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Abstract

The aim of the paper is to establish optimal stability estimates for the determi-
nation of sound-hard polyhedral scatterers in RN , N ≥ 2, by a minimal number of
far-field measurements. This work is a significant and highly nontrivial extension of the
stability estimates for the determination of sound-soft polyhedral scatterers by far-field
measurements, proved by one of the authors, to the much more challenging sound-hard
case.

The admissible polyhedral scatterers satisfy minimal a priori assumptions of Lips-
chitz type and may include at the same time solid obstacles and screen-type components.
In this case we obtain a stability estimate with N far-field measurements. Important
features of such an estimate are that we have an explicit dependence on the parameter
h representing the minimal size of the cells forming the boundaries of the admissible
polyhedral scatterers, and that the modulus of continuity, provided the error is small
enough with respect to h, does not depend on h. If we restrict to N = 2, 3 and to
polyhedral obstacles, that is to polyhedra, then we obtain stability estimates with fewer
measurements, namely first with N − 1 measurements and then with a single measure-
ment. In this case the dependence on h is not explicit anymore and the modulus of
continuity depends on h as well.
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1 Introduction

A set Σ ⊂ RN , N ≥ 2, is called a scatterer if it is a compact set such that RN\Σ is
connected. A scatterer is said to be an obstacle if it is the closure of an open set and it is
said to be a screen if its interior is empty.
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If an incident time-harmonic acoustic wave encounters a scatterer then it is perturbed
through the creation of a scattered or reflected wave. The total wave is given by the super-
position of the incident and the scattered wave and it is characterized by the total field u,
solution to the following exterior boundary value problem

∆u+ k2u = 0 in RN\Σ
u = ui + us in RN\Σ
B.C. on ∂Σ

lim
r→∞

r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖.

Here k > 0 in the reduced wave equation, or Helmholtz equation, is the wavenumber and ui is
the incident field, that is the field of the incident wave. The incident field is usually an entire
solution of the Helmholtz equation, here we shall always assume that the incident wave is
a time-harmonic plane wave with direction of propagation v ∈ SN−1, that is ui(x) = eikx·v,
x ∈ RN . Instead us is the scattered field, that is the field of the scattered wave. The last
limit is the Sommerfeld radiation condition and corresponds to the fact that the scattered
wave is radiating. Moreover it implies that the scattered field has the following asymptotic
behavior

us(x) =
eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) +O

(
1

‖x‖

)}
,

where x̂ = x/‖x‖ ∈ SN−1 and u∞ is the so-called far-field pattern of us. We shall also write
u∞(x̂; Σ, k, v) to specify its dependence on the observation direction x̂ ∈ SN−1, the scatterer
Σ, the wavenumber k > 0 and the direction of propagation of the incident field v ∈ SN−1.

Finally, the boundary condition on the boundary of Σ depends on the physical properties
of the scatterer Σ. If Σ is sound-soft, then u satisfies a homogeneous Dirichlet condition
whereas if Σ is sound-hard we have a homogeneous Neumann condition. We remark that
other conditions such as the impedance boundary condition or transmission conditions for
penetrable scatterers may be of interest for the applications.

The inverse scattering problem consists of recovering the scatterer Σ by its correspond-
ing far-field measurements for one or more incident waves. Such an inverse problem is of
fundamental importance to many areas of science and technology including radar and sonar
applications, geophysical exploration, medical imaging and nondestructive testing. For a
general introduction on this inverse problem see for instance [4, 12].

Physically, a far-field measurement is obtained by sending an incident plane wave and
measuring the scattered wave field faraway at every possible observation directions, namely
by measuring the far-field pattern u∞ of us.

If we measure the far-field pattern for just one incident plane wave, then we say that we
use a single far-field measurement. We can obtain multiple far-field measurements by sending
different incident plane waves, changing either the wavenumber or the incident direction of
propagation, and measuring the corresponding far-field patterns. In this paper we shall
assume that the wavenumber k is fixed and, in order to perform more measurements, we
shall modify the incident direction of propagation.

It is readily seen that the inverse problem is nonlinear and that it is formally determined
with a single far-field measurement. Establishing the unique determination result in this
formally-determined case is a longstanding problem in the inverse scattering theory.
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The first uniqueness result is due to Schiffer who proved the determination of a sound-
soft obstacle by infinitely many far-field measurements, see [14]. This result was improved to
the case of finitely many measurements for obstacles in [5] and for screens in [18]. Stability
estimates for the sound-soft case was proved in [10, 11]

For what concerns the sound-hard case, following the method developed in [9] for the
transmission conditions, uniqueness for the determination of sound-hard obstacles by in-
finitely many far-field measurements was shown in [13]. The same result was also obtained
in the case of the impedance boundary condition.

If one reduces to a particular class of scatterers, namely the one of polyhedral scatterers,
then the number of measurements needed may be considerably reduced. The first contribu-
tion in this direction may be found in [3] where polyhedral obstacles in dimension 2, with
a suitable further non-trapping condition, were considered.

In [1] the uniqueness for a general sound-soft polyhedral scatterer with a single measure-
ment was proved in any dimension N ≥ 2. In [15] the uniqueness for a general sound-hard
polyhedral scatterer with N measurements was established, again in any dimension N ≥ 2.
It was further shown in [16] that the number of measurements may not be reduced if
sound-hard screens are allowed. However, if one considers only polyhedral obstacles, that is
polyhedra, then a single measurement is enough in any dimension N ≥ 2. This result was
proved first for N = 2, [6], and then extended to any N ≥ 3, [7].

Concerning stability results for the determination of polyhedral scatterers by a minimal
number of far-field measurements, the only result available in the literature may be found
in [20], where stability estimates for the determination of sound-soft polyhedral scatterers
in R3 with a single measurement were established. The admissible polyhedral scatterers are
there assumed to satisfy essentially minimal regularity assumptions of Lipschitz type and
the stability estimate is optimal, although of a logarithmic type. A particularly interesting
feature of such an estimate is that there is an explicit dependence on the parameter h, h
representing the minimal size of the cells forming the boundaries of the admissible polyhedral
scatterers, and that the modulus of continuity, provided the error is small enough with
respect to h, does not depend on this size parameter h.

In this work we extend the stability results of [20] to the more challenging case of
sound-hard polyhedral scatterers. In order to deal with sound-hard scatterers, especially
when we consider determination of polyhedra with fewer measurements, there are many
highly technical modifications. Moreover, there are significant extensions with respect to
the sound-soft case as considered in [20] that we shall briefly discuss in what follows.

We begin by establishing the stability for the determination of sound-hard polyhedral
scatterers of general type, that may include, for instance, obstacles and screens at the same
time. We consider the general case of RN , with N ≥ 2. In this case the number of far-
field measurements that are required for uniqueness, thus for stability as well, can not be
reduced to a number less than N . The stability result for the determination of sound-hard
polyhedral scatterers in RN by N far-field measurements is contained in Theorem 3.1.

The strategy that we utilize to establish the stability estimate of Theorem 3.1 follows a
similar spirit to the one used in [20] for sound-soft scatterers. Apart from some modifications
needed to deal with the Neumann boundary condition instead of the Dirichlet one, the main
significant difference is that, in the sound-hard case, the required a priori bounds on the
solution of the direct scattering problem, which need to be independent on the scatterer,
are much harder to prove. This key preliminary point requires to establish suitable decay
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estimates of the scattered fields as ‖x‖ → +∞ that are uniform with respect to the scatterer
Σ; see Proposition 2.12. This is obtained with the help of the stability result in [17] for the
solution of the direct problem with respect to the variation of the scatterer Σ.

Even if the strategy is similar, still there are significant novelties and extensions here
with respect to the results contained in [20]. One of these is the fact that we generalize the
technique from R3 to RN , with N ≥ 2.

More importantly, we consider a much more general and versatile class of admissible
polyhedral scatterers with respect to the one used in [20]. Such a class is characterized by
essentially minimal regularity assumptions of Lipschitz type. In the preliminary Section 2,
in particular in Subsection 2.1, we introduce and extensively discuss several classes of ad-
missible scatterers. These classes are extremely general and may turn out to be useful on
many occasions, even not linked to scattering or inverse problems, so we believe that this
subsection is of independent interest.

The use of such a new improved class of polyhedral scatterers requires solving some
technical difficulties that are illustrated in Steps I and II of the geometric construction of
Section 4.

A remarkable consequence of these developments is that we can also generalize the
result of [20] to this new class of polyhedral scatterers and to any dimension N ≥ 2; see
Theorem 3.2.

Moreover, we notice the following important features of the stability estimates of Theo-
rems 3.1 and 3.2. First of all, these stability estimates are optimal, the dependence on the
size parameter h is explicit, and the modulus of continuity, when the error is small enough
with respect to h, does not depend on h.

Finally, besides far-field measurements, we can also employ near-field measurements
and even the more general near-field measurements with limited aperture; see Section 2,
in particular Subsection 2.2. This is actually true for all of our stability results, which are
indeed stated with respect to near-field measurements with a limited aperture, rather than
with respect to far-field measurements. However the results of Subsection 2.2 easily allow
to obtain the corresponding estimates with respect to far-field or near-field measurements;
see Remark 3.5

Having established a general stability result for the determination of sound-hard poly-
hedral scatterers by N far-field measurements, we proceed to prove stability results for the
determination of polyhedral obstacles, that is polyhedra, by fewer than N measurements.
In this case, for technical reasons, we limit ourselves to N = 2, 3. We are able to prove a
stability result with a single measurement, see Theorem 3.4. The stability estimate is still of
optimal type, however we lose the explicit dependence on h and the modulus of continuity
depends, in a rather involved way, on h as well.

In order to approach the challenging technical difficulties of the proof of Theorem 3.4
in a slightly simplified case, we first prove a stability results for polyhedra with N − 1
measurements, again for N = 2, 3, see Theorem 3.3.

We observe that the inverse sound-hard obstacle problem with a single measurement is
substantially different from the sound-soft case and requires a completely new and rather
difficult analysis. In fact, the key difficulty, as for the uniqueness issue, is to avoid, in
the reflection process used in the geometric construction of Section 4, the reflection in a
hyperplane whose normal is orthogonal to the incident direction of propagation and with
respect to which the obstacle is symmetric. In the N−1 measurements case, for any obstacle
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actually at most one hyperplane must be avoided. Still this is not an easy task, and an
ad hoc modification of the general geometric construction of Section 4 is required, see
Subsection 5.2. In the one measurement case in R3, the problem becomes even more involved.
In fact there might be several planes to be avoided and further difficulties arise since we
need to take into account all of them simultaneously. This is performed in Subsection 5.3.

The plan of the paper is as follows. In Section 2 we discuss a few preliminaries. In
particular we define and study suitable classes of admissible scatterers and we present a few
basic properties of the solutions to the corresponding scattering problems. In Section 3 the
main stability results are stated. In Section 4 we present the main geometric construction.
Finally, in Section 5 we conclude the proofs of our stability results.

Acknowledgements

The work of Hongyu Liu was supported by FRG grants from Hong Kong Baptist University,
Hong Kong RGC General Research Funds, 12302415 and 405513, and the NSFC grant, No.
11371115. Luca Rondi was partly supported by Università degli Studi di Trieste through
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2 Classes of admissible scatterers and preliminaries

The integer N ≥ 2 shall always denote the space dimension. We notice that we always omit
the dependence of constants on the space dimension N .

For any x ∈ RN , N ≥ 2, we denote x = (x′, xN ) ∈ RN−1 × R and x = (x′′, xN−1, xN ) ∈
RN−2 × R × R. For any s > 0 and any x ∈ RN , Bs(x) denotes the ball contained in
RN with radius s and center x, whereas B′s(x

′) denotes the ball contained in RN−1 with
radius s and center x′. Moreover, Bs = Bs(0) and B′s = B′s(0). For any ball B centered
at zero we denote B± = B ∩ {y ∈ RN : yN ≷ 0}. Analogously, for any hyperplane Π
in RN , we use the following notation. If, with respect to a suitable Cartesian coordinate
system, we have Π = {y ∈ RN : yN = 0} then for any x ∈ Π and any r > 0 we denote
B±r (x) = Br(x) ∩ {yN ≷ 0}. Furthermore, we denote with TΠ the reflection in Π, namely
in this case for any y = (y1, . . . , yN−1, yN ) ∈ RN we have TΠ(y) = (y1, . . . , yN−1,−yN ).
Finally, for any E ⊂ RN , we denote Bs(E) =

⋃
x∈E Bs(x).

Given a point x ∈ RN , a vector v ∈ SN−1, and constants r > 0 and θ, 0 < θ ≤ π/2, we
call C(x, v, r, θ) the open cone with vertex in x, bisecting vector given by v, radius r and
amplitude given by θ, that is

C(x, v, r, θ) =

{
y ∈ RN : 0 < ‖y − x‖ < r and cos(θ) <

y − x
‖y − x‖

· v ≤ 1

}
.

We remark that by a cone we always mean a bounded not empty open cone of the kind
defined above.

By Hs, 0 ≤ s ≤ N , we denote the s-dimensional Hausdorff measure in RN . We recall
that HN coincides with the Lebesgue measure.

2.1 Classes of admissible scatterers and obstacles

We recall that by a scatterer in RN we mean a compact set Σ contained in RN such that
RN\Σ is connected. We say that a scatterer Σ is an obstacle if Σ = Ω where Ω is an open
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set. If the interior of Σ is empty then we usually call it a screen. If Σ is a scatterer in RN
we shall denote G = RN\Σ, which is then a connected open set containing the exterior of
a ball.

A more quantitative assumption on the connectedness of G = RN\Σ is the following. Let
δ : (0,+∞)→ (0,+∞) be a nondecreasing left-continuous function. Let Σ be a compact set
contained in RN . We say that Σ satisfies the uniform exterior connectedness with function
δ if for any t > 0, for any two points x1, x2 ∈ RN so that Bt(x1) and Bt(x2) are contained
in RN\Σ, and for any s, 0 < s < δ(t), then we can find a smooth (for instance C1) curve γ
connecting x1 to x2 so that Bs(γ) is contained in RN\Σ as well.

Let us notice that such an assumption is closed under convergence in the Hausdorff
distance and that δ(t) ≤ t for any t > 0.

We wish to define suitable classes of admissible scatterers. We begin with some defini-
tions.

Let K be a compact subset of RN . We say that K is a mildly Lipschitz hypersurface,
with or without boundary, with positive constants r and L if the following holds.

For any x ∈ K there exists a bi-Lipschitz function Φx : Br(x)→ RN such that

a) for any z1, z2 ∈ Br(x) we have

L−1‖z1 − z2‖ ≤ ‖Φx(z1)− Φx(z2)‖ ≤ L‖z1 − z2‖;

b) Φx(x) = 0 and Φx(K ∩Br(x)) ⊂ Π = {y ∈ RN : yN = 0};

We say that x ∈ K belongs to the interior of K if there exists δ, 0 < δ ≤ r, such that
Bδ(0) ∩ Π ⊂ Φx(K ∩ Br(x)). Otherwise we say that x belongs to the boundary of K. We
remark that the boundary of K might be empty. Further we assume that

c) for any x belonging to the boundary of K, we have that

Φx(K ∩Br(x)) = Φx(Br(x)) ∩Π+

where Π+ = {y ∈ RN : yN = 0, yN−1 ≥ 0}.

Let us notice that, by compactness, such an assumption is enough to guarantee that
HN−1(K) is bounded, hence |K| = 0. In particular, HN−1(K) is bounded by a constant
depending on the diameter of K, r and L only. Furthermore, the boundary of K has HN−2

measure bounded by a constant again depending on the diameter of K, r and L only.
Moreover, K has a finite number of connected components, again bounded a constant

depending on the diameter of K, r and L only, and the distance between two different
connected components of K is bounded from below by a positive constant depending on r
and L only.

Let us fix a bounded open set Ω ⊂ RN , N ≥ 2. We shall call B(r, L,Ω) the set of K ⊂ Ω
such that K is a mildly Lipschitz hypersurface with constants r and L. We notice that such
a set is compact with respect to the Hausdorff distance, see for instance Lemma 3.6 in [17].
We finally remark that such a class is strictly related to a similar one introduced in [8].

Let K be a compact subset of RN . We say that K is a Lipschitz hypersurface, with or
without boundary, with positive constants r and L if the following holds.
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For any x ∈ K, there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and which
is Lipschitz with Lipschitz constant bounded by L, such that, up to a rigid change of
coordinates, we have x = 0 and

(2.1) Br(x) ∩K ⊂ {y ∈ Br(x) : yN = ϕ(y′)}.

We say that x ∈ K belongs to the interior of K if there exists δ, 0 < δ ≤ r, such that
Bδ(x) ∩K = {y ∈ Bδ(x) : yN = ϕ(y′)}. Otherwise we say that x belongs to the boundary
of K. We remark that the boundary of K might be empty. For any x belonging to the
boundary of K, we assume that there exists another function ϕ1 : RN−2 → R, such that
ϕ1(0) = 0 and which is Lipschitz with Lipschitz constant bounded by L, such that, up to
the previous rigid change of coordinates, we have x = 0 and

(2.2) Br(x) ∩K = {y ∈ Br(x) : yN = ϕ(y′), yN−1 ≤ ϕ1(y′′)}.

We call (2.1) and (2.2) the L-Lipschitz representation of K in Br(x), where (2.2) is reserved
for points belonging to the boundary of K.

We notice that a Lipschitz hypersurface with constants r and L is also a mildly Lipschitz
hypersurface with positive constants r̃ and L̃ depending on r and L only. Furthermore, we
call C = C(r, L,Ω) the class of Lipschitz hypersurfaces with constants r and L contained
in Ω. We notice that C is compact with respect to the Hausdorff distance, too, and that
C(r, L,Ω) ⊂ B(r̃, L̃,Ω).

We need the following notation. For any direction v ∈ SN−1, we denote by v̂ the couple
v̂ = {v,−v}. We also define the following distance

d(v̂1, v̂2) = min{‖v1 − v2‖, ‖v1 + v2‖} for any v1, v2 ∈ SN−1.

Let K be a compact subset of RN . We say that K is a strongly Lipschitz hypersurface,
with or without boundary, with positive constants r and L if the following holds.

First we assume that K is a Lipschitz hypersurface with constants r and L. Then
we assume the following further property. For any x ∈ K, let e1(x), . . . , eN (x) be the unit
vectors representing the orthonormal base of the coordinate system for which the L-Lipschitz
representation of K in Br(x), (2.1) and (2.2), holds. Then êN (x) is a Lipschitz function of
x ∈ K, with Lipschitz constant bounded by L, and eN−1(x) is a Lipschitz function of x, as
x varies in the boundary of K, with Lipschitz constant bounded by L.

The usefulness of introducing the idea of strongly Lipschitz hypersurfaces is shown in
the following proposition.

Proposition 2.1 Let Σ be a scatterer such that K = ∂Σ is a strongly Lipschitz hypersurface
with positive constants r and L.

Then there exists a nondecreasing left-continuous function δ : (0,+∞) → (0,+∞),
depending on r and L only, such that Σ satisfies the uniform exterior connectedness with
function δ.

Proof. Under these assumptions, the conclusions of Proposition 4.2 in [17] hold, that is,
we can find constants 0 < a ≤ 1 ≤ b and h0 > 0, depending on r and L only, and a Lipschitz
function d̃ : RN → [0,+∞) such that

a dist(x,Σ) ≤ d̃(x) ≤ bdist(x,Σ) for any x ∈ RN
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and, for any h, 0 < h ≤ h0, RN\Σh is connected, where Σh = {x ∈ RN : d̃(x) ≤ h}. Let us
notice that the assumption used in [17, Proposition 4.2] that K should be oriented is not
really necessary.

Therefore, fixed t > 0, let x1, x2 ∈ RN be any two points so that Bt(x1) and Bt(x2)
are contained in RN\Σ. Then d̃(xi) ≥ at for any i = 1, 2. Provided h = at/2 ≤ h0, then
xi ∈ RN\Σh for any i = 1, 2. Then we can find a smooth (for instance C1) curve γ connecting
x1 to x2 so that γ is contained in RN\Σh. This means that any point x of γ is such that
dist(x,Σ) ≥ d̃(x)/b > at/(2b).That is we can choose

(2.3) δ(t) =

{
at/(2b) t ∈ (0, 2h0/a]
h0/b t ∈ [2h0/a,+∞)

and the proof is concluded. �

Our next aim is to provide sufficient conditions for a Lipschitz hypersurface to be a
strongly Lipschitz hypersurface. We begin with the following lemma.

Lemma 2.2 Let us fix positive constants r and L. Let K ⊂ K̃ be compact subsets of RN
such that for any x ∈ K there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and
which is Lipschitz with Lipschitz constant bounded by L, such that, up to a rigid change of
coordinates, we have x = 0 and

(2.4) Br(x) ∩ K̃ = {y ∈ Br(x) : yN = ϕ(y′)}.

Then there exist positive constants r̃ and L̃, depending on r and L only, such that for
any x ∈ K there exists a function ϕ̃ : RN−1 → R, such that ϕ̃(0) = 0 and which is Lipschitz
with Lipschitz constant bounded by L̃, such that, up to a rigid change of coordinates, we
have x = 0 and

(2.5) Br̃(x) ∩ K̃ = {y ∈ Br̃(x) : yN = ϕ̃(y′)}

and the following further property holds. For any x ∈ K, let e1(x), . . . , eN (x) be the unit
vectors representing the orthonormal base of the coordinate system for which the L̃-Lipschitz
representation of K̃ in Br̃(x), (2.5), holds. Then êN (x) is a Lipschitz function of x ∈ K,
with Lipschitz constant bounded by L̃.

Proof. Let us fix x ∈ K. Locally, we can give an orientation to K̃ near x, therefore without
loss of generality we can assume that, locally near x, K̃ is the boundary of a Lipschitz open
set. More precisely, we can assume there exists an open set Ω such that K̃∩Br(x) ⊂ ∂Ω and,
for any y ∈ K̃ whose distance from x is less than r/2, we have K̃ ∩Br/4(y) = ∂Ω∩Br/4(y)
and

Ω ∩Br/4(y) = {z ∈ Br/4(y) : zN < ϕ(z′)},

where ϕ and the orientation depend on y.
Let now y1 and y2 be two points belonging to Br/16(x). Let e1

N and e2
N be the correspond-

ing vectors for which the previous Lipschitz representation holds. Then for any y ∈ Br/8(x)
we can find two open cones C1 and C2, with vertex in y, amplitude given by an angle α0,
0 < α0 < π/2 depending on L only, radius r0 = r/16, and bisecting vector given by e1

N and
e2
N respectively such that Ci does not intersect Ω whereas the opposite cone is contained in
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Ω for any i = 1, 2. First we notice that the angle between e1
N and e2

N is bounded by π−2α0.
Then we take any unit vector ν on the shorter arc of the great circle on the unit sphere
passing through e1

N and e2
N .

Then there exists an absolute constant α̂0, 0 < α̂0 < π/2, such that, provided α0 ≤ α̂0,
we have that the open cone C with vertex in y, amplitude given by the angle α1 = α0/2,
radius r1 = (α0/3)r0, and bisecting vector ν does not intersect Ω whereas the opposite cone
is contained in Ω. We call this property an interior and exterior cone condition for Ω at
y ∈ ∂Ω, with amplitude α1, radius r1 and bisecting vector ν. The proof follows from an
elementary, although lengthy, geometric construction and we omit its details.

If one performs such a construction iteratively N times, one obtains

αN =
α0

2N
and rN =

αN0
3N2N(N−1)/2

r0.

Then we subdivide the whole RN into (closed) cubes with sides of length r̃1 such that
their diameter is less than or equal to r/64. We then consider only cubes whose intersection
with K is not empty. Let us fix one of these and let us call it Q. For any vertex xi, i =
1, . . . , 2N , of the cube Q we consider a point x̃i ∈ K∩Q such that dist(xi,K∩Q) = ‖xi−x̃i‖.
Then we consider eiN as the vector corresponding to the Lipschitz representation at the point
x̃i. To illustrate our construction, let us assume for simplicity that Q = [0, r̃1]N . We take
the points x1 = (0, 0, . . . , 0) and x2 = (r̃1, 0, . . . , 0) and we construct a Lipschitz function
eN on the segment connecting x1 and x2 such that eN (xi) = eiN , i = 1, 2, and that, for any
x in such a segment, eN (x) belongs to the shorter arc of the great circle on the unit sphere
passing through e1

N and e2
N . Clearly the Lipschitz constant of such a function eN may be

bounded by a constant depending on r̃1 only. Then we perform the same construction on the
segment connecting (0, r̃1, 0 . . . , 0) and (1, r̃1, 0 . . . , 0) and, then, on the segments connecting
(t, 0, 0, . . . , 0) to (t, r̃1, 0 . . . , 0), for any t, 0 ≤ t ≤ r̃1. We iterate such a construction until
we find a Lipschitz function eN : Q→ SN−1 with Lipschitz constant bounded by a constant
depending on r̃1 only, with the following property. For any y ∈ Q ∩ K we have that Ω
satisfies an interior and exterior cone condition at any z ∈ K̃ ∩ Br/16(y), with amplitude

αN , radius rN and bisecting vector eN (y), therefore we have a Lipschitz representation of K̃
at y with constants r̃ and L̃ depending on αN and rN only, thus on r and L only. Performing
the same construction on any cube, the proof can be concluded. �

Let us notice that if K is oriented, then we can choose eN (x) itself as a Lipschitz function
of x ∈ K. We also observe that if K is without boundary, then it is oriented, by the Jordan-
Brouwer separation theorem, and we can choose K̃ = K. Clearly these remarks applies to
any connected component of K. If we limit ourselves to Lipschitz hypersurfaces without
boundary then we have the following corollary.

Corollary 2.3 Let us fix positive constants r and L. Let K be a Lipschitz hypersurface with
constants r and L without boundary. Then there exist positive constants r̃ and L̃, depending
on r and L only, such that K is a strongly Lipschitz hypersuface with constants r̃ and L̃.

We conclude this discussion on sufficient conditions for a Lipschitz hypersurface to be a
strongly Lipschitz hypersurfaces by proving the following proposition.
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Proposition 2.4 Let us fix positive constants r and L. Let K be a Lipschitz hypersurface
with constants r and L. For any x ∈ K, let e1(x), . . . , eN (x) be the unit vectors representing
the orthonormal base of the coordinate system for which the L-Lipschitz representation of
K in Br(x), (2.1) and (2.2), holds.

Let us assume that êN (x) is a Lipschitz function of x ∈ K, with Lipschitz constant
bounded by L.

Then there there exist positive constants r̃ and L̃, depending on r and L only, such that
K is a strongly Lipschitz hypersurface with constants r̃ and L̃.

Proof. Take two couples of orthogonal vectors e1
N , e1

N−1 and e2
N , e2

N−1 for which the L-
Lipschitz representation holds for the same point x on the boundary of K in a given ball
of radius r. We notice that e2

N = T (e1
N ), where T is a rotation. Then, provided the angle

between e1
N and e2

N is small enough, we have that the same Lipschitz representation holds
for e2

N , e2
N−1 and e2

N , T (e1
N−1). We then apply the arguments of Lemma 2.2 in RN−1 and

the proof may be concluded. �

Let us observe that a sufficient condition for the assumptions of Proposition 2.4 to hold
has been given in Lemma 2.2.

We say that an open set D ⊂ RN is Lipschitz with constant r and L if the following
assumption holds. For any x ∈ ∂D, there exists a function ϕ : RN−1 → R, such that
ϕ(0) = 0 and which is Lipschitz with Lipschitz constant bounded by L, such that, up to a
rigid change of coordinates, we have x = 0 and

Br(x) ∩D = {y ∈ Br(x) : yN < ϕ(y′)}

and, consequently,
Br(x) ∩ ∂D = {y ∈ Br(x) : yN = ϕ(y′)}.

Clearly, ∂D is a Lipschitz hypersurface, without boundary, with the same constants r
and L. Moreover, we notice that D and RN\D satisfy a uniform cone condition, with a cone
depending on r and L only. We recall that, given C a fixed cone in RN , we say that an open
set D ⊂ RN satisfies the cone condition with cone C if for every x ∈ D there exists a cone
C(x) with vertex in x and congruent to C such that C(x) ⊂ D.

We call D = D(r, L,Ω) the class of sets ∂D where D ⊂ Ω is an open set which is
Lipschitz with constants r and L. We have that D(r, L,Ω) ⊂ C(r, L,Ω) ⊂ B(r̃, L̃,Ω), for
some constants r̃, L̃ depending on r and L only. Moreover, also D(r, L,Ω) is compact with
respect to the Hausdorff distance.

We further call D̂ = D̂(r, L,Ω) the class of compact sets Σ ⊂ Ω such that ∂Σ ∈
D(r, L,Ω). Also this class is compact with respect to the Hausdorff distance.

In the following classes, introduced in [17], we combine different (mildly) Lipschitz hy-
persurfaces to obtain more general and complex structures.

Definition 2.5 Let us fix positive constants r, L, and a bounded open set Ω. Let us also
fix ω : (0,+∞)→ (0,+∞) a nondecreasing left-continuous function.

We say that a compact set K ⊂ Ω belongs to the class B̃ = B̃(r, L,Ω, ω), respectively
C̃ = C̃(r, L,Ω, ω), if it satisfies the following conditions.

1) K =
⋃M
i=1K

i where Ki ∈ B(r, L,Ω), respectively C(r, L,Ω), for any i = 1, . . . ,M .
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2) For any i ∈ {1, . . . ,M}, and any x ∈ Ki, if its distance from the boundary of Ki is t > 0,
then the distance of x from the union of Kj , with j 6= i, is greater than or equal to ω(t).

We say that a compact set Σ ⊂ Ω belongs to the class B̃1 = B̃1(r, L,Ω, ω), respectively
C̃1 = C̃1(r, L,Ω, ω), if ∂Σ ∈ B̃(r, L,Ω, ω), respectively ∂Σ ∈ C̃(r, L,Ω, ω).

We observe that, for some constants r̃ and L̃ depending on r and L only, we have
C̃(r, L,Ω, ω) ⊂ B̃(r̃, L̃,Ω, ω) and C̃1(r, L,Ω, ω) ⊂ B̃1(r̃, L̃,Ω, ω).

Let us notice that in the previous definition the number M may depend on K. However,
there exists an integer M0, depending on r, L, the diameter of Ω, and ω only, such that
M ≤ M0 for any K ∈ B̃, respectively C̃. As before, we obtain that HN−1(K) is bounded,
hence |K| = 0. In particular HN−1(K) is bounded by a constant depending on r, L, the
diameter of Ω, and M0 only. Furthermore, if we set as the boundary of K the union of the
boundaries of Ki, i = 1, . . . ,M , then the boundary of K has HN−2 measure bounded by
a constant again depending on r, L, the diameter of Ω, and M0 only. Finally, the number
of connected components of RN\K is bounded by a constant M1 depending on r, L, the
diameter of Ω, and ω only.

Without loss of generality, we shall always assume that ω(t) ≤ t for any t > 0, and that
limt→+∞ ω(t) is equal to a finite real number which we call ω(+∞).

We also remark that, by Condition 2), we have that Ki ∩Kj is contained in the inter-
section of the boundaries of Ki and Kj , for any i 6= j. By [17, Lemma 3.8], we have that
the classes B̃ and C̃ are closed, and actually compact, under convergence in the Hausdorff
distance. In the next lemma we show that this is true for the classes B̃1 and C̃1 as well.

Lemma 2.6 The classes B̃1 and C̃1 introduced in Definition 2.5 are compact under conver-
gence in the Hausdorff distance.

Moreover, let Σ belong to B̃1, or to C̃1, and x ∈ ∂Σ. We call G = RN\Σ. For any
r1 > 0, the number of connected components U of Br1(x) ∩G such that x ∈ ∂U is bounded
by a constant M2 depending on r1, r, L, and ω only. Finally, the number of connected
components of Br1(x) ∩G intersecting Br1/2(x) is bounded by a constant M3 depending on
r1, r, L, and ω only.

Proof. We begin by proving the second part of the lemma. It is clearly enough to consider
the case in which Σ ∈ B̃1. Let U be a connected component of Br1(x)∩G such that x ∈ ∂U .
We wish to prove that there exists s1 > 0, depending on r1, r, L, and ω only, and y such
that Bs1(y) ⊂ U .

Without loss of generality we can assume that r1 ≤ r̃1 for some r̃1 depending on r and
L only. Let y0 ∈ U be such that ‖y0 − x‖ ≤ r1/8 and let y1 ∈ ∂Σ ∩ ∂U be such that
‖x − y1‖ ≤ r1/4 and such that y1 belongs to the interior of Ki for some i ∈ {1, . . . ,M},
where ∂Σ = K =

⋃M
i=1K

i as in Condition 1). If the distance of y1 from the boundary of
Ki is greater than r1/8, then the conclusion is immediate. Otherwise, let y2 be a point in
the boundary of Ki whose distance from y1 is less that r1/8. By the local description of
Ki near y2, we can find a point y3 ∈ Ki ∩ ∂U such that ‖x− y3‖ ≤ r1/2 and such that its
distance from the boundary of Ki is at least r1/C for some constant C ≥ 8 depending on
L only. Then again we can conclude.

This property immediately implies that the number of connected components U of
Br1(x)∩G such that x ∈ ∂U is bounded by a constant M2 depending on r1, r, L, and ω only.
Moreover, it will be crucial to prove the compactness in the Hausdorff distance. We conclude
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the proof of the second part with the following argument. For any y ∈ Br1/2(x)∩G we call
U(y) the connected component of Br1(x)∩G containing y. There exists x(y) ∈ ∂U(y)∩∂Σ,
such that ‖y−x(y)‖ < r1/2 and ‖x(y)−x‖ < r1/2. Therefore V (y), the connected component
of Br1/2(x(y)) ∩G containing y is such that V (y) ⊂ U(y) and x(y) ∈ ∂V (y).

We assume that there exist points yn ∈ Br1/2(x) ∩ G, for n = 1, . . . , n0, such that
Un = U(yn) are pairwise disjoint. Therefore, also Vn = V (yn) are pairwise disjoint, for
n = 1, . . . , n0. By the previously proved property, we have that n0 is bounded by a constant
M3 depending on r1, r, L, and ω only.

About compactness in the Hausdorff distance, it is enough to prove that the class B̃1 is
closed. We recall that if Σn converges to Σ in the Hausdorff distance as n → ∞, and we
assume that Σn, n ∈ N, and Σ are compact sets which are uniformly bounded, then

Σ = {x ∈ RN : there exists xn ∈ Σn such that lim
n
xn = x}.

We assume that Σn ∈ B̃1 converges as n → ∞ to Σ. We already know that, up to
subsequences that we do not relabel, ∂Σn → Σ̃ ∈ B̃.

It is a general fact that ∂Σ ⊂ Σ̃ ⊂ Σ. Hence we just need to show that Σ̃ = ∂Σ. By
contradiction, we assume that there exists x ∈ Σ̃\∂Σ. Clearly x belongs to the interior of
Σ, that is for some d > 0 we have Bd(x) ⊂ Σ. We can find xn ∈ ∂Σn, n ∈ N, such that
limn xn = x. We pick r1 = d/4 and we assume that, for n large enough, ‖x−xn‖ < d/4. For
any n large enough, there exists yn such that Bs1(yn) ∩ Σn = ∅ and Bs1(yn) ⊂ Bd/4(xn) ⊂
Bd/2(x). Up to a subsequence, that we do not relabel, limn yn = y ∈ Bd/2(x). But y should
belong to Σ, hence there exists ỹn ∈ Σn, n ∈ N, such that limn ỹn = y, therefore for any n
large enough we have that ‖ỹn − yn‖ < s1 and this is a contradiction.

The argument for the class C̃1 is completely analogous, and the proof is concluded. �

Finally, we consider the following definition. We recall that T : D → D′, D and D′ being
open subsets of RN , is said to be a bi-W 1,∞ mapping with constant L if T is bijective and
both ‖JT‖L∞(D) and ‖J(T−1)‖L∞(D′) are bounded by L. Here T−1 is the inverse of T and
JT denotes the Jacobian matrix of T .

Definition 2.7 Let us fix a bounded open set Ω and positive constants r, L, 0 < r1 < r and
C̃ > 0. Let us also fix ω : (0,+∞)→ (0,+∞), a nondecreasing left-continuous functions.

We call B̂ = B̂(r, L,Ω, r1, C̃, ω) and Ĉ = Ĉ(r, L,Ω, r1, C̃, ω) the classes of sets satisfying
the following assumptions:

i) any Σ ∈ B̂, respectively Ĉ, is a compact set contained in Ω ⊂ RN such that Σ belongs
to B̃1(r, L,Ω, ω), respectively C̃1(r, L,Ω, ω). We call G = RN\Σ.

ii) for any x ∈ ∂Σ and any U connected component of G ∩ Br1(x), with x ∈ ∂U , we can
find an open set U ′ such that

(2.6) U ⊂ U ′ ⊂ G,

and a bi-W 1,∞ mapping T : (−1, 1)N−1 × (0, 1) → U ′, with constant C̃, such that
the following properties hold. By the regularity of Q = (−1, 1)N−1 × (0, 1), T can be
actually extended up to the boundary and we have that T : Q→ RN is a Lipschitz map
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with Lipschitz constant bounded by C̃. Furthermore, if we set Γ = [−1, 1]N−1 × {0},
we require that

(2.7) T (0) = x and ∂U ∩Br1(x) ⊂ T (Γ) ⊂ ∂G,

and that, for any 0 < s < r1 and any y ∈ U ∩Br1−s(x), we have

(2.8) dist(T−1(y), ∂Q\Γ) ≥ ω(s).

Remark 2.8 We notice that clearly T (∂Q) = ∂U ′ and ∂U ∩Br1(x) ⊂ ∂G.
It is pointed out that, up to suitably changing the constants r1 and C̃ involved, Con-

dition ii) is satisfied provided it holds only for points x belonging to the boundaries of Ki,
i = 1, . . . ,M , where ∂Σ =

⋃M
i=1Ki by Condition i).

Again, we have Ĉ(r, L,Ω, r1, C̃, ω) ⊂ B̂(r̃, L̃,Ω, r1, C̃, ω), for some constants r̃ and L̃
depending on r and L only, We also remark that, for some constants and functions depending
on r, L, and the diameter of Ω only, we have D̂(r, L,Ω) ⊂ Ĉ(r̂, L̂,Ω, r1, C̃, ω).

It is emphasised that Condition ii) is an extremely weak regularity condition and that
it is satisfied by rather complex structures, see for instance the discussion on sets in R3

satisfying this assumption in Section 4 of [19], where several examples are shown.
The following compactness result holds true.

Lemma 2.9 The classes B̂ and Ĉ introduced in Definition 2.7 are compact under conver-
gence in the Hausdorff distance.

Proof. The argument is the same for both classes B̂ and Ĉ, so we limit ourselves to the first
one. It is enough to prove that the class is closed. By Lemma 2.6, we just need to prove that
also Condition ii) is preserved in the limit. Let Σn ∈ B̂, n ∈ N, be such that Σn → Σ ∈ B̃1

in the Hausdorff distance as n→∞.
Let x ∈ ∂Σ and let U be a connected component of G∩Br1(x) with x ∈ ∂U . Let y and

s > 0 be such that Bs(y) ⊂ U and ‖y − x‖ < r1/2. We also consider a continuous curve
γ : [0, 1]→ RN such that γ(0) = y, γ(1) = x, and γ(t) ∈ U for any t ∈ [0, 1). Let Ũn, n ∈ N,
be the connected component of Gn containing y, at least for n large enough.

Let {tm}m∈N ⊂ [0, 1) be an increasing sequence such that ‖γ(tm) − x‖ < 1/m. Then
there exists an increasing sequence {nm}m∈N of integers such that for any n ≥ nm we have
γ([0, tm]) ⊂ Ũn. Since there exists x̃n ∈ Σn converging to x as n→∞, we can conclude that
there exists xnm ∈ ∂Ũnm ∩ ∂Σnm such that limm xnm = x. It is also not difficult to show
that, for any m large enough, we can find Unm , a connected component of Br1(xnm)∩Gnm ,
such that xnm ∈ ∂Unm , y ∈ Unm , ‖y − xnm‖ < r1/2, and Unm ⊂ Ũnm .

We call Tm : Q → U ′nm with Unm ⊂ U ′nm ⊂ Gnm as in Condition ii). Clearly, up to a
subsequence that we do not relabel, Tm converges uniformly on Q to T : Q→ RN , T being a
Lipschitz function with constant C̃. Obviously T (0) = x and a straightforward computation
shows that T |Q is actually bi-W 1,∞, with constant C̃, between Q and U ′. We have that U ′

is connected and we need to show that U ′ ∩ Σ = ∅, that is U ′ ⊂ G.
We assume, by contradiction, that there exists w ∈ Q such that T (w) ∈ Σ. By the bi-

W 1,∞ property, we have that Bs(Tm(w)) ⊂ Tm(Q), for some s > 0 independent of m. There
exists yn ∈ Σn, n ∈ N, such that limn yn = T (w). On the other hand, limm Tm(w) = T (w)
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as well, hence for m large enough we have ‖ynm − Tm(w)‖ < s and this is a contradiction
to the fact that Tm(Q) ∩ Σnm = ∅.

Next, we prove the first inclusion of (2.6). Let x1 ∈ U be fixed. There exists a continuous
curve γ1 in U connecting x1 with y. We have that, for some d > 0, Bd(γ1) ⊂ U , therefore, for
any m large enough, Σnm ∩ Bd/2(γ1) = ∅ and Bd/2(γ1) ⊂ Br1(xnm). Therefore, Bd/2(γ1) ⊂
Unm and in particular Bd/2(x1) ⊂ Unm ⊂ U ′nm . By a reasoning completely analogous to the
one used to prove that U ′ ⊂ G, we conclude that x1 ∈ U ′.

For what concerns (2.7) and (2.8), these can be proved with straightforward modifica-
tions of the above arguments and the proof is complete. �

Now we are ready to define the following classes of admissible scatterers.

Definition 2.10 Let us fix positive constants r, L and R, 0 < r1 < r and C̃ > 0. Let us also
fix ω : (0,+∞) → (0,+∞) and δ : (0,+∞) → (0,+∞) two nondecreasing left-continuous
functions.

We call B̂scat = B̂scat(r, L,R, r1, C̃, ω, δ) the class of compact sets Σ such that Σ belongs
to B̂(r, L,BR, r1, C̃, ω) and satisfies the uniform exterior connectedness with function δ.

We also define B̃scat = B̃scat(r, L,R, ω, δ) the class of compact sets Σ belonging to
B̃1(r, L,BR, ω) and satisfying the uniform exterior connectedness with function δ.

Completely analogous definitions may be given for Ĉscat and C̃scat.
We further call D̂obst = D̂obst(r, L,R) the class of compact sets Σ belonging to D̂(r, L,BR)

and such that G = R3\Σ is connected.

Obviously, we have B̂scat(r, L,R, r1, C̃, ω, δ) ⊂ B̃scat(r, L,R, ω, δ) and the same relation
holds between Ĉscat and C̃scat. Moreover, the same relations as before hold between the
classes B̂scat and B̃scat and the corresponding classes Ĉscat and C̃scat. We notice that any
scatterer Σ ∈ D̂obst is indeed an obstacle, that is, Σ is the closure of its interior which is a
bounded open set with Lipschitz boundary, with constants r and L. By Corollary 2.3 and
Proposition 2.1, for some constants and functions depending on r, L, and R only, we have
D̂obst(r, L,R) ⊂ Ĉscat(r̃, L̃, R, r1, C̃, ω, δ).

By our earlier discussion, in particular by Lemmas 2.6 and 2.9, it is easy to note that all
these classes B̃scat, B̂scat, C̃scat, Ĉscat, and D̂obst are compact with respect to the Hausdorff
distance.

Finally, the sets belonging to the class B̂, thus in particular scatterers belonging to the
class B̂scat, satisfy the following property.

Proposition 2.11 Let us fix positive constants r, L and R, 0 < r1 < r, and C̃ > 0. Let us
also fix ω : (0,+∞)→ (0,+∞) a nondecreasing left-continuous functions.

Let B̂ = B̂(r, L,BR, r1, C̃, ω). Then there exist constants p > 2 and C̃1 > 0, depending
on B̂ only, such that, for any Σ ∈ B̂, we have

(2.9) ‖v‖Lp(BR+1\Σ) ≤ C̃1‖v‖H1(BR+1\Σ) for any v ∈ H1(BR+1\Σ).

Moreover, the immersion of H1(BR+1\Σ) into L2(BR+1\Σ) is compact, for any Σ ∈ B̂.

Proof. We fix Σ ∈ B̂ and we call G = R3\Σ. Let us take v belonging to H1(BR+1\Σ).
Without loss of generality, by an easy extension argument around ∂BR+1, we can assume
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that v actually belongs to H1(R3\Σ), it has bounded support, and its H1 norm is controlled
by a constant C, depending on R only, times the corresponding H1 norm in BR+1\Σ.

We start with a local construction. We fix x ∈ ∂Σ and U a connected component of
Br1(x) ∩ G such that x ∈ ∂U . We consider U ′ and T : Q → U ′ as in Condition ii) of
Definition 2.7.

Clearly we have that U ′ satisfies

(2.10) ‖v‖Ls1 (U ′) ≤ C1‖v‖H1(U ′) for any v ∈ H1(U ′)

for some constants s1 > 2 and C1 > 0. Since U ∩B3r1/4(x) ⊂ U ′, we conclude that

(2.11) ‖v‖Ls1 (U∩B3r1/4
(x)) ≤ C1‖v‖H1(U ′) for any v ∈ H1(U ′).

We now consider a covering argument as follows. For any x ∈ ∂Σ, let Wn, n = 1, . . . , n0,
be the connected components of Br1/2(x)∩G such that Wn ∩Br1/4(x) 6= ∅. By Lemma 2.6,
n0 ≤M3, where M3 is a constant depending on r1, r, L, and ω only. Let yn ∈Wn∩Br1/4(x),
n = 1, . . . , n0. As in the proof of Lemma 2.6, there exists xn ∈ ∂Wn ∩ ∂Σ, such that
‖yn−xn‖ < r1/4 and ‖xn−x‖ < r1/4. We call Un the connected component of Br1(xn)∩G
containing yn and we observe that xn ∈ ∂Un and Wn ⊂ Un. Actually, Wn ⊂ Un∩B3r1/4(xn).

We conclude that for any x ∈ ∂Σ, there exist n0 points x1, . . . , xn0 , with n0 ≤M3, with
the following property. For any n = 1, . . . , n0, there exists Un, a connected component of
Br1(xn) ∩G, such that xn ∈ ∂Un, and moreover

Br1/4(x) ∩G ⊂
n0⋃
n=1

(Un ∩B3r1/4(xn)).

We fix δ = r1/16 and define the compact set A1 = Bδ(∂Σ) ∩G. We notice that

A1 ⊂
⋃
x∈∂Σ

Br1/4(x).

By the compactness of A1, we can find a finite number of points zi ∈ ∂Σ, i = 1, . . . ,m1,
such that

A1 ⊂
m1⋃
i=1

Br1/4(zi).

With a rather simple construction, it is possible to choose m1 depending on r1 and R only,
for instance by taking points such that Br1/16(zi) ∩Br1/16(zj) is empty for i 6= j.

We further find a finite number of points zi ∈ ∂BR+1, i = m1 + 1, . . . ,m1 + m2, such
that

A2 = B1/16(∂BR+1) ⊂
m1+m2⋃
i=m1+1

B1/4(zi),

with m2 depending on R only.
Finally, we call r3 = min{1, r1} and

A3 = {x ∈ BR+1\Σ : dist(x, ∂(BR+1\Σ)) ≥ r3/16}.
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We can find points zi ∈ A3, i = m1 +m2 + 1, . . . ,m1 +m2 +m3, such that

A3 ⊂
m1+m2+m3⋃
i=m1+m2+1

Br3/32(zi).

Again the number m3 may be bounded by a constant depending on r1 and R only.
By applying (2.11), at most M3 times for any zi, i = 1, . . . ,m1, we have

(2.12) ‖v‖Ls1 (A1∩G) ≤ C1(M3m1)C‖v‖H1(BR+1\Σ).

By a completely analogous argument, we can find s2 > 2 and C2 such that

(2.13) ‖v‖Ls2 (A2∩BR+1) ≤ C2m2‖v‖H1(BR+1\Σ).

Applying a classical Sobolev inequality to D = Br3/32(zi), for i = m1 +m2 +1, . . . ,m1 +
m2 +m3, we can finally find s3 > 2 and C3 such that

(2.14) ‖v‖Ls3 (A3) ≤ C3m3‖v‖H1(BR+1\Σ).

Picking p = min{s1, s2, s3} we obtain that

(2.15) ‖v‖Lp(BR+1\Σ) ≤ C̃1‖v‖H1(BR+1\Σ).

It is an easy remark that p and C̃1 have the dependence required.
The fact that the immersion of H1(BR+1\Σ) into L2(BR+1\Σ) is compact is an imme-

diate consequence of the property described in (2.9). �

We conclude this subsection by introducing suitable classes of polyhedral scatterers. We
define a cell as the closure of an open subset of an (N − 1)-dimensional hyperplane. We say
that a scatterer Σ is polyhedral if the boundary of Σ is given by a finite union of cells Cj ,
j = 1, . . . ,M1.

Fixed positive constants h and L, we say that a scatterer Σ is polyhedral with constants
h and L if the boundary of Σ is given by a finite union of cells Cj , j = 1, . . . ,M1, where each
Cj is the closure of a Lipschitz domain with constants h and L contained in an (N − 1)-
dimensional hyperplane and the cells are pairwise internally disjoint, that is two different
cells may intersect only at boundary points.

Let B̂scat = B̂scat(r, L,R, r1, C̃, ω, δ) be the class of scatterers defined in Definition 2.10.
Fixed the size parameter h > 0, let B̂hscat = B̂hscat(r, L,R, r1, C̃, ω, δ) be the set of scatterers
Σ ∈ B̂scat such that Σ is polyhedral with constants h and L.

Analogously, let D̂obst = D̂obst(r, L,R) be the class of obstacles defined in Definition 2.10.
Fixed the size parameter h > 0, let D̂hobst = D̂hobst(r, L,R) be the set of obstacles Σ ∈ D̂obst
such that Σ is polyhedral with constants h and L. Notice that in this case any Σ ∈ D̂hobst is
formed by a finite number of polyhedra.

2.2 Preliminaries

In this subsection we fix positive constants r, L and R, 0 < r1 < r and C̃ > 0, and
two nondecreasing left-continuous functions ω : (0,+∞) → (0,+∞) and δ : (0,+∞) →
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(0,+∞). The class of admissible scatterers that we consider will be called A. Here we pick
A = B̂scat(r, L,R, r1, C̃, ω, δ), as in Definition 2.10, and we take Σ and Σ′ belonging to A.

We set

(2.16) d = max

{
sup

x∈∂Σ\Σ′
dist(x, ∂Σ′), sup

x∈∂Σ′\Σ
dist(x, ∂Σ)

}

and

(2.17) d̂ = dH(∂Σ, ∂Σ′) and d̃ = dH(Σ,Σ′).

We recall that dH denotes the Hausdorff distance. We notice that the following relationships
among d, d̂ and d̃ holds. First, d, d̂ and d̃ are all bounded by 2R. We also obviously have
d ≤ d̂. Up to swapping the role of Σ and Σ′, let x ∈ Σ′ be such that dist(x,Σ) = d̃. Clearly,
dist(x, ∂Σ) = d̃ as well. If x ∈ ∂Σ′, then we immediately conclude that d̃ ≤ d. If x does
not belong to ∂Σ′, then, by using the uniform exterior connectedness property of Σ, for any
s < δ(d̃) we can find a point x1 ∈ ∂Σ′ such that dist(x1,Σ) = dist(x1, ∂Σ) ≥ s. Therefore

(2.18) δ(d̃) ≤ d ≤ d̂

or, in other words,

(2.19) d̃ ≤ δ−1(d) ≤ δ−1(d̂)

where δ−1 : (0,+∞) → (0,+∞) is a nondecreasing right-continuous function defined as
follows

(2.20) δ−1(t) = min{sup{s : δ(s) ≤ t}, 2R} for any t > 0.

On the other hand, let x ∈ ∂Σ′ be such that dist(x, ∂Σ) = d̂. If x does not belong to Σ,
then dist(x,Σ) = d̂ hence d = d̂ ≤ d̃. If x ∈ Σ, then Bd̂(x) ⊂ Σ. Hence, by the properties of
the boundary of Σ′, there exists a positive constant C1, depending on the class A only, and
a point x1 such that BC1d̂

(x1) ⊂ Bd̂(x)\Σ′. We can conclude that

(2.21) C1d ≤ C1d̂ ≤ d̃ ≤ δ−1(d) ≤ δ−1(d̂).

Let us notice that we also have the following property that will be of use later on. If
C2 = (C1 + 1)/C1, then

(2.22) Σ4Σ′ ⊂ BC2d̃
(∂Σ) ∩BC2d̃

(∂Σ′).

In fact, if x ∈ Σ′\Σ, then dist(x, ∂Σ) ≤ d̃, therefore x ∈ Bd̃(∂Σ). That is dist(x, ∂Σ′) ≤ d̃+d̂.
Finally, there exists a constant C3, depending on the class A only, such that for any t,
0 < t ≤ 1, we have

(2.23) |Bt(∂Σ)| ≤ C3t.

We consider the following direct scattering problem. Fixed Σ ∈ A, for a fixed wavenum-
ber k > 0 and a fixed direction of propagation v ∈ SN−1, let the incident field ui be the
corresponding time harmonic plane wave, that is ui(x) = eikx·v, x ∈ RN . The incident wave
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is perturbed by the presence of the scatterer Σ through a scattered wave, characterized by
its corresponding scattered field us. The total field u is the solution to the following exterior
boundary value problem

(2.24)


∆u+ k2u = 0 in RN\Σ
u = ui + us in RN\Σ
B.C. on ∂Σ

lim
r→∞

r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖,

where the last limit is the Sommerfeld radiation condition and corresponds to the fact that
the scattered wave is radiating. The boundary condition on the boundary of Σ depends
on the character of the scatterer Σ. For instance, if Σ is sound-soft, then u satisfies the
following homogeneous Dirichlet condition

(2.25) u = 0 on ∂Σ,

whereas if Σ is sound-hard we have

(2.26) ∇u · ν = 0 on ∂Σ,

that is a homogeneous Neumann condition. Other conditions such as the impedance bound-
ary condition or transmission conditions for penetrable scatterers may occur in the appli-
cations.

We recall that the Sommerfeld radiation condition holds uniformly with respect to all
directions x̂ = x/‖x‖ ∈ SN−1 and it implies that the scattered field has the asymptotic
behavior of an outgoing spherical wave, namely

(2.27) us(x) =
eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) +O

(
1

‖x‖

)}
,

where x̂ = x/‖x‖ ∈ SN−1 and u∞ is the so-called far-field pattern of us. In particular, the
scattered field satisfies the following decay property for some positive constants E and R1

(2.28) |us(x)| ≤ E‖x‖−(N−1)/2 for any x ∈ RN so that ‖x‖ ≥ R1.

We refer to [22] for further details, such as existence and uniqueness of the solution,
on the direct scattering problem (2.24). For an introduction to the corresponding inverse
problems see for instance [4, 12].

Let us fix constants 0 < k < k and let us denote, for any N ≥ 2,

(2.29) IN =

{
[k, k] if N = 2,

(0, k] if N ≥ 3.

Proposition 2.12 Let us fix constants 0 < k < k and let IN be defined as in (2.29). Let
A be as defined at the beginning of the subsection.

Fixed Σ ∈ A, k ∈ IN , and v ∈ SN−1, let ui(x) = eikx·v, x ∈ RN , and uΣ,k,v be the
solution to (2.24), with boundary condition (2.25) or (2.26), and usΣ,k,v be its corresponding
scattered field.
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Then there exists a constant E, depending on A and IN only, such that

(2.30) |uΣ,k,v(x)| ≤ E for any x ∈ RN\Σ.

Furthermore, there exists a constant E1, depending on the constant E in (2.30), IN , R
and N only, such that for any Σ ∈ A, any k ∈ IN , and any v ∈ SN−1 we have

(2.31) |usΣ,k,v(x)| ≤ E1‖x‖−(N−1)/2 for any x ∈ RN so that ‖x‖ ≥ R+ 2.

and

(2.32) ‖∇usΣ,k,v(x)‖ ≤ E1‖x‖−(N−1)/2 for any x ∈ RN so that ‖x‖ ≥ R+ 2.

Proof. First of all, we show that there exists a constant E0, depending on A and IN only,
such that

(2.33) ‖uΣ,k,v‖L2(BR+3\Σ) ≤ E for any Σ ∈ A, any k ∈ IN , and any v ∈ SN−1.

This is an immediate consequence of Proposition 3.2 and Theorem 3.9 in [17] for the sound-
hard case and of Lemma 3.5 in [18] for the sound-soft case. Already from this first bound
we can easily infer that (2.31) and (2.32) hold true.

The main idea of the proof needed to improve the uniform L2 bound in (2.33) to the
uniform L∞ one contained in (2.30) is the following.

Let x ∈ ∂Σ and let us exploit Condition ii) of Definition 2.7. By a change of variables,
a reflection argument and standard regularity estimates, we infer that we can bound |u|
almost everywhere in Br2(x) by a constant C̃1, where r2 and C̃1 depend on r, r1, C̃ and the
L2 norm of u which is bounded by (2.33).

This procedure allows to estimate |u| in a neighborhood of ∂Σ. Away from ∂Σ the
estimate is completely standard. �

Let us fix Σ and Σ′ belonging A, A as defined at the beginning of the subsection. We
also fix k > 0 and a direction of propagation v ∈ SN−1. Let u be the solution to (2.24) with
boundary condition (2.25) or (2.26). We denote by us the corresponding scattered field and
by u∞ its far-field pattern. Moreover, u′, (us)′ and u′∞ denotes the same functions when Σ
is replaced by Σ′. Finally, we fix positive R1 and ρ̃ such that R+ 1 + ρ̃ ≤ R1.

By Proposition 2.12, we have that

(2.34) |u(x)|+ |u′(x)| ≤ E for any x ∈ R3,

where E depends on k and A only and it may be assumed to be greater than or equal to 1,
and u and u′ are extended to 0 on Σ and Σ′, respectively.

Let us fix a point x0 ∈ RN such that R + 1 + ρ̃ ≤ ‖x0‖ ≤ R1. For a fixed ε, 0 < ε ≤ E,
let

(2.35) ‖u− u′‖L∞(Bρ̃(x0)) ≤ ε.

We call ε the near-field error with limited aperture.
Then, let ε1 > 0 be such that

(2.36) ‖u− u′‖
L∞(B‖x0‖+ρ̃\B‖x0‖−ρ̃)

≤ ε1.
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We call ε1 the near-field error.
Finally, if

(2.37) ‖u∞ − u′∞‖L2(SN−1) ≤ ε0,

ε0 will be referred to as the far-field error.
We investigate the relations among these errors. First of all, let us recall that a three-

spheres inequality holds for the Helmholtz equation, provided the larger ball has a radius
bounded by a constant ρ̃0, ρ̃0 depending on k only, see for instance [2] or for a version suited
to our case [20, Lemma 3.5] which we state here for the convenience of the reader.

Lemma 2.13 There exist positive constants ρ̃0, C and c1, 0 < c1 < 1, depending on k
only, such that for every 0 < ρ1 < ρ < ρ2 ≤ ρ̃0 and any function u such that

∆u+ k2u = 0 in Bρ2 ,

we have, for any s, ρ < s < ρ2,

(2.38) ‖u‖L∞(Bρ) ≤ C(1− (ρ/s))−N/2‖u‖1−βL∞(Bρ2 )‖u‖
β
L∞(Bρ1 ),

for some β such that

(2.39) c1 (log(ρ2/s))
/

(log(ρ2/ρ1)) ≤ β ≤ 1− c1 (log(s/ρ1))
/

(log(ρ2/ρ1)) .

By an iterated application of this three-spheres inequality, we have that there exist
positive constants C and α, 0 < α < 1, depending on E, ρ̃, R1 and k only, such that

(2.40) ε ≤ ε1 ≤ Cεα.

Moreover, there exist positive constants ε̃0 < 1/e and C1, depending on E, R, ρ̃, R1 and
k only, such that if 0 < ε0 ≤ ε̃0 then

(2.41) ‖u− u′‖
L∞(B‖x0‖+ρ̃\B‖x0‖−ρ̃)

≤ η1(ε0) = exp
(
−C1(− log ε0)1/2

)
that is

(2.42) ε ≤ ε1 ≤ η1(ε0) = exp
(
−C1(− log ε0)1/2

)
.

This estimate follows immediately by the results in [10] for N = 3 and with an easy
modification for any other N ≥ 2, see for instance Theorem 4.1 in [21].

If we wish to reduce to obstacles only, we use the class of admissible obstacles Aobst. In
particular, we set Aobst = D̂obst(r, L,R).

It is important to notice that δ in this case may be chosen to be as in (2.3), therefore
δ−1 may be chosen to be C2d for any d, for some constant C2 depending on r, L and R
only, that is (2.21) becomes

(2.43) C1d ≤ C1d̂ ≤ d̃ ≤ C2d ≤ C2d̂.

Finally, if we wish to use classes of admissible polyhedral scatterers or obstacles, fixed
the size parameter h > 0, we use Ah = B̂hscat(r, L,R, r1, C̃, ω, δ) for general scatterers and
Ahobst = D̂hobst(r, L,R) for obstacles.
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3 The main stability results

In this section we present our stability results for the determination of sound-hard polyhedral
scatterers. We distinguish them with respect to the number of scattering measurements used.

In this section we fix positive constants r, L and R, 0 < r1 < r and C̃ > 0. Let us also
fix ω : (0,+∞) → (0,+∞) and δ : (0,+∞) → (0,+∞) two nondecreasing left-continuous
functions. We recall that ω(t) ≤ t, that limt→+∞ ω(t) is equal to a finite real number
which we call ω(+∞), and that δ(t) ≤ t for any t > 0. We fix the wavenumber k > 0.
Finally, we fix positive R1 and ρ̃ such that R + 1 + ρ̃ ≤ R1. We refer to these constants
and functions, including N , as the a priori data and we let A = B̂scat(r, L,R, r1, C̃, ω, δ)
be the class of scatterers defined in Definition 2.10. As before, for any fixed h > 0 we call
Ah = B̂hscat(r, L,R, r1, C̃, ω, δ) the set of scatterers Σ ∈ A such that Σ is polyhedral with
constants h and L.

We call η : (0, 1/e)→ (0,+∞) the following function

(3.1) η(s) = exp(−(log(− log s))1/2) for any s, 0 < s < 1/e.

3.1 Polyhedral scatterers with N measurements

We fix N linearly independent unit vectors v1, . . . , vN . We notice that, given N linearly
independent unit vectors v1, . . . , vN , there exists a positive constant a0, depending on the
vectors v1, . . . , vN , such that

(3.2) min
ν∈SN−1

{
max

j∈{1,...,N}
|vj · ν|

}
≥ a0.

In fact, maxj∈{1,...,N} |vj · ν| is a continuous function of ν ∈ SN−1 which never vanishes.

We also fix a point x0 ∈ RN such that R+ 1 + ρ̃ ≤ ‖x0‖ ≤ R1.

Theorem 3.1 Let N ≥ 2. Fix h > 0. Let Σ, Σ′ belong to Ah and let d be defined as in
(2.16). For any j = 1, . . . , N , let ui(x) = eikx·vj , x ∈ RN , and let uj be the solution to (2.24)
with boundary condition (2.26) and u′j be the solution to the same problem with Σ replaced
by Σ′.

If

(3.3) max
j=1,...,N

‖uj − u′j‖L∞(Bρ̃(x0)) ≤ ε

for some ε ≤ 1/(2e), then for some positive constant C depending on the a priori data and
on a0 only, and not on h, we have

(3.4) min{d, h} ≤ 2eR(η(ε))C .

Therefore,

(3.5) d ≤ 2eR(η(ε))C ,

provided ε ≤ ε̂(h) where

(3.6) ε̂(h) = min

{
1/(2e), η−1

(( h

2eR

)1/C
)}

.

21



With little modification, we obtain exactly the same stability result if Σ and Σ′ are
sound-soft scatterers instead of sound-hard ones, even if we reduce the number of mea-
surements from N to 1. That is, as a byproduct of this work, we can significantly extend
Theorem 4.1 in [20] to a much more general class of scatterers, namely Ah, and to any
dimension N ≥ 2. We state such result in the following theorem.

Theorem 3.2 Let N ≥ 2. Fix h > 0. Let Σ, Σ′ belong to Ah and let d be defined as in
(2.16). Let us fix v ∈ SN−1 and let ui(x) = eikx·v, x ∈ RN . Let u be the solution to (2.24)
with boundary condition (2.25) and u′ be the solution to the same problem with Σ replaced
by Σ′.

If

(3.7) ‖u− u′‖L∞(Bρ̃(x0)) ≤ ε

for some ε ≤ 1/(2e), then for some positive constant C depending on the a priori data only,
and not on h, we have

(3.8) min{d, h} ≤ 2eR(η(ε))C .

3.2 Polyhedral obstacles with fewer measurements

It is well-known that in general N − 1 scattering measurements may not be enough to
uniquely determine a polyhedral sound-hard screen. However, if we limit ourselves to poly-
hedral obstacles, that is to polyhedra, then a single measurement is enough, see [6, 7].

Here we restrict ourselves to obstacles and we aim to obtain corresponding stability
estimates with a minimal number of scattering measurements.

For technical reasons we limit ourselves to N = 2 or N = 3 only. Let us then fix
N ∈ {2, 3} and positive constants r, L and R. We fix the wavenumber k > 0. Finally, we
fix positive R1 and ρ̃ and a point x0 ∈ RN such that R+ 1 + ρ̃ ≤ ‖x0‖ ≤ R1.

We let Aobst = D̂obst(r, L,R) be the class of scatterers defined in Definition 2.10. For
any fixed h > 0, we call Ahobst = D̂hobst(r, L,R) the set of obstacles Σ ∈ Aobst such that Σ is
polyhedral with constants h and L.

We recall that, for some constants and functions depending on r, L and R only, we have
D̂obst(r, L,R) ⊂ B̂scat(r̃, L̃, R, r1, C̃, ω, δ). Therefore, in this case we may set the constants
r, L, R, k, R1 and ρ̃, including N , as the a priori data.

We begin by investigating an intermediate case, namely the one with N − 1 scattering
measurements.

Theorem 3.3 Let N = 2, 3. Fix h > 0. Let Σ, Σ′ belong to Ahobst and let d be defined as in
(2.16).

If N = 2, let us fix v ∈ S1 and let ui(x) = eikx·v, x ∈ R2. Let u be the solution to (2.24)
with boundary condition (2.26) and u′ be the solution to the same problem with Σ replaced
by Σ′. We let ε > 0 be such that

(3.9) ‖u− u′‖L∞(Bρ̃(x0)) ≤ ε.

If N = 3, let us fix v1, v2 ∈ S2, with |v1 ·v2| = b0 < 1. For any j = 1, 2, let ui(x) = eikx·vj ,
x ∈ R3, and let uj be the solution to (2.24) with boundary condition (2.26) and u′j be the
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solution to the same problem with Σ replaced by Σ′. We let ε > 0 be such that

(3.10) max
j=1,2

‖uj − u′j‖L∞(Bρ̃(x0)) ≤ ε.

There exists a constant ε̂1(h), 0 < ε̂1(h) ≤ 1/(2e), depending on the a priori data, on
b0 if N = 3, and on h only, such that if ε ≤ ε̂1(h), then for some positive constants A1,
depending on the a priori data only, and C, depending on the a priori data, on b0 if N = 3,
and on h only, we have

(3.11) d ≤ A1(η(ε))C .

The main difference with respect to the sound-hard case with N measurements or the
sound-soft case is that here we do not have an explicit dependence of ε̂1(h) from h, which in
Theorems 3.1 and 3.2 is given by (3.6), and that the constant C depends, again in a rather
implicit way, on h too.

We finally consider the case of a single scattering measurement. We restrict here to
N = 3, since N = 2 is clearly covered by the previous theorem.

Theorem 3.4 Let N = 3. Fix h > 0. Let Σ, Σ′ belong to Ahobst and let d be defined as in
(2.16). Let us fix v ∈ S2 and let ui(x) = eikx·v, x ∈ R3. Let u be the solution to (2.24) with
boundary condition (2.26) and u′ be the solution to the same problem with Σ replaced by Σ′.

There exists a constant ε̂2(h), 0 < ε̂2(h) ≤ ε̂1(h) ≤ 1/(2e), depending on the a priori
data and on h only, such that if

(3.12) ‖u− u′‖L∞(Bρ̃(x0)) ≤ ε

for some ε ≤ ε̂2(h), then for some positive constants A2 ≥ A1, depending on the a priori
data only, and C1 ≤ C, depending on the a priori data and on h only, we have

(3.13) d ≤ A2(η(ε))C1 .

Remark 3.5 We finally notice that, by the arguments developed in the previous section,
we can easily infer corresponding estimates of Theorems 3.1 and 3.2, and of Theorems 3.3
and 3.4, if we replace d with d̃ = dH(Σ,Σ′) or d̂ = dH(∂Σ, ∂Σ′) or the near-field error with
limited aperture ε with a near-field error ε1 or a far-field error ε0 on the corresponding
solutions. In the first case, it is just enough to use (2.21), with δ−1 defined as in (2.20) and
C1 > 0 depending on the a priori data only, for the first two theorems, and to use (2.43),
with C1 > 0 and C2 depending on the a priori data only, for the second two theorems.
For the second case, by (2.42), we have exactly the same results if we replace ε with the
near-field error ε1. If we use the far-field error ε0 instead, then we need to replace ε with
η1(ε0), η1 as in (2.42), noting that in this case we can choose ρ̃ and R1 as depending on the
other a priori data.

4 The general geometric construction

In this section we assume that the assumptions of Theorem 3.1 are satisfied. The a priori
data will be the one defined at the beginning of Section 3.
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Moreover, for the whole section we shall fix j ∈ {1, . . . , N} and we shall consider the
solutions with respect to the incident direction of propagation v = vj , therefore the subscript
j will be always dropped.

We call H the connected component of G ∩ G′, where G′ = RN\Σ′, such that RN\BR
is contained in H. We shall also use the following definition.

Definition 4.1 A sequence of balls Bρi(zi), i = 0, . . . , n, forms a regular chain, with respect
to an open set G, with constants 0 < a1 < a2 < a3 < 1 < a4 if the following properties are
satisfied

i) for any i = 0, 1, . . . , n, Ba4ρi(zi) ⊂ G;

ii) for any i = 1, . . . , n, we have ρi ≤ ρi−1 and Ba1ρi(zi) ⊂ Ba2ρi−1(zi−1) and, for any
i = 0, . . . , n− 1, we have Ba1ρi(zi) ⊂ Ba3ρi+1(zi+1).

We have the following lemmas with simple proofs that we leave to the reader.

Lemma 4.2 Let U1 and Ũ1 be two open sets and let T : U1 → Ũ1 be a bi-W 1,∞ mapping
with constant C̃.

Let Bρ̃i(z̃i), i = 0, . . . , n, be a regular chain with respect to Ũ1 with constants 0 < ã1 <
ã2 < ã3 < 1 < ã4. Then, if we call zi = T−1(z̃i), ρi = ρ̃i/C̃, i = 0, . . . , n, and a1 = ã1,
a4 = ã4, we have that Bρi(zi), i = 0, . . . , n, is a regular chain with respect to U1 with
constants 0 < a1 < a2 < a3 < 1 < a4 provided

a1 < C̃2ã2 ≤ a2 < a3 < 1 and a1 < C̃2ã3 ≤ a3 < 1.

Lemma 4.3 Let C be an open cone with amplitude θ, 0 < θ < π/2, and radius r. For
simplicity we assume that its vertex is in the origin and that its bisecting vector is eN . We
set 0 < a1 < a2 < a3 < 1 < a4 and we call 0 < c1 = sin(θ)/a4 < 1. Given c2, 0 < c2 ≤ c1,
we fix z0 = (r/2)eN and ρ0, c2(r/2) ≤ ρ0 ≤ c1(r/2).

We can construct a regular chain Bρi(zi), i = 0, . . . , n, with respect to C with constants
0 < a1 < a2 < a3 < 1 < a4, in the following way. For any i = 0, . . . , n, we can choose
zn = bn(r/2)eN and ρn = bnρ0 provided the constant b satisfies

(4.1) 0 < max

{
1− a2c2

1− a1c2
,
1 + a1c2

1 + a3c2

}
≤ b < 1.

We now proceed to describe the geometric construction needed for the proof of Theo-
rem 3.1, and of the other stability results as well. We divide the construction into several
steps, proving alongside their corresponding estimates. Without loss of generality, up to
swapping Σ with Σ′, we can find x1 ∈ ∂Σ′\Σ such that d = dist(x1, ∂Σ) = dist(x1,Σ).

Step I: from x0 to x1

We construct a sequence of balls Bρi(zi), i = . . . ,−n,−(n − 1), . . . , 0, . . . , n0 forming a
regular chain with respect to G, with constants 0 < a1 < a2 < a3 < 1 < a4 = 8 and ρ0

depending on the a priori data only, and such that the following conditions are satisfied.
First, z0 = x0 and zn0 = x1. Second, ρ0 is a positive constant, depending on the a priori

data only, such that 16ρ0 ≤ min{ρ̃, ρ̃0, r1/C̃}, where ρ̃0 is the positive constant depending
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on k only that bounds the radius of balls where the three-spheres inequality of Lemma 2.13
holds. On the other hand, ρn0 = s0d, where s0 is a positive constant depending on the a
priori data only. Third, for any n = 1, 2, . . ., we pick z−n = x0 + n(ρ0/4)(x0/‖x0‖) and
ρ−n = ρ0. Finally n0 is bounded by a constant, depending on the a priori data only, times
log(2eR/d).

The sequence is constructed as follows. Let y1 be a point of ∂Σ such that |x1 − y1| = d.
We recall that Bd(x1) ⊂ G.

If d ≥ r1/3, then we use the exterior connectedness property of Σ and may easily
construct such a chain keeping the radius ρn = ρ0 for any n ≤ n0, that is simply constant
and depending on the a priori data only. In this case we easily infer that n0 is bounded by
a constant depending on the a priori data only as well.

If instead d ≤ r1/3, we proceed in the following way. Let U be the connected component
of G ∩ Br1(y1) containing Bd(x1). In particular we have y1 ∈ ∂U . By Condition ii) of
Definition 2.7 applied to y1, we have the transformation T : Q → U ′ and we consider the
point x̃1 = T−1(x1). We call ỹ2 the point in Q such that ỹ2 = (x̃′1, 3/4) and y2 = T (ỹ2).
We have that Bd/C̃(x̃1) ⊂ Q and that dist(x̃1, ∂Q\Γ) ≥ ω(2r1/3). In particular, ‖x̃′1‖ ≤
1−ω(2r1/3). We conclude that dist(y2,Σ) is greater than or equal to a constant depending
on the a priori data only. By the exterior connectedness property of Σ we construct such a
chain first from x0 to y2, keeping the radius constant and depending on the a priori data
only. We notice that this part requires a number of balls that may be bounded by a constant
depending on the a priori data only. In order to proceed from y2 to x1, we use Lemma 4.3
to construct a regular chain in Q, with suitable constants, connecting ỹ2 to x̃1. Then our
chain in G is obtained by using Lemma 4.2 and we easily infer that the number of elements
of such a chain may be bounded by a constant, depending on the a priori data only, times
log(2eR/d), therefore the claim is proved.

Let us finally notice that here the geometric construction is different from that of [20].
It is actually more general and more complicated and allows us to consider a wider class of
admissible scatterers.

Starting from z0 = x0, we take j1 ∈ {1, . . . , n0} such that, for any i = 0, 1, . . . , j − 1,
Bρi(zi) ⊂ H and Bρj1 (zj1) ∩ Σ′ 6= ∅. We apply the three-spheres inequality of Lemma 2.13
as follows. For any i = 0, 1, . . . , j − 1,

‖u− u′‖L∞(Ba1ρi+1 (zi+1)) ≤ ‖u− u′‖L∞(Ba2ρi (zi))
≤

≤ C‖u− u′‖1−βiL∞(Bρi (zi))
‖u− u′‖βiL∞(Ba1ρi (zi))

.

where any βi, i = 0, . . . , j − 1, satisfies

0 < a ≤ βi ≤ b < 1

with a and b depending on k only.
If βi, i = 0, 1, 2, . . ., are positive constants, we shall use the following notation for any

j = 0, 1, 2, . . .

Bj =

j∑
r=0

j∏
i=r

βi, Γj =

j∏
i=0

βi.

Recalling that ‖u−u′‖L∞(R3) ≤ E and that ‖u−u′‖L∞(Bρ̃(x0)) ≤ ε, and by iterating the
previous estimate, we obtain

(4.2) ‖u− u′‖L∞(Ba1ρj1
(zj1 )) ≤ C1+Bj1−1E1−Γj1−1εΓj1−1 .

25



Step II: towards the cell and back

We call ĥ = min{d, h}. Following the notation of the previous step, we set z = zj1 and
ρ = ρj1 . Then, Ba1ρ(z) ⊂ H, Ba4ρ(z) ⊂ G, with a4 = 8, and there exists w ∈ ∂Σ′ such
that ‖z − w‖ < ρ and B‖z−w‖(z) ⊂ H. Let U be the connected component of G′ ∩ Br1(w)
containing z. Clearly w ∈ ∂U . Let C′ be one of the cells of ∂Σ′ such that w ∈ C′ and
C′ ∩Br1/2(w) ⊂ ∂U .

We call Π′ the plane containing C′ and, up to a rigid change of coordinates, without loss
of generality, we assume Π′ = {y ∈ RN : yN = 0}. By the properties of C′, C′ satisfies a
uniform cone property, namely there exists ω1 ∈ SN−1∩Π and constants c1, 0 < c1 ≤ 1, and
θ, 0 < θ < π/2, depending on L and R only, such that C(w,ω1, c1ĥ, θ)∩Π′ ⊂ C′∩Br1/2(w) ⊂
∂U .

By looking at the points on the bisecting line of C(w,ω1, c1ĥ, θ), we may find w1 on
this line, that is w1 = w + s1ĥω1, such that Bs2ĥ(w1) ⊂ Br1/2(w) ∩ B7ρ/(4C̃2)(w), and

Bs2ĥ(w1) ∩Π′ ⊂ C′ ∩Br1/2(w) ⊂ ∂U , for some positive s1 and s2 depending on the a priori
data only.

We claim that there exists s3, 0 < s3 ≤ s2, depending on the a priori data only, such
that, up to changing the orientation of eN , we have B+

s3ĥ
(w1) ⊂ U .

The proof of this claim is the following. We apply Condition ii) of Definition 2.7 to w, and
we consider the corresponding transformation T : Q→ U ′. For some ε > 0, possibly taking
s2 slightly smaller but still depending on the a priori data only, we have that (Bs2ĥ(w1) ∩
Π′) × (0, ε] ⊂ U ∩ Br1/2(w). The function T−1 restricted to such a set is bi-Lipschitz onto
A ⊂ Q. We observe that A has a positive distance, depending on r1 and ω only, from ∂Q\Γ.

It is not difficult to show that T−1 can be extended to a function T̃−1 in such a way that
T̃−1 : (Bs2ĥ(w1) ∩ Π′) × [0, ε] → A is still bijective, with inverse T , and thus bi-Lipschitz.

We conclude that also T̃−1 : (Bs2ĥ(w1) ∩ Π′) → A ∩ Γ is bijective, with inverse T , and

thus bi-Lipschitz. Then let us fix a, 0 < a ≤ s2ĥ such that B+
a (w1) ⊂ U ∩ Br1/2(w) ⊂ U ′.

If a can be chosen to be s2ĥ, the claim is proved, otherwise we assume that there exists
y ∈ ∂U ′ such that y ∈ B+

s2ĥ
(w1) and ‖y − w1‖ = a. Actually, y ∈ ∂U ∩ Br1/2(w). Then we

call w̃1 = T̃−1(w1), thus T (w̃1) = w1, and, by a similar reasoning, extending T−1 up to the
closure of B+

a (w1), we can find ỹ ∈ Γ such that T (ỹ) = y and ‖ỹ− w̃1‖ ≤ C̃a. Moreover, we
also have that ỹ 6∈ A ∩ Γ. But Bs2ĥ/C̃(w̃1) ∩ Γ ⊂ A ∩ Γ, therefore C̃a must be greater than

s2ĥ/C̃, that is, a > s2ĥ/C̃
2 and the claim is proved.

Then we notice that, through an even reflection, we can extend u′ on Bs3ĥ(w1) by setting

u′(y) = u′(TΠ′(y)) for any y ∈ B−
s3ĥ

(w1). In this way u′ solves the Helmholtz equation on

the whole Bs3ĥ(w1). We notice that Bs3ĥ(w1) ⊂ G, therefore on H ∪ Bs3ĥ(w1) both u and
u′ are well defined and solve the Helmholtz equation.

We construct a regular chain, with respect to H∪Bs3ĥ(w1) and with constants depending
on the a priori data only, satisfying the following properties. The first ball is centered in z and
it has radius less than or equal to ρ, whereas the last ball is Bs5ĥ(w1) with s5 depending on
the a priori data only. Finally, the number of balls of such a chain is bounded by a constant
depending on the a priori data only times log(2eR/ĥ).

The argument is the following. By a reasoning similar to the one used before, we can
find w̃ ∈ Γ such that T (w̃) = w and ‖w̃1 − w̃‖ ≤ C̃s1ĥ. Since B7ρ(w) ∩ U ⊂ H, we have
T (B7ρ/C̃(w̃) ∩ Q) ⊂ H. Since s1 ≥ s3, we have T−1(B+

s3ĥ
(w1)) ⊂ B2C̃s1ĥ

(w̃). Without loss
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of generality, we require that 2C̃s1ĥ ≤ 7ρ/(2C̃), that is, T−1(B+

s3ĥ
(w1)) ⊂ B7ρ/(2C̃)(w̃)∩Q.

Then we perform the following construction. Take w0 on the segment connecting z to
w such that ‖w0 − w‖ = 7ρ/(4C̃2), if this number is less than ‖z − w‖. Otherwise we pick
w0 = z. We observe that T−1(w0) ∈ B7ρ/(2C̃)(w̃) ∩Q.

We construct a regular chain of balls, with a number of balls bounded by a constant
depending on the a priori data only, contained in B‖z−w‖(z) ⊂ H and connecting z to w0.

We consider w2 = w1 + s4ĥeN so that Bs5ĥ(w2) ⊂ B+

s3ĥ
(w1). Then with a construction

similar to one described before during Step I, which exploits the properties of the change
of variables T , we can extend our regular chain, which is still contained in H, from w0 till
we connect to w2. The number of steps required at this stage is of the order of a constant
times log(2eR/ĥ). Then we move along the segment connecting w2 to w1 and, with a finite
number of steps depending only on the a priori data, we are able to reach w1 and thus
conclude the construction.

We notice again that, as in the first Step I, the construction developed here is much
more general and much more involved than that used in [20]. Overcoming this technical
difficulty is the key ingredient to obtain our results for a more general class of admissible
scatterers than the one used in [20].

Again by a repeated use of the three-spheres inequality, and by recalling (4.2), we obtain
that

(4.3) ‖u− u′‖L∞(Ba1s5ĥ
(w1)) ≤ C1+Bn−1E1−Γn−1εΓn−1

where, for some constants C̃1 and a, b, with 0 < a < b < 1, depending on the a priori data
only, we have

(4.4) n ≤ C̃1

(
log

(
2eR

ĥ

)
+ log

(
2eR

d

))
and a ≤ βi ≤ b for any i = 0, . . . , n− 1.

We then apply a reflection argument. We call Π1 = Π′ the hyperplane containing the
cell C′. Moreover, ν1 will be the unit normal to Π1 and T1 = TΠ1 is the reflection in Π1.
We define Σ1 as the reflection of Σ with respect to the plane Π1, G1 = R3\Σ1, and u1 as
the even reflection of u with respect to the same plane Π1, namely for any x ∈ RN , we
set u1(x) = u(TΠ1(x)). Without loss of generality, and since a4 = 8, we can assume that
Bs5ĥ(w1) ⊂ B2ρ(z) ⊂ B8ρ(z) ⊂ G, therefore Bρ(z) ⊂ B3ρ(w1) ⊂ B4ρ(w1) ⊂ G ∩G1. Both u
and u1 satisfy the Helmholtz equation on B4ρ(w1). Notice that ∇u′ ·ν1 = 0 on Π1∩Bs5ĥ(w1),
therefore u′ = u′ ◦ TΠ1 and

u− u1 = u− u′ + u′ − u1 = (u− u′)− (u− u′) ◦ TΠ1 .

We can conclude, using (4.3), that

(4.5) ‖u− u1‖L∞(Ba1s5ĥ
(w1)) ≤ 2‖u− u′‖L∞(Ba1s5ĥ

(w1)) ≤ 2C1+Bn−1E1−Γn−1εΓn−1 .

Then by using the arguments of Step IV of Section 5 in [20], we obtain that

(4.6) ‖u− u1‖L∞(Bρj1
(zj1 )) ≤ C1+Bn(2E)1−ΓnεΓn
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where C ≥ 1 and 2E ≥ 1 are constants depending on the a priori data only, (4.4) is satisfied
and βn satisfies

c1
log(8/7)

log(c2ρ0/ĥ)
≤ βn ≤ 1− c1 + c1

log(8/7)

log(c2ρj/ĥ)
,

with c1, c2 depending on the a priori data only.
Finally, we call w1 the first reflection point and Π1 the first reflection hyperplane.

Step III: returning back towards x0 and infinity

Let us beginning by fixing a constant R2 ≥ max{2R1, 4R}, depending on the a priori data
and on a0 only, such that

E1R
−(N−1)/2
2 ≤ ka0/2

where E1 is as in (2.32).
Let us now consider the regular chain of balls Bρi(zi), i = . . . ,−n, . . . ,−1, 0, 1 . . . , j1,

we have constructed in Step I. We have that Bρj1 (zj1) is contained in G1. We proceed
backwards along the chain, until we find j2, j2 < j1, such that, for any i = j2 + 1, . . . , j1,
we have Bρi(zi) ∩G1 = ∅, whereas Bρj2 (zj2) ∩G1 6= ∅. Then, we apply Step II to u, u1, Σ
and Σ1. We find a second reflection point w2 and a second reflection hyperplane Π2, with
unit normal ν2. By reflection in such a hyperplane Π2, from Σ we obtain Σ2 and from u we
obtain u2. In a completely analogous way as in (4.6), we may estimate ‖u−u2‖L∞(Bρj2

(zj2 )).

We repeat this procedure as many times as needed, until we reach z−n1 , where n1 is
an integer bounded by a constant depending on the a priori data and on a0 only, with
R3 = ‖z−n1‖ ≥ 2R2 + 2. Fixed a hyperplane Π, to be decided later, that is passing through
a point belonging to BR2+1, and a point z̃ ∈ ∂BR3 ∩ Π, by a regular chain of balls with
constant radius ρ0, we proceed from z−n1 along the boundary of ∂BR3 towards the point
z̃ ∈ ∂BR3 ∩Π.

Before reaching z̃, we have done M reflection procedures as in Step II, where M is a
positive integer bounded by n0 plus a constant depending on the a priori data and on a0

only.
We now distinguish between two cases. In the first, setting Σ0 = Σ′ and u0 = u′,

we assume that there exists a reflection point wn ∈ ∂Σn−1, 1 ≤ n ≤ M , as above with
‖wn‖ ≥ R2 + 1. Then we have, since ∇un−1(wn) · νn = 0,

∇u(wn) · νn = ∇(u− un−1)(wn) · νn.

Otherwise, in the second case, we can assume that the last reflection point wM is such
that ‖wM‖ ≤ R2 + 1 and, without loss of generality, we may pick Π = ΠM . Then, since
uM = u ◦ TΠM , we have ∇uM (z̃) · νM = −∇u(z̃) · νM , hence

2∇u(z̃) · νM = ∇(u− uM )(z̃) · νM .

In either cases, picking either z = wn or z = z̃, we can prove the following lemma, see
[20, Section 5] for further details on the computations.

Lemma 4.4 We can find a point z, ‖z‖ ≥ R2 + 1 and a unit vector ν such that

(4.7) h|∇u(z) · ν| ≤ C0ε2

28



where for some βi, i = 0, . . . , n,

(4.8) ε2 ≤ C1+Bn(2E)1−ΓnεΓn ,

with C ≥ 1, 2E ≥ 1 and

n ≤ Ĉ log(2eR/d)(log(2eR/d) + log(2eR/ĥ)).

Furthermore, there are at most M ≤ Ĉ1 log(2eR/d) of these β such that

β ≥ c1
log(8/7)

log(c2ρ0/ĥ)

and they are never consecutive ones, and all the others satisfy 0 < a ≤ β ≤ b < 1. Here C0,
C, E, a, b, c1, c2, Ĉ and Ĉ1 depend on the a priori data only.

This lemma concludes the general geometric construction that is the basic step for
proving our stability results.

5 Proofs of the stability results

In this section, using the geometric construction of the previous Section 4 as a starting point,
we prove our stability results. For the N measurements case the conclusion is straightfor-
ward, whereas if we consider less than N measurements, we need to develop new arguments.

5.1 The N measurements case

We conclude the proof of Theorem 3.1, and thus also of Theorem 3.2.
Proof of Theorem 3.1. By Lemma 4.4, and using its notation, we have for any j =
1, . . . , N

max
j=1,...,N

|∇uj(z) · ν| ≤
C0

h
ε2.

Therefore, using Proposition 2.12 and our choice of R2, for any j = 1, . . . , N , we have

k|vj · ν| − ka0/2 ≤ |∇uj(z) · ν| ≤
C0

h
ε2.

Therefore, choosing one of the available incident waves we can infer that

(5.1) ka0/2 ≤
C0

h
ε2.

Then, by straightforward although lengthy computations, see [20, Section 5] for further
details, the proof may be easily concluded. �

5.2 The N − 1 measurements case

Here we assume that the hypotheses of Theorem 3.3 are satisfied. Since we would like to
keep our argument as general as possible, let us assume for the time being that N ≥ 2 and
that we have fixed N − 1 linearly independent directions v1, . . . , vN−1.

We need the following lemma.
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Lemma 5.1 There exists a constant ã0 > 0, depending on the a priori data only, such that
for any direction v, and any polyhedral Σ ∈ Aobst, we can find a cell C in ∂Σ, with unit
normal ν, such that |ν · v| ≥ ã0.

Proof. Let us assume, by contradiction, that such a positive constant ã0 does not exist.
Then we can find a sequence of polyhedral obstacles Σn ∈ Aobst and of directions vn, n ∈ N,
such that, for HN−1 almost any point x of ∂Σn, we have |ν(x) · vn| ≤ 1/n. Without loss
of generality, we can assume that, as n → ∞, Σn converges, in the Hausdorff distance, to
Σ ∈ Aobst and that vn → v ∈ SN−1. We can conclude that for HN−1 almost any point x of
∂Σ we have |ν(x) · v| = 0, which is impossible since Σ is an obstacle. �

We begin with the following interesting and not that difficult case. Let us consider the
geometric construction of the previous section, in particular Lemma 4.4. If the point z
defined there is a reflection point wn, then a single measurement would be enough to obtain
a stability result. In fact the following result holds.

Proposition 5.2 Let N ≥ 2. Fix h > 0. Let Σ, Σ′ belong to Ahobst and let d be defined as
in (2.16). Let us fix v ∈ SN−1 and let ui(x) = eikx·v, x ∈ RN . Let u be the solution to (2.24)
with boundary condition (2.26) and u′ be the solution to the same problem with Σ replaced
by Σ′. Let us assume that

‖u− u′‖L∞(Bρ̃(x0)) ≤ ε

for some ε ≤ 1/(2e).
Let us further assume that the point z defined in Lemma 4.4 is a reflection point. Then

for some positive constant C depending on the a priori data only, and not on h, we have

min{d, h} ≤ 2eR(η(ε))C .

Proof. The main idea of the proof is the following Let z = wn ∈ Σn−1 be the reflection
point such that ‖z‖ ≥ R2 + 1. We consider σ the connected component of Σn−1 containing
z and we find, using Lemma 5.1, a point z̃ ∈ ∂σ such that |ν(z̃) · v| ≥ ã0.

Clearly σ is far away from Σ, therefore we are able to modify our regular chain by
moving around ∂σ till we get close to the point z̃ ∈ ∂σ and we can use such a point z̃ as
a reflection point. Therefore the proof follows as in the proof of Theorem 3.1, simply by
replacing a0 by ã0. �

The difficult part arises when the assumptions of Proposition 5.2 are not met, namely
when in the geometric construction of the previous section we have M reflection points, all
of them contained in BR2+1.

In the sequel, without loss of generality, we assume that in our geometric construction
we have M reflection points, all of them contained in BR2+1. Using the construction of the
previous section, we can reach with a regular chain any point z̃ ∈ (B2R2+3\B2R2+2) ∩ ΠM .
Therefore, for any j = 1, . . . , N − 1, we have

(5.2) Aj = max
z̃∈(B2R2+3\B2R2+2)∩ΠM

|∇uj(z̃) · ν| ≤ C0ε2

where ν = νM is the unit normal to ΠM and C0 and ε2 satisfy the same properties as those
in Lemma 4.4.
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Let us illustrate what is the difficult point. In order to obtain our stability result we
need to match the upper bound in (5.2) with a corresponding lower bound. Let us begin
with the following remark. Let v = vj , j ∈ {1, . . . , N − 1}, be one of the incident directions
of propagation and, for the time being, let us drop the subscript j from our solutions. Let
us call

A = max
z̃∈(B2R2+3\B2R2+2)∩ΠM

|∇u(z̃) · ν|.

Can A be equal to 0? Indeed this can happen, although only in certain circumstances.
Namely, we claim that A = 0 if and only if v · ν = 0 and Σ is symmetric with respect to
the hyperplane ΠM . One direction is obvious, let us show the more interesting one, that is
A = 0 implies that v · ν = 0 and Σ is symmetric with respect to the hyperplane ΠM .

In fact, if A = 0, then |∇u·ν| ≡ 0 on (B2R2+3\B2R2+2)∩ΠM and, by unique continuation,
we actually have that |∇u · ν| ≡ 0 on (RN\BR)∩ΠM . By the decay properties at infinity of
∇us, this may hold only if v · ν = 0. Moreover, we can easily infer that u is even symmetric
with respect to ΠM . Let us call Σ̃ the complement of the unbounded connected component of
RN\(Σ∪TΠM (Σ)). We have that Σ̃ is a polyhedral obstacle which is symmetric with respect
to ΠM and that u solves (2.24) with boundary condition (2.26) also with Σ replaced by Σ̃.
By the uniqueness result for sound-hard polyhedral obstacles with a single measurement,
[6, 7], we immediately infer that Σ = Σ̃ thus Σ itself is symmetric with respect to ΠM .

Therefore, in order to bound A away from 0, we need to guarantee either that Σ is
not symmetric with respect to a hyperplane whose normal is orthogonal to v or, if Σ is
actually symmetric with respect to a hyperplane whose normal is orthogonal to v, that
ΠM is different from such a hyperplane. As we shall see, if we use N − 1 measurements,
instead, in order to bound maxj=1,...,N−1Aj away from zero, we need to guarantee either
that Σ is not symmetric with respect to a hyperplane whose normal is orthogonal to any
vj , j = 1, . . . , N − 1, or, if Σ is actually symmetric with respect to such a hyperplane, that
ΠM is different from it.

Here lies the main difference between the N − 1 measurements and 1 measurement
case. In fact, in the N − 1 measurement case, for any obstacle Σ there is at most one
hyperplane whose normal is orthogonal to any vj , j = 1, . . . , N − 1, with respect to which
Σ is symmetric. On the contrary, with only one measurements, for any obstacle Σ there
might be many hyperplanes whose normal is orthogonal to v with respect to which Σ is
symmetric. This is the main reason why the N − 1 measurements case is relatively simpler
and the corresponding result is somewhat stronger.

We then first consider the N − 1 measurements case, leaving the 1 measurement case to
the next subsection. Another difficulty is that we not only need to bound maxj=1,...,N−1Aj
away from zero but that we require a suitable quantitative estimate of maxj=1,...,N−1Aj
from below.

Let us begin with the following definitions. Let us call Π̃ = span{v1, . . . , vN−1}. For any
Σ ∈ Aobst, we denote with P (Σ) its center of mass and Π̃(Σ) = Π̃ + P (Σ). We define Asym
the set of Σ ∈ Aobst such that Σ is symmetric with respect to Π̃(Σ).

We then define the metric space

X = {Π : Π is a hyperplane in RN passing through BR2+1}

with the distance

d(Π1,Π2) = dH(Π1 ∩B2R2+1,Π2 ∩B2R2+1) for any Π1,Π2 ∈ X.
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Finally, we call X = Aobst × X, with the standard metric of the product of two metric
spaces, and Y = {(Σ, Π̃(Σ)) : Σ ∈ Asym} ⊂ X .

We have the following preliminary properties.

Proposition 5.3 We have that Σ → P (Σ) is a Lipschitz continuous function on Aobst
endowed with the Hausdorff distance, with a Lipschitz constant depending on the a priori
data only. Consequently Asym is a closed subset of Aobst and Y is closed in X

Proof. This is a straightforward consequence of (2.22), (2.23) and (2.43). �

Lemma 5.4 Let Σ ∈ Asym. For simplicity, let us assume that Π̃(Σ) = {yN = 0}. Then
we call G± = {y ∈ G : yN ≷ 0} and we have that G± are Lipschitz domains with constants
depending on the a priori data only.

Proof. The difficult part of the proof is to consider the points z of ∂G± such that z ∈
∂Σ ∩ Π̃(Σ)

Let us consider a point z ∈ ∂Σ ∩ Π̃(Σ). By the Lipschitz properties of Σ, we have that
there exists a given cone C, with vertex in 0, such that, for any y ∈ ∂Σ∩Br/2(z), y+C ⊂ G.

Since Σ is symmetric with respect to Π̃(Σ), we also have that y + T̃ (C) ⊂ G, T̃ being the
reflection in Π̃(Σ). Hence it is not difficult to show that there exists a cone C1, with vertex
in 0 and symmetric with respect to Π̃(Σ), such that, for any y ∈ ∂Σ ∩ Br̃(z), y + C1 ⊂ G.
We notice that r̃ > 0 and the amplitude of the cone C1 depends on r and L only.

Therefore, for any point z ∈ ∂Σ∩ Π̃(Σ), locally in Br̃1(z), ∂Σ is the graph of a Lipschitz
function, with Lipschitz constant bounded by L̃1, with respect to a Cartesian coordinate
system such that eN ∈ Π̃. Hence it is not difficult to show that, locally in Br̃2(z) and with
respect to a different Cartesian coordinate system, ∂G+, and by symmetry G− as well, is
the graph of a Lipschitz function, with Lipschitz constant bounded by L̃2. Here r̃i and L̃i,
i = 1, 2, are positive constants depending on r and L only.

The proof now can be easily concluded. �

In order to obtain the required lower bound on maxj=1,...,N−1Aj , we distinguish between
two cases. The good one is when either Σ is not close to Asym or, if it is, the hyperplane
ΠM is not close to Π̃(Σ). The bad one is when Σ is close to Asym and the hyperplane ΠM

is close to Π̃(Σ).
In the next proposition we deal with the good case, in the sequel of the proof we shall

show that, by a suitable modification of our geometric construction, the bad case actually
never occurs.

Let us consider the map

X 3 (Σ,Π) 7→ f(Σ,Π) = max
j=1,...,N−1

(
max

z̃∈(B2R2+3\B2R2+2)∩Π
|∇uj(z̃) · ν|

)
,

where ν = νΠ is the normal to Π and, for any j = 1, . . . , N−1, uj is the solution to the direct
scattering problem (2.24) with boundary condition (2.26) and incident field ui(x) = eikx·vj ,
x ∈ RN . Then the following result holds.

Proposition 5.5 Let us fix a positive constant c̃. For any a > 0, let us consider the fol-
lowing subset Xa of X . We say that (Σ,Π) ∈ X belongs to Xa if there exists Σ̂ ∈ Asym such
that dH(Σ, Σ̂) < a and d(Π, Π̃(Σ)) < c̃a.
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Then there exists a positive constant â0, depending on the a priori data, on c̃, on a and
on {v1, . . . , vN−1} only, such that

min {f(Σ,Π) : (Σ,Π) ∈ X\Xa} ≥ â0.

Remark 5.6 In the previous proposition, if N = 2 the result does not depend on the
direction v. If N = 3, the dependence on v1 and v2 is only through the constant b0 =
|v1 · v2| < 1. We also notice that â0 does not depend on h.

Proof. We observe that, by the stability result for the direct scattering problem with
respect to sound-hard scatterers Σ proved in [17], such a map f is continuous on X .

If f(Σ,Π) = 0, then the unit normal to Π is orthogonal to vj , for any j = 1, . . . , N − 1,
and Σ is symmetric with respect to Π, that is Π = Π̃(Σ) and (Σ,Π) ∈ Y.

Then the proof immediately follows by the fact that X\Xa is closed and obviously does
not contain any point of Y. �

Up to now, we are able to prove a stability result if either the assumptions of Proposi-
tion 5.2 are satisfied or, otherwise, if (Σ,ΠM ) ∈ X\Xa for a suitable a > 0. In both cases
we use the same computation as in the N measurements case, with a0 replaced by ã0 and
â0, respectively. We notice that in this second case â0 depends on a.

Therefore our strategy is now the following. We choose a suitable value of a and we
construct a modified regular chain for Σ as in the general geometric construction such that
for any possible reflection hyperplane Πn, n = 1, . . . ,M , (including the first one!) we have
that (Σ,Πn) ∈ X\Xa. As we shall see, actually the first reflection hyperplane is the one that
presents the greatest difficulties.

We notice that, so far, all our arguments work for any dimension N ≥ 2. However
the construction of such a modified regular chain presents some technical challenges, in
particular for the proof of Lemma 5.8 below. Therefore in the sequel we limit ourselves to
the space dimension N = 3 and we notice that when the space dimension is N = 2 the
result may be proved along the same lines.

A crucial remark is that, unfortunately, we are not able to choose a independently of
h. This is the main reason why we lose the precise dependence of our stability result on
the size parameter h, that we instead have in the sound-soft case or in the sound-hard case
with N measurements.

The following two technical lemmas shall be needed.

Lemma 5.7 Let N = 3 and h > 0.
There exist positive constants c̃0, c̃1, c̃2 ≤ 1 and L̃ ≥ L, depending on the a priori data

only, such that the following holds.
Let a = c̃0h and let Σ ∈ Ahobst satisfy the following. We assume that there exists Σ̂ ∈

Asym such that dH(Σ, Σ̂) ≤ a.
For simplicity, let us assume that Π̃(Σ) = {yN = 0}. Then, for any c̃, 0 ≤ c̃ ≤ c̃1, if

we call G±a = {y ∈ G : yN ≷ ±c̃a}, we have that G±a are Lipschitz domains with constants
r̃ = c̃2h and L̃.

Proof. This is an extension of Lemma 5.4, which can be proved by exploiting [20, Propo-
sition 6.1]. �
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Lemma 5.8 Let N = 3, h > 0 and c̃0 and c̃1 as in Lemma 5.7. Let Σ, Σ′ belong to Ahobst
and let d be defined as in (2.16). Let x1 ∈ ∂Σ′\Σ be such that d = dist(x1, ∂Σ) = dist(x1,Σ).

There exist positive constants c̃3 ≤ 1, c̃4 ≤ c̃1 and K1 ≤ 1, depending on the a priori
data only, such that the following holds.

Let a = c̃0h and c̃ = c̃4. Let us assume that there exists Σ̂ ∈ Asym such that dH(Σ, Σ̂) ≤
a. Let us call G±a = {y ∈ G : yN ≷ ±c̃a}, assuming that Π̃(Σ) = {yN = 0}.

If d ≤ c̃3h, then, up to swapping the role of G+
a and G−a , there exists x̃1 ∈ ∂Σ′\Σ such

that x̃1 ∈ G+
a and

(5.3) dist(x̃1, ∂G
+
a ) ≥ K1d

3.

Proof. This is a straightforward consequence of [20, Proposition 6.2]. �

We are now in the position of concluding the proof of the N − 1 measurements case
Proof of Theorem 3.3. Without loss of generality we can assume that h ≤ min{r, 1}.

Let us assume, for the time being, that d ≤ c̃3h ≤ h. Let us set a = c̃0h, c̃0 as in
Lemma 5.7, and c̃ = c̃4 as in Lemma 5.8.

Then we distinguish between two cases. If there does not exist any Σ̂ ∈ Asym such that
dH(Σ, Σ̂) ≤ a, then we conclude using the geometric construction of Section 4 and the argu-
ments used for the proof of the N measurements case. Here we use either Proposition 5.2,
replacing a0 with ã0, or Proposition 5.5, with c̃ = c̃4 as in Lemma 5.8 and replacing a0 with
â0. We have to notice that â0 here depends on a thus on h.

Otherwise, let us assume that there does exist Σ̂ ∈ Asym such that dH(Σ, Σ̂) ≤ a. Then
we use the geometric construction and estimates of Section 4 with the following differences.
We replace x1 with x̃1 and G with G+

a , x̃1 and G+
a as in Lemma 5.8. Using Lemma 5.7,

we further replace r and L with c̃2h and L̃, respectively. Finally, using (5.3), we replace d
with K1d

3 ≤ d. Then we can repeat the previous argument using either Proposition 5.2 or
Proposition 5.5. In fact any possible reflection point belongs to G+

a , therefore any reflection
plane is far enough from Π̃(Σ).

We conclude that, for any ε, 0 < ε < 1/(2e), provided d ≤ c̃3h, we have

K1d
3 ≤ 2eR(η(ε))3C

for some constant C depending on the a priori data, on b0 and on h as well. Therefore

(5.4) d ≤ A1(η(ε))C

where A1 depends on the a priori data only and C depends on the a priori data, on b0 and
on h.

Finally, we need to drop the assumption that d ≤ c̃3h. We claim that there exists ε̂1(h),
0 < ε̂1(h) ≤ 1/(2e), depending on the a priori data and on h only, such that

(5.5) ε̂1(h) <

inf
{
‖u− u′‖L∞(Bρ̃(x0)) : v ∈ SN−1, Σ,Σ′ ∈ Ahobst such that dH(Σ,Σ′) ≥ C1c̃3h

}
where C1 is as in (2.43). If this is true, then obviously we obtain that if ε ≤ ε̂1(h) then
dH(Σ,Σ′) < C1c̃3h that is d ≤ dH(Σ,Σ′)/C1 < c̃3h and the proof would be concluded.
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Therefore we just need to prove the claim in (5.5). It is not difficult to show that the
infimum on the right hand side is actually a minimum. Again it is enough to use the stability
result of the direct scattering problem with respect to the variation of sound-hard scatterers
proved in [17]. Finally, if such a minimum were zero we would contradict the uniqueness
result for the determination of a sound-hard obstacle by a single scattering measurement
proved in [6, 7]. �

5.3 The single measurement case

We restrict here to N = 3, since N = 2 is clearly covered by the previous section. We
consider the assumptions and notation of Theorem 3.4 to hold.

The main technical difficulty we have to tackle if we have only one measurement, com-
pared to the two measurements case, is that we may have several planes whose normal
is orthogonal to v with respect to which Σ might be symmetric. As we discussed in the
previous subsection, using two measurements with two directions of propagation v1 and v2

allows us to consider only one possible symmetry plane for Σ.
We begin with the following definition. Here we call Asym, respectively Ahsym, the set of

Σ belonging to Aobst, respectively Ahobst, such that Σ is symmetric with respect to at least
one plane whose normal is orthogonal to the incident direction of propagation v. Moreover,
for any Σ ∈ Ahobst we call n(Σ) the number of planes whose normal is orthogonal to v
with respect to which Σ is symmetric. Notice that n(Σ) is always a nonnegative integer
that, obviously, could also be zero. In other words, Ahsym is the set of Σ ∈ Ahobst such that
n(Σ) > 0.

We shall use the following notation. For any Σ ∈ Ahsym we call Πi(Σ), i = 1, . . . , n(Σ),
the planes whose normal is orthogonal to v with respect to which Σ is symmetric. Cor-
respondingly, we define νi(Σ), i = 1, . . . , n(Σ), their corresponding unit normals, noticing
that they all belong to the plane that is orthogonal to v.

We have the following properties whose proof is elementary and will be omitted.

Proposition 5.9 There exists an integer M = M(h), depending on the a priori data and
on h only, such that n(Σ) ≤M for any Σ ∈ Ahsym. As a consequence, there exists a constant

α = α(h), 0 < α < π/2, such that, for any Σ ∈ Ahsym, the angle between νi(Σ) and νj(Σ),
with i 6= j, is bounded from below by α.

We consider Aobst endowed with the Hausdorff distance. Then the map Ahobst 3 Σ 7→ n(Σ)
is upper semicontinuous. Consequently, Ahsym is a compact subset of Ahobst.

Let us define, for any n = 1, . . . ,M(h), Ahsym,n as the set of Σ ∈ Ahsym such that
n(Σ) = n.

The crucial difference with respect to the 2 measurements case is that we need to define
the set Xa, for a positive constant a, in a rather more involved way. Next we describe such
a construction, for any positive a and for a fixed constant c̃ to be decided later.

Given M = M(h) we begin in the following way. For any Σ̂ ∈ Ahsym,M , we find r(Σ̂),

0 < r(Σ̂) ≤ a, such that for any Σ ∈ Ahsym with dH(Σ, Σ̂) ≤ r(Σ̂) the following holds. For

any i = 1, . . . , n(Σ) there exists j ∈ {1, . . . , n(Σ̂)} such that d(Πi(Σ),Πj(Σ̂)) ≤ c̃a/4.
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Then, by compactness, we have that

Ahsym,M ⊂
mM⋃
j=1

Br(Σ̂j)/2(Σ̂j) = AhM

where, for any j = 1, . . . ,mM , Σ̂j ∈ Ahsym,M and r(Σ̂j) ≤ r(Σ̂j−1). Here by convention we

set r(Σ̂0) = a.
Then we consider Ahsym,M−1\AhM , which is again a compact set. We consider a similar

construction as before. Namely, for any Σ̂ ∈ Ahsym,M−1\AhM , we find r(Σ̂), 0 < r(Σ̂) ≤
r(Σ̂mM ), such that for any Σ ∈ Ahsym with dH(Σ, Σ̂) ≤ r(Σ̂) the following holds. For any

i = 1, . . . , n(Σ) there exists j ∈ {1, . . . , n(Σ̂)} such that d(Πi(Σ),Πj(Σ̂)) ≤ c̃a/4. Then, by
compactness, we have that

Ahsym,M−1\AhM ⊂
mM−1⋃

j=mM+1

Br(Σ̂j)/2(Σ̂j) = AhM−1

where, for any j = mM + 1, . . . ,mM−1, Σ̂j ∈ Ahsym,M−1\AhM and r(Σ̂j) ≤ r(Σ̂j−1).
We proceed in a completely analogous way until we have that

Ahsym ⊂
m1⋃
j=1

Br(Σ̂j)/2(Σ̂j) =
M⋃
l=1

Ahl = Ah.

For any l = 2, . . . ,M , and any j = ml + 1, . . . ,ml−1, Σ̂j ∈ Ahsym,l−1\
(⋃M

i=lA
h
i

)
and

r(Σ̂j) ≤ r(Σ̂j−1).
We call X h the subset of (Σ,Π) ∈ X such that Σ ∈ Ahobst. We also call Yh the subset of

X h defined as follows

Yh = {(Σ,Π) ∈ X h : Σ ∈ Ahsym and Π = Πi(Σ) for some i ∈ {1, . . . , n(Σ)}}.

Then we define X ha the subset of X h with the following properties. We say that (Σ,Π) 6∈
X ha either if Σ 6∈ Ah or if Σ ∈ Ah and d(Π, Π̂) ≥ c̃a/2 for any plane Π̂ such that Π̂ = Πi(Σ̂j)
for some j ∈ {1, . . . ,m1} such that dH(Σ, Σ̂j) < r(Σ̂j)/2 and for some i ∈ {1, . . . , n(Σ̂j)}.

It is an easy remark that, for any a > 0, Yh ⊂ X ha and X h\X ha is closed. Let us consider
the map

X h 3 (Σ,Π) 7→ f(Σ,Π) = max
z̃∈(B2R2+3\B2R2+2)∩Π

|∇u(z̃) · ν|,

where ν = νΠ is the normal to Π and u is the solution to the direct scattering problem
(2.24) with boundary condition (2.26) and incident field ui(x) = eikx·v, x ∈ RN . Hence,
arguing as in the proof of Proposition 5.5, we can obtain the following result.

Proposition 5.10 Let us fix a positive constant c̃. For any a > 0, we define the subset X ha
of X as before.

Then there exists a positive constant â0, depending on the a priori data, on c̃, on a and
on h only, such that

min
{
f(Σ,Π) : (Σ,Π) ∈ X h\X ha

}
≥ â0.
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We now consider the corresponding results to Lemmas 5.7 and 5.8. We need the following
notation, recalling that positive constants a and c̃ are fixed. For any Σ ∈ Ah we choose Σ̂(Σ)
as the first Σ̂j , j ∈ {1, . . . ,m1}, such that Σ ∈ Br(Σ̂j)/2(Σ̂j). For any i = 1, . . . , n(Σ̂(Σ)), we

define the infinite strips

Si = Πi(Σ̂(Σ)) + {caνi(Σ̂(Σ)) : |c| ≤ c̃}.

We notice that R3\(
⋃n(Σ̂(Σ))
i=1 Si) consists of 2n(Σ̂(Σ)) different connected open sectors that

we shall call Gja, j = 1, . . . , 2n(Σ̂(Σ)).
Then, with the notation introduced above, the following important results hold.

Lemma 5.11 Let N = 3 and h > 0.
There exist positive constants c̃0, depending on the a priori data only, and c̃1, c̃2 ≤ 1

and L̃ ≥ L, depending on the a priori data and on h only, such that the following holds.
Let a = c̃0h and let Σ ∈ Ah. Then, for any c̃, 0 ≤ c̃ ≤ c̃1, we have that, for any

j = 1, . . . , 2n(Σ̂(Σ)), Gja\Σ is a Lipschitz domain with constants r̃ = c̃2h and L̃.

Proof. If Σ̂(Σ) ∈ Ahsym,1, then the result is contained in Lemma 5.7. Therefore, without

loss of generality we assume that Σ̂(Σ) ∈ Ahsym,n for some n ≥ 2.
We begin by proving the following claim, which is the corresponding result to Lemma 5.4.

We fix an arbitrary Σ̂ ∈ Ahsym,n with n ≥ 2. Then we call Gj , j = 1, . . . , 2n, the connected

components of R3\(
⋃n
i=1 Πi(Σ̂)). We claim that, for any j = 1, . . . , 2n, Gj\Σ̂ is a Lipschitz

domain with constants r̃1 and L̃1 depending on the a priori data and on h only.
We deal with the points z belonging to ∂Σ̂ and Πi(Σ̂) for some i = 1, . . . , n. Let P (Σ̂)

be the center of mass of Σ̂ and let l be the line defined as follows

l = {x ∈ R3 : x = P (Σ̂) + rv, r ∈ R}.

It is obvious that l = Πi(Σ̂) ∩Πj(Σ̂) for any i 6= j.
If we have a point z belonging to ∂Σ̂ and Πi(Σ̂) for some i = 1, . . . , n, which is far

enough from l, we can treat it exactly as in the proof of Lemma 5.4. Therefore the most
delicate case is the one in which z ∈ ∂Σ̂∩ l. However, following the kind of reasonings used
in the proof of Lemma 5.4, it is not difficult to show that, locally in Br̃2(z), ∂Σ is the graph
of a Lipschitz function, with Lipschitz constant bounded by L̃2, with respect to a Cartesian
coordinate system such that e3 is parallel to v, with r̃2 and L̃2 depending on the a priori
data only.

Then the claim easily follows, with the dependence of r̃1 and L̃1 on h essentially given
by the angle α(h).

The proof of the proposition can be concluded by using the claim, arguments similar to
the ones used to prove the claim, and [20, Proposition 6.1]. �

We notice that the difference with respect to Lemma 5.7 is that now c̃1, c̃2 and L̃ depend
on h as well.

Lemma 5.12 Let N = 3, h > 0 and c̃0 and c̃1 as in Lemma 5.11. Let Σ, Σ′ belong to Ahobst
and let d be defined as in (2.16). Let x1 ∈ ∂Σ′\Σ be such that d = dist(x1, ∂Σ) = dist(x1,Σ).

There exist positive constants c̃3 ≤ 1, c̃4 ≤ c̃1, depending on the a priori data and on h
only, and K1 ≤ 1, depending on the a priori data only, such that the following holds.
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Let a = c̃0h and c̃ = c̃4. Let us assume that Σ ∈ Ah.
If d ≤ c̃3h, then there exist x̃1 ∈ ∂Σ′\Σ and j ∈ {1, . . . , 2n(Σ̂(Σ))} such that x̃1 ∈ Gja\Σ

and

(5.6) dist(x̃1, ∂(Gja\Σ)) ≥ K1d
3.

Proof. The result is a rather straightforward consequence of [20, Proposition 6.2]. �

Again, it is important to remark that the difference with respect to Lemma 5.8 is that
now c̃3 and c̃4 depend on h too.

We are now in the position of proving our stability result with one measurement.
Proof of Theorem 3.4. The proof follows the same arguments of the proof of Theo-
rem 3.3, replacing Proposition 5.5, Lemmas 5.7 and 5.8 with Proposition 5.10, Lemmas 5.11
and 5.12, respectively. We point out the modification that we need to adopt in this case.

Without loss of generality we can assume that h ≤ min{r, 1}. Let us assume, for the
time being, that d ≤ c̃3h ≤ h. Let us set a = c̃0h, c̃0 as in Lemma 5.11, and c̃ = c̃4 as in
Lemma 5.12.

We distinguish two cases. If Σ 6∈ Ah, then we conclude using Proposition 5.2 and Propo-
sition 5.10 with c̃ = c̃4 as in Lemma 5.12.

If instead Σ ∈ Ah, we replace x1 with x̃1 and G with Gja\Σ, x̃1 and Gja\Σ as in
Lemma 5.12. Notice that in this case, any possible reflection point belongs to Gja\Σ, there-
fore any reflection plane Π is far from any Πi(Σ̂(Σ)), i = 1, . . . , n(Σ̂(Σ)), at least c̃a.
On the other hand, recalling the construction of Ah and how we choose Σ̂(Σ), for any
j ∈ {1, . . . ,m1}, if dH(Σ, Σ̂j) < r(Σ̂j)/2, we have that dH(Σ̂j , Σ̂(Σ)) < r(Σ̂(Σ)). We con-
clude that d(Π, Π̂) ≥ 3c̃a/4 for any plane Π̂ such that Π̂ = Πi(Σ̂j) for some j ∈ {1, . . . ,m1}
such that dH(Σ, Σ̂j) < r(Σ̂j)/2 and for some i ∈ {1, . . . , n(Σ̂j)}. That is (Σ,Π) ∈ X h\X ha .

The rest of the argument is the same. However, we notice that, since the domains
Gja\Σ used in Lemmas 5.11 and 5.12 are Lipschitz with constants both depending on h, the
dependence of the stability result on h may be worse than the one in the 2 measurements
case. �
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