ > 10−5, (b) using the ad hoc Kay’s

rejection method of Eq.(3.2.8), (c) brown for the regularization of the monodromy ma-
trix of Eq.(5.3.25), (d) violet line for the adiabatic approximation (5.2.7) spectrum, (e)
red line for the Johnson’s approximation (5.3.8) spectrum, (f) maroon line for the PPs
approximation (5.1.1) spectrum, (g) orange line for the HO (11.3.2) approximation spec-
trum, (h) green line for the R

(1)
t approximation (5.3.12) spectrum, (i) blue line for the

spectrum computed using R
(2)
t in Eq.(5.3.16), and (l) cyan line for the spectrum com-

puted using R
(3)
t in Eq.(5.3.18). The vertical magenta dashed lines represent the quantum

energy levels. A1 and B2 spectra with the same color for each approximation.
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high anharmonic systems. Finally, we point out that the monodromy matrix regularization

is even as accurate as the standard TA-SCIVR results.

5.4.4 d) CO2

After a strong anharmonic system we switch onto a more harmonic but also challenging

molecule, because of the presence of strong Fermi resonances. We employ the Potential

Energy Surface of Chedin,[84] running 15000 classical trajectories for the phase space

integration, both with and without the pre-exponential factor approximations. Each clas-

sical trajectory is propagated for 30000 atomic units. For this system, the lower chaotic

regime with respect to water can be evinced by looking at the low number of rejected

trajectories, equal to 14% and 8% when the Monodromy matrix based criterion of Eq.

(3.2.9) and the ad-hoc method of Kay of Eq. (3.2.8) are employed. Furthermore, when

the classical trajectories are regularized by using Eq. (5.3.25), only 0.6% undergo at least

one correction. TA-SCIVR computed frequencies with the different pre-exponential fac-

tor approximations are compared with exact energy levels of Vasquez et al.[85] Table

(5.5) shows our computed estimates compared with exact one. One again we observe

that the two rejection methods provide comparable results and the monodromy matrix

regularization is as accurate as if one does not approximate the pre-exponential factor.

All the other pre-exponential factor approximations provide very accurate estimates for

both fundamental and overtone excitations, with the harmonic and the poor person’s ones

that are the least accurate with MAEs equal to 12.4 and 11.4 wavenumbers, respectively.

5.4.5 e) CH2O

After two triatomic molecules we increase the dimensionality, moving toward a tetratomic

one, formaldehyde. For this system we propagate classical trajectories under the potential

energy surface of Martin et al for 30000 atomic units.[86] When the pre-exponential fac-
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Table 5.5: The same as in Table (5.4) but for CO2.
State Exact[85] SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R

(1)
t R

(2)
t R

(3)
t

(000) 2536.15 2535 2535 2536 2531 2534 2539 2564 2541 2534 2534(
0110

)
667.47 667 667 665 669 666 673 672 670 666 666(

0110
)

667.47 667 667 666 669 666 673 672 670 666 666(
1000

)
1285.1 1290 1288 1288 1275 1290 1299 1297 1294 1286 1291(

0220
)

1335.95 1333 1332 1332 1335 1334 1350 1351 1341 1334 1334(
0220

)
1335.95 1333 1332 1334 1335 1334 1350 1351 1341 1334 1334(

0220
)

1387.93 1388 1384 1386 1400 1383 1382 1393 1391 1382 1374(
1110

)
1929.56 1930 1928 1928 1923 1933 1947 1940 1940 1931 1931(

1110
)

1929.56 1930 1928 1929 1923 1933 1947 1940 1940 1931 1931(
0330

)
2005.25 1997 2001 2001 2015 2003 2021 2021 2012 2003 2003(

0330
)

2005.25 1997 2001 2001 2015 2003 2021 2021 2012 2003 2003(
0310

)
2078.15 2081 2080 2077 2093 2070 2083 2086 2084 2071 2071(

0311
)

2078.15 2081 2080 2079 2093 2070 2083 2084 2084 2071 2071(
0001

)
2349.38 2356 2355 2354 2347 2356 2371 2373 2359 2356 2354

MAE 3.0 2.7 2.1 6.9 3.8 11.4 12.4 6.3 3.2 3.9
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Figure 5.4.6: The same as in Fig.(5.4.5) but for the CO2 molecule. Each approximation
includes the spectra of the Ag, B1u, B2u and B3u irreducible representations of the D2h

point group symmetry.
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Table 5.6: The same as in Table (5.4) but for the fundamentals of CH2O.
simmetry Ex.[87] SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R

(1)
t R

(2)
t R

(3)
t

ZPE (A1) 5774 5774 5780 5744 5744 5932 6112 5819 5744 5744

B1 (11) 1171 1162 1162 1169 1160 1159 1000 1004 1159 1160 1158

B2 (21) 1253 1245 1246 1248 1240 1240 1164 1168 1253 1240 1240

A1 (31) 1509 1509 1506 1513 1501 1509 1573 1575 1516 1509 1506

A1 (41) 1750 1747 1745 1752 1737 1743 1745 1743 1745 1745 1740

A1 (51) 2783 2810 2810 2785 2745 2747 2708 2711 2799 2750 2741

B2 (61) 2842 2850 2846 2836 2801 2862 2741 2846 2807 2800

tor is not approximated we sample 24000 classical trajectories, otherwise 8000. Because

of the presence of light atoms, the dynamics is strongly coupled and it results into a very

high number of discarted trajectories, 82.5% by using Eq. (3.2.9) with ε = 10−5, and

85.6% employing the method of Kay (Eq. (3.2.8)) with Dt = 24000 . The complex mo-

tion also affects the number of regularized trajectories when one invokes the Monodromy

matrix regularization of Eq. (5.3.25); for thys system 20.1% of trajectories undergoes at

least one correction. TA-SCIVR results are very accurate both rejecting trajectories with

Eq. (3.2.9) or (3.2.8). Nevertheless, when the pre-exponential factor is approximated

using the monodromy matrix regularization, the accuracy does not get worse. The other

approximations with the exception of the harmonic and PPs are quite accurate, offering

Mean Absolute Errors between 20 and 30 wavenumbers. For this system, R
(1)
t performs

very well, with an accuracy comparable with the reference one, suggesting that an an-

harmonic correction to the harmonic pre-exponential factor is beneficial. This evidence

can be also deduced by looking at the estimates obtained employing the harmonic or

the Poor Person’s approximations of the pre-exponential factor. Table (5.6) shows our

computed fundamental energy levels while Table (5.7) the overtone excitations. Figure

(5.4.7) instead reports the calculated spectra of the irriducible representations of the C2v

point group of the molecule.
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Figure 5.4.7: The same as in Fig.(5.4.5) but for the CH2O molecule. Each approximation
includes the spectra of the A1, A2, B1 and B2 irreducible representations of the C2v point
group symmetry.
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Table 5.7: The same as in Table (5.4) but for the overtones of CH2O. MAE is calculated
over all values reported in Tables (5.6) and (5.7).

State Exact[87] SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R
(1)
t R

(2)
t R

(3)
t

A1 (12) 2333 2310 2310 2309 2302 2308 2163 2453 2307 2307 2304

A2 (1121) 2431 2410 2408 2405 2403 2399 2356 2360 2408 2401 2396

A1 (22) 2502 2497 2494 2489 2477 2486 2712 2495 2486 2480

B1 (1131) 2680 2672 2670 2675 2654 2656 2736 2679 2658 2654

B2 (2131) 2729 2731 2730 2728 2800 2719 2762 2761 2734 2723 2716

B1 (1141) 2913 2898 2896 2896 2886 2887 2871 2896 2888 2889

B2 (2141) 3007 3002 3002 3002 2976 2986 2946 3010 2989 2983

A1 (32) 3016 3018 3014 3018 2986 2996 3086 3022 2993 3010

A1 (3141) 3250 3254 3252 3256 3230 3240 3157 3263 3238 3234

A1 (42) 3480 3476 3475 3480 3462 3463 3323 3516 3468 3460

B1 (1151) 3947 3957 3960 3937 3892 3897 3864 3868 3949 3897 3890

A2 (1161) 4001 3979 3978 3974 3941 3942 3858 3864 3977 3945 3944

B2 (2151) 4027 4056 4054 4029 3990 3994 3934 3938 4045 4010 3994

A1 (2161) 4089 4038 4034 4043 4042 4053 4196 4074 4048 4048

A1 (3151) 4266 4275 4273 4268 4218 4225 4481 4216 4281 4225 4216

MAE 12.8 13.1 9.9 31.9 25.2 91.1 91.9 12.1 23.4 30.2

5.4.6 f) CH4

Finally, we now move toward methane molecule, for which an high coupled and choatic

bahaviour of the nine vibrational degrees of freedom is expected. For TA-SCIVR cal-

culation we sample 32000 classical trajectories when the pre-exponential factor is not

approximated, while otherwise we run 14000 classical trajectories on the Potential En-

ergy Surface of Lee et al.[88] Each classical trajectory is propagated for 30000 atomic

units. When the pre-exponential factor is not approximated, the chaotic behaviour is en-

lighted by the very high rejection ratio, reaching 88.8% and 98.8% by employing the

Monodromy and Kay criteria, respectively. Figure (5.4.8) shows our computed spectra of

the irrducible representations of the Td point group of the molecule. Table (5.8) instead

reports the estimates at different levels of approximation, compared with exact values.

Another time, both rejection criteria seem to provide comparable outcomes, and the mon-

odromy matrix regularization comes to be high accurate. The other approximations, with

the exception of the Poor Person’s and harmonic ones, are very accurate and comparable
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Figure 5.4.8: The same as in Fig.(5.4.5) but for the CH4 molecule. Each approximation
includes the spectra of the A1, E, and T2 irreducible representations of the Td point group
of symmetry.

Table 5.8: The same as in Table (5.4) but for CH4.
State Exact[58] SC-IVR Kay’s method Regularization Adiabatic Johnson PPs HO R

(1)
t R

(2)
t R

(3)
t

ZPE (A1) 9707 9708 9708 9704 9669 9657 9846 10124 9941 9659 9652

T2 (11) 1313 1296 1297 1304 1309 1300 1390 1390 1257 1305 1304

E (21) 1535 1524 1524 1528 1531 1518 1500 1497 1496 1522 1520

T2 (12) 2624 2596 2593 2636 2616 2601 2646 2636 2497 2605 2600

T2 (1121) 2836 2820 2821 2832 1309 2818 2890 2887 2753 2827 2824

T1 (1121) 2836 2820 2821 2832 1309 2818 2890 2887 2753 2827 2824

A (31) 2949 2942 2942 2982 2963 2944 2914 2916 2936 2951 2928

E (22) 3067 3040 3042 3062 3052 3028 3065 3066 2993 3035 3044

T2 (41) 3053 3038 3040 3052 3044 3037 3092 3069 2983 3041 3044

MAE 15.3 16.6 8.7 7.8 18.6 39.8 34.9 68.1 13.0 15.6
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between each other, with a slight increasing level of accuracy increasing the iterative level

of perturbation of the harmonic approximation.

5.5 Summary

The investigation of tailored bi-dimensional models and real molecular systems with in-

creasing dimensionality provides a quite broad scenario to test the various pre-exponential

factor approximations. First of all, we have observed that both rejection criteria provide

very accurate and very similar results between each other. Moreover, Despite the sce-

nario spans both from low to high dimensional and from low to extremely high chaotic

systems, the different pre-exponential factor approximations seem to provide a sound of

similar insights and allow us to draw some conclusions. In particular, the Monodromy

matrix regularization, when feasible, is high accurate and very often provides estimates

comparable with reference ones. Furthermore, the proposed iterative solutions R
(2)
t and

R
(3)
t sometimes show a lower level of accuracy; however they are stable and do not un-

dergo numerical issues, which can affect the Monodromy matrix regularization as the

other approximations e.g. adiabatic and Johnson ones. In conclusion we suggest them

as well as the Monodromy matrix regularization when possible. Despite the choice of

the threshold is strongly dependending on the system, as a rule of thumb we have found

that a reasonable choice for it can be 102− 103, leading to few regularizations along each

trajectory.



Chapter 6

Divide-and-Conquer Semiclassical
dynamics

The numerical blowing up of the pre-exponential factor is in general more probable to oc-

cur if the dimensionality of the system increases, and the application of standard SCIVR

calculations to high dimensional systems is plagued by the increasing of rejection ra-

tios and the consequent demand of available classical trajectories. The development of

accurate and reliable pre-exponential factor approximations paves the way to the appli-

cation of SCIVR to systems with many degrees of freedom, since rejection events can

be tamed, and roughly a thousand of classical trajectories per degree of freedom are in

principle necessary to obtain a spectroscopic signal. Moreover, if pre-exponential factor

approximations are combined with the Multiple Coherent State approach, then ab-initio

semiclassical dynamics becomes a reliable way to obtain a spectroscopic signal of sys-

tems made by more than few dozens of degrees of freedom, as was recently shown.[76]

Nevertheless, Semiclassical method runs out of steam when the systems dimensionality

increases to 25-30. To understand the reason behind it we have to go into to the phys-

ical interpretation of the autocorrelation function that is semiclassically approximated.

The spectral density is calculated as the Fourier transform of
〈
ψt

∣∣∣∣ψ0

〉
, and the evolved

wave-packed has to periodically recross close to the initial conditions to obtain a clear

spectroscopic signal. This event is in general less and less probable if the dimensional-

ity of the system increases, since the overlap has to occur at the same time for all the

56
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Figure 6.1.1: Pictorial representation of a full-dimensional trajectory (black line) and its
projection (red line) onto a M-dimensional subspace.

dimensions. It is the semiclassical manifestation of the curse of dimensionality problem,

a general stumbling block for any exact or approximated quantum method. As a direct

consequence of it, semiclassical calculations on systems with more than 25-30 degrees

of freedom are plagued, while the accuracy and appearing of the spectra are irreparably

jeopardized, not allowing to recover a clear spectroscopic signal.

6.1 The idea

A way to overcome the problem is to help the wavepacket to recross close to the initial

conditions by projecting it onto a reduced dimensional subspace. A pictorial representa-

tion that sketches the idea is reported in Figure (6.1.1), where the black line is the full-

dimensional classical trajectory and the red line is its projection into a M-dimensional

subspace. The dimensionality is in this way reduced, thus helping the appearing of a clear

spectroscopic signal. This is the main idea at the basis of the Divide-and-Conquer semi-

classical method that is discussed below in the text.[71] The method allows to recover

vibrational spectra of high-dimensional systems as a combination of partial spectra, each

one obtained upon projection of the full-dimensional problem onto a certain subspace.
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The projection procedure is done only on semiclassical quantities, while the classical

trajectory remains full-dimensional, retaining all the interactions between the degrees of

freedom. In this way spectral features are hopefully expected to be close to the full-

dimensional ones.

6.2 Subspace’s spectral density

The Divide-and-Conquer working formula for power spectra can be obtained by working

out the usual expression of Kaledin and Miller for a Nvib dimensional problem[64, 65].

Similarly to the full-dimensional case, the power spectrum of M-dimensional subspace is

Ĩ (E) =

(
1

2π~

)M ¨
dp̃ (0) dq̃ (0)

1

2π~T

∣∣∣∣ˆ T

0

e
i
~ [S̃t(p̃(0),q̃(0))+Et+φ̃t]〈χ̃|p̃ (t) , q̃ (t)〉dt

∣∣∣∣2 .
(6.2.1)

We observe that in the case of M = Nvib Eq. (6.2.1) regains Eq. (4.2.1). The integral is

done now in the reduced M-dimensional (p̃, q̃) phase space, and (p̃, q̃) are the projected

position and momenta vectors. 〈x̃|p̃ (t) , q̃ (t)〉 are projected coherent states, φ̃t is the

phase of the pre-exponential factor, where only each monodromy matrix block is of the

type ∂ĩ (t) /∂j̃ (0) with ĩ, j̃ that can be p̃ or q̃. Finally S̃t (p̃ (0) , q̃ (0)) is the projected

action functional. To obtain Eq. (6.2.1) from Eq. (4.2.1) we need to find a way to

calculate the mentioned projected quantities from the full-dimensional ones. The easiest

part are the coherent states since the full-dimensional ones are defined as a direct product

of monodimensional terms i.e.〈
x

∣∣∣∣∣pq

〉
=

〈
x1

∣∣∣∣∣p1q1

〉〈
x2

∣∣∣∣∣p2q2

〉
...

〈
xNvib−1

∣∣∣∣∣pNvib−1
qNvib−1

〉〈
xNvib

∣∣∣∣∣pNvibqNvib
〉
.

(6.2.2)

The M-dimensional coherent state will be〈
x̃

∣∣∣∣∣p̃q̃

〉
=

M∏
i=1

〈
xi

∣∣∣∣∣piqi
〉
, (6.2.3)
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where {pi}i=1,M and {qi}i=1,M are the sets of degrees of freedom enrolled in the subspace.

The projection of coherent states does not introduce any approximation since it can be

done exactly. On the opposite, when either the pre-exponential factor or the action are

projected, an approximation is introduced, since in general they contain interaction terms.

The required matrices and vectors can be obtained by a preliminary suitable singular value

decomposition (SVD),[89] followed by a subsequent matrix multiplication between the

full-dimensional quantity and the projector. We define a displacement matrix D for the

M-dimensional subspace similarly to other works.[89, 74] D is a Nvib ×M dimensional

matrix and a decomposition of it is D = UΣV, where Σ is the M×M eigenvalues matrix,

V is M ×M and U is Nvib ×M. The projector ∆ is defined as ∆ = UUT . Now each

projected matrix Ã can be obtained as Ã = ∆A∆ by retaining the M × M subblock

different from zero. Similarly any vector q̃ will be calculated as q̃ = ∆q. The last term

to be projected is the action. It is calculated from the Lagrangian functional, that can be

projected itself by a proper work out of its kinetic and potential terms.

S̃t (p̃ (0) , q̃ (0)) =

ˆ T

0

[
1

2
m˜̇q2 (t) + VS (q̃ (t))

]
dt (6.2.4)

The kinetic part is trivial since it is separable, while in general the expression for VS (q̃ (t))

is unknown. It describes the potential leading to a set of positions and momenta (p̃, q̃)

equal to the projection of the full-dimensional trajectory (p,q). We extract a general

expression of VS (q̃ (t)) by defining it as the full-dimensional potential functional, where

at each frame, the coordinates belonging to the subspace are left unchanged while the

remaining ones are set at the equilibrium. Such potential is

VS (q̃ (t)) ≡ V
(
q̃ (t) ; qeqNvib−M (t)

)
. (6.2.5)

Unfortunately a so-defined potential would not account for interactions of the degrees of

freedom with the sorrounding. To regain the correct behavior we can introduce a field
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λ (t), defined as

λ (t) = V (q̃ (t) ; qNvib−M (t))−
[
V
(
q̃ (t) ; qeqNvib−M

)
+ V (qeqM ; qNvib−M (t))

]
, (6.2.6)

which is exact in the limit of a separable potential.

VS (q̃ (t)) ≡ V
(
q̃ (t) ; qeqNvib−M (t)

)
+ λ (t) . (6.2.7)

Subspace are selected in order to collect together the mostly interacting degrees of free-

dom, and leaving out from each subspace the remaining ones. Interacting modes can be

found by looking at the off-diagonal terms of a time-averaged hessian matrix H̃ along

a test trajectory. In our simulations we use as test trajectory, the central one, i.e. start-

ing from (qeq,peq). The basic idea behind it is that, if two degrees of freedom are not

coupled, then the corresponding hessian off-diagonal term should be equal to zero. On

the opposite, high values (in modulos) of the off-diagonal term suggests a strong inter-

action between modes. We then set an arbitrary threshold paramenter ε, and we look for

combinations of modes that have Hij ≥ ε. The threshold is chosen to have subspaces

dimensions as high as possible, but compatible with semiclassical calculations. A more

detailed description of the procedure is reported in Section (7.1).

6.3 Proofs of concept

6.3.1 a) Three uncoupled Morse oscillators

As a first step, we test DC SCIVR against a model potential made by three uncoupled

Morse oscillators. We remind that in this case, the method should be exact and it has to

provide the same full-dimensional SCIVR values, that we use to benchmark the method.

The potential is

V (q1, q2, q3) = D
3∑
i=1

[
1− e−αi(qi−q

eq
i )
]2

(6.3.1)
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Figure 6.3.1: DC-SCIVR spectra for the Morse oscillators of Eq. (6.3.1). (a) black line
for the full dimensional TA-SCIVR spectrum; (b) red line for the DC-SCIVR spectrum of
mode 1; (c) green line, the same of (b) for mode 2; (d) blue line, the same of (b) for mode
3; (e) cyan line, DC-SCIVR for the subspace composed by mode 2 and 3; (f) magenta
line, the same as (e) but for modes 1 e 3; (g) yellow line, the same as (e) but for modes 1
and 2. Vertical dashed turquoise lines indicates the exact values.

where the dissociation energy D = 0.2 a.u. is the same for the three oscillators, and

αi = ωi
√
µ/2D. The reduced mass is that one of the H2 molecule, i.e. µ = 918.975 a.u.,

and the frequencies are 3832, 1770, and 861 wavenumbers. We sample the phase space

(p̃ (t) , q̃ (t)) trajectories according to the Husimi distribution using a Box-Muller sam-

pling centered at q̃eq = (0, 0, 0) and p̃eq =
(√

ω1, ....,
√
ωM
)
, where p̃eq has been taken

at the ZPE value. The reference state |χ〉 =
∏M

i

∣∣√ωi, qeqi 〉 is defined for each M-

dimensional subspace. We perform 10000 trajectories per each subspace and each tra-

jectory is 50000 a.u. time long. The results are reported in Fig.(6.3.1) where all possible
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space subdivisions for the three dimensional space are considered. More specifically, the

bottom spectrum is the full dimensional TA-SCIVR calculation, i.e. without any space

subdivision. The other spectra are reporting the partial power spectra Ĩ (E) of the sub-

space subdivision. The one-dimensional for mode 1 is the red line, the same for mode 2

in green and for mode 3 in blue. The cyan line spectrum is for a subspace composed of

modes 3 and 2, the magenta one for modes 1 and 3, and the orange one for modes 1 and 2.

In all cases the agreement with the full dimensional one is very strict. The ZPE obtained

by composition of the partial spectra Ĩ (E) is 3212 cm−1, which is the same as the full

dimensional TA-SCIVR ZPE value and to compared with the exact one 3205 cm−1. This

is a confirmation that the DC SCIVR method is exact, i.e. the same as TA-SCIVR, for

separable systems. Moreover, Fig.(6.3.1) shows that the power of the divide and conquer

approach can not only accelerate the Monte Carlo integration by virtue of the reduced

dimensionality of each subspace and get better resolved spectra, but also help to identify

each peak.

6.3.2 b) Two coupled Morse oscillators

We now move toward a non-separable potential. The potential is made by two strongly

coupled Morse oscillators. The high level of coupling between the degrees of freedom

can be evinced from the high rejection ratio of the classical trajectories reported below,

and from the deviation of the exact energy levels from the uncoupled ones. The Morse

oscillators have harmonic frequencies equal to 3000 and 1700 wavenumbers, and the same

dissociation energy equal to D = 0.2. The potential is expressed as

V (q1, q2, q3) = D
2∑
i=1

[
1− e−αi(qi−q

eq
i )
]2

+ c (q1 − qeq1 )2 (q2 − qeq2 )2 , (6.3.2)

and c is the coupling constant set equal to c = 10−7µ2 in our calculations. The equilibrium

coordinates are set equal to qeq1 = qeq2 = 0. For the full-dimensional SCIVR simulation



CHAPTER 6. DIVIDE-AND-CONQUER SEMICLASSICAL DYNAMICS 63

0 1000 2000 3000 4000 5000 6000

Energy [cm
-1

]

I(
E

)

(a)

(b)

(c)

2
1

1
1

2
2

1
1
2

1

2
3

1
2

2
1

1
1

2
2

1
2

2
3

1
1
2

1

Figure 6.3.2: DC-SCIVR spectra for the Morse oscillators of Eq. (6.3.2). Dashed lines
are for the MC-SCIVR simulations (single trajectories) and continuous ones for 10000-
trajectory simulations. (a) black line for the full-dimensional TA-SCIVR spectrum; (b)
red line for the DC-SCIVR spectrum of mode 1; (c) green line, the same of (b) for mode
2. Vertical dashed blue lines indicate the exact values calculated by a Discrete Variable
Representation (DVR) approach.[13]

we sample 10000 classical trajectories while for DCSCIVR spectra 10000 trajectories are

sampled for each subspace. Furthermore, we also perform single-trajectory simulations

by tailoring the reference state according with Eq. (4.3.2). In the case of SCIVR sim-

ulation the high rejection ratio 39% bear the high deviation from a separable problem.

Figure (6.3.2) reports the computed spectra, and we can observe that the two fundamental

excitations are very well detected as well as the first overtones, while the first significant

deviations from SCIVR energy levels appear for the high energetic overtones above 5000

wavenumbers.
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Table 6.1: Vibrational energy levels of water. The first and second columns show the
vibrational state label and the exact results respectively; the third column reports the full-
dimensional TA-SCIVR eigenvalues. Column four shows the DC-SCIVR results with
the Hessian matrix criterion (DC SCIVRHess). The last column reports the harmonic esti-
mates. All values are in cm−1. MAE stands for Mean Absolute Error and it is calculated
with respect to the exact values,[96] and for DC-SCIVR simulations also with respect to
the full-dimensional TA-SCIVR values.

Mode Exact[96] TA SCIVR DC SCIVRHess HO
11 1595 1580 1581 1649
12 3152 3136 3154 3298
21 3657 3664 3656 3833
31 3756 3760 3824 3944

MAE Exact 11 21 141
MAE SCIVR 23

6.3.3 c) H2O

We now do a step forward with respect to the previous subsections, by moving our at-

tention onto a realistic system as the water molecule. To do that we employ a Potential

Energy Surface (PES) for which exact energy levels are available; we use the Purtridge

and Schwenke PES,[90] recently used as one-body term is the new generation of water

Potential Energy Surfaces of Bowman’s group.[91, 60, 92, 93, 94, 95] We also perform

full-dimensional SCIVR calculation as a further benchmark for our DCSCIVR method.

We run 4000 trajectories per subspace in the case of DC SCIVR simulations, while 12000

in the case of full-dimensional SCIVR. The analysis of the off-diagonal terms of the

time-averaged Hessian matrix suggests that the symmetric bending and stretching modes

have to be separated from mode 3, the asymmetric stretching. Table (6.1) reports our DC

SCIVR estimates, compared with SCIVR results and exact energy levels. First of all, the

method accounts also for the high anharmonicity of the system, as can be evinced by the

low average deviation from exact levels equal to 20 cm-1 to be compared with 140 cm-1 for

the normal mode analysis. Moreover, despite the high level of inter-mode coupling, DC

SCIVR estimates are very well in agreement both with SCIVR and exact levels. These

results, even if combined with the previous ones on Morse oscillators, provides a remark-
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able milestone for the reliability of our method, since excitations were found to be very

accurate even if the degrees of freedom are highly coupled. Below in the text we test the

method against an extremely chaotic potential, and then we will increase the dimension-

ality proving the final goal of the method: the applicability of semiclassical spectroscopy

calculations for high-dimensional systems.

6.3.4 d) CH4

Methane molecule represents a quite challenging system for testing our new method. It is

made by nine vibrational degrees of freedom whose dynamics undergo a very high caothic

behavior due to the presence of many interacting light atoms such as hydrogens. For

full-dimensional SCIVR simulations we have to run 180000 classical trajectories because

95% of them are rejected using the criterion 1−det
∣∣MT (t) M (t)

∣∣ > 10−5. In the case of

DC SCIVR simulations we run 20000 classical trajectories for each degree of freedom in

order to have the same total number as for SCIVR. We use the Potential Energy Surface

of Carter et al, for which exact eigenvalues are available.[58] According with the Hessian

partitioning method the nine vibrational modes are grouped into a six-dimensional and a

three-dimensional subspaces.

Figure (6.3.3) reports our computed spectra, while Table (6.2) contains our DC SCIVR

estimates compared with full-dimensional SCIVR and exact levels. By looking at Figure

(6.3.3) we can deduce that the method recovers both fundamental and overtones exci-

tations accurately, and the partitioning also helps into the interpretation and the assign-

ment of peaks very close in energy. It can happen that some excitations appear in both

spectra because of the symmetry, since some degenerate modes are collected in the six-

dimensional subspaces and the remaining in the three-dimensional one. By looking at

Table (6.2) instead we can observe that DC SCIVR estimates are very accurate as well as

full-dimensional SCIVR ones when compared with exact eigenvalues. The mean absolute

deviation is very tiny (11 cm-1). This example once again suggests that the divide-and-
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Figure 6.3.3: DC-SCIVR spectra for the methane. Starting from the bottm (a) black line
for the spectrum of a six-dimensional subspace; (b) red line for the of a three-dimensional
one; Vertical dashed blue lines indicate the full-dimensional SCIVR values calculated
using Eq. (4.2.1).

Table 6.2: Vibrational frequencies of CH4. “QM” labels the exact quantum eigenval-
ues; “SCIVR” refers to a full dimensional semiclassical calculation; “DC-SCIVR” labels
frequencies obtained with the “divide-and-conquer” approach here presented; “HO” are
harmonic estimates. All values are in cm−1.

State QM[58] SCIVR DC-SCIVR HO
11 1313 1300 1300 1345
21 1535 1529 1532 1570
12 2624 2594 2606 2690

1121 2836 2825 2834 2915
31 2949 2948 2964 3036
22 3067 3048 3050 3140
41 3053 3048 3044 3157

MAE 12 11 68
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conquer method can accurately detect energy levels with good accuracy.

After these three proofs-of-principle we now test the method against molecular sys-

tems for which full-dimensional SCIVR can not be afforded. In the first example we

calculate the vibrational excitations of Benzene, comparing them with exact calculations

of Halverson and Poirier,[14] and then we move on a C60 model potential for which exact

results are not available.

6.4 Application to Benzene

After testing the method against different model potentials and real molecular systems

for which full-dimensional SCIVR calculations are doable, we now attempt to calculate

the vibrational eigenvalues of benzene, for which full-dimensional calculations are out of

reach.

Benzene is made by twelves atoms, and consequently by 30 vibrational degrees of free-

dom. At the best of our knowledge it is also the highest dimensional molecular system for

which exact vibrational levels are available. They were recently computed by Halverson

and Poirier[14] employing the Potential Energy Surface of Handy.[97] In this work we

use the same PES for comparison. The chaotic behaviour of the classical trajectories and

the consequent rejection events are tamed by using the second order iterative approxima-

tion to the pre-exponential factor reported in Eq. (5.3.16). In this way, 1000 classical

trajectories per degree of freedom are propagated for 30000 atomic units, which repre-

sents a typical dynamics lenght for semiclassical calculations. Thus, the total number of

propagated trajectories is equal to 30000. (qeq,peq) of the reference state

∣∣∣∣∣χ
〉

are cho-

sen as usual. qeq are the equilibrium coordinates, while peq are obtained by distributing

energy according to the harmonic frequencies, and in order to have a total energy equal

to 95% of the harmonic ZPE. The test trajectory for the Hessian method is propagated

starting from (qeq,peq). The vibrational space is separated into one eigth-dimensional,
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Table 6.3: Vibrational fundamental excitations of benzene. Columns “DC-SCIVR” indi-
cates our estimates, while columns “EQD” reports available quantum results. Degenerate
frequencies are not replicated. Values are in cm−1.

State DC-SCIVR EQD[14] State DC-SCIVR EQD[14]

11 388 399.455 101 1024 1040.980
21 610 611.428 111 1157 1147.751
31 732 666.929 121 1157 1180.374
41 706 710.732 131 1295 1315.612
51 908 868.911 141 1357 1352.563
61 990 964.013 151 1460 1496.231
71 996 985.829 161 1606 1614.455
81 996 997.624 MAE 19
91 1018 1015.64

8 bi-dimensional, and 6 mono-dimensional subspaces. The computed energy levels are

compared with exact ones in Table (6.3). Remarkably, the overall accuracy of DC SCIVR

estimates is within the typical semiclassical range with only one mode slightly off-the

mark, and the MAE is for this system equal to 19 wavenumbers.

6.5 Application to Fullerene model

After benchmarking the method, we now move our attention on an high dimensional sys-

tem to show that DC SCIVR can provide clear spectral signals, even when the dimension-

ality becomes very large and exact calculations are not doable. For this purpose we cal-

culate vibrational excitations of a Fullerene-like system. It presents 60 atoms and conse-

quently 174 vibrational degrees of freedom. Nuclei are moved under a pre-existing force

field obtained at a DFT level of theory and originally used for graphene. This potential

accounts for stretching, bending, and torsional contributions, but neglects bond-coupling

terms and van der Waals interactions.[98] Actually, it is not designed for quantitately de-

scribing fullerenes. However, in this section our goal is to show that in the presence of

an available Potential Energy Surface or some ab-initio potential, clear spectral signals

can be exctracted, overcoming in this way the curse of dimensionality. Moreover, the
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Figure 6.5.1: Trend of Maximum subspace dimensionality (Mmax) against the threshold
ε for the C60 calculation. The red curve fits the overall behavior, while the dashed blue
lines sorround desirable (Mmax) values.

benchmark calculations reported above suggest that in the presence of a suitable poten-

tial, outcoming DC-SCIVR vibrational frequencies are quite accurate, sometimes as well

as standard SCIVR calculations, and in general only few wavenumbers worse.

To start-off, the 174-dimensional vibrational degrees of freedom are separated in sub-

spaces according with the Hessian criterion. Figure (6.5.1) shows how the maximum

subspace dimension (Mmax) depends from the threshold parameter. In particular, a value

of ε equal to 10−6 leads to (Mmax)=25, a good trade-off between accuracy and feasi-

bility. The vibrational modes are grouped into a 25-dimensional, two 14-dimensional,

two 8-dimensional, a 6-dimensional, three tri-dimensional, one bi-dimensional, and 90

mono-dimensional subspaces. Because of the high number of dimensions (174), we em-

ploy the multiple coherent state approach by running 175 classical trajectories propagated

for 50000 atomic units, and tailoring the reference state of the semiclassical propaga-

tor according with Eq. (4.3.2). Figures (6.5.2) and (6.5.3) show the partial spectra of a

tri-dimensional and a bi-dimensional subspaces, while Table (6.4) reports the computed
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Figure 6.5.2: Partial spectrum of a tri-dimensional subspace of C60. Black line is for
DC-SCIVR, while red line is the classical spectrum obtained as Fourier transform of the
velocity-velocity correlation function. Harmonic frequencies are reported in dashed blue
lines. The label of the excitations is the same of Table (6.4).

energy levels up to 1600 wavenumbers. The first conclusion we can draw is that C60

can be with good approximation assumed as a classical object. However, many spectral

Table 6.4: Vibrational frequencies of the C60 model up to 1600 cm-1. “HO” column
indicates harmonic values; “Cl” labels the classical estimates of fundamental frequencies;
“DC-SCIVR” introduces our semiclassical results. Values are in cm-1.

State HO Cl DC-SCIVR St. HO Cl DC-SCIVR St. HO Cl DC-SCIVR St. HO Cl DC-SCIVR

11 255 254 254 22 636 706 201 905 880 880 112 1202 1150

21 318 355 352 121 648 630 626 211 962 971 971 271 1225 1218 1218

31 359 347 346 131 657 652 651 62 968 966 281 1252 1231 1231

41 404 432 432 32 718 693 72 976 1093 122 1296 1254

51 404 404 403 141 770 767 767 82 988 957 291 1310 1269 1264

61 484 483 483 151 775 766 766 221 1000 997 998 132 1314 1303

71 488 547 547 161 781 777 777 231 1014 1015 1015 311 1457 1438 1434

81 494 478 478 42 808 863 241 1042 1039 1037 321 1470 1398 1391

12 510 506 52 808 807 251 1052 1075 1075 331 1526 1467 1506

91 546 545 546 171 816 779 774 261 1091 1062 1060 142 1540 1534

101 568 611 610 181 863 872 872 92 1092 1091 152 1550 1533

111 601 571 572 191 890 911 911 102 1136 1220 162 1562 1554
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Figure 6.5.3: Partial spectrum of a bi-dimensional subspace of C60. Black line is for
DC-SCIVR, while red line is the classical spectrum obtained as Fourier transform of the
velocity-velocity correlation function. Harmonic frequencies are reported in dashed blue
lines. The label of the excitations is the same of Table (6.4).

features as overtones, are neglected by a classical simulations, and a complete description

of the molecule is possible only by means of a quantum mechanical approach. Despite

the high symmetry of the system, we want to point out that DC SCIVR does not take

advantage of symmetry constraints, since it is based on propagation of full dimensional

classical trajectories. As a further proof about it, we isotopically substitute 3 carbon atoms

imposing to have the mass of gold; we call this isotopic model C∗60. In this way all the

symmetry is removed and consequently the degeneracies of the vibrational excitations.

Figure (6.5.4) shows the partial spectra of subspaces containing five modes that should

be degenerate in C60, while in C∗60 they should show a splitting. According with the har-

monic estimates (vertical dashed lines) the DC SCIVR spectrum shows a double peak in

the tailored model, while a single peak is observed in the case of C60.
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Figure 6.5.4: DC-SCIVR partial spectra of C60 (black line) and of C∗60 (dark green line).
Harmonic frequencies are reported in dashed lines.



Chapter 7

How to select the subspaces?

As clearly appears by looking at how the potential, the coherent states, and the pre-

exponential factor are projected, a critical issue of the divide-and-conquer method is rep-

resented by the choice of the subspaces. The original method, as already introduced, was

based on the analysis of the off-diagonal terms of the Hessian matrix. Here we show two

other alternative methods, based on the analysis of the monodromy matrix blocks. The

common idea behind all of the proposed partitioning methods is to perform a test trajec-

tory, starting from the equilibrium configuration and having initial kinetic energy usually

equal to the harmonic ZPE, distributed according to the harmonic frequencies.

7.1 Hessian matrix method

The idea behind it is to enroll in the same subspace the most interacting degrees of free-

dom, where the indicator is supposed to be the magnitude off the off-diagonal terms of

the time averaged hessian matrix along a test trajectory. This assumption is correct in

principle in the case of a separable potential, where the off-diagonal terms go to zero.

In particular, if the H̃ij element of the the time-averaged Hessian matrix H̃ is greater

than a threshold value ε, then modes i,j are enrolled in the same subspace. Nevertheless if

H̃ij ≤ ε, the two modes could be grouped together if there exists a third mode k, for which

H̃ik ≤ ε and H̃kj ≤ ε. Clearly, by setting ε = 0, the full-dimensional picture is recov-

ered, while the greater is ε the greater is the fragmentation, till reaching a picture where

73
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Figure 7.1.1: Hessian matrix elements of a 30-dimensional system at different values of
the threshold ε. Diagonal elements are out of scale and reported as white pixels. Panel (a)
shows as pixels only the coupling elements that are greater than ε = 0 a.u. Panels (b), (c)
and (d) are similar respectively for ε = 4.5 ·10−7a.u., ε = 9 ·10−7a.u. and ε = 6 ·10−6a.u.
In (b) and (c), the matrix elements have been conveniently arranged after permutations
(P̂) into sub-blocks. Each sub-block determines a subspace.

the space is fully fragmentated into all mono-dimensional subspaces. This trend is de-

picted in Figure (7.1.1), where increasing the value of the threshold for a 30-dimensional

system, the amount of interaction accounted is reduced. This method is extremely conve-

nient since it requires only the knowledge of the hessian matrix along a test trajectory and

the computational cost to obtain the collection of subspaces is negligible compared with

the dynamics one. Unfortunately, the method is quite arbitrary and in general one could

look at other dynamics quantities.



CHAPTER 7. HOW TO SELECT THE SUBSPACES? 75

7.2 Wherle, Sulk, Vanicek method (WSV)

Recently, Wherle, Sulk, and Vanicek proposed a method based on the monodromy matrix,

still working on time-averaging the reference matrix and comparing the elements with

an arbitraty threshold value.[34] The monodromy matrix can be used as an indicator of

interactions since it accounts for the exchange in energy between the degrees of freedom.

The first step is the take the monodromy matrix

M (t) ≡

 ∂p (t) /∂p (0) ∂p (t) /∂q (0)

∂q (t) /∂p (0) ∂q (t) /∂q (0)

 =

 Mpp Mpq

Mqp Mqq

 (7.2.1)

and to calculate a time averaged matrix B, where each element is equal to

Bij =

∣∣∣∣βijβii
∣∣∣∣ , with βij =

1

T

ˆ T

0

dt (|Mqiqj(t)|+ |Mqipj(t)|+ |Mpiqj(t)|+ |Mpipj(t)|).

(7.2.2)

Then a treshold values εb is compared with max{Bij, Bji} , and similarly to what hap-

pens in the hessian method, if max{Bij, Bji} ≥ εB, then modes i,j are collected in the

same subspace. Furthermore, in our implementation we set the threshold and we find the

corresponding highest dimensional subspace, then on the remaning Nvib-Mmax degrees

of freedom we repeat the procedure with an higher value of ε. The procedure is iterated

till reaching a complete space separation.

7.3 Jacobi method

Now we propose a method, still based on the monodromy matrix, that looks at the con-

servation of Liouville theorem. As already shown above in Section (3.2), the monodromy

matrix is the Jacobian of the transformation (pt,qt) ← (p0,q0) and by virtue of Liou-

ville’s theorem, its determinant has to be equal to one along the classical dynamics of an

isolated system. The idea behind our method is to define a subspace as a collection of
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degrees of freedom as close as possible to be an isolated system, or better, that does not

exchange energy with the remaining vibrational modes. The sentence can be easily trans-

lated in formulas by looking at the determinant of a reduced dimensional Jacobian matrix

J̃. In particular, after setting a target subspace dimensionality M , we can look at the

combination of degrees of freedom that minimizes the deviation
[
1− det

(
J̃
)]

at every

time t. In general, the best combination can change with time, and the search should be

performed for the whole dynamics lenght. By overall, a set of combinations is obtained,

each one resembling the best subspace for a certain dynamics frame. The overall best

combination is assumed to be the most probable and on it, we can calculate the average

deviation from unity. The procedure can be generalized to different values of M (in prin-

ciple all possible ones), consequently obtaining for each value of M a M -dimensional

combination of degrees of freedom and the averaged deviation
[
1− det

(
J̃
)]

. The value

ofM that minimizes the deviation is taken as the best subspace. Then, all the procedure is

repeated by looking at the remaning degrees of freedom. As a result, theNvib-dimensional

space is separated into disjoint subspaces. This method is in principle more solid than the

hessian one; nevertheless, the seek for the best subspace requires to look all the possible

permutations of degrees of freedom, and in the case of high values of M , it can become

very computationally demanding.

7.4 Applications to variously sized molecular systems

We now perform DC-SCIVR calculations on variously sized molecular systems to test the

different partitioning criteria. The vibrational estimates are compared with full-dimensional

SCIVR results and exact levels. The systems under investigation span from three-dimensions

up to thirdy, with different levels of intermode coupling and chaotic regimes. We believe

that all the try-outs provide a broad scenario to test the performance of the partiotioning

methods.
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7.4.1 a) H2O

We start from water molecule, the lowest molecular system under investigation. Differ-

ently from Section (6.3.3) we employ in this case the Partridge and Schwenke potential,[96]

that was recently used as the one-body term for the description of accurate water clusters

Potential Energy Surfaces.[92, 60, 94, 93, 91, 99, 100, 101] For SCIVR we run 12000

classical trajectories sampled using the Husimi distribution, while for DC SCIVR cal-

culations we sample 4000 trajectories for each degree of freedom, in order to have the

same total number as for SCIVR. The reference state is chosen as

∣∣∣∣∣χ
〉

=

∣∣∣∣∣peqqeq
〉

.

Each classical trajectory is propagated for 30000 atomic units. Starting from the Hessian

method, the three-dimensional subspace is separated in a mono-dimensional and a bi-

dimensional subspaces, where the asymmetric stretching occupies the mono-dimensional

one. Both monodromy matrix based methods provide instead a different picture, where

the symmetric and asymmetric stretchings are collected in the same subspace and the

bending vibration stays alone. Thus, DC SCIVR results arising from WSV, and Jacobi

methods will be the same. Table (7.1) reports the computed energy levels compared with

SCIVR and exact ones. First of all, we observe that the high anharmonic behaviour of

the molecule is properly accounted by both SCIVR and DC SCIVR approaches, as can

be evinced by comparing their average deviations (MAE) from the exact results and the

same for harmonic estimates. In the first case, MAEs of DC SCIVR are within the typical

semiclassical accuracy, while for normal mode analysis the deviation is very high, equal

to 140 wavenumbers. All the partitioning criteria performs very well providing almost the

same level of accuracy, either when compared with exact values and with full-dimensional

SCIVR estimates. Finally, Figure (7.4.1) reports Jacobi DC SCIVR spectra in panels (a)

and (b) while vertical dashed lines are centered at SCIVR levels.
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Table 7.1: Vibrational frequencies of water. The first column indicate the label of the
excitation, while the second one contains exact levels. The third column reports the full-
dimensional TA-SCIVR eigenvalues. Column four shows the DC-SCIVR results with the
Jacobi subspace criterion (DC SCIVRJacobi); column five with same based on the WSV
method (DC SCIVRWSV); in column six results obtained by employing the Hessian matrix
criterion (DC SCIVRHess) are listed. The last column reports the harmonic estimates. All
values are in cm-1. Mean Absolute Error i.e. calculated with respect to exact values[96]
and reported in row “MAE exact”, while the average deviation from TA-SCVIR results is
reported in row “MAE SCIVR”.

Mode Exact[96] TA SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess HO

11 1595 1580 1584 1584 1581 1649

12 3152 3136 3164 3164 3154 3298

21 3657 3664 3668 3668 3656 3833

31 3756 3760 3802 3802 3824 3944

MAE Exact 11 20 20 21 141

MAE SCIVR 20 20 23
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Figure 7.4.1: Jacobi DC-SCIVR spectra of water. Panel (a) show the partial spectrum
arising from the bi-dimensional subspace, while panel (b) from the mono-dimensional
one. Vertical blue dashed line indicat TA-SCIVR computed levels.
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7.4.2 b) CH2O

We now move toward CH2O having six vibrational degrees of freedom. Molecular dy-

namics simulations are performed on the accurate Potential Energy Surface of Martin et

al[86] for 30000 au, the same as water. We run 24000 classical trajectories in the case

of SCIVR simulations while 4000 for each degree of freedom in the case of DC SCIVR.

The partitioning criteria once again offer different subspaces; the Hessian method pro-

vides a mono-dimensional, a bi-dimensional, and a tri-dimensional subspaces employing

a threshold value equal to ε = 3.0 · 10−7. By employing the Jacobi method two subspaces

are obtained. The highest dimensional is a four-dimensional and the latter contains the

remaining two degrees of freedom. The four-dimensional subspace was chosen accord-

ing to average deviation of
[
1− det

(
J̃
)]

, as can be evinced by looking at the black line

of Figure (7.4.3). The value M=4 minimizes the deviation when compared with other

values of subspace dimensionality. The WSV method returns back the same partitioning

employing a threshold εb = 120. Table (7.2) reports the computed DC SCIVR energy

levels with the different partitioning methods compared with both exact and SCIVR val-

ues. When either WSV or Jacobi methods are employed, results are very accurate and

the MAE with respect to exact levels is 12 wavenumbers, while when the Hessian matrix

is used to evaluate the interactions the MAE stays at 25 cm-1. This trend in accuracy is

followed also by the deviation from full-dimensional SCIVR results, where the MAE is

very low (6 cm-1) for both WSV and Jacobi, while when the hessian method is used the

deviation increases to 19 wavenumbers. Finally, Figure (7.4.2) shows the computed DC

SCIVRJacobi partial spectra of the two subspaces.

7.4.3 b) CH4

We now do a step further by studying vibrational features of methane. This molecule have

nine vibrational degrees of freedom, strongly coupled with each other, and undergoing a
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Table 7.2: Vibrational excitations CH2O. The first column reports the label of the excita-
tions, while the second and third one contain exact and full-dimensional SCIVR values.
Columns four, five, and six of four DC SCIVR results employing the Hessian method,
WSV method and Jacobi method respectively. The last column reports harmonic esti-
mates. Mean Absolute Error i.e. calculated with respect to exact values[58] and reported
in row “MAE exact”, while the average deviation from TA-SCVIR results is reported in
row “MAE SCIVR”. Values are reported in cm−1.

Mode Exact[87] SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRhess HO

11 1171 1162 1154 1154 1192 1192

21 1253 1245 1246 1246 1244 1275

31 1509 1509 1508 1508 1508 1544

41 1750 1747 1746 1746 1755 1780

12 2333 2310 2288 2288 2286 2384

22 2502 2497 2490 2490 2423 2550

51 2783 2810 2816 2816 2836 2930

61 2842 2850 2845 2845 2864 2996

32 3016 3018 3016 3016 3024 3088

42 3480 3476 3478 3478 3486 3560

MAE Exact 9 12 12 25 66

MAE SCIVR 6 6 19
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Figure 7.4.2: DC-SCIVR vibrational spectra of CH2O. Starting from the bottom,
panel (a) reports the spectrum of the four-dimensional subspace, while panel (b) the bi-
dimensional one. Vertical blue dashed lines indicate the full-dimensional SCIVR values.
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Figure 7.4.3: Average deviation of
∣∣∣1− det

(
J̃M (t)

)∣∣∣ for the best grouping for different
subspace dimensionalities M. Black filled circles for CH2O , red filled squares for CH4,
and green filled triangles for CH2D2.

strong chaotic behaviour. For full-dimensional SCIVR we run 180000 classical trajecto-

ries on the Potential Energy Surface of Carter et al.[88] The high number of trajectories

is necessary because of 95% of rejection ratio. In the case of DC SCIVR calculations

20000 classical trajectories are classically evolved for each degree of freedom, in order

to have the same number as for SCIVR. When employing the hessian method, the nine-

dimensional space is divided into two subspaces, one six-dimensional and the remaining

three-dimensional. When the space is partitioned using the WSV method, a threshold

εb = 85 leads to a six-dimensional and a three-dimensional subspaces, but different from

the outcomes of the hessian method. Finally, when we apply the Jacobi method, the

better maximum dimension is six, as can be evinced by looking at Figure (7.4.3). The

remaining three degrees of freedom are instead grouped into a bi-dimensional and mono-

dimensional subspaces. Table (7.3) shows DC SCIVR energy levels computed by means

of the different partitioning, and compared with full-dimensional SCIVR and exact values.

All three partitioning methods offer accurate results, and the hessian method seems to be

the most accurate one. However, we observe that the most of the deviation for Jacobi and

WSV arises from an overtone estimate (12) quite off-the mark. If only fundamental exci-
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Table 7.3: The same as in Table(7.2) but for the vibrational energy levels of CH4.
Mode Exact[58] SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRHess[71] HO

11 1313 1300 1296 1308 1300 1345

21 1535 1529 1530 1530 1532 1570

12 2624 2594 2556 2588 2606 2690

1121 2836 2825 2830 2832 2834 2915

31 2949 2948 2960 2933 2964 3036

22 3067 3048 3060 3044 3050 3140

41 3053 3048 3056 3038 3044 3157

MAE Exact 12 17 15 11 68

MAE SCIVR 11 7 7
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Figure 7.4.4: DC-SCIVR vibrational partial spectra of CH4 reported with different colors.
Starting from the bottom, panel (a) reports the six-dimensional subspace partial spectrum,
panel (b) the bi-dimensional one, and panel (c) the mono-dimensional one. Vertical blue
dashed lines indicate the full-dimensional SCIVR values.

tations are considered, then even deviations of Jacobi and WSV approach DC SCIVRhess

one. Finally, Figure (7.4.4) shows the DC SCIVRJacobi partial spectra, where starting from

the bottom we find the six-dimensional, bi-dimensional, and mono-dimensional power

spectra.
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7.4.4 c) CH2D2

After methane we look for one of its isotopologue, CH2D2. The chaotic regime of the

classical trajectories seems to be not tamed too much, despite the presence of two heav-

ier atoms. Consequently the rejection ratio remains almost unchanged. Thus, on the

same Potential Energy Surface,[88] 180000 trajectories are evolved for SCIVR calcula-

tions and 20000 per degree of freedom in the case of DC SCIVR simulations. When

the hessian method is employed with a threshold value equal to ε = 2 · 10−7, the nine-

dimensional space is separated into a six-dimensional and a three-dimensional subspaces.

When instead, we take advantage of the Jacobi method, the first outcoming subspace is a

four-dimensional one, as depicted in Figure (7.4.3), while the remaining five degrees of

freedom are collected into a bi-dimensional and a three-dimensional subspaces. Finally,

with a threshold εB = 180, the WSV method, provides a four-dimensional, a three-

dimensional, and a bi-dimensional subspaces, with a different partition of the degrees

of freedom when compared with the Jacobi method. Table (table 7.4) reports the com-

puted energy levels according with the different space-partitions, together with SCIVR

estimates, and exact results. Once again, Jacobi DC SCIVR results are the most accurate

and are comparable with full-dimensional vibrational estimates. Moreover, the hessian

method seems to be as accurate as WSV one, but the latter is closer to full-dimensional

SCIVR benchmark values. By overall, all partitioning methods provide estimates within

the typical range of accuracy of semiclassical methods, and in general all results are much

better than simple Normal Modes Analysis. Finally, Figure (figure 7.4.5) shows the DC

SCIVR spectra in the case of Jacobi subspaces.

7.5 Application to Benzene

Last, we test the partitioning methods against a molecule for which the curse of di-

mensionality makes unfeasible full dimensional calculations, i.e. Benzene. It is made
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Table 7.4: The same as in Table(7.2) but for the vibrational energy levels of CH2D2.
Mode Exact[58] SCIVR DC SCIVRJacobi DC SCIVRWSV DC SCIVRhess HO

11 1034 1026 1028 1020 1038 1053

21 1093 1084 1072 1098 1086 1116

31 1238 1230 1234 1212 1230 1266

41 1332 1329 1320 1326 1316 1360

51 1436 1430 1430 1420 1434 1471

1121 2128 2110 2089 2080 2114 2169

61 2211 2199 2195 2192 2137 2236

1131 2242 2236 2250 2231 2210 2319

71 2294 2268 2274 2250 2274 2336

1141 2368 2356 / / 2400 2413

1151 2474 2456 2485 2436 2484 2524

2151 2519 2504 2516 2494 2510 2587

3151 2674 2660 2661 2672 2627 2737

4151 2769 2756 2754 2734 / 2831

81 3008 3050 3000 3012 3026 3103

MAE Exact 14 13 21 21 47

MAE SCIVR 12 15 19
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Figure 7.4.5: DC-SCIVR vibrational spectra of the CH2D2 molecule. Starting from the
bottom; panel (a) is for the 4-dimensional subspace, panel (b) for the three-dimensional,
and panel (c) for the remaining bi-dimensional subspace. Vertical blue dashed lines are
the full-dimensional SCIVR values.
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by twelve atoms and consequently 30 vibrational degrees of freedom. Because of the

high-dimensionality, we run 1000 classical trajectories per degree of freedom, employ-

ing a second-order iterative approximation of the pre-exponential factor to avoid rejection

events. The Potential Energy Surface is the one by Handy[97] for which Halverson and

Poirier recently computed exact vibrational eigenvalues.[14] The test trajectory for the

partitioning methods is sampled at equilibrium configuration and a 95% fraction of har-

monic ZPE is given to account for anharmonicity. To remove noisy spurious effects in

the spectra we adopt in the Fourier transform a Gaussian filter of the type e−αt2 with

α = 3 · 10−8 a.u.. As already reported above, the hessian method provides a eight-

dimensional, eight bi-dimensional, and six mono-dimensional subspaces. When WSV

method is employed with a threshold value εB = 5.6 · 103, the full-dimensional space is

divided into a ten-dimensional, two seven-dimensional, and a six-dimensional subspaces.

Finally, when employing the Jacobi method we restrict the seek for the best subspace in

the range of subspace dimensionality 6≤M≤10. It represents a good trade-off between

accuracy and computation demand, since the dimensionality range is centered close to

maximum subspace dimensionality obtained with the original hessian method, and the

maximum value (M=10) is instead equal to WSV maximum dimensionality. Higher val-

ues of M would require a too high computational demand which would hardly signifi-

cantly improve results. Within this restrictions, from the full-dimensional space is first

separated a seven-dimensional subspace, as reported in Figure (figure 7.5.1). Then, a

ten-dimensional subspace and six-dimensional one. Eventually, the remaining degrees of

freedom are grouped together into a seven-dimensional subspace. Table (table 7.5) re-

ports the computed DC SCIVR energy levels with the different partitioning methods. The

column associated to the Hessian method is missing since results are already present in

Table (table 6.3). Jacobi estimates are very accurate with an average deviation of only

9 wavenumbers from exact levels. Conversely, the hessian method is the least accurate

with an average deviation of 19 cm-1(values are reported in Section section §6.4); WSV
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Figure 7.5.1: Values of
∣∣∣1− det

(
J̃M (t)

)∣∣∣ for different choices of the subspace dimen-
sionality M for the C6H6 molecule in the range 6≤M≤10.

Table 7.5: DC-SCIVR vibrational frequencies of benzene. Columns “EQD” report avail-
able quantum results. Columns “DC SCIVRWSV” are for frequencies obtained employing
the WSV method, while Columns “DC SCIVRWSV” indicate results arising from the Ja-
cobi method. Energies are reported in cm-1.

State HO DC SCIVRWSV DC SCIVRJacobi EQD State HO DC SCIVRWSV DC SCIVRJacobi EQD

11 407 432 399 399.4554 111 1167 1150 1144 1147.751

21 613 610 606 611.4227 121 1192 1189 1175 1180.374

31 686 610 696 666.9294 22 1226 1223 1228 1221.27

41 718 742 719 710.7318 131 1295 1330 1314 1315.612

51 866 865 869 868.9106 141 1390 1375 1352 1352.563

61 989 990 997 964.0127 42 1436 1410 1437 1418.58

71 1011 1038 1020 985.8294 151 1512 1464 1492 1496.231

81 1008 1002 990 997.6235 161 1639 1614 1602 1614.455

91 1024 1014 1014 1015.64 52 1732 / 1752 1737.51

101 1058 1042 1042 1040.98 MAE 15 9
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Figure 7.5.2: Vibrational spectra of C6H6 as a result of the Jacobi partitioning method.
Panel (a) reports fundamental excitations spectra of the six-dimensional subspace. Panels
(b) and (c) contain the spectra of the two seven-dimensional subspaces, while panel (d)
refers to the 10-dimensional subspace. The vertical lines are centered at the exact EQD
levels.[14]In black line is reported the Zero Point Energy signal for each subspace.

method lies in the middle, with a very good accuracy since the MAE is only 15 cm-1. Fi-

nally, Figure (figure 7.5.2) reports the spectra obtained according with the Jacobi method.

7.6 Application to Zundel cation

Our last application concerns Zundel cationH5O
+
2 , a molecule known to be extremely an-

harmonic and vibrationally strongly coupled. For this reasons it represents a very tough

challenge for any molecular dynamics based method. In particular, motions involving the

shared proton can be shifted from harmonic estimates even by hundreds of wavenumbers,
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making a simple normal mode analysis definitely insufficient. Moreover, the coupling of

water bendings with the proton transfer motion generates an high separation in energy be-

tween the gerade and ungerade frequencies. The main spectral feature of this molecule is

however the signal associated to the proton transfer; it is not only highly anharmonic but

it also shows a doublet in the range 900-1100 cm-1. In our investigation, we focus of these

main spectral features, i.e. proton transfer excitations, OH bendings plus OH stretch-

ings, which are intense and located at higher energies showing a typical double peak.

Molecular dynamics are performed on the accurate Potential Energy Surface of Huang et

al,[102] for which in the past years Vendrell et al provided very detailed MCTDH results

and vibrational estimates.[103, 104, 105, 106, 107, 108, 109] Classical trajectories usually

undergo a strong ro-vibrational coupling and the removal of rotational energy is required

to obtain clear vibrational signals. It unavoidably implies a loss in total energy, that nev-

erthelss does not affect too much spectral densities. This strong ro-vibrational coupling

leads also to an high instability of the monodromy matrix making not possible to employ

partitioning methods based on it. For this reason we rely on the hessian method. Fur-

thermore, because of this complex scenario, full-dimensional TA SCIVR calculations do

not provide an undisputed picture, and DC SCIVR estimates will be only compared with

available quantum estimates. Rejection events are also avoided by employing a second

order iterative approximation of the pre-exponential factor. The hessian based analysis of

the test trajectory suggests to enroll the four OH stretchings vibrations together in same

subspace, while the two water bendings and the shared proton motion should be enrolled

in mono-dimensional subspaces. The OO stretching vibration is instead collected in a

bi-dimensional subspace together with a wagging state, by taking insights from previous

Literature results. Eventually, we sample 2000 classical trajectories per degree of free-

dom, namely 8000 for the four-dimensional subspace, 4000 for the bi-dimensional sub-

space, and 2000 for each one of the mono-dimensional subspaces. Figure (7.6.1) shows

the spectrum associated to the four OH stretchings where peaks in panels (a) and (b) were
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Figure 7.6.1: Vibrational spectra of OH stretching vibrations of Zundel cation. Starting
from top, panel (b) is for the double degenerate (sa) excitations, while panel (a) is the
spectrum of the (sg) and (su) stretchings. The vertical lines are centered at MCTDH
estimates.[103]

obtained by tailoring the reference state according with the Multiple Coherent state ap-

proach. In particular panel (a) shows the peak associated to (sg) and (su) excitations,

while panel (b) the remaining two OH stretchings, the double degenerate (sa) states. The

labels follow the usual nomenclature found in the Literature.[103, 108] Figure (7.6.2)

instead reports low energetic excitations, as the two bendings (bg) and (bu), the proton

transfer signal (1z), the OO stretching labelled by (1R), and the wagging state (ω3) spec-

trum. We can observe that also evidences of the combined excitation (1R,ω3) are present

in the red spectrum, as well as (1z, 1R) in the blue one. Table (7.6) summarizes our

computed DC SCIVR levels, compared with available quantum results. The overall de-

viation (MAE) from MCTDH estimates is 46 cm-1, mainly due to the overtone(1z, 1R)

estimate that is quite off-the mark. If we exclude it, MAE decreases to 38 cm-1, that is

quite a good result considering the complexity of the molecule, and the usual accuracy of

semiclassical methods.
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Figure 7.6.2: Vibrational spectra of Zundel cation below 2000 wavenumbers. Starting
from the top, orange and magenta lines are spectra of mono-dimensional subspaces as-
sociated to the two water bending excitations (bu) and (bg). Blue line reports the proton
transfer signal (1z). Green and red lines reports the spectra of (1R) and (ω3) excita-
tions belonging to the same bi-dimensional subspace. The vertical lines are centered at
MCTDH estimates.[103]

Table 7.6: Vibrational energy levels of Zundel cation reported in cm−1. The first column
reports the label of the excitation according with Ref.[103] The second column contains
experimental values, the third one MCTDH results,[103] while the fourth one our DC-
SCIVR estimates. Column five reports VCI energy levels[110] and the column six har-
monic estimates of fundamental excitations. The last row reports the mean absolute error
of DC-SCIVR estimates with respect to MCTDH values.

Label Exp[111] MCTDH[103] DC SCIVR VCI[110] HO
(1R) 550 532 630

(1R,ω3) 928 918 920
(1z) 1047 1033 952 1070 861
(2R) 1069 1008

(1z, 1R) 1470 1411 1520 1600
bg 1606 1668 1604 1720
bu 1763 1756 1768 1781 1770
sg 3607 3650 3610 3744
su 3603 3614 3650 3625 3750
sa 3683 3689 3720 3698 3832

MAE 46
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7.7 Summary

The investigation of H2O, CH2O, CH4, CH2D2 by means of DC SCIVR approach com-

bined with different partitioning methods suggests that vibrational estimates are in general

accurate when compared with either exact and full-dimensional TA SCIVR values. The

overall accuracy is in general within the typical range provided by semiclassical methods.

Moreover, DC SCIVR can also access systems’ dimensionalities which are out of reach

for the standard TA SCIVR approach, as can be evinced by looking at Benzene appli-

cation. Finally, despite the extremely high complexity, even molecules as Zundel cation

are accessible with quite good accuracy. However, for this last case, the already cited

complex motion leads to an high ro-vibrational coupling that is mainly responsible of a

general broadening of the spectral features.

As a general outcome, the decomposition of the whole spectra density into partial ones

helps the recovery of clear signals and makes easier their undisputed assignment, that oth-

erwise would be very hard, especially in the presence of peaks very close in energy. This

issue is expected to be more helpful as the dimensionality increases, where the number of

peaks raises in the typical range of vibrational excitations. Moreover, the Jacobi method

seems to be the most accurate one, probably as a consequence of seek for subspaces close

to preserve Liouville theorem. The WSV method is in general more accurate that the

Hessian one as can be evinced by looking at Figure (7.7.1).

Further applications of the divide-and-conquer method are reported below and exploit

systems characterized by a very complex Potential Energy Surface as water clusters, and

other molecular systems relevant in biological and technological processes.
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Chapter 8

Vibrational investigation of water
clusters

We now apply the divide-and-conquer method to study water clusters of increasing di-

mensionality. A twofold reason trigger this choice; the first one involves the increasing

importance that they have been gained in recent years, and the second one is instead their

very high complexity. Our results are compared with experiments when possible, and

with MultiMode and Local Monomer calculations of Bowman and co-workers. Below

in the text an introduction about the state of art of water clusters is reported, then we

report the computational setup. In the remaining sections the method is first applied on

water dimer and trimer to show its reliability, and then the focus moves toward the water

hexamer, for which relevant conclusions can be drawn about the importance of dynami-

cal effects. Finally, the water decamer is investigated by employing an extension of the

Multiple Coherent State approach, because of the high computational overhead required

to run thousand and thousand classical trajectories.

8.1 Introduction

The water molecule has always catalyzed the attention of the scientific community due to

the fundamental role that it plays into processes responsible of the life on our planet.[112,

113, 114, 115, 116, 117, 118] The effects of the peculiar interaction mechanism between

93
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water molecules, mainly due to hydrogen bonds which govern most of its physical and

chemical processes were deeply studied by both experiment and theory.[119, 120]Such

interactions are also the main responsible of the formation of variously sized networks

called water clusters.[121, 122, 123]

Water clusters are systems made by water molecules which represent a very impor-

tant and challenging test case to deeply understand the overall properties of water. They

are also assumed to be important for their implications in photocatalytic processes in the

atmosphere.[124, 125] They were deeply and widely investigated in the past, both focus-

ing on the structure and the interaction network, by taking advantage of both theoretical

and experimental approaches.

The attention focused on water clusters went also beyond homogeneous clusters in

recent years, since today concerns also the interaction picture between water and other

molecules like methane and clatrates,[59, 126] HCl hydrates[127, 128, 129] or even sol-

vated ions.[130, 131, 132, 133] Furthermore, hundreds of papers have enriched the liter-

ature in the field of water molecules sharing a proton.[109, 108, 107, 106, 105, 104, 103,

134, 135, 136, 137, 110, 22, 138, 111, 139, 140, 141, 142, 143] These protonated water

clusters represent the best simplified model systems to investigate and to understand the

nature and the implications of the proton transfer mechanism in aqueous solutions.

Starting from 80s and 90s, several accurate vibrational spectra were reported in the

literature for small, medium and large sized clusters and the presence of four main features

was very often displayed in the region 1500-4000 cm-1 of the spectrum. The first one,

lowest in energy, relies to the OH bending frequencies roughly at 1600 cm-1,[144, 145,

146, 147] the other three are instead present at higher energies rely to OH stretchings at

approximately 3000, 3500, and 3700 wavenumbers. The highest in energy is due to free

OH stretches, while the remaining are due to hydrogen bonded OH stretches.[148, 149,

150, 151, 152, 153, 154, 155] Moreover, Clary and co-workers suggested that hydrogen

bonds guide to what is the most stable isomer, and vibrational spectroscopy is a good



CHAPTER 8. VIBRATIONAL INVESTIGATION OF WATER CLUSTERS 95

probe of their presence,[156] because the vibrational spectral features of OH bonds were

shown to be extremely sensitive to hydrogen interactions. To understand this issue it is

enough to think that they could undergo a red-shift that can reach even roughly 600-700

cm-1.[157, 148, 149, 150, 152] On an opposite trend, the position of free OH stretchings is

instead almost unchanged with the clusters’ size.[157, 148] In the bending region instead

a slight overall blue-shift of the OH frequencies is observed with the increasing of the

clusters’ size.[144]

From the theoretical side, Xantheas and co-workers, followed by others research groups,

revealed that even in the presence of small clusters, the potential energy surface is very

complicated because several local minima are possible and their energy differences can

be even fewer than 200-300 wavenumbers.[158, 159, 160, 161, 162, 163, 164] Moreover,

Zero Point Energy contribution is definitely not-negligible to determine the relative stabil-

ity between such several minima.[158] Consequently, an high level of theory is necessary

to properly represent, ruling out the possibility to exploit ab-initio simulations. The de-

velopment in the past years of fitting procedures and accurate parametrizations of the PES

has opened the way to many theoretical investigations of small, medium, large sized water

clusters.[100, 91, 95, 94, 165, 166, 167, 168, 169, 170, 171, 172] Among all we recall the

work done by Purtridge and Schwenke[90] in which they developed an accurate one body

term, and the parametrization of the water model by Burnham and Leslie.[173] Most re-

cently the effort profused by the groups of Xantheas and Bowman led to a very accurate

dynasty of Potential Energy Surfaces.[91, 93, 99, 92, 174, 101][175, 176, 177, 178] In

particular, Bowman’s HBB and later WHBB PES were showed to be extremely accurate

and flexible for water clusters of any size. In these last PES implementations are present

two and three body terms, since the high order ones are negligible as shown by the groups

of Xantheas, Clary and Paesani.[179, 180, 171]

In this work we present a theoretical investigation of variously sized water clusters

with our new-established divide-and-conquer semiclassical method DC-SCIVR.[71, 181]
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Results show that quantum anharmonic effects are not-negligible, and dynamics effects

are relevant because of strong hydrogen bond interactions. Furthermore, we also pro-

vide a methodology to reduce the computational demand and to calculate spectra of high

dimensional systems characterized by several relevant minima, retaining good accuracy.

8.1.1 Computational setup

Power spectra of water clusters are calculated by means of the divide-and-conquer method

already introduced above in the text. All molecular dynamics simulations are performed

for 30000 atomic units, and the sampling function is the Husimi distribution as usual.

From one up to 10000 classical trajectories are sampled for each subspace. The high

complexity of these systems requires to introduce a further device consisting into giving

zero initial kinetic energy to very low energetic libration motions. Nevertheless, we show

that this ad-hoc trick does not relevantly affect the accuracy of the OH bendings and

stretches spectra. Throughout the text, results labelled by DC SCIVRXk are based on

X000 trajectories sampled for each subspace, while MC-DC SCIVR1 traj labels results

arising by employing the multiple coherent state approach, where the equilibrium position

is located at geometry global minimum. We also calculate the Fourier transform of the

classical velocity velocity correlation function by taking advantage of the divide-and-

conquer method, to further understand the very complex nature of some OH stretching

excitations strongly red-shifted because of hydrogen bonding. Furthermore, similarly to

what done by Kaledin and Miller for semiclassical spectral densities it also possible to

time-averaged the classical expression. The standard expression is

I (E) =

ˆ
dteiEt

〈
v (t) v (0)

〉
=

ˆ
dteiEt

ˆ
dp0dq0ρ (p0,q0) vt (p0,q0) v0 (p0,q0) ,

(8.1.1)

where ρ is a distribution function used to sample initial conditions. Following Kaledin

and Miller idea, we can add a further time-integration and obtain a working formula for
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the time-averaged version of Eq. (8.1.1), where the time T concerns the amount of the

time in which the correlation function is time averaged.

I (E) =

ˆ
dp0dq0ρ (p0,q0)

1

2T

∣∣∣∣
T̂

0

dteiEtvt (p0,q0)

∣∣∣∣2 (8.1.2)

In the divide-and-conquer framework projected quantities replace full-dimensional one

and the equation becomes

Ĩ (E) =

ˆ
dp̃0dq̃0ρ̃ (p̃0, q̃0)

1

2T

∣∣∣∣
T̂

0

dteiEtṽt (p̃0, q̃0)

∣∣∣∣2. (8.1.3)

8.1.2 A three body version of the Potential Energy Surface

Our molecular dynamics simulations are performed on the accurate WHBB Potential En-

ergy Surface.[92, 93, 60, 91] It was constructed as a combination of different many body

contributions, truncating the expansion at the three-body term. Many body contributions

were shown to be negligible in the past years.

V (q) =
N∑
i

V W (qi) +
N∑
j>i

V W−W (qi,qj) +
N∑

k>j>i

V W−W−W (qi,qj,qk), (8.1.4)

We denote with V W the one body contribution arising from the Partridge and Schwenke

potential,[96] with V W−W and V W−W−W the two- and three-body terms of the WHBB

potential. Our semiclassical calculations will explore high-dimensional clusters for which

the calculation of two and three body terms is computationally demanding. To overcome

this problem we present a new version of the three body interaction potential, obtained

from a refit of the original 40000 ab-initio point database used to obtain V W−W−W of the

WHBB. The new version is made by 1181 polynomials and shows a root mean square

deviation of 46 cm-1 from the ab-initio points, and 51 cm-1 from the original WHBB with
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Figure 8.2.1: Dependence of the maximum subspace dimensionality on the arbitrary Hes-
sian threshold for the water dimer.

maximum polynomial order 5. It is roughly 70 times faster, and has a similar speed to a

new version of the potential developed in the group of Bowman and called WHBB2.[99]

8.2 Water Dimer (H2O)2

The water dimer is the lowest dimensional water cluster, it is made by two weakly in-

teracting water molecules. Six of the twelve degrees of freedom are OH stretching and

OH bending vibrations. We apply DC SCIVR approach by sampling classical trajecto-

ries 30000 atomic units long. Unfortunately, by providing initial kinetic energy to all

the vibrational modes, outcoming spectra are too noisy for an undisputed assignment

probably because of a strong ro-vibrational coupling involving low energetic excitations.

We decided to give zero initial kinetic energy to the very low energetic flussional modes

with the aim of mitigating this effect. The hessian method is used to partition the full-

dimensional space, and the trend of the maximum subspace dimensionality for the test

trajectory is reported in Figure (8.2.1). As a first tentative we took a six-dimensional

subspace made by all the OH stretching and OH bending vibrations, but unfortunately

once again spectra were too noisy. Consequently, we descreased the maximum subspace
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Table 8.1: Vibrational frequencies of the water dimer, in cm−1. Assignments of mode ex-
citations are reported in the first column; the following columns present, in order, the ex-
perimental results, the harmonic estimates, Multimode (MM) and Local Monomer Model
(LMM) results, DC-SCIVR frequencies obtained from 5,000 and 10,000 trajectories, MC-
DC-SCIVR frequencies based on 5 trajectories, and MC-DC-SCIVR results from a single
trajectory started from the global minimum. The mean absolute errors (MAE) for the
DC-SCIVR simulations are relative to the experimental values. The MAE for the MC-
DC-SCIVR simulations are referred to DC-SCIVR10k results. a from Ref. 145; b from
Ref. 91.

Index Exp.a HO MMb LMMb DC SCIVR10k DC SCIVR5k MC-DC SCIVR5 trajs, multmin MC-DC SCIVR1 traj

71 1600 1650 1588 1595 1597 1597 1562 1572

81 1617 1669 1603 1602 1585 1578 1588 1578

72 3163 3300 3144 3153 3154 3178 3128 3156

82 3194 3338 3157 3168 3130 3100 3180 3156

91 3591 3758 3573 3550 3550 3539 3476 3356

101 3661 3828 3627 3637 3690 3693 3680 3540

111 3734 3917 3709 3701 3670 3671 3582 3628

121 3750 3935 3713 3724 3764 3764 3717 3690

MAE 25 23 32 39 48 69

7207 7266

7362 7336

5328 5375

dimensionality following the trend shown in Figure (8.2.1), till reaching a value equal

to two, corresponding to a wide plateau. The threshold value employed in our calcula-

tion is ε = 1.8 · 10−5. We started all the trajectories with the cluster in its equilibrium

geometry. Initial atomic velocities were extracted, for each subspace calculation, from

the chosen distribution of the normal mode initial kinetic energy. Specifically, for modes

included in the subspace under investigation a Husimi distribution centered on momen-

tum values corresponding to one quantum of harmonic excitation was employed; other

bending and stretching motions belonging to different subspaces were instead assigned

the corresponding harmonic zero-point energy contribution. Below are shown results by

running from 1 up to 10000 classical trajectories for each subspace. As a first evidence,

we observe that in general 5000 classical trajectories for each subspace are enough to

reach a reasonable convergence in peaks’ position. In Table (8.1) DC SCIVR results are

compared with experimental, MM and LMM calculations. When either DC SCIVR5k and
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DC SCIVR10k are employed, vibrational frequencies are in good agreement with exper-

imental ones with an average deviation of 39 cm-1 and 32 cm-1, not so higher than 25

cm-1 of the MM benchmark method. On the opposite, single trajectory simulations MC-

DC SCIVRsingle traj are very often off the mark. To better understand the reasons behind

this discrepancy we investigated the Potential Energy Surface, and we found other four

relevant local minima, very close in energy (below 200 cm-1) to the global one. We sam-

pled 1000 trajectories and run damped dynamics, where at each time-step velocities were

scaled by a factor equal to 0.99 and checked if it was terminated into a minimum different

from the global one. We repeated MC-DC-SCIVR calculations, by sampling for each sub-

space 5 classical trajectories, each one starting from a different minimum. By overall, the

Mean Absolute Error descreases from 69 to 48 wavenumbers. This “multiple-minima”

implementation suggests that for this molecular system non-local effects are relevant, and

they can be responsible of non-negligible dynamics effects. It can also partially justify

the differences between DC SCIVR10k and MM results. In Figure (8.2.2) are also shown

spectra of the OH bending and OH stretching vibrations arising from the multiple-minima

approach. Each excitation was estimated by tailoring the reference state
∣∣∣χ〉 according

with Eq. (4.3.2) and the Multiple Coherent State approach. We observe that it can happen

that, because of a strong interaction between modes, more than one peak can appear in the

spectra, as happens for the spectrum of mode 10 showing a second peak close in energy to

the signal of mode 9, and for the overtone signal of mode 7 showing a peak at frequency

close to mode 12. Finally, we also find a reasonable agreement between DC SCIVR and

experiment in the overtone region of the spectra.

8.3 Water trimer

We now look at vibrational features of the water trimer. It has three OH bending vibra-

tions and six OH stretches. Following the same procedure reported above in the dimer
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Figure 8.2.2: Vibrational spectra of the water dimer. the solid lines refer to MC-DC-
SCIVR calculations with only 5 trajectories run for each subspace; vertical solid lines
indicate the harmonic estimates. The bending fundamental and overtone signals were
obtained by tuning the reference state according to Eq. (4.3.2).

section, we employed the Hessian method to partitionate the full-dimensional space. We

find that the interaction network is less crowded, and definite spectra can be recovered by

selecting maximum subspace dimensionality equal to three. The value of threshold pa-

rameter chosen for the calculations is ε = 1.5 ·10−5. The nine OH bending and stretching

vibrations are divided as follow. Modes 16 and 20 are enrolled in a bi-dimensional sub-

space, while modes 17,18, and 19 in a three-dimensional one. The remaining modes are

instead separated in mono-dimensional subspaces. We calculated vibrational spectra by

employing DC SCIVR and sampling 10000 trajectories for each subspace, and MC DC

SCIVR using single trajectories. Table (8.2) reports the computed energy levels compared

with MultiMode and LocalMonomer ones. Once again the single trajectory implementa-

tion leads to poorly accurate results, while in the case of DC SCIVR10k the MAE is quite

high but accettable (54 cm-1). Once again, we looked for other relevant local minima on

the PES, and we found other nine different from the global one. We repetead the MC-DC
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Table 8.2: Vibrational frequencies of the water trimer. Labels are the same as in Table
(8.1). Last column indicate classical-like estimates arising from Fourier transform ov
velocity-velocity correlation function according to Eq. (8.1.3). MAE values are relative
to the benchmark MultiMode (MM) results. Values are reported in cm-1.

Index HO MM[91] LMM[91] DC SCIVR10k MC-DC SCIVR10trajs,multmin MC-DC SCIVR1 traj FTCV V

131 1661 1597 1602 1584 1575 1534 1520

141 1664 1600 1614 1595 1637 1528 1520

151 1681 1623 1615 1627 1634 1530 1516

161 3664 3486 3489 3440 3386 3426 3536

171 3703 3504 3500 3450 3400 3547 3548

181 3711 3514 3510 3247 3380 3151 3480

191 3911 3709 3718 3640 3610 3706 3676

201 3916 3715 3718 3700 3675 3652 3697

211 3918 3720 3719 3736 3760 3684 3640

MAE 151 - 6 54 65 88 58

SCIVR simulations, by sampling 10 trajectories for each subspace, obtaining a signifi-

cant increment of accuracy, i.e. the MAE moves from 88 cm-1 to 65 cm-1. By looking at

Figure (8.3.1), we can observe that some modes, in particular modes 16, 17, 18 appear

as strongly red-shifted with respect to both harmonic and LocaMonomer ones. To un-

derstand why our method displays these discrepancies we calculated an histogram of the

O-H and O...H distances between adjacent water molecules, which are the responsibible

of lower energetic OH stretches. Figure (8.3.2) shows that modes 16, 17, 18 present sig-

nificant tails at higher OH and lower O...H distances, as these modes were more affected

by hydrogen bonding. In this evenience it is expected a bond weakining and consequently

a frequency red-shift, probably enhanced because of the dynamics based method. We ob-

serve, that mode 18 is the most red-shifted and it shows the most important tails. On the

opposite modes 19, 20, 21 seem to be less affected by hydrogen bonding, showing higher

frequencies in the common region of free OH stretches. Furthermore, if we now compute

the deviation from MultiMode levels for modes not affected by hydrogen bonding, we

find an excellent agreement for both DCSCIVR10k and MC-DCSCIVRmultimin, with MAE

equal to 20 cm-1 and 40 cm-1 respectively. Finally, in Table (8.2) we also reports vibra-

tional estimates arising from Fourier transform of a classical velocity-velocity correlation
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Figure 8.3.1: Vibrational spectra of the water trimer. the solid lines refer to MC-DC-
SCIVR calculations with only 10 trajectories run for each subspace; vertical solid lines
indicate the harmonic estimates. The bending fundamental and overtone signals were
obtained by tuning the reference state according to Eq. (4.3.2).
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Table 8.3: Calculated vibrational estimates compared with available experimental levels.
Experimental data are not assigned to a specific vibrational mode, so for each theoretical
approach the closest frequency has been chosen for comparison. Labels are the same as
in previous Tables. MAE is the mean absolute error referred to experimental data. Values
are reported in cm-1.

Exp.[151, 146] MM[91] LMM[91] DC SCIVR10k MC-DC SCIVR10trajs,multmin FT (Cvv)

1608 1597 1602 1584 1575 1520

1609 1600 1614 1595 1637 1520

1629 1623 1615 1627 1634 1516

3533 3514 3510 3640 3610 3536

3726 3720 3719 3736 3760 3697

MAE - 10 11 31 35 64

function, as reported in Eq. (8.1.3), to investigate if the strong red-shift can be regained

even in a classical picture. For modes 16-18 the red-shift seems to be less prominent than

DC SCIVR, while the three OH bending vibrations are substantially red-shifted with re-

spect to DC SCIVR, MultiMode, and LocalMonomer ones. As expected, no evidences of

overtone excitations can be found in classical-like spectra. Finally, in Table (8.3) we com-

pare our DC SCIVR with available experimental data, finding a good agreement (MAE =

31 cm−1), within the typical semiclassical range of accuracy. On the opposite, classical

estimates are off-the mark in the bending region, that is instead very well reproduced by

DC SCIVR.

8.4 Water hexamer

After looking at lower dimensional clusters as the dimer and the trimer, we now look at the

water hexamer prism. It presents 48 vibrational degrees of freedom, 18 of which are OH

bending and stretching motions. We observe by looking at the connections network that,

similarly to the dimer and trimer, it is less intense and the with same threshold value em-

ployed in the trimer cases, all modes should be enrolled in mono-dimensional subspaces

with exception on modes 35 and 45. We evolved 5000 classical trajectories per subspace,

instead of 10000, because of the high computational demand. However, as we already ob-



CHAPTER 8. VIBRATIONAL INVESTIGATION OF WATER CLUSTERS 105

Table 8.4: Vibrational frequencies of the water hexamer prism. The labels are the same of
Table (8.2). The MC-DC-SCIVR simulation based on 11 trajectories has been performed
upon selection of 10 local minima from the correlation distribution. MAE values are
referred to the LMM benchmark. Frequency are reported in cm-1.

Index HO LMM[91] DC SCIVR5k MC-DC SCIVR11trajs,multmin MC-DC SCIVRsingle traj

311 1661 1606 1617 1602 1606

321 1672 1612 1623 1620 1592

331 1676 1620 1622 1622 1588

341 1701 1633 1664 1636 1682

351 1715 1654 1661 1640 1684

361 1739 1677 1715 1712 1722

371 3377 3092 2925 2956 3011

381 3494 3256 3052 3060 3012

391 3619 3372 3182 3168 2940

401 3638 3442 3516 3395 3198

411 3714 3482 3573 3556 3200

421 3735 3521 3640 3616 3500

431 3792 3579 3592 3606 3680

441 3809 3588 3580 3574 3608

451 3827 3630 3678 3650 3602

461 3915 3697 3771 3610 3578

471 3923 3706 3698 3750 3768

481 3925 3728 3677 3712 3700

MAE 169 - 64 57 102

served above, 5000 classical trajectories usually lead to accurate peaks’ positions. Once

again, DC SCIVR5k are compared with MC-DC SCIVR based on single trajectories calcu-

lations. Table (8.4) shows that single-trajectory simulations lead to very high deviations

when compared with benchmark Local Monomer (LMM) approximation calculations,

while the agreement is much better between DC SCIVR and LMM, especially in the OH

bending and free OH stretching regions. Following the procedure explained above, we

explored the PES to look for other relevant local minima by running damped dynamics,

by scaling the velocities at each time-step by a factor equal to 0.99. Differently from the

previous applications, because of the high-dimensionality, a very high number of possible

structures is possible making no advantageous the multiple-minima approach with respect

to sampling classical trajectories using a Gaussian distribution function. Because of it, we
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Figure 8.4.1: Correlation distribution between the global minimum and the local minima
found by exploring the hexamer many-body PES. The plots report the results for 1,000
(black) and 10,000 (red) damped-dynamics trajectories. Data have been interpolated by
means of a cubic spline. The black asterisks represent the correlation peaks corresponding
to the minima employed in the MC-DC-SCIVR calculations.

took insight from a recent work, and we looked for the most “correlated” local minima

with the global one. The correlation between minima is calculated as a structural quantity.

In particular, a correlation parameter (σ2) is introduced as a function of a set of atomic

distances {di}i=1,...,Ndistances
. It is computed as

σ2 =

Ndistances∑
i=1

(d− drefi )2, (8.4.1)

where in our calculations we consider all the distances between bounded OH and adja-

cent OO. dref describes the reference set of distances, equal to the ones of the global

minimum. Now, highly correlated minima are expected to show high values of σ2, while

non-correlated minima should have σ2 → 0. Figure (8.4.1) shows a correlation distribu-

tion, where we considered values of σ2 within 0.011, which is enough to account for 80%

of the total number of minimum structures explored by the damped dynamics. Peaks in
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Figure 8.4.2: OH distance trend for the water haxamer. OH distances are reported with
different colors and are associated to the normal modes reported on the right. On the
left is shown the trend of OH distance of bounded hydrogen and oxygen atoms, while on
the right the plot relies to the O..H distance between the oxygen and hydrogen atoms of
adjacent water molecules.

the distribution are chosen as starting configurations for MC-DC SCIVR multiple-minima

calculations. When 11 minima are considered for MC-DC SCIVR, results strongly im-

prove reaching a Mean Absolute Error similar to the DC SCIVR one, obtained by sam-

pling 5000 classical trajectories for each subspace. Table (8.4) shows the computed en-

ergy levels compared with Local Monomer (LMM) approximation calculations; we see

that same OH stretching vibrations appear as strongly red-shifted beeing located in the

2900-3100 cm-1 energy range. This modes, labelled by 37, 38, 39 seems to be strongly

affected by hydrogen bonding. This picture is also consistent with Figure (8.4.2) showing

the histogram of OH distances, we see that for modes 37-39 more relevant tails are present

at higher OH and lower O...H distances, with respect to modes 40-41, that indeed show a

less intense red-shift in the spectra. Similarly to the trimer case, if we consider only OH

bending and free OH stretching energy levels, the agreement between DC SCIVR and

LMM increases, and the MAE shifts from 64 cm-1 to 25 cm-1 for DC SCIVR and from 57
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Figure 8.4.3: Vibrational spectra of the water hexamer in the OH bending region. The
solid lines refer to MC-DC-SCIVR calculations with only 11 trajectories run for each
subspace; vertical solid lines indicate the harmonic estimates. The bending fundamental
and overtone signals were obtained by tuning the reference state according to Eq. (4.3.2).

cm-1to 22 cm-1 for MC-DC SCIVRmultimin. Figure (8.4.3) shows the MC-DC SCIVRmultimin

spectra in the OH bending region, while figures (8.4.4) and (8.4.5) the spectra in the OH

stretching regions. Vibrational spectra of OH bending and free OH stretches are very

well resolved, while the hydrogen bonded OH vibrations display more complex features

probably due to interaction with bending overtones excitations, which are located close in

energy, and because of strong intermode coupling. This is evident for instance by looking

the spectra of modes 39 and 40 showing double peaks, or for modes 41, 42, which also

show a shoulder at the frequency of mode 37.

In summary, vibrational estimates of the water hexamer prism are in good agreement

with the benchmark LMM ones, especially in the OH bending and free OH stretching re-

gions, while a more intense red-shift is found for hydrogen-bonded OH stretches. More-
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Figure 8.4.4: Vibrational spectra of the water hexamer in the hydrogen-bonded OH stetch-
ing region. The solid lines refer to MC-DC-SCIVR calculations with only 11 trajectories
run for each subspace; vertical solid lines indicate the harmonic estimates.
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Figure 8.4.5: Vibrational spectra of the water hexamer in the free OH stetching region.
The solid lines refer to MC-DC-SCIVR calculations with only 11 trajectories run for each
subspace; vertical solid lines indicate the harmonic estimates.
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over, the MC-DC SCIVRmultimin results based on 11 trajectories simulations are compa-

rable with DC SCIVR ones based on 5000 trajectories per subspace. This opens up the

possibility to move further with higher dimensional clusters, as the decamer, for which

the calculation of thousand trajectories would be out of reach.

8.5 Water decamer

We now perform DC-SCIVR simulations focusing on the water decamer, a system made

by 84 degrees of freedom. Semiclassical estimates were performed employing mono-

dimensional subspaces, and using the multi-minima approach described in the previous

section, because of the high computational demand. Ten minima chosen by sampling

1000 damped dynamics with the same damping factor used for smaller clusters. Figure

(8.5.1) shows the correlation distribution calculated using Eq. (8.4.1), where we con-

sidered all OH distances between bounded atoms, and OO distances between adjacent

oxygen atoms. Table (8.5) shows the computed DC SCIVR energy levels compared with

available local monomer approximation results. Results are in good agreement, espe-

cially in OH bending and free OH stretching regions, with and average deviation equal to

36 wavenumbers. Once again, OH stretching vibrations are located in three main regions

due to free stretches, hydrogen bonded, and strongly hydrogen bonded ones. Moreover,

both DC SCIVR and LMM provide more red shifted levels when compared with the wa-

ter hexamer. Nevertheless, the discrepancy between DC SCIVR and LMM values in the

3000-3200 cm-1 region seems to be attenuated with respect to the previous cluster.

8.6 Summary

We have presented here an application of the Divide-and-Conquer method on water clus-

ters of increasing dimensionality. By overall, DC SCIVR estimates for OH bending and
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Figure 8.5.1: Correlation distribution between the global minimum and the local minima
found by exploring the decamer many-body PES. The plots report the results for 1,000
damped-dynamics trajectories. The red asterisks represent the correlation peaks corre-
sponding to the minima employed in the MC-DC-SCIVR calculations.

Table 8.5: Vibrational frequencies of the water decamer. Labels are the same of Tables
(8.1), (8.2), (8.4). All values are reported in cm-1.

HO LMM[91] MC-DC-SCIVR11 trajs, multmin HO LMM[91] MC-DC-SCIVR11 trajs, multmin

1670 1600 1590 3571 3382 3337

1675 1602 1624 3659 3417 3379

1678 1608 1624 3666 3419 3400

1686 1609 1628 3676 3420 3406

1692 1617 1660 3682 3429 3448

1712 1647 1663 3727 3518 3492

1713 1664 1674 3741 3525 3496

1720 1665 1690 3756 3534 3522

1738 1669 1708 3774 3566 3532

1748 1691 1714 3781 3568 3565

3335 3013 2936 3914 3706 3640

3352 3036 3006 3920 3734 3668

3383 3046 3022 3924 3736 3672

3387 3050 3052 3925 3741 3680

3554 3286 3121 3926 3744 3800
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free OH stretching vibrations are in very good agreement with benchmark MM and LMM

ones. For the hydrogen bonded OH stretches we found a more intense red-shift, probably

due to the dynamics nature of the method. This effect was more pronounced for the trimer

and the hexamer, while the agreement between LMM and DC SCIVR in the decamer case

was more strict. As a general feature, spectra are highly sensitive to the strong intermode

coupling, resulting into a peaks’ broadening. Furthermore, the high number of floppy mo-

tions generate a significant vibrational angular momentum, which contributes to increase

peaks’ width. This application also shows that the approximate MC-DC SCIVR approach

retains good accuracy opening the way toward the application of the method on larger

clusters, for which the standard DC SCIVR would be out of reach, because of the high

number of trajectories required to converge the phase-space integration.



Chapter 9

(Gly)2 H+ vibrational features by means

of DC SCIVR

9.1 Introduction

We now investigate the vibrational features of protonated glycine dimer (Gly)2 H+. It has

21 atoms, for a total of 57 vibrational degrees of freedom. Within the semiclassical ap-

proach, such an high dimensionality needs a Divide-and-Conquer semiclassical treatment.

Protonated glycine dimer presents three main and independent minima that are reported

in Figure (9.1.1).

113
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Figure 9.1.1: CS01, ZW01 and CS02 minima of protonated glycine dimer. The left side
of the panel shows the CS01 structure, the central one its zwitterionic version ZW01, and
below is reported the CS02 local minimum.

CS01 is the global minimum, while ZW01 is the corresponding zwitterionic struc-

ture. CS02 is instead a local minimum in which the interaction network between the two

glycine monomers is different from CS01 and ZW01. In the past years this molecule was

the focus of many works, with the aim of providing a conclusive assignment at which is

the main conformer contributing to the experimental spectrum. Usually, high level ex-

perimental techinques as Infrared Multiple Photon Dissociation Spectroscopy (IRPMD)

were combined with theoretical estimates relying to scaling approaches of the harmonic

frequencies. In some cases experimental features were appointed to CS02 when com-

pared with scaled frequencies,[182] while in other ones, the spectrum was assigned to

CS01.[183] This ambiguity was mainly due to the comparison with scaled harmonic fre-

quencies, whose arise by a too crude approach that neglects anharmonicities, and in gen-

eral any contribution arising from the exploration of regions of the space far from the

equilibrium geometry. For these reasons a conclusive attribution of the spectral features

to the proper isomer is still missing today. Our reference experimental spectrum come

from the works of McLafferthy and co-workers,[182] and McMahon and co-workers[183]
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groups.

In the first, the spectrum was recovered in the high frequency region, from 3000 to

3700 cm-1, i.e. only in the CH, NH, and OH stretching region. The theoretical assignment

to the isomer was done by computing the harmonic frequencies of CS02 at a B3LYP/6-

31G(d) level of theory, and introducing a scaling factor, equal to 0.97. In the other work

the frequencies were computed at B3LYP/6-311+G(d,p) level of theory and then scaled

by a factor equal to 0.985. They recovered the spectrum in the 1000-2000 cm-1 spec-

tral region. With their scaling factor value, they found that the best spectrum is the one

of CS01, which is the global minimum at B3LYP/6-311+G(d,p). The highest energetic

spectral window 3000-3700 cm-1was reproduced introducing a further scaling factor, i.e

0.96.

We think that the harmonic approximation is definitely insufficient to describe such

complex systems. The harmonic estimates can be extremely sensitive to the scaling factor

value, and different regions of the spectrum require different values of the scaling factor.

Thus, an alternative approach without any arbitrary scaling factors is needed. Our divide-

and-conquer semiclassical method looks like a possible solution.

We perform DC SCVIR semiclassical calculations on the isomers introduced before.

Since no potential energy surfaces are available, the nuclei potential is evaluated ab-initio

employing the NWCHEM package[184] at the same level of theory of McMahon and

co-workers,[183] and we compare our results with experimental data, with the aim of

providing which is the main conformer contributing to the experimental spectrum.

9.2 AIMD with NWCHEM

We perform ab-initio molecular dynamics simulations employing NWCHEM package[184]

at a DFT B3LYP/6-311+G(d,p) level of theory.[185] Since we are looking for semiclassi-

cal vibrational frequencies we set the initial conditions (p0,q0) of the classical trajectories
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equal to (peq,qeq) where qeq is the equilibrium geometry of the isomer under investiga-

tion, while peq is the collections of momenta following an harmonic fashion ~ωi
2

=
p2
i

2m
,

leading to a trajectory with energy equal to the harmonic Zero Point Energy. Due to the

high computational demand of the calculation we set the dynamics length equal to 25000

atomic units, since it was showed to be enough to recover very accurate and nearly con-

verged vibrational levels for glycine based molecules.[76] We run 3 classical trajectories,

each one centered at the equlibrium configuration of a relevant isomer. We also employ

the proper NWCHEM module in order to keep approximately equal to zero the total angu-

lar momentum and its components. According with the literature, the zwitterionic isomer

very quickly interconverts into the global minimum CS01, in agreement with the litera-

ture consensus about its negligible contribution to the vibrational spectrum. Figure (9.2.1)

shows the OH (black line) and NH (red line) distances during the dynamics of ZW01. We

observe that the OH distance starts oscillating from the equilibrium one for ZW01, but

after very short time it drops into the CS01 basin and the distance oscillates around the

equilibrium one of CS01 reported with a black horizontal dashed line. A similar behavior

is followed by NH distance. Because of it, we perform our semiclassical calculations on

CS01 and CS02 which are believed to be relevant in the IRPMD spectrum.

Figure 9.2.1: Plot of NH and OH distances during the dynamics of ZW01. The black
line reports the OH distance, while the red line the NH one. Horizontal dashed lines are
centered at equilibrium distances for CS01 and ZW01.
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9.3 DC-SCIVR applied on CS01

We separate the 57-dimensional space in order to have a maximum subspace dimen-

sionality equal to 16, which is a reasonable value for the glycine-based systems studied

with DC-SCIVR.[186] We employ a threshold value equal to 4.8 · 10−6 obtaining one

16-dimensional space, one 6-dimensional, one four-dimensional, one three-dimensional,

three bi-dimensional, and 22 monodimensional subspaces. Figure (9.3.1) shows a thresh-

old trend where a very quick descreasing of the subspace dimensionality is observed. At

max. subspace dimensionality equal to 16 we observe a small flat region.

Figure 9.3.1: Threshold trend in the case of CS01 minimum.
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In order to reduce the noisy features we employ a Gaussian filter. The filtering function

is e−αt2 with α = 3·10−8. To reduce numerical instability issues of the classical trajectory

we employed in all semiclassical calculations a second order iterative pre-exponential

factor approximation. In table (9.1) we report the experimental frequencies compared

with our semiclassical and harmonic estimates.
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Table 9.1: DC-SCIVR frequencies of CS01 compared with experimental findings and
harmonic estimates. The value are reported in cm-1. The experimental levels in the range
1000-2000 cm-1 are taken from Ref (183), while the values from 3000-4000 cm-1are taken
from Ref (182). Last row reports the Mean Average Error (MAE) with respect to the
experimental values.

Label Exp DC-SCIVR HO
free OH bending 1191 1172 1192

hydrogen bonded OH bending 1439 1450 1461
Nitrogen umbrella inversion 1523 1511 1570

carbonyl stretching 1757 1750 1756
carbonyl stretching 1808 1804 1811

N+-H symmetric stretching 3372 3375 3500
free OH stretching 3585 3628 3730

MAE / 14 50

Table (9.1) shows a good agreement between theory and experiment with dispacements

within 20 cm-1 and a Mean Average Erorr equal to be only 14 wavenumbers, below the

typical semiclassical range of accuracy, 20-30 cm-1. The only exception to this trend is

represented by the free OH stretching frequency, shifted by 43 cm-1, that we estimate to

be 3628 cm-1 while the experimental finding is 3585 cm-1. It is noteworthy to compare

our discrepancy with a crude NMA, that estimates the frequency to be very blue-shifted at

3730 cm-1. All computed CS01 frequencies are in excellent agreement with the IRPMD

spectrum, giving the first evidences of the strong contribution of this isomer to the experi-

mental spectrum. Figure (9.3.2) provides the partial spectra obtained with our DC-SCIVR

method of the modes compared with the experiment. Modes in panel (a) belong to the

16th-dimensional subspace, while modes in panels (b) belong to a three-dimensional sub-

space. Modes in panel (c) are enrolled in mono-dimensional subspaces. Each excitation

is labelled according to its normal mode.



CHAPTER 9. (GLY)2 H+ VIBRATIONAL FEATURES BY MEANS OF DC SCIVR119

Figure 9.3.2: Vibrational spectra of modes compared with the experiment. The frequen-
cies are cumputed at a DC-SCIVR level of theory. Modes in panel (a) are involved a 16-
dimensional space, while modes in panel (b) are enrolled in a three-dimensional space.
Modes in panel (c) are enrolled in mono-dimensional subspaces. The vertical lines are
centered at the experimental frequencies.

500 1000 1500 2000 2500 3000 3500 4000

Energy / cm
-1

I(
E

)

ϖ
free OH bending

ϖ
hydrogen-bonded OH bending

ϖ
 N umbrella inversion

ϖ
 Carbonyl stretching

ϖ
 Carbonyl stretching

ϖ
 N-H Symmetric stretch

ϖ
free OH stretch(a)

(b)

(c)

By overall, excellent agreement is found between our CS01 DC-SCIVR frequencies

and the experimental ones. In Table (9.2) are reported all computed energy levels in the

range 1000-4000 cm-1.

Table 9.2: Vibrational frequencies of CS01 isomer reported in cm-1.
Mode DC-SCIVR HO Exp Mode DC-SCIVR HO Exp Mode DC-SCIVR HO Exp

26 1003 1020 37 1386 1435 48 2959 3059

27 1074 1075 38 1344 1443 49 2987 3084

28 1108 1133 39 1450 1461 1439 50 2966 3101

29 1109 1159 40 1434 1485 51 3051 3142

30 1174 1178 41 1511 1570 1523 52 3197 3191

31 1172 1192 1191 42 1629 1669 53 3243 3309

32 1188 1246 43 1633 1675 54 3375 3498 3372

33 1267 1315 44 1641 1686 55 3415 3537

34 1340 1338 45 1750 1756 1757 56 3435 3609

35 1320 1339 46 1804 1811 1808 57 3628 3730 3585

36 1320 1351 47 2658 2707 MAE 14

Last, to better appreciate the reliability of our results with respect to crude harmonic

estimates, we report in Figure (9.3.3) the experimental spectrum compared with scaled
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harmonic frequencies and semiclassical ones.

Figure 9.3.3: Experimental spectra (black line) compared with scaled harmonic estimates
of CS01 (vertical red lines), scaled harmonic estimates of CS02 (vertical green lines),
semiclassical estimates of CS01 (vertical blue lines), and semiclassical estimates of CS02
(vertical magenta lines). The harmonic frequencies are scaled with a factor equal to 0.985.
The intensity of semiclassical estimates is equal among all of them since they come from
power spectra calculations. The experimental spectrum at the left of panel, i.e. 1000-2000
cm-1 comes from Ref (183), while the spectrum from 3000-4000 cm-1 is taken from Ref
(182).
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By Looking at scaled harmonic frequencies, it can be only hypothized the contribution

of CS01, since the estimates are sometimes close to the experiment in the 1000-2000 cm-1,

while they are definitely out of consideration in the 3000-4000 cm-1region. If ones looks

instead at semiclassical estimates, which intrinsicaly accounts for quantum anharmonities,

the picture appears much more clear, with an excellent matching between semiclassical

CS01 and experimental energy levels in the whole energy range. A tentative improvement

of the scaled harmonic estimates in the 3000-4000 cm-1 region can be done by employing

a “more anharmonic” scaling factor equal to 0.96. In the last case, depicted in Figure

(9.3.4) the agreement is very good in the highest energy region, but unfortunately the

region 1000-2000 cm-1 is badly reproduced.
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Figure 9.3.4: Experimental spectra (black line) compared with scaled harmonic estimates
of CS01 (vertical red lines), scaled harmonic estimates of CS02 (vertical green lines),
semiclassical estimates of CS01 (vertical blue lines), and semiclassical estimates of CS02
(vertical magenta lines). The harmonic frequencies are scaled with a factor equal to 0.96.
The intensity of semiclassical estimates is equal among all of them since they come from
power spectra calculations. The experimental spectrum at the left of panel, i.e. 1000-2000
cm-1 comes from Ref (183), while the spectrum from 3000-4000 cm-1 is taken from Ref
(182).
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As an overall result, from one side the harmonic estimates are very sensitive to the

scaling factor, and can not reproduce accurately the whole spectral range, but only reduced

region of the spectrum, while semiclassical estimates intrinsicaly account for quantum

anharmonity and can be compared with experimental data in the whole spectral window.

9.4 DC-SCIVR applied on CS02

We separate the 57-dimensional space in order to have a maximum subspace dimension-

ality equal to 18. This choice is done according to the threshold trend, reported in Figure

(9.4.1), where a flat zone is observed at maximum dimension equal to 18, and to be

comparable with the choice done for CS01. The value of the threshold in this case was

5.6 · 10−6 obtaining one 18-dimensional subspace, one four-dimensional subspace, four

bi-dimensional subspaces, and 27 mono-dimensional subspaces.
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Figure 9.4.1: Threshold trend in the case of CS02 minimum.
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The filtering function of the semiclassical integrand is the same of CS01, i.e. e−αt
2 with

α = 3 · 10−8. In table (9.3) we report the computed DC-SCIVR frequencies compared

with experimental and harmonic estimates.

Table 9.3: DC-SCIVR frequencies of CS02 compared with experimental findings and
harmonic estimates. The value are reported in cm-1. Last row reports the Mean Average
Error (MAE) with respect to the experimental values.

Label Exp DC-SCIVR HO
free OH bending 1191 1155 1202

hydrogen bonded OH bending 1439 1466 1485
Nitrogen umbrella inversion 1523 1598 1665

carbonyl stretching 1757 1771 1784
carbonyl stretching 1808 1761 1817

N+-H symmetric stretching 3372 3362 3546
free OH stretching 3585 3615 3727

MAE / 34 79

In this case, the agreement with the experimental features is good only for the high

energetic OH and NH stretching region, while the lower energetic excitations are very

different from the experimental ones. In particular in the carbonyl stretching region we

find two peaks at 1761 and 1771 cm-1, while the splitting in the experiment is much more

pronounced, and the levels are located at 1757 and 1808 cm-1. Most importantly, in the

experiment a peak is present at 1523 cm-1, conversely in this region the DC-SCIVR level
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is located quite far at 1598 cm-1. The signal at 1598 cm-1 is mainly due to the bending

motion of NH2 group of neutral glycine. Figure (9.4.2) shows that the agreement between

CS02 and the experiment is less strict with respect to CS01 and the mean deviation is 32

cm-1. In Table (9.4) are reported all computed energy levels above 1000 cm-1.

Table 9.4: Vibrational frequencies of CS02 isomer reported in cm-1.
Mode DC-SCIVR HO Exp Mode DC-SCIVR HO Exp Mode DC-SCIVR HO Exp

25 1033 1036 36 1341 1362 47 2714 2707

26 1015 1054 37 1382 1438 48 2979 3048

27 1050 1091 38 1421 1447 49 2975 3086

28 1095 1117 39 1463 1479 50 2988 3087

29 1106 1156 40 1452 1485 51 3007 3138

30 1138 1186 41 1466 1593 1439 52 3171 3359

31 1106 1194 42 1617 1662 53 3185 3431

32 1155 1202 1191 43 1598 1665 1523 54 3316 3481

33 1255 1305 44 1610 1700 55 3362 3546 3372

34 1295 1319 45 1771 1784 1757 56 3615 3727 3585

35 1362 1334 46 1761 1817 1808 57 3640 3734

Finally, Figure (9.4.2) reports the experimental spectrum against the DC-SCIVR one

of CS01 and CS02. Although the DC-SCIVR features are sometimes broad, we observe

that panels (a) and (b) are very well in agreement in the whole experimentally accessible

energy range, giving insights about the CS01 contribution to the experimental spectrum.
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Figure 9.4.2: Experimental spectra in panel (b) compared with DCSCIVR spectrum of
CS01 in panel (a) and DC-SCIVR spectrum of CS02 in panel (c). The experimental
spectrum in the 1000-2000 cm-1 region comes from Ref (183), while the spectrum from
3000-4000 cm-1 is taken from Ref (182).
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9.5 Summary

The vibrational investigation on CS01 and CS02 isomers suggests that CS01 maybe the
most contributing isomer to the experimental spectrum. In particular, if from one side the
high-frequency fundamentals well fit the experimental positions, in the mid-frequency
region the picture is different. In the case of CS01 the agreement is strict while relevant
deviations in CS02 simulated spectrum were found. For instance only in the CS01 the
two carbonyl stretches are significantly separated in energy, and the experimental peak at
1523 cm-1has a counterpart only for CS01 (1511 cm-1).
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Conclusions

In this thesis advances of the Time Averaging Semiclassical Initial Value Represention

(TA-SCIVR) approximation to the spectral density of molecular systems have been pre-

sented. In particular, the goal of the thesis was to overcome two limitations of the the-

ory, the first one concerning the numerical instability of the pre-exponential factor, in

the event of chaotic trajectories, whose often characterize high-dimensional and complex

molecules. The second one was the so-called “curse of dimensionality” problem, in which

the method (TA-SCIVR) runs out of steam when the systems’ dimensionality overcome

25-30 degrees of freedom.

To address the first issue, numerical and analytical approximations to the pre-exponential

factor have been developed and tested, showing good stability and retaining accuracy of

the spectra. Then, we developed the “Divide and Conquer” method (DC-SCIVR) that

allows to overcome the curse of dimensionality problem, and consequently vibrational

spectra of high-dimensional molecules can be obtained. Furthermore, the method takes

advantage of the same formalism of TA-SCIVR and the very basic idea is to decompose

the full-dimensional problem in lower-dimensional ones. In this way, from one side it is

possible to deal with large systems, and from the other the computational overhead can

be reduced, since lower-dimensional matrices are required instead of the full-dimensional

ones. To do that, the semiclassical quantities are projected in subspaces, that are selected

by an appropriate method. The original one is based on the hessian matrix, and it is very

125
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computationally cheap but less solid. On the opposide one can employ a metholody, called

“Jacobian”, based on the conservation of Liouville theorem, that is more demanding but

more solid and accurate.

DC-SCIVR has been tested against low- and medium-sized molecules and a negligible

loss of accuracy has been observed, especially when combined with the Jacobian-based

seek of subspaces. Then, it was applied to study large molecules as benzene and fullerene,

and finally it allowed to recover spectra of complex supramolecular systems as water

clusters and protonated glycine dimer. Further applications of DC-SCIVR will exploit

molecular systems involved in biological and technological processes.
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Appendix

11.1 Derivation of the Herman-Kluk propagator from Van-Vleck

In a one-dimensional problem the probability of going from

∣∣∣∣∣ψi
〉

to

∣∣∣∣∣ψf
〉

by approxi-

mating the quantum propagator using Eq. (3.1.4) is expressed as (assuming ~ = 1)

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

¨
dq0dq1 (2πi~ |Mqp|)−

1
2 e

i
~St(p0,q0)

〈
ψf

∣∣∣∣∣q1

〉〈
q0

∣∣∣∣∣ψi
〉

(11.1.1)

where the initial and final wavefunctions can be taken as coherent states.〈
q0

∣∣∣∣∣ψi
〉

= ψi (q0) =
(γ
π

) 1
4
e−

γ
2

(q0−qi)2+ i
~pi(q0−qi)

〈
ψf

∣∣∣∣∣q1

〉
= ψf (q1)∗ =

(γ
π

) 1
4
e−

γ
2 (q1−qf)

2
− i

~pf(q1−qf)

If we now introduce the explicit representation of the wavefunctions into Eq. (11.1.1), we

obtain

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

¨
dq0dq1 (2πi~ |Mqp|)−

1
2 e−

γ
2

(q0−qi)2− γ
2 (q1−qf)

2

× e
i
~ [St(q0,q1)+pi(q0−qi)−pf(q1−qf)]. (11.1.2)
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We now call the exponential part φt (q0, q1), where

φt (q0, q1) = St (q0, q1) + pi (q0 − qi)− pf (q1 − qf ) +
i~γ
2

[
(q0 − qi)2 + (q1 − qf )2] .

(11.1.3)

The quantum probability can be written now in a more simplified way as

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

¨
dq0dq1 (2πi~ |Mqp|)−

1
2 e

i
~φt(q0,q1). (11.1.4)

To solve Eq. (11.1.4) Miller took inspiration from the Filinov filter, briefly described

below.[187, 188] Let’s take a strongly oscillating integral

I =

ˆ
dxeiφ(x) (11.1.5)

and add an identity arising from a Gaussian integral

1 =

√
A

π

ˆ
dx0e

−A(x−x0)2

. (11.1.6)

Within this trick, the integral becomes apparently more complicated since two integrals

have to be solved

I =

√
A

π

ˆ ˆ
dxdx0e

−A(x−x0)2+iφ(x). (11.1.7)

Things utterly change if we take advantage of a stationary phase approximation, since

we expect the integral to be different from zero close to stationary points of the function

φ (x). Expanding the function up to the second order, the integral is approximated as

I ∼
√
A

π

ˆ ˆ
dxdx0e

−A(x−x0)2+iφ(x0)+iφ′(x0)(x−x0)+ i
2
φ′′(x0)(x−x0)2

. (11.1.8)

Now the integral along the variable x can be analytically solved, obtaining

I ∼
√
A

π

ˆ
dx0

√
π

A− i
2
φ′′ (x0)

e
− φ′(x0)2

4(A− i2φ′′(x0))
+iφ(x0)

. (11.1.9)
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Adding the transformation c
2

= 1

4(A− i
2
φ′′(x0))

, we obtain
√

A
A− i

2
φ′′(x0)

=
√

1 + icφ′′ (x0)

and the oscillating integral becomes

I ∼
ˆ
dx0

√
1 + icφ′′ (x0)e−

C
2
φ′(x0)2+iφ(x0), (11.1.10)

while its multidimensional expression is

I ∼
ˆ
dx0

√
det (I + icφ′′ (x0))e−φ

′(x0)C
2
φ′(x0)T+iφ(x0). (11.1.11)

Eq. (11.1.11) is the approximation of Eq. (11.1.5) in the Filinov filtering fashion. We

can now take advantage of the Filinov filter to solve Eq. (11.1.4) (assuming that the Van-

Vleck pre-exponential factor is smooth), where
´
dx0 is the double integral

˜
dq0dq1, the

arbitrary Filinov parameter is a bi-dimensional matrix, that we choose to be

c =

 c0 0

0 c1

 .

Within the Filinov filtering framework we first have to calculate the first and second

derivatives of the phase function φt (q0, q1) and then add them into Eq. (11.1.10). The

first derivatives of φt (q0, q1) are

∂φt (q0, q1)

∂q0

=
∂St
∂q0

+ pi + i~γ (q0 − qi) = −p0 + pi + i~γ (q0 − qi)

∂φt (q0, q1)

∂q1

=
∂St
∂q1

− pf + i~γ (q1 − qf ) = p1 − pf + i~γ (q1 − qf ) ,

while the second derivatives are

∂2φt (q0, q1)

∂q2
0

= −∂p0

∂q0

+ i~γ

∂2φt (q0, q1)

∂q0∂q1

= −∂p0

∂q1
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∂2φt (q0, q1)

∂q1∂q0

=
∂p1

∂q0

∂2φt (q0, q1)

∂q2
1

=
∂p1

∂q1

+ i~γ.

We now call the pre-exponential term c2
f (q0, q1) =

√
I + icφ′′ (q0, q1), where cf (q0, q1)

denotes a “Filinov pre-exponential factor”

c2
f (q0, q1) =

 1− γc0 + ic0
∂p1

∂q1
ic0

∂p1

∂q0

−ic1
∂p0

∂q1
1− γc1

∂p0

∂q0

 (11.1.12)

The determinant of the squared Filinov pre-exponential factor is now equal to

det
(
c2
f (q0, q1)

)
= (1− γc0) (1− γc1)− ic1 (1− γc0)

∂p0

∂q0

+

+ ic0 (1− γc1)
∂p1

∂q1

+ c0c1

(
∂p1

∂q1

∂p0

∂q0

− ∂p1

∂q0

∂p0

∂q1

)
. (11.1.13)

Miller then introduced the IVR transformation to make the expression of determinant

more insightful, leading to

¨
dq0dq1 (2πi~ |Mqp|)−

1
2
(
det
(
c2
f

)) 1
2 →

¨
dq0dp0

(
|Mqp|
2πi~

det
(
c2
f

)) 1
2

, (11.1.14)

where Mqp = ∂q1
∂p0
. Now, we rewrite all the terms of the Filinov determinant in order to

extrapolate at the denominator ∂q1
∂p0

and simplify it with the Van-Vleck pre-exponential

factor. The easiest term is ∂p1

∂q1
since

∂p1

∂q1

=
∂p1

∂p0

∂p0

∂q1

==
∂p1/∂q1
∂q1/∂p0

. (11.1.15)

Then because of Schwartz theorem

−ic1
∂p0

∂q1

= ic0
∂p1

∂q0
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and since c0 and c1 can be arbitrarily chosen, we make the choice c0 = c1 leading to

∂p1

∂q0

= − 1
∂q1/∂p0

. (11.1.16)

Then ∂p0

∂q0
can be expressed as

∂p0

∂q0

=

(
∂p0

∂q1

)(
∂q1

∂q0

)
=

∂q1/∂q0
∂q1/∂p0

, (11.1.17)

and last
∂p0

∂q1

=
1

∂q1/∂p0

. (11.1.18)

By using Eqs. (11.1.15), (11.1.16), (11.1.17), and (11.1.18) the determinant Filinov pre-

exponential factor becomes

det
(
c2
f (q0, q1)

)
= (1− γc0) (1− γc1) + ic1 (1− γc0)

∂q1/∂q0
∂q1/∂p0

+ ic0 (1− γc1)
∂p1/∂p0

∂q1/∂p0

+

+ c0c1

(
∂p1/∂p0

∂q1/∂p0

∂q1/∂q0
∂q1/∂p0

+
1

∂q1/∂p0

1
∂q1/∂p0

)
. (11.1.19)

We now simplify the notation by writing

(
|Mqp|
2πi~

) 1
2 (
det
(
c2
f

)) 1
2 =

1

2π~
(
−2πi~ |Mqp| det

(
c2
f

)) 1
2 (11.1.20)

and calling Filinov-Van-Vleck pre-exponential factor cfv =
(
−2πi~ |Mqp| det

(
c2
f

)) 1
2 .

The square of cfv is equal to

c2
fv = 2~γ

[
− (1− γc0) (1− γc1)

∂q1

∂p0

+ c1 (1− γc0)
∂q1

∂q0

+ ic0 (1− γc1)
∂p1

∂p0

+ ic0c1
∂p1

∂q0

]
.

(11.1.21)

We now decide to choose c0 = c1 = 1
2~γ , and after some algebraic passages the previous

equation becomes equal to

c2
fv =

1

2

[
∂q1

∂q0

+
∂p1

∂p0

− iγ ∂q1

∂p0

+
i

γ

∂p1

∂q0

]
, (11.1.22)
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that is equal to the square of the Herman-Kluk pre-exponential factor, thus

cfv = CHK . (11.1.23)

At this stage we have obtained that

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

¨
dq0dp0CHK (q0, p0) e−φ

′(q0,p0)C
2
φ′(q0,p0)T+iφ(q0,p0), (11.1.24)

with φ (q0, p0) = St (q0, p0) + pi (q0 − qi)− pf (q1 − qf ) + i~γ
2

[
(q0 − qi)2 + (q1 − qf )2].

We now focus on the exponential part of the integrand, starting from−φ′ (q0, p0) C
2
φ′ (q0, p0)T .

By solving the matrix product, the expression comes to be

−φ′ (q0, p0)
C

2
φ′ (q0, p0)T = −c0

2

[
(p1 − pf )2 + 2i~γ (q1 − qf ) (p1 − pf )− ~2γ2 (q1 − qf )2]+

− c1

2

[
(pi − p0)2 + 2i~γ (q0 − qi) (pi − p0)− ~2γ2 (q0 − qi)2] , (11.1.25)

and relying to previous choice of c0 and c1 it becomes

−φ′ (q0, p0)
C

2
φ′ (q0, p0)T = − 1

4~γ
[
(p1 − pf )2 + 2i~γ (q1 − qf ) (p1 − pf )− ~2γ2 (q1 − qf )2]+

− 1

4~γ
[
(pi − p0)2 + 2i~γ (q0 − qi) (pi − p0)− ~2γ2 (q0 − qi)2] . (11.1.26)

Now, introducing Eq. (11.1.26) into the exponential part of Eq. (11.1.24), and after some

simplifications, the exponential term becomes

− φ′ (q0, p0)
C

2
φ′ (q0, p0)T + iφ (q0, p0) =

〈
qfpf

∣∣∣∣∣q1p1

〉〈
q0p0

∣∣∣∣∣qipi
〉
. (11.1.27)

The final expression of the quantum probability is

〈
ψf

∣∣∣∣e− i
h
Ĥt

∣∣∣∣ψi〉 =

¨
dq0dp0CHK (q0, p0)

〈
qfpf

∣∣∣∣∣q1p1

〉〈
q0p0

∣∣∣∣∣qipi
〉
, (11.1.28)

that we recognize to be the Herman-Kluk expression of the quantum amplitude.
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11.2 Time Averaged Semiclassical spectral density

To derive Eq. (4.2.1) we start by showing the truthfulness of the following identity

I = ITA, (11.2.1)

Where

I =

¨
dp0dq0A (p0,q0)

and

ITA =
1

T

ˆ T

0

dt

¨
dptdqtA (pt,qt) .

ITA is the Time-Averaged version of the integral I , where the integrand is considered to

be a generic function of (p0,q0). If the system fulfills Hamilton equations, by virtue of

Liouville theorem the determinant of Jacobian of the transformation (p0,q0) ← (pt,qt)

is equal to one, resulting in

¨
dp0dq0A (p0,q0) =

¨
dptdqtA (pt,qt) , (11.2.2)

and

ITA =
1

T

ˆ T

0

dt

¨
dp0dq0A (p0,q0) =

¨
dp0dq0A (p0,q0)

1

T

ˆ T

0

dt =

¨
dp0dq0A (p0,q0) = I. (11.2.3)

By taking advantage of Eq. (11.2.3), Eq. (4.2.1) can be re-written as

I (E) =

(
1

2π~

)F ¨
dp0dq0

1

T

T̂

0

dt1
Re

π~

+∞ˆ

0

dtCt1+t (pt1 ,qt1) e
i
~St1+t(pt1 ,qt1)

× 〈χ |pt1+tqt1+t 〉〈pt1qt1| χ〉 e
i
~Et, (11.2.4)

where we remind that pt1+t = pt1+t (p0,q0) and qt1+t = qt1+t (p0,q0). The action

term St1+t (pt1 ,qt1) describes the action of the path starting from (pt1 ,qt1) and going
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to (pt1+t,qt1+t) and it is equivalent to the action St1+t (p0,q0) starting from (p0,q0) and

going to (pt1+t,qt1+t) minus the action St (p0,q0) of the same path but starting from

(p0,q0) and going to (pt,qt). If we now call

t2 = t1 + t, (11.2.5)

the action St1+t (pt1 ,qt1) = St2 (pt1 ,qt1) is equal to

St2 (pt1 ,qt1) = St2 (p0,q0)− St1 (p0,q0) . (11.2.6)

Because of the change of variable in Eq. (11.2.5), the coherent states overlap becomes

〈χ |pt1+tqt1+t 〉〈pt1qt1| χ〉 = 〈χ |pt2qt2 〉〈pt1qt1 | χ〉 , (11.2.7)

the pre-exponential factor

Ct1+t (pt1 ,qt1) = Ct2 (pt1 ,qt1) , (11.2.8)

and the integration variables

1

T

T̂

0

dt1
Re

π~

+∞ˆ

0

dt =
1

T

T̂

0

dt1
Re

π~

+∞ˆ

t1

dt2. (11.2.9)

As an overall result, the spectral density will be calculated by evaluating two time integrals

in t1 and t2

I (E) =

(
1

2π~

)F ¨
dp0dq0

Re

π~
1

T

T̂

0

dt1e
− i

~St1 (p0,q0)e−
i
~Et1

〈
pt1qt1

∣∣∣∣∣χ
〉
×

+∞ˆ

t1

dt2Ct2 (pt1 ,qt1) e
i
~St2 (p0,q0)

〈
χ

∣∣∣∣∣pt2qt2
〉
e
i
~Et2 . (11.2.10)
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Eq. (11.2.10) is still far apart from Eq. (4.2.1), since it presents two time integrals, which

perhaps make it more complicated even than the original Herman Kluk version of the

spectral density reported in Eq. (4.1.3). However, we note that the only component of

the integrand depending from both t2 and t1 is the pre-exponential factor. It prevents the

possibility to separate the two integrals. Kaledin and Miller suggested to employ the so-

called separable approximation to address this issue, i.e. to consider the pre-exponential

as a complex number of unitary modulos. Within this approximation

Ct2 (pt1 ,qt1) ∼ e
i
~ϕt2e−

i
~ϕt1 , (11.2.11)

and now the integrand looks like much more friendly, since the two integral are separable

I (E) =

(
1

2π~

)F ¨
dp0dq0

Re

π~
1

T

T̂

0

dt1e
− i

~ [St1 (p0,q0)+Et1−ϕt1 ]

〈
pt1qt1

∣∣∣∣∣χ
〉
×

+∞ˆ

t1

dt2e
i
~ [St2 (p0,q0)+Et2−ϕt1 ]

〈
χ

∣∣∣∣∣pt2qt2
〉
. (11.2.12)

With T large enough the integration to be performed follows an insightful symmetry

relation

1

T

T̂

0

dt1

T̂

t1

dt2 =
1

2T

T̂

0

dt1

T̂

0

dt2,

which leads Eq. (11.2.12) to be

I (E) =

(
1

2π~

)F ¨
dp0dq0

Re

2π~
1

T

T̂

0

dt1e
− i

~ [St1 (p0,q0)+Et1−ϕt1 ]

〈
pt1qt1

∣∣∣∣∣χ
〉
×

T̂

0

dt2e
i
~ [St2 (p0,q0)+Et2−ϕt1 ]

〈
χ

∣∣∣∣∣pt2qt2
〉

(11.2.13)

If we call

1

T

T̂

0

dte−
i
~ [St(p0,q0)+Et−ϕt]

〈
ptqt

∣∣∣∣∣χ
〉

= fE (p0,q0) ,
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then we note that

fE (p0,q0)∗ =
1

T

T̂

0

dte
i
~ [St(p0,q0)+Et−ϕt]

〈
χ

∣∣∣∣∣ptqt
〉
.

Thus the two time integrals of Eq. (11.2.13) are complex conjugated and the overall

expression of the spectral density becomes

I (E) =

(
1

2π~

)F (
1

2π~T

)¨
dp0dq0

∣∣∣∣∣fE (p0,q0)

∣∣∣∣∣
2

=

(
1

2π~

)F (
1

2π~T

)¨
dp0dq0

∣∣∣∣∣ 1

T

T̂

0

dte−
i
~ [St(p0,q0)+Et−ϕt]

〈
ptqt

∣∣∣∣∣χ
〉∣∣∣∣∣

2

. (11.2.14)

The integrand leading to the spectral density is now definite positive. Consquently it

requires a lower number of classical trajectories to converge the integral. This Time Av-

eraged version of the semiclassical spectral density requires only to approximate the pre-

exponential factor as a complex number of unitary modulos, namely to account only for its

phase. Such an approximation becomes exact when harmonic potentials are considered,

where the pre-exponential factor is effectively Ct (p0,q0) = e
i
~ϕt .

11.3 Harmonic oscillator pre-exponential factor

For an harmonic oscillator described by a potential V = 1
2
ω2 (q − q0)2, where q0 is the

equilibrium coordinate, the classical equations of motions (with unitary mass m = 1) are
qt = q0cos (ωt) + p0

ω
sin (ωt)

pt = p0cos (ωt)− ωq0sin (ωt)

(11.3.1)
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The monodromy matrix element are then



Mqq = cos (ωt)

Mqp = 1
ω
sin (ωt)

Mpq = −ωsin (ωt)

Mpp = cos (ωt) .

By substituting into Eq. (3.2.3) we obtain (assuming ~ = 1)

Ct =

√
1

2

(
cos (ωt) + cos (ωt)− isin (ωt) +

1

i
sin (ωt)

)
= e−

1
2
iωt. (11.3.2)

Alternatively, we can take advantage of the Log-derivative formulation of the pre-exponential

factor. In this case the Riccati equation (5.3.2) is analytically solvable since we have to

solve a first order differential equation of the type

Ṙt = −ω2 −Rt, (11.3.3)

where in this context the hessian becomes a constant Kt = ω2. The general solution is

Rt = −ωtan (ωc1 + ωt)

that can be written also as

Rt = −ω tan (ωc1) + tan (ωt)

1− tan (ωc1) tan (ωt)
.

By substituting the initial condition R0 = −iω we obtain c1 = 1
ω

arctan [i] and

Rt = −ω i+ tan (ωt)

1− itan (ωt)
= −iω (11.3.4)
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The Riccati solution is a constant imaginary number that substituted into Eq. (5.3.1) leads

to

Ct (p0, q0) =

√[
1

2

(
1 +

i

ω
Rt

)]
e

1
2

´ t
0 dτRτ = e−

1
2
ωt, (11.3.5)

that is equivalent to Eq. (11.3.2).
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