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Abstract 
 

Since its formation at 4.5 Ga, the Earth underwent a complex evolution that progressively 

differentiated its original composition into the reservoirs that we presently know. Our knowledge on the 

composition and differentiation mechanisms active in the Early and Ancient Earth are still fragmentary 

for the paucity of suitable preserved rock records. The poor knowledge on the Archean mantle 

composition arises a series of problems spanning from the effective chondritic composition of the Earth 

to how volatile elements (hydrogen, oxygen, chlorine and fluorine) were added to the Earth. For the 

unavailability of mantle sectors preserving the Archean geochemical signature, valuable information on 

the Archean mantle composition can be exclusively extracted from Archean mantle-derived igneous 

rocks. In the Archean greenstone belts, different products of mantle melting are found as lavas and sills 

spanning in composition from tholeiites through Fe-picrites to komatiites. All these rocks are generally 

affected by extensive alteration which prevent the bulk rocks to be fully informative on the primary 

mantle melt composition and particularly on its volatile element contents. However, in some of these 

rocks primary igneous mineral phases such as amphibole are preserved that may be useful to constrain 

the primary melt composition including its volatile budgets. 

 In this thesis amphibole-bearing ultramafic rocks of late Archean and Early Proterozoic age 

(Stone et al., 2003; Fiorentini et al., 2004; Fiorentini et al., 2008) were selected. For comparison 

amphibole-bearing ultramafic rocks from different tectonic settings of the Phanerozoic were also 

considered. The Archean and Early Proterozoic rocks share many petrographic and textural similarities 

with hornblendites and amphibole-bearing pyroxenites from Phanerozoic orogenic settings. In all 

studied rocks the crystallisation of amphibole follows that of the early crystallising minerals: olivine + 

spinel ± orthopyroxene + clinopyroxene. The chemical composition of Archean and Early Proterozoic 

amphiboles is more similar to that of amphibole from alkaline lavas than that of amphibole in orogenic 

settings. The geobarometric calculations on Archean and Early Proterozoic rocks yield large uncertainty 

on the pressure of crystallisation with values between 0 and >3 Kbar, which are not conclusive about 

the deep or shallow origin of amphibole. In the Archean and Early Proterozoic rocks amphibole is in 

clear disequilibrium with the early crystallizing clinopyroxene. Modelling of melt differentiation 

suggests that amphibole crystallized from a melt percolating the cumulate pile. Such melt evolved by 

crystallization of olivine and pyroxene and subsequently modified its composition in response to olivine 

assimilation.  

 A major problem in the studied Archean and Early Proterozoic rocks is about the origin of the 

H2O necessary to stabilize amphibole. The H2O concentrations in the Archean and early Proterozoic 
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amphiboles are comparable to those of either subduction-related or amphibole megacrysts from alkaline 

lavas, thus suggesting that melts in equilibrium with amphiboles possessed almost the same water 

contents irrespective of age. According to the composition of amphibole in fluid-mobile elements (e.g., 

F, Cl, B and Sr) a contribution of seawater-derived fluid in the Archean and Early Proterozoic rocks is 

unlikely. The range of δD values of the Archean and Paleoproterozoic amphiboles is between -99.5 ‰ 

and -129.8 ‰, that is slightly lower than the mantle range but still consistent with a magmatic origin for 

water. The hypothesis of a crustal contribution in the origin of the amphiboles (and in turn a crustal 

origin of water) contrasts with the oxygen isotope signature of amphibole showing δ18O values lighter 

than those of the mantle. Because the involvement of recycled crustal materials, able to provide the 

required seawater-like geochemical anomalies, is unlikely for the genesis of the studied amphiboles, the 

light δ18O signature is interpreted as a primary feature of the mantle source.  

In order to monitor possible changes marked by amphibole in the secular evolution of the Earth’s 

mantle, the trace element composition of the melt in equilibrium with amphibole from Archean and 

Early Proterozoic rocks was calculated and compared with that of melts produced nowadays at the 

different geodynamic settings. Equilibrium melts show increasing Nb/Y ratios from komatiites through 

tholeiites to Fe-picrites that are in agreement with the increased alkalinity of the parental melt as inferred 

from the literature. All calculated melts share an incompatible trace element pattern paralleling that of 

present-day OIB. The comparison of the water content in primary melts calculated from Archean-early 

Proterozoic amphiboles and present-day primary mantle melts reveals that the mantle source of the 

Archean komatiites had a much higher water content than that characterizing present day OIB. The 

highly variable water contents in Fe-picrites however suggest a large heterogeneity in the composition 

of the mantle source. The comparison between the Archean-early Proterozoic amphiboles and those 

from the Phanerozoic has also revealed heterogeneities in the Nb/Ta ratios of the mantle through the 

Earth’s history. Some of the calculated melts (since early Proterozoic) show an enriched Nb/Ta signature 

that is independent from space (geological setting) and time and that was interpreted as a primary feature 

of the different mantle sources. The observed heterogeneous Nb/Ta signature of the Earth’s mantle was 

interpreted as related to the addition of extra-terrestrial material after the mantle-core equilibration prior 

to 4.4 Ga and to an incomplete equilibration of these domains during the Earth’s evolution.  

 In conclusion, the data of this thesis suggest that the Earth’s mantle is much more heterogeneous 

than commonly assumed. The occurrence in the Archean and Early Proterozoic of mantle domains 

enriched in volatile elements but unrelated to subduction processes has been documented. An extra-

terrestrial signature for some mantle domains was also reported and I do not exclude that the light oxygen 
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isotope signature of the Archean and Early Proterozoic rocks is also a reminiscence of extra-terrestrial 

inputs possibly related to the meteoritic Late Veneer. 
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1 

Introduction

 
 Since its formation at 4.5 Ga, the Earth underwent a complex evolution that progressively 

differentiated its original composition into the reservoirs that we presently know: core, mantle, crust, 

atmosphere and hydrosphere. Our knowledge on the composition and differentiation mechanisms active 

in the Early and Ancient Earth are still fragmentary for the paucity of suitable preserved records. During 

the Hadean eon, the entire planet was thought to be covered by a magma ocean (e.g., Elkins-Tanton, 

2008). After the moon-forming impact, the Hadean experienced ongoing meteoritic bombardment, 

culminating with the late heavy bombardment in the Eoarchaean (Bottke et al., 2012) that may have 

facilitated early tectonics (Hansen, 2007). During the freezing of the magma ocean Earth lost much of 

its early atmosphere (e.g. Pepin & Porcelli, 2006) and, at some point, a steam-rich atmosphere rained 

liquid water, forever changing the geochemistry of the surface and somehow giving birth to primordial 

life either during, or shortly after the Eoarchaean (e.g. Buick et al., 1981). From Archean to the present 

systematic changes in crustal composition and magma chemistry have been observed by means of 

geochemical and petrological studies. Differences between Archean and post-Archean crusts have led 

to much discussion about the style and rate of Archean tectonics, for which the preponderance of granite–

greenstone terranes, the high-Na Trondhjemite–Tonalite–Granodiorite (TTG) plutons, and the peculiar 

nature of the ultramafic komatiite lavas have to be taken into account (e.g., Condie & Kröner, 2008; 

Greber et al., 2017). In spite of the paucity of Archean rocks, it is proven that the early differentiation 

events must have left an indelible mark on the mantle. 

 The poor knowledge on the Archean mantle composition arises a series of problems spanning 

from the effective chondritic composition of the Earth (Campbell & O’Neill, 2012) to how volatile 

elements (hydrogen, oxygen, chlorine and fluorine) were added to the Earth and how their deep cycle 

evolved giving origin to life and to the present atmosphere. The imbalance in Lithophile elements 

between the chemical composition of the silicate Earth and that of chondrites has arisen, for example, 

several geochemical “paradoxes” that led to question the chondritic Earth composition (Campbell & 

O’Neill, 2012) or were used to model planetary accretion and better understand how Earth formed and 

evolved through time. In this context, in order to account for the Nb-Ta imbalance between the 

composition of the silicate Earth and the chondrites, the involvements of reduced asteroidal building 

blocks with subchondritic Nb/Ta ratios in the Earth’s accretion process has been recently supposed 

(Münker et al., 2017). However, this and other models are based on the assumption that the Earth’s 

mantle is homogeneously subchondritic in the Nb-Ta composition, assumption that is supported by an 
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extremely limited and questionable dataset (Münker et al., 2003). Another key aspect of mantle evolution 

since Archean is the secular variability of oxygen fugacity which is a crucial thermodynamic parameter 

that controls fundamental processes as planetary differentiation, mantle melting, and possible core-

mantle exchange. Although most studies, that largely concentrated on the rocks derived from the upper 

mantle, have concluded that the mantle fO2 has remained constant within approximately 1.0 log unit 

since at least the early Archean (Canil, 1997; Canil & Fedortchouk, 2001; Delano, 2001; Li & Lee, 2004; 

Berry et al., 2008), some researchers have argued for an increase in modern upper mantle fO2 since the 

early Archean by as much as 1.5 log units (e.g., Aulbach & Stagno, 2016). Constraining the evolution 

of the redox state of the mantle is thus of paramount importance for understanding the chemical 

evolution of major terrestrial reservoirs, including core and atmosphere. 

 Even more uncertain are the Archean mantle volatile composition and its secular variation. The 

mantle composition in atmophile elements (carbon, water) and its evolution are, indeed, of particular 

importance. Volatile elements have large impact on mantle dynamics and are the building blocks of the 

molecules at the base of life. Atmophiles are key elements in the structure of amino acids, proteins, 

nucleic acids, and other molecules vital to life. The general atmophile behaviour of these elements, 

namely their high volatility and general low solubility in mantle minerals, caused them to be primarily 

partitioned into the atmosphere during Earth differentiation leaving extremely low concentrations in the 

Earth’s mantle. However, at present, mantle is the only proxy we have to decipher the proto atmosphere 

and how the conditions became favourable for life. Sometime in the mid- to late Archean (e.g., Farquhar 

et al., 2011), microbial life developed the ability to perform oxygenic photosynthesis, which uses energy 

from the sun and raw materials extracted from the geosphere (CO2 + H2O) to generate energy and 

eventually releases oxygen in a gas phase (O2) as a waste product. Over time these biological processes 

cumulatively oxygenated the Earth’s surface. 

 The Archean mantle is poorly represented on the present-day Earth. Fragments of the Archean 

crust (greenstone belts) and mantle are found enclosed in Precambrian cratons and Proterozoic 

basements. An example of Archean mantle is represented by mantle-derived peridotite bodies enclosed 

in the gneisses of the Western Gneiss Region, Norway (Brueckner et al., 2002). However, the 

metamorphic reworking of these rocks almost erased the primary geochemical signature of most 

elements. Valuable information on the Archean mantle have thus to be extracted from mantle-derived 

igneous rocks generated by partial melting of Archean mantle sources. In the Archean greenstone belts, 

different products of mantle melting are found as lavas and sills spanning in composition from tholeiites 

through Fe-picrites to komatiites.  
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Chapter 1 

1.1 Komatiites 

 Komatiites are believed to provide the most reliable information on bulk mantle compositions 

because formed through high degrees of partial melting (e.g., Campbell & Griffiths, 1992). Mafic melts 

and komatiites represent a unique window into the Archean mantle composition. However, these mafic 

rocks were often affected by metamorphic overprint that, in many cases, altered the original bulk rock 

chemical composition. Additional processes, such as degassing or the seafloor hydrothermal alteration, 

also contributed to change the original composition of these Archean volcanics and have to be 

deciphered and taken into account. Komatiite can therefore be defined as a rock whose field relations or 

textures provide evidence of a volcanic or subvolcanic origin and whose mineral assemblages or major-

element contents indicate an ultramafic composition. Features that can be used to indicate a volcanic 

setting include a fine-grained, chilled upper margin or, more conclusively, the presence of breccia or 

hyaloclastite. Fine grain size throughout the unit, spinifex textures, amygdales, complete conformity 

with surrounding units (lack of intrusive contacts) are consistent with, but do not prove, a volcanic origin. 

The chemical limit between komatiite and other less magnesian volcanic rocks was set, rather arbitrarily, 

at 18% MgO, a value that corresponds to a minimum in the relative abundances of komatiitic rocks in 

many, though not all, greenstone belts. Implicit to the definition of komatiite is the notion – difficult to 

prove – that komatiites crystallize from liquids that contained more than about 18% MgO. To distinguish 

komatiite from other types of highly magnesian volcanic rocks, it is useful to include spinifex texture in 

the definition of the rock type. Spinifex, a texture characterized by the presence of large skeletal or 

dendritic crystals of olivine or pyroxene, is present in many, but not all komatiite flows. Many komatiite 

flows comprise an upper spinifex-textured layer and a lower olivine-cumulate layer; and other flows 

grade along strike from layered spinifex-textured portions to massive olivine–phyric units. Komatiitic 

basalts display similar textures with pyroxene rather than olivine as the dominant mineral (Arndt et al., 

2008). Compositional differences of komatiites have led to their classification as either Aluminum-

Depleted Komatiites (ADKs) or Aluminum-Undepleted Komatiites (AUKs) (Nesbitt & Sun, 1979). A 

third, less common type, Aluminum- Enriched Komatiites (AEK), has also been defined (Jahn et al., 

1982). ADKs are typified by subchondritic Al/Ti ratios (10) and superchondritic GdN/YbN ratios (13–

16) and are interpreted to reflect partial melting in the presence of residual (majoritic) garnet (Nesbitt & 

Sun, 1979; Nesbitt et al., 1982), which sequesters Al and the heavy rare earth elements (HREE) with 

respect to Ti and the middle REE (MREE). As pressure increases, garnet becomes increasingly stable in 

peridotitic compositions (Ringwood & Major, 1971; Zhang & Herzberg, 1994), and, accordingly, ADKs 
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are considered to have been sourced from high pressures (between 8 and 13 GPa; Herzberg, 1995; 

Walter, 1998; Robin-Popieul et al., 2012) at moderate degrees of partial melting ( ̴30%) so as not to 

exhaust garnet. Conversely, AUKs have chondritic Al/Ti ratios (20) and unfractionated Gd/YbN ratios, 

and are therefore thought to have formed by larger degrees of partial melting ( ̴50%) at lower, garnet-

absent pressures (Arndt, 2003; Sossi et al., 2016). High temperature is the defining feature of the 

komatiite source. Unless the effect of high temperature was counterbalanced by its composition – an 

elevated content of Fe or garnet, for example – the source would be less dense than surrounding mantle 

and would have ascended at a rate depending on its shape and size and on the rheology of the surrounding 

mantle. Numerous studies have been done about komatiite source and a mantle plume might be an 

adequate option. The source could have been a mantle plume of the type thought (by most authors) to 

be feeding Hawaii and other chains of oceanic islands – a cylinder of hot, buoyant material rising from 

deeper in the mantle – or it could have been a ‘starting mantle plume’ – a huge, roughly mushroom-

shaped structure that probably rose from the core–mantle boundary. The composition of the source of 

komatiite magmas is also uncertain. Several lines of argument show, however, that this source may not 

have had the normal pyrolite composition commonly used as a starting point in the discussions of the 

origin of basaltic magmas. For example, Hanson and Langmuir (1978) and Francis (1995) argued, on 

the basis of the major element compositions of komatiites and picrites, that the source of most komatiites 

had a higher Mg–Fe ratio, and probably a higher FeO content, than the source of most modern basalts. 

Don Francis, in his model, argued for secular variation in the composition of the source of komatiites 

and picrites, the Archean source being richer in FeO than the modern source. Sobolev et al. (2005, 2007) 

proposed that the sources of some komatiites contained a significant proportion of eclogite, up to 40% 

in the case of Proterozoic komatiitic basalts from Gilmour Island. For most Archean komatiites, as well 

as for the Cretaceous Gorgona komatiites, the proportion of the eclogite component was far less, 

averaging around 20%. The trace-element composition of the komatiite source is poorly constrained. 

The depletion of incompatible trace elements that characterizes AUKs indicates that the material from 

which they formed was similarly depleted in these elements. However, if, as is likely, these magmas 

formed through fractional melting, it is possible that the pre-melting source was less depleted or even 

enriched in incompatible elements and that the depletion recorded by the trace elements resulted from 

the separation of earlier melts. On the other hand, the ubiquitous high initial 143Nd/144Nd and low 87Sr/86Sr 

of AUKs suggest that the source had undergone long-term depletion of incompatible elements. ADKs 

may be a rare example of a mantle-derived magma that formed by batch melting. Under normal 

conditions, the silicate melt has a lower density than the solid from which it forms. For normal mafic 

magma, the density difference is sufficient to cause the magma to escape from its source as soon as the 
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degree of melting exceeds a low threshold, probably 1–3%. Fractional melting of the source then 

produces more magma. This magma may either pond or mix with the products of low-degree melting, 

or else it may, under exceptional circumstances, escape to the surface (Kerr et al., 1995). At high 

pressures the situation is different. Silicate liquids are more compressible than solid silicate minerals, 

which means that as pressure increases, the difference in density between magma and solid residue 

decreases (Ohtani, 1984; Rigden et al., 1984; Miller et al., 1991). The experiments of Ohtani et al. (1998) 

have shown that at pressures of about 13–17 GPa, the density of an ultramafic liquid may be slightly 

greater than that of olivine. The peculiar Al depletion and the low levels of HREE of Barberton-type 

komatiites are attributed to melting in the presence of garnet (Green, 1981; Sun, 1984). At low pressure, 

garnet melts near the solidus and is eliminated from the residue before the melt acquires an ultramafic 

composition. For garnet to be retained in the residue of an ultramafic magma, the pressure must be high 

(Sossi et al., 2016).  

With this preamble we can define the komatiite source as broadly peridotitic, perhaps slightly richer in 

Fe than the source of modern oceanic basalts and picrites, and in most cases moderately depleted in the 

more incompatible trace elements. The komatiite source was most probably heterogeneous, but, because 

the degree of melting required to produce komatiite is generally high, and particularly if the source 

fractionally melted, the removal of early-formed melts would have preferentially extracted the more 

enriched components, which generally melt at relatively low temperatures. The immediate source of 

most komatiite therefore was the relatively refractory material left after extraction of early-formed melts 

(Arndt et al., 2008). As komatiites represent the hottest magmas erupted on Earth, they present a unique 

window into the dynamics of the Archean mantle.  

1.2 Fe-picrites 

 Other products of the Archean mantle are the ferropicritic magmas. Although terrestrial picritic 

magmas with FeOTOT ≥ 13 wt.% are rare in the geological record, they were relatively common about 

2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust (Milidragovic et 

al., 2016). Neoarchean ferropicrites form two distinct groups in terms of their trace element 

geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE 

anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) 

magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low 

Al2O3/TiO2 (<8) and Sc/Fe ratios, and were enriched in Ni relative to primary pyrolite mantle-derived 

melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent 

with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is 

characterized by decisively nonalkaline primary trace element profiles that range from flat to LREE-
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depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, 

the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher 

Al2O3/TiO2 (8–25) ratio, and were depleted in Ni relative to melts of pyrolitic peridotite; suggesting they 

were derived from garnet-free peridotite sources (Milidragovic et al., 2016). 

 Some of the earliest reported ferropicrite occurrences on Earth (e.g. Rajamani et al., 1985; Hanski 

and Smolkin, 1995) are from Neoarchean localities in the Superior Province, Canada. These include the 

ferropicrites of the Newton Lake Formation in the Vermillion district (Green and Schulz, 1977; Schulz, 

1982) and the Boston Creek Flow ferropicrites (Stone et al., 1987, 1995a,b) from the Abitibi 

subprovince. Since then, ferropicrites of Neoarchean age have been identified in the Wawa and 

Wabigoon subprovinces of the western Superior Province (Goldstein and Francis, 2008; Kitayama and 

Francis, 2014) and the Ungava craton of the Northeastern Superior Province (Milidragovic et al., 2014). 

Neoarchean ferropicrites from other cratonic blocks of North America, such as the Slave Province, have 

also been studied in detail (Francis et al., 1999). Many ferropicrites, such as the Fe-rich ultramafic lavas 

of the Meredale Member (FeOTOT = 12–23 wt.%; McIver et al., 1982; Schweitzer and  Kröner, 1985; 

Van der Westhuizen et al., 1991), the lowermost unit of the ca. 2.71 Ga (Armstrong et al., 1991) 

Vestendorp Supergroup in South Africa’s Kaapvaal Craton, had been previously classified as enriched 

komatiites, Al-depleted komatiites or transitional to alkaline basalts (Goldstein and Francis, 2008). 

Uranium–Pb zircon dating of the Boston Creek Flow (2720 ± 2 Ma; Corfu and Noble, 1992), and the 

tightly constrained emplacement age of the Fe-rich high-Mg basalts from the Western Churchill 

Province (2691–2711 Ma; Sandeman et al., 2004), suggest that Neoarchean ferropicrites were emplaced 

during the ca. 2.7 Ga peak in global igneous activity and continental crust production (see van 

Kranendonk et al., 2012 for recent review). Furthermore, ferropicritic magmatism has produced a variety 

of volcanic and subvolcanic formations in the upper part of the early Proterozoic Pechenga Group, 

including sills, tufts, pillowed and massive lavas, and thick, differentiated lava flows that possess 

spinifex-textured upper parts-and lower cumulate parts enriched in olivine (Hanski and Smolkin, 1995). 

Various olivine and pyroxene spinifex types can be distinguished. The occurrence of the spinifex texture 

in the Pechenga ferropicrites demonstrates that this texture is not restricted to rocks of komatiitic affinity. 

The existence of kaersutitic amphibole in spinifex-textured ferropicrites is discussed as a paleodepth 

indicator of the volcanism. The parental ferropicritic magma contained about 15 wt.% MgO. Other 

geochemical characteristics include high FeOtot and TiO2 and low Al2O3 contents and high abundances 

of LREE and HFSE. Many incompatible element ratios correspond to those found in modern ocean 

island basalts (Hanski and Smolkin, 1995). 
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1.3 Tholeiitic basalts   

 Another product of the Archean mantle are tholeiitic basalts. These rocks have moderately 

evolved compositions with low MgO contents between 5 and 8%, flat mantle-normalized trace-element 

patterns, and isotopic compositions that indicate derivation from a moderately depleted mantle source 

(Condie, 1990; Laflèche et al., 1992; Arndt, 2008). In many respects, their petrological and geochemical 

characteristics resemble those of tholeiitic basalts in oceanic plateaus and, if the effects of crustal 

contamination are ignored, continental flood basaltic provinces. Only slightly elevated Fe and Ni 

contents and lower levels of moderately incompatible trace elements, such as the HREE, distinguish the 

Archean tholeiites (Arndt, 1991; Condie, 1994). These differences may indicate either secular variation 

in the composition of the mantle source, as advocated by Condie (1984, 1994) and Francis et al. (1999), 

or, alternatively, changes in the conditions of partial melting. Arndt et al. (1997a) suggested that the 

combination of high Fe–Ni and low HREE indicated that the melting that produced Archean tholeiites 

took place at greater depths and from a hotter source than the melting that produced basalts in modern 

volcanic plateaus. The exact relationship between tholeiites and komatiites remains unclear. The two 

types of magma occur together – komatiite is always associated with tholeiite, even though tholeiites 

need not be accompanied by komatiite – and the two magmas alternate in many Archean greenstone 

belts, hence indicating that they formed simultaneously, presumably by melting in different parts of the 

mantle (Arndt, 2008). 

 The relicts of the primary igneous assemblage are the only present record of the composition of 

the melt derived from the Archean mantle. The mineral structure of the major constituents of komatiites, 

i.e. olivine, orthopyroxene and clinopyroxene, however operates a significant filter in the uptake of trace 

elements. These minerals cannot give information about the signatures of the mantle source in terms of 

Nb-Ta or the large ion lithophile elements (LILE), fundamental tracers of mantle fertility. Furthermore, 

none of these minerals can incorporate and fix significant amounts of volatile elements in their structure, 

thus hampering robust inferences on the volatile content of the mantle source. Ultramafic rocks having 

amphiboles with textures and compositions of proven igneous origin (Stone et al., 1997) are reported in 

the late Archean greenstone belts (Stone et al., 2003; Fiorentini et al., 2004) as well as in Proterozoic 

belts (Fiorentini et al., 2008).  

1.4 Amphibole in the Archean and Early Proterozoic rocks   

 Stone and co-authors (2003) have studied Archean hydromagmatic amphiboles from the Al-

depleted tholeiites and ferropicrites of the Abitibi greenstone belt, Canada. The amphiboles are observed 

in peridotite layers and basal chill zone of thick differentiated basic and ultrabasic sills and flows, and 

are titanian pargasite in composition. The authors divided the amphiboles in two petrographic types: 
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amphiboles in the groundmass and amphibole-bearing melt inclusions. The former are oikocrysts 

hosting / enclosing cumulus olivines (Fo83) that are rounded in shape, embayed and smaller in size. The 

amphibole-bearing melt inclusions are spherical to ovoid in shape and are hosted in cumulus olivines 

(Fo79 in tholeiitic rocks). In-situ analysis ion probe of the amphiboles reveal enrichment in Nb, LREE 

and Zr and depletion in Sr and HREE relative to primitive mantle. The water contents are in the range 

of 1-3 wt. % and overall display δD values from 50 ‰ to -140 ‰, mainly in the range of -60 ‰ and -

90 ‰ (Stone et al., 2003). The authors suggest that amphibole formation was driven by subsolidus 

reaction of residual hydrous silicate melt with primitive assemblage of olivine and clinopyroxene. Bulk 

composition of the melt inclusions and presence of magmatic water suggest amphibole crystallization 

from olivine and pyroxene residual melts with at least 2-3 wt. % of water during rapid solidification of 

the host units. For the authors, adjustment for the anhydrous phase crystallization suggests the initial 

melts contained 1-2 wt. % H2O. In the study by Stone et al. (2005), in-situ H isotope analysis of igneous 

amphibole from the Boston Creek ferropicrite, a 100-m-thick layered mafic-ultramafic unit, provides 

understandings into the evolution of Archean mantle-derived hydrous melts in the crust. Ion microprobe 

analyses of the ultramafic-rock-hosted interstitial igneous Mg-hastingsite indicate a wide range of δD 

values, from –47 ‰ to +54 ‰ and 2–3 wt% H2O at the 100–1000 µm intragrain scale (Stone et al., 

2005). The authors also have observed that amphiboles show relatively uniform major-element and 

incompatible trace-element compositions. This wide range includes values significantly higher than the 

δD values of –50 ‰ for whole-rock samples, <+10 ‰ for igneous amphiboles from ultramafic sills, –

80 ‰ to –30 ‰ values for hydrothermal-metamorphic fluids in the area, and –90 ‰ to –60 ‰ values 

for mantle materials. For Stone and co-authors, the anomalously high δD values cannot be attributed 

completely to H loss from amphibole during secondary processes. The contrast with the relatively 

uniform Mg-hastingsite composition and H2O and trace-element contents of the amphibole excludes the 

possibility that the δD values reflect variable fluid/mineral fractionation. Stone et al. (2005) suggest that 

the anomalously high δD values most plausibly record the composition of the ferropicritic melt from 

which the amphibole formed. 

 Fiorentini et al. (2010, 2012) also described Archean hydromagmatic amphiboles in the 

komatiites of Mount Keith and Mount Clifford in the Agnew-Wiluna greenstone belt, Australia. 

Komatiite sills up to 500 m thick contain widespread occurrence of hydromagmatic amphibole in 

orthocumulate- and mesocumulate-textured rocks, which contain ca. 40–50 wt% MgO and 3 wt% TiO2. 

Conversely, komatiite flows do not contain any volatile-bearing mineral phases: about 150-m-thick 

flows only contain vesicles, amygdales and segregation structures, whereas 5–10-m thick flows lack any 

textural and petrographic evidence of primary volatile contents (Fiorentini et al., 2012). The authors 
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suggest that komatiites from the Agnew-Wiluna greenstone belt, irrespective of their initial water 

content, have degassed upon emplacement, flow and crystallization. More importantly, data show that 

komatiite flows most likely degassed more water than komatiite intrusions. Komatiite degassing may 

have indirectly influenced numerous physical and chemical parameters of the water from the primordial 

oceans and hence indirectly contributed to the creation of a complex zonation at the interface between 

water and seafloor. 

 Fiorentini et al. (2008) have studied the Paleoproterozoic Pechenga complex (Russia) and 

provide insights into the controversial source of volatiles that are implicated in Precambrian ultramafic 

magmatism. The intrusions mainly contain oikocrystic kaersutites and pargasites, whereas lava flows 

generally include idiomorphic Fe-kaersutites and Fe-pargasites. All orthomagmatic amphiboles display 

slightly LREE-enriched chondrite-normalised patterns. Primitive mantle-normalised patterns of 

amphiboles from the intrusions display positive Nb–Ta, moderate negative Th–U and distinctive 

negative Sr–Li anomalies. Conversely, Fe-kaersutites and Fe-pargasites from the lava flows display 

undepleted Th, U, Sr and Li signatures. Boron and Cl enrichment is primarily observed in secondary 

edenites, which locally rim orthomagmatic kaersutites. In-situ δD measurements of hydromagmatic 

amphiboles from the gabbro–wehrlite intrusions display values ranging between −70‰ and −170‰, and 

total water contents between 1 and 3 wt. %. Conversely, primary hydromagmatic amphiboles from the 

Pechenga flows display lighter δD compositions ranging between −100‰ and −270‰, and lower (>2 

wt.%) total water contents. The Ti– and Nb–Ta-enriched nature of hydromagmatic amphiboles from the 

intrusions and lava flows indicates that the source of volatiles in the Pechenga ferropicrites could be 

either a metasomatised subcontinental mantle or a volatile-bearing plume. Positive Nb–Ta/La anomalies 

in amphiboles from the intrusions rule out crustal contamination with granitoid crust during petrogenesis 

and emplacement as the main source of the volatiles. Local B–Cl enrichment suggests that some samples 

may have interacted with hydrothermal fluids. The range of in-situ δD values in hydromagmatic 

amphiboles is consistent with the presence of magmatic water. The lighter hydrogen isotopic 

composition and lower water contents of the primary igneous amphiboles from the lava flows compared 

to amphiboles from the intrusions indicate that the lava flows degassed upon emplacement.  

1.5 Aim of this work  

 The goal of this study is to propose a novel approach in deciphering the Archean mantle 

geochemical signature by deriving the trace element composition of the mantle from that of the melt in 

equilibrium with accessory minerals of Archean ultramafic rocks such as primary amphibole. Some 

Archean and Paleoproterozoic ultramafic sequences comprise layers with cumulate texture preserving 

amphibole as primary igneous minerals. Among mafic minerals, amphibole is efficient in preserving 
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information on the equilibrium melt for its capability to incorporate almost all the petrologically relevant 

elements. These include fO2 sensitive elements (e.g., V), Nb-Ta, LILE and volatiles (H2O, Cl and F). A 

detailed geochemical study on Archean amphibole is fundamental to constrain the relations between this 

mineral and primary mantle melts in order to evaluate the volatiles budget of Archean mantle. Thus, the 

information about chemical composition of the Archean mantle may answer to the actual debates on the 

wet or dry nature of the Archean mantle sources as well as the Nb “paradox” on sub-chondritic signature 

of the mantle.     
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Chapter 2 
 

Geological setting and petrography of selected 

samples 

 

 The geological setting and the petrography of the samples considered for this study are reported 

in this Chapter which is divided according to age and localities. Phanerozoic amphibole-bearing samples 

are reported for a comparison with the Precambrian amphiboles in order to evaluate secular variations 

in the mantle compositions of the volatiles elements. Phanerozoic samples are from subduction-related 

setting and from alkaline lavas.  

 The reader should consider that the samples of Archean and Paleoproterozoic age studied in this 

thesis were made available through the collaboration with Prof. Marco Fiorentini, Centre for Exploration 

Targeting, University of Western Australia (Perth, Western Australia). Furthermore, several of these 

Archean and Paleoproterozoic samples were also objects of previous studies (Fiorentini et al., 2008, 

2010, 2012). The samples of Phanerozoic age were also objects of previous studies related to ongoing 

international scientific collaborations involving Prof. Massimo Tiepolo (Esna-Ashari et al., 2016; Ma et 

al., 2013a,b; Tiepolo et al., 2008, 2011, 2012).  

 The following sections provide the geological setting of the different sample localities and about 

the essential petrographic features of the selected samples. The Precambrian samples were accurately 

selected by a collection of 131 samples by considering the presence of hydromagmatic amphibole and 

the best possible preservation of the primary textural features. 
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Figure 1 - Neoarchean samples locations and simplified geological setting. (A) samples from Mount Keith and Mount 

Clifford, Agnew-Wiluna greenstone belt, Western Australia (modified from Fiorentini et al., 2012); (B) samples from 

(1) Boston Creek flow, (2) Theo’s Flow and (3) Ghost Range, Abitibi greenstone belt, Canada (modified from Stone 

et al., 2005).  

 

2.1 Agnew-Wiluna greenstone belt (Western Australia) 

 The Agnew-Wiluna belt is located within the northern part of the Kalgoorlie terrane, the most 

westerly of the three terranes (the others are Kurnalpi and Burtville) that collectively make up the Eastern 

Goldfields superterrane of the Yilgarn craton, Western Australia (Myers, 1997; Cassidy et al., 2006). 

The Kalgoorlie terrane is bounded by the Youanmi terrane to the west and the Kurnalpi terrane to the 

east. Terrane boundaries are marked by major NNW-trending fault zones; the Ida fault forms the western 

boundary of the Kalgoorlie terrane and seismic traverses reveal that it extends to the base of the crust 

(Drummond et al., 2000; Mole et al., 2013, 2014; Zibra et al., 2013). Supracrustal sequences in the 

Kalgoorlie terrane are dominated by a variety of volcanic rocks with lesser volumes of volcaniclastic 

and epiclastic lithologies, dated to between 2720 and 2660 Ma (Nelson, 1997; Swager, 1997; Kositcin 

et al., 2008; Czarnota et al., 2010). These locally rest on older supracrustal sequences, such as the 2930 

± 4 Ma Penneshaw Formation at Norseman (Nelson, 1997), the > 2749 ± 7 Ma eastern basaltic sequence 

at Wiluna (Kent and Hagemann, 1996), the 2736 ± 3 Ma Kathleen Valley Gabbro southwest of 

Yakabindie (Liu et al., 2002), and the ca. 2730 Ma intermediate to felsic volcanic footwall sequence at 

Cosmos (De Joux et al., 2013). The 2720 to 2660 Ma episode of greenstone formation comprises three 

major sequences, which can be correlated across most of the strike extent of the Kalgoorlie terrane. The 

2720 to 2690 Ma Kambalda sequence consists of intercalated basaltic and komatiitic volcanic rocks, 
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with a component of felsic to intermediate calc-alkaline volcanic and volcaniclastic rocks that becomes 

increasingly voluminous to the north of Kambalda. The geochemistry of the upper parts of the komatiitic 

sequence at Kambalda and of the overlying basalt, and the presence of >2900 Ma xenocrystic zircons, 

indicate that a component of crustal assimilation was important in the petrogenesis of these mafic and 

ultramafic volcanic rocks. These rocks were probably erupted onto older continental crust (Arndt and 

Jenner, 1986; Compston et al., 1986; Morris, 1993; Lesher and Arndt, 1995; Nelson, 1997; Bateman et 

al., 2001). 

 The presence of pillow basalts and of hemipelagic sedimentary rocks intercalated with the mafic 

to ultramafic stratigraphy has led to the interpretation of the Kambalda sequence as being deposited in a 

back-arc setting (Barley et al., 1989; Krapež, 1997). This interpretation is further supported by the 

recognition that the Kurnalpi terrane to the east comprises a sequence of ~2715 to 2704 Ma calc-alkaline 

andesitic volcanic complexes (Morris and Witt, 1997; Barley et al., 2008). However, more recent 

analysis of the geochemical composition of basaltic and andesitic rocks from the Eastern Goldfields 

superterrane reveals subtle departures from distinctive island arc signatures (Barnes et al., 2012b; Barnes 

and Van Kranendonk, 2014). These authors argue that the geochemical data are more consistent with 

magma derivation from a plume head (low-Th basalt) or during plume-crust interaction (high-Th 

siliceous basalts and andesites). 

 The Kambalda sequence is overlain unconformably by the 2690 to 2665 Ma Kalgoorlie 

sequence, comprising andesitic, dacitic, and rhyolitic volcaniclastic and epiclastic rocks with 

subordinate volcanic rocks (Barley et al., 2002; Kositcin et al., 2008; Krapež and Hand, 2008). These 

rocks typically display tonalite-trondhjemite-granodiorite geochemical characteristics, consistent with 

an origin via slab melting in a convergent margin setting (Czarnota et al., 2010), although derivation 

through melting of underplated basaltic material is also considered as an alternative (Barnes and Van 

Kranendonk, 2014). Rocks of the Kalgoorlie sequence are coeval with the main phase of high-Ca 

granitoid magmatism (Champion and Sheraton, 1997; Champion and Cassidy, 2007) and almost 

certainly represent the volcanic and volcaniclastic equivalents of these granitoids. The coincidence of 

the cessation of volcanism in the Eastern Goldfields superterrane at ~2670 Ma with the onset of regional 

D2 contraction (Blewett and Czarnota, 2007a, b) and with a coarsening-upward trend in the uppermost 

parts of the Kalgoorlie sequence (Squire et al., 2007) suggests that this sequence records the switch from 

regional extension and volcanism to basin closure and orogenesis (Czarnota et al., 2010). 

 Siliciclastic sedimentation in late basins occurred at about 2660 Ma in the Kalgoorlie terrane 

(Krapež et al., 2000) and marks the final stage of greenstone formation (Krapež et al., 2000, 2008; 

Kositicin et al., 2008). Facies analysis indicates a change from fluviatile to deep-water marine deposition 

over time in the Kalgoorlie terrane. These basins record the first exhumation of granite domes, since 
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they contain granitic detritus and occur in the hanging wall of the extensional shear zones that mark the 

contact between large granitic domes and the margins of greenstone belts (Blewett et al., 2010a). The 

late basins and extensional shear zones share similar P-T-t paths (Goscombe et al., 2007), suggesting 

that the two are genetically linked. There is also a spatial link with syenites, which tend to be emplaced 

during tectonic extension (Smithies and Champion, 1999). Czarnota et al. (2010) suggested that these 

basins formed as a result of far-field extension, rather than in response to strike-slip movement on major 

NNW-trending faults as proposed by Krapež and Barley (2008). 

 A comprehensive review of the structural history of the Eastern Goldfields superterrane is 

presented by Blewett et al. (2010a) and a geodynamic model is presented by Czarnota et al. (2010). 

These authors recognize five main deformation events. D1 relates to the period of pericratonic, ensialic 

extension that accompanied submarine volcanism and sedimentation in the Kalgoorlie terrane. The 

strong NNW-trending structural grain evident in the Eastern Goldfields superterrane was probably 

established at least as early as the ~2810 Ma phase of rifting and greenstone formation and would have 

controlled the location and orientation of the 2720 to 2670 Ma rift. All terranes of the Eastern Goldfields 

superterrane display a common structural history post-2670 Ma, although the timing of each event is 

diachronous, occurring earlier in the east than in the west. East-northeast contraction marks the D2 event 

which produced regional-scale NNW-striking upright folds. This event occurred at ~2665 Ma in the 

Kalgoorlie terrane. 

 Mid-orogenic E-NE extension (D3) occurred in response to magmatic and tectonic crustal 

thickening and/or slab roll-back, possibly associated with lower crustal delamination. The majority of 

major crustal-penetrating shear zones were reactivated during D3, which occurred at ~2660 Ma in the 

Kalgoorlie terrane and coincided with formation of the late basins. The D4 event is subdivided into a 

period of E-NE contraction (D4a: ~2655 Ma) followed by a period of east-southeast contraction (D4b: 

~2650 Ma in the Kalgoorlie terrane). The inherited extensional architecture controlled the localization 

of D4 structures and the late basins were folded and faulted at this time. The change in orientation of the 

principal stress from east-northeast to east-southeast resulted in principally strike-slip movement on the 

previously established NNW-trending fault systems. Sinistral transpressional shear zones developed 

during D4b are overprinted by N- to NE-striking D5 faults as the principal compression direction shifted 

to the NE at ~2650 Ma in the Kalgoorlie terrane. Two further events with uncertain relative timing 

affected the Eastern Goldfields superterrane: a phase of vertical shortening which produced extensional 

faults with no preferred orientation, and a further event which produced brittle E-Wstriking sinistral 

faults, possibly related to Proterozoic dike emplacement. 



 

 

15 

15 

 The geodynamic model of Czarnota et al. (2010) favors a plate tectonic reconstruction of the 

Eastern Goldfields superterrane with the initiation of a westward-dipping subduction zone to the east 

producing a back-arc basin and volcanic arc in which the 2720 to 2670 Ma volcanic stratigraphy of the 

Kalgoorlie and Kurnalpi terranes was deposited. However, as noted by Barnes and Fiorentini (2012), 

one of the unique features of the Kalgoorlie terrane is the great abundance of komatiitic rocks (and 

particularly of olivine adcumulates), many of which crystallized from komatiitic magmas that were 

unusually primitive. The high MgO content of komatiitic lavas led to early models for the development 

of the Agnew-Wiluna belt development based on a mantle plume impinging on the Archean crust 

(Campbell and Hill, 1988; Campbell et al., 1989). Blewett et al. (2010b) presented magneto-telluric data 

for the SE margin of the Yilgarn craton that support the observation of Begg et al. (2010). The terranes, 

such as the Kalgoorlie and Kurnalpi terranes, are typically underlain by thinner subcontinental 

lithospheric mantle relative to older, more evolved terranes like the Youanmi. Mole (2012) proposes a 

model for the formation of the Kalgoorlie terrane in which cratonic margin extension and crustal thinning 

caused the impinging plume head to be diverted to shallower crustal levels where high degrees of melting 

took place in response to drop in pressure (Mole et al., 2013, 2014). This model predicts extremely high-

flux komatiitic eruptions with minimal ponding and fractionation of magma during ascent. Both 

processes would have been facilitated by the thinned lithosphere and the presence of mantle-tapping 

structures in an extensional cratonic margin setting (Begg et al., 2010). 
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2.1.1 Mount Clifford 

 

Figure 2 - Map of Agnew-Wiluna belt (Western Australia), showing location of Mount Clifford dunite (from Locmelis 

et al., 2009) 

 

 The Mount Clifford dunite body is located in the southern part of the Agnew-Wiluna greenstone 

belt (Fig. 2), in Western Australia. 

 The stratigraphy of the Mount Clifford dunite body (Fig. 3) is well described by Donaldson 

(1982), Donaldson et al. (1986), and Hill et al. (1990). The base of the dunite body is defined by an 

altered, chilled margin in contact with a metasedimentary rock that overlies the tholeiitic footwall. The 

chilled margin is overlain by an approximately 70 m-thick layer of olivine orthocumulates and olivine-

clinopyroxene cumulates. This layer is overlain by a 1,000 m-thick olivine adcumulate unit, which is 

intersected by a thin, magnesian-augite pyroxenite layer. Above the olivine adcumulate body, a thin 

sequence exists that contains coarse grained olivine characterized by the development of harrisitic 

textures. The sequence is overlain by a thin olivine orthocumulate layer and another thin pyroxenite 
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layer. On top of the pyroxenite layer, an approximately 100 m-thick layered gabbro occurs, with a fine-

grained and locally clinopyroxene spinifex–textured upper chilled zone. The gabbroic unit is overlain 

by a komatiite sequence that contains a laterally restricted, 150 m-thick unit composed of chevron-

textured olivine orthocumulates with irregular intervals of harrisite and olivine spinifex. This unit is 

interpreted as a compound komatiite flow and hosts a zone of nickel sulfide mineralization called the 

Marriott’s nickel prospect (Hudson and Travis, 1981). The Marriott’s flow is overlain by a sequence of 

spinifex-textured flows and intercalated shales (Locmelis et al., 2009). 

 

Figure 3 - Detailed map and idealized section of the Mount Clifford Dunite (from Locmelis et al., 2009) 

 

 At Mount Clifford ca. 5–10% modal primary oikocrystic amphiboles are concentrated in the 

stratigraphically lower part of the dunite body (olivine-clinopyroxene cumulates). Pargasite, Mg-

hastingsite and kaersutite amphiboles are generally contained in mesocumulate- and adcumulate-

textured rocks (Fiorentini et al., 2012).  
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 In sample 85437 primary phases are deeply substituted by secondary minerals as serpentine, 

chlorite and tremolite-actinolite. The brown amphibole (20-25 vol.%) has poikilitic texture, with 

inclusions of primary minerals completely substituted by secondary minerals. Locally, amphibole 

changes from brown to colourless. Clinopyroxene (50-60 vol.%) is present as relict oikocrysts (≤2 mm) 

rimmed by brown amphibole. Pyroxene shows rounded inclusions of other phases (completely 

substituted by alteration products) and round spinels. Along the crystallographic planes of amphibole 

exolution lamellae of Fe-oxides are found. Accessories phases are Cr spinel, secondary magnetite along 

the rim of the spinel or in the fracture of altered silicates, and pyrite (disseminated among silicates). 

 

Figure 4 - Photomicrographs of polished thin section (85437) displaying varying textures between primary 

hydromagmatic amphiboles (Amph) and secondary alteration phases (Chl). 
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2.1.2 Mount Keith 

 

Figure 5 A, B – In Fig. (A) is illustrated the regional geology of the Mt Keith region and the distribution of felsic, 

mafic and ultramafic units (from Rosengren et al., 2008). (B) Stratigraphy of the Agnew-Wiluna Belt in the Mt Keith 

Region. Sedimentary units such as black shale and chert are indicated by black wedges within dacite and basalt 

sequence (from Rosengren et al., 2008). 

  

 Many of the komatiite units in the Mount Keith area consist almost of a variety of cumulate 

lithologies and are hence termed cumulate units. Although the Mount Keith region has undergone 

greenschist facies metamorphism, igneous textures are commonly preserved. Elongate cord-shaped 

zones of thickening within cumulate units are common and these thickened portions are characterized 

by more magnesian rocks (olivine meso- to adcumulate rocks) than the flanking sequences (dominated 

by olivine orthocumulate rocks). These thickened portions are interpreted as positions of focused fluid 

flow (Hill et al., 1990, 1995; Barnes, 2006), either as lava in a tube-fed flow complex or as magma in a 

subvolcanic sill, and are referred to as “pathways” (Barnes, 2006). In portions of a typical komatiite flow 
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unit spinifex textures may be either well preserved or else converted to alternating bands of tremolite-

chlorite and serpentine-tremolite-chlorite rocks (Gole et al., 1989; Hill et al., 1990). Variably sulfidic 

shale-like and cherty metasedimentary horizons may be intercalated with these magmatic units. Together 

they are described as sequences of thin komatiite flow units, whether or not spinifex textures are 

preserved. The frequently sheared contacts between komatiite and country rocks, the metasomatized 

nature of the latter and the paucity of outcrops make it almost impossible to determine whether or not 

the contacts of cumulate units are intrusive or extrusive (e.g., Trofimovs, 2003). 

Mount Keith ultramafic unit  

 The Mount Keith ultramafic unit (MKU; Fig. 5 A) extends over a strike length of more than 36 

km, extending south into the Yakabindie area and possibly north to Albion Downs and beyond. The 

Mount Keith ultramafic unit faces and dips steeply to the west and wraps around a synclinal fold closure 

(hinge plunging gently south) in the Palm Well area. It is hosted by Mount Keith Dacite (Fig. 5 A and 

B) and lies east of the Hanging Wall shear zone. The Mount Keith ultramafic unit is dominated by highly 

magnesian, olivine-cumulate lithologies. It is made up of a series of lenticular tectonic slices, separated 

from one another by apparent sinistral displacement on N-trending, steeply W-dipping faults. From north 

to south these are the Mount Keith, Golgotha, Cerberus, Spinifex Park, Fortuna, and Betheno slices. The 

Mount Keith unit as a whole has been described previously by Dowling and Hill (1990, 1993) and Hill 

et al. (1990, 1995), while Burt and Sheppy (1975), Fiorentini et al. (2007), and Rosengren et al. (2007) 

described the internal stratigraphy of the unit in the immediate vicinity of the MKD5 mine area, 

exploiting a world-class nickel deposit in the Mount Keith slice. Lenticular pods of olivine adcumulate 

rock are mantled and linked by thinner sequences of olivine meso- to orthocumulate rock. Fractionated 

sequences of interlayered gabbro and pyroxenite occur at the top of the Mount Keith ultramafic unit in 

the Mount Keith, Spinifex Park, Fortuna, and Betheno slices but not in the Cerberus or Golgotha slices. 

Profiles through portions of the Mount Keith ultramafic unit that are capped by fractionated sequences 

show marked similarities with Fred’s Flow at Munro Township (Arndt et al., 1977) but with the addition 

of an adcumulate core to the olivine orthocumulate basal portion. Forsterite contents, estimated from 

fresh, unmineralized olivine adcumulate rocks from all slices, typically range from 92 to 94%, in keeping 

with the estimates of Dowling and Hill (1990) and Barnes et al. (2011, 2012a) and similar to those 

reported from Fred’s Flow (Arndt et al., 1977). The chilled upper margin of the Mount Keith ultramafic 

unit varies in composition in a predictable way, depending upon the internal stratigraphy of the unit: 

fractionated sequences are overlain by basaltic to basaltic-andesite chilled margins, whereas olivine 

orthocumulate rocks are overlain by ultramafic chilled margins, as observed by Gole et al. (2013, at the 

Mount Keith MKD5 mine area) and by Perring (2015b). Furthermore, pyroxene and olivine spinifex-
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textured rocks are reported from the upper margin of the Mount Keith slice near the northwest wall of 

the Mount Keith pit (Gole et al., 2013). Spinifex textures are rarely preserved at the upper contact of the 

Spinifex Park slice, above the fractionated zone (Duggan et al., 2008). For Perring (2015b), these 

observations support an extrusive rather than an intrusive origin for the Mount Keith ultramafic unit, 

although the interpretation is still open to debate. Work undertaken as part of the study by Rosengren et 

al. (2005) has revealed previously undocumented contact relationships between the MKU and the 

stratigraphic dacitic hangingwall. The relationships displayed at the upper contacts are indicative of an 

intrusive relationship between the MKU and the enclosing dacite. These relationships, coupled with the 

lack of definitive extrusive features such as spinifex and flow-top breccias (Rosengren 2004), indicate 

that the MKU has an intrusive origin (Rosengren et al., 2008).  

 Although the Mount Keith ultramafic unit as a whole dips steeply to the west, the attitude of the 

igneous layering within the unit is quite variable and may be discordant to one or both contacts; most 

contacts are areas of high ductile strain, but some portions are clearly faulted. 

 

Figure 6 - Local geology in the Mt Keith region illustrating simplified geology and distribution of drill holes (from 

Rasengren et al., 2008). 

 

 As shown in Fig. 6, the MT Keith area were interested by extended drilling by the WMC 

Resources Ltd that had provided facies information within the felsic succession (Rosengren et al., 2008). 
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A thin (<5 m) metasedimentary unit (made of sulfidic chert and shale) separates the lower cumulate unit 

from an overlying sequence of three to four texturally differentiated and occasionally fractionated 

komatiite flow units at Spinifex Park, while a thin dacitic horizon is developed in the same stratigraphic 

position at Fortuna. Low MgO komatiitic rocks also occur immediately above the Mount Keith slice at 

Palm Well. The drilling density is low, but the stratigraphic relationship appears similar to the cumulate 

unit–thin-flow unit pairings seen at Leinster (Perring, 2015a) and the thin-flow units could be interpreted 

as sequences of break-out flows originating from ruptured pathways in the underlying cumulate unit at 

times of high lava flux (Dann, 2001; Houlé et al., 2009). However, as with the intrusive versus extrusive 

debate on the origin of the cumulate-rich komatiite units, the degree of structural and metamorphic 

overprinting in the Mount Keith region precludes an unequivocal interpretation.  

 

 

Figure 7 – Stratigraphy of the Mount Keith units and location of sample MKD1 in Unit 104 is shown (from Fiorentini 

et al., 2012). 

 The sequence at the Mount Keith MKD5 deposit is better known because of the exploitation of 

the nickel mineralization. The MKD5 deposit probably formed more proximal to an intrarift spreading 

center; several authors have interpreted the association of thick, olivine adcumulate-rich komatiitic 

sequences, dacitic volcanic and volcaniclastic rocks and exhalative iron sulfide horizons as indicative of 
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the rift axis position (Barnes et al., 2007; Beresford et al., 2009; Barnes and Fiorentini, 2012; Fiorentini 

et al., 2012). In the case of MKD5, the vent may have been located where the spreading center was 

intersected by a transform fault with lava flowing downslope, away from the spreading center and 

parallel to the transform fault, before cascading into a half graben and flowing parallel to the spreading 

center (Perring, 2015b). 

 As described by Fiorentini et al. (2012), at Mount Keith ca. 5–10% modal primary oikocrystic 

amphiboles are concentrated in the stratigraphically lower MKU cumulates associated with the thinnest 

parts of the belt (according to Fiorentini et al., 2007a), which are located to the north of the MKD5 nickel 

deposit (Fig. 7). Hydromagmatic amphibole grains of Mg-hastingsite, pargasite and kaersutite are 

generally contained in mesocumulate- and adcumulate-textured rocks of Units 101, 102 and 104 (Fig. 

7; Rosengren et al., 2007; Fiorentini et al., 2012). At Mount Keith, volatile-bearing phases are also 

contained in differentiated gabbroic and pyroxenitic units (Units 105A and 105B, Rosengren et al., 2007; 

Fiorentini et al., 2012). Specifically, the amphibole-bearing sample (MKD1) was collected by Fiorentini 

et al. (2012) from drill core MKD49, in the 104 Unit (Fig. 7). The Unit is a part of the komatiite sequence 

of the MKU emplaced into dacite.  

 In the sample MKD1, the primary phases are mostly replaced by alteration minerals as 

serpentine, tremolite-actinolite and secondary magnetite. Olivine (30 vol.%) and pyroxene (40 vol.%) 

constitute the primary assemblage. The brown amphibole is present as poikilitic crystals (10-15 vol.%) 

and shows inclusions of the primary assemblage completely replaced by alteration phases. Amphibole 

is common associated with altered and colourless pyroxene oikocrysts. The latter shows typical texture 

with sub-parallel crystallographic planes with amphibole at the margin of the oikocryst. The volume of 

clinopyroxene is approximately 30-40%. The inclusions (20-25 vol.%) into the brown amphibole and 

pyroxene have elongated-rounded texture, completely substituted by alteration phases as serpentine, 

chlorite, tremolite-actinolite. The mica is present, associated to brown amphibole, as brown-pleochroic 

lamellae ( ̴ 3 vol.%). The other phases are Cr spinel (<1 vol.%) and secondary magnetite (≤2 vol.%). The 

latter is present as rounded aggregates interstitial to the silicates. 
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Figure 8 - Photomicrographs of polished thin section (MKD 1) displaying different textures between primary 

hydromagmatic amphiboles (Amph) and secondary alteration phases (Chl). 

 

2.2 Abitibi greenstone belt (Ontario - Canada) 

 

Figure 9 - Location of the Abitibi greenstone belt within the Superior province (from Thurston et al., 2008). 
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Figure 10 – Geological map of the Abitibi greenstone belt within the Ontario, Canada (modified from Stone et al., 

2005). 

 The Abitibi greenstone belt is located in Ontario, Eastern Canada (Fig. 9), and is part of the 

Superior craton. It is approximately 800 km long and 240 km wide and is made up by a sequence of 

volcanic, sedimentary and intrusive rocks (Fig. 10). The belt is cut by swarms of Matachewan dikes. In 

the southern part of the Kirkland Lake area, the Archean rocks are overlain by Proterozoic sedimentary 

rocks of the Cobalt Group. In the Kirkland Lake area, the Archean rocks are preserved in a synclinal 

structure located between the Lake Abititbi Batholith and the Round Lake Batholith. The axis of the 

synclinal occurs midway between the two batholiths and sinks to the east (Jensen and Langford, 1985). 

The northern and southern limbs of the synclinal structure are cut by two fault zones developed to the 

E: the Destor-Porcupine Fault Zone and the Kirkland Lake-Larder Lake Fault Zone, respectively. The 

Archean rocks of the area have been affected by greenschist regional metamorphism. The volcanic rocks 

of the Abitibi greenstone belt were formed during cycles of volcanism associated with sedimentation 

and plutonism. Each cycle consisting of komatiitic volcanism followed by tholeiitic, calc-alkalic and 

alkali volcanism (Jensen et al., 1979). The older volcanic cycle rocks are confined in the outer part of 

the synclinal structure, near the Lake Abitibi and Round Lake batholiths. These rocks are referred to the 

Lower Supergroup whereas the rocks of younger volcanic cycle form most of the synclinal structure and 

are assigned to the Upper Supergroup. The Lower Supergroup contains a cycle of komatiitic, tholeiitic 

and calc-alkalic volcanics rocks: another stock of calc-alkalic volcanic rocks is present below this cycle, 
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suggesting that an even older volcanic cycle was developed in the area (Jensen and Langford, 1985). As 

the Lower Supergroup, the Upper Supergroup is made up by a cycle of komatiitic, tholeiitic and calc-

alkalic volcanic rocks (Jensen and Langford, 1985). 

2.2.1 Boston Creek 

 

Figure 11 - Regional-scale map of the Round Lake dome area, Abitibi greenstone belt, Ontario, showing the geologic 

setting of the Boston Creek flow (from Stone et at., 1995) and the sample location. 

 

 The Boston Creek flow (2720±2 Ma; Corfu and Noble, 1992) crops out in the SE part of the 

Abitibi greenstone belt, 16 km south of Kirkland Lake, Ontario and is part of the Lower Supergroup of 

the Abitibi greenstone belt. The geologic section (16 km thick) in this area consists of mafic volcanic 

flows, felsic pyroclastic rocks, ultramafic flows and intrusions, magnetite iron-formation, clastic 

sedimentary rocks, and granitoid batholiths (Jensen, 1985; Jackson and Harrap, 1989). The Boston Creek 

Flow occurs S of the Kirkland Lake – Larder Lake - Cadillac “Break”. The flow crops out near the base 

of the geologic section, in a sequence of pillowed and massive basalts (Stone et al., 1987), and is 

regionally metamorphosed to prehnite–pumpellyite facies and deformed and contact metamorphosed to 

greenschist facies during granitoid intrusion (Jolly, 1980). Despite the superimposed effects of the 

metamorphism and deformation, primary igneous minerals (clino-pyroxene, magnetite–ilmenite, and 

amphibole) and particularly textures (cumulate and spinifex) are preserved in the flow. The Boston 

Creek flow is up to 100-m thick, subvertically dipping, and traceable as a positive magnetic high on 
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aeromagnetic maps for 15 km (Larson et al., 1998). The flow has thin chill margins and is layered 

internally in the upward sequence olivine cumulate, clinopyroxene cumulate, gabbrodiorite, and 

spinifex-textured clinopyroxenite (Stone et al., 1995b). For Stone et al. (1995b) the Boston Creek Flow 

can be divided into five layers: basal pyroxenite, peridotite, pyroxenite, gabbro and spinifex-textured 

lava.  

 The basal pyroxenite, the lowermost layer of the sequence, is  ̴3.5 m thick. The 5-10 cm at the 

bottom of the unit consist of a dark-grey-weathering rock composed of 25% acicular amphibole crystals 

in a matrix of fine-grained chlorite, actinolite and opaques. The upper part of the unit is formed of a 

brown-weathering rock containing actinolite pseudomorphs after clinopyroxene and smaller brown Mg-

hastingsite and hornblende in a very fine-grained matrix of opaques, actinolite and chlorite (Stone et al., 

1987).  

 The peridotite layer is 31 m thick maximum; olivine grains are completely serpentinized with 

formation of secondary magnetite. The latter minerals form round, polyhedral, granular, tabular, or 

elongate pseudomorphs after olivine. The proportion of olivine decreases upwards within the peridotite 

unit, but the size of the grain increases from 1 mm to 3 mm in diameter (Stone et al., 1987). Well-

preserved clinopyroxene is present throughout most of the peridotite layer as intercumulus grains of 

diopside, except for the basal part of the peridotite where they are completely replaced by tremolite and 

chlorite. Brown pleochroic pargasite occurs only within the upper part of the peridotite (Stone et al., 

1987; 2003). Pargasite occurs as 1 mm-sized intercumulus grains, variably altered to tremolite, in places 

associated with small euhedral grains of titano-magnetite. Cr-spinel grains up to 1 mm in diameter occur 

as anhedral to euhedral opaque grains within or interstitial to olivine. The primary Cr spinels are 

completely altered to ferri-chromite and have rims of secondary magnetite. Matrix material of the 

peridotite has been altered to an assemblage of serpentine, magnetite, chlorite, carbonate, and tremolite.  

 The following detailed description concerns the state of art of the sequence of the Boston Creek 

flow (Stone et al., 1995, 2003, 2005). The peridotite-pyroxenite contact is not exposed, but it is easily 

delineated because the intensity of the magnetic signature of the pyroxenite is weaker. The pyroxenite 

(9.5 m thick) is an equigranular, fine- to medium-grained rock. A 20 cm-wide shear zone parallel to 

contacts of the pyroxenite is present within its basal part. The shear zone occupies the centre of an 

approximately 3 m-wide zone of intense amphibolitization affecting the uppermost part of the peridotite 

and the lower and middle part of the pyroxenite. The average grain size in the pyroxenite increases 

upwards. Clinopyroxene is preserved in the normative-clinopyroxene-enriched upper part of the 

pyroxenite unit. Hornblende (Mg-hastingsite), occurring as brown pleochroic subhedral to euhedral 

grains 0.5 - 1 mm in diameter, is commonly mantled or extensively replaced by actinolite, 

characteristically containing concentrations of microscopic rutile along cleavage planes (Stone et al., 



 

 

 

28 

28 

2003). The proportion of hornblende gradually decreases upwards through the layer such that it is present 

only in trace amounts in the uppermost pyroxenite. Cr-spinel altered to ferri-chromite is found only in 

the basal part of the layer, whereas Ti-bearing oxides are present in the basal part. However, the relative 

abundance of titanite aggregates in the basal part of the pyroxenite indicates that titano-magnetite was 

originally present with chromite in the basal pyroxenite or that the spinel was a titaniferous chromium-

bearing spinel. Up section, the magnetite grains increase in size, and they are found in symplectitic 

intergrowths with clinopyroxene. Titaniferous blebs are in some places present in the magnetite. The 

interstitial groundmass of the pyroxenite consists of plagioclase, chlorite, acintolite, and opaques. 

Plagioclase grains, which represent only a small proportion of the rock, are fine-grained, untwinned, and 

composed of albite. 

 The contact between the pyroxenite and gabbro layers is marked by a sudden increase in 

proportion of plagioclase, an abrupt change in weathering colour from brown to dark green, and a 

prominent increase in both grain size and magnetic intensity. Two kinds of gabbro are recognized. The 

more abundant is melanocratic, clinopyroxene rich, equigranular to slightly pyroxene porphyritic, and 

medium to coarse-grained. The other is a mesocratic, relatively plagioclase-rich, medium-grained rock 

that occurs in the melanogabbro as metre-scale patches. The thickness of the gabbro is approximately 

15 m. The gabbro is the least-altered rock layer of the Boston Creek Flow, and clinopyroxene grains 1-

10 mm in diameter are commonly well preserved, although grain margins are invariably amphibolitized. 

The clinopyroxene grains are subhedral to euhedral and sometimes twinned, although only rarely zoned, 

and have compositions generally in the salite field and less commonly in the augite field. Clinopyroxene 

grains in the mesogabbro, which is in general more altered than the melanogabbro, are largely replaced 

by actinolite and sometimes also by fan-shaped aggregates of stilpnomelane. Plagioclase occurs as 

subhedral and commonly twinned cumulate, intercumulate, and fine-grained groundmass material. 

Grain size ranges from <0.5 to >3 mm across. The proportion of plagioclase, like that of clinopyroxene, 

is variable throughout the gabbro. Titanomagnetite is a common and prominent mineral phase in the 

gabbro, particularly in the melanogabbro, 0.5-1 mm across and as tree- and bug-shaped forms, 

symplectically intergrown with clinopyroxene grains. Some titanomagnetite grains contain ilmenite 

lamellae or blebs in the form of trellis texture. The rims and cores of titanomagnetite grains are 

commonly corroded and apparently replaced by actinolite, epidote, carbonate, and titanite. Small 

subhedral to euhedral elongate grains of ilmenite are commonly present in association with this alteration 

assemblage. A mixed assemblage of fine-grained chlorite, actinolite, subhedral plagioclase, yellow 

pleochroic epidote, and sometimes calcite represents interstitial material. The contact between the 

gabbro and spinifex-textured layers is marked by the abrupt appearance of rod-shaped clinopyroxene. 
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Compared with the gabbro, the spinifex layer is more altered, is less magnetic, and weathers to a paler 

green colour. Most of the approximately 33 m thick spinifex layer consists of optically continuous 

amphibole pseudomorphs after sheaves of spinifex clinopyroxene 10- 100 mm long and 0.5 - 1 mm wide 

oriented subperpendicular to the flow top. Many grains are curved and bent. The basal 2 m of the 

spinifex-textured layer consists, however, of short, stubby, roughly parallel, and sometimes curved 

spinifex clinopyroxene grains in a plagioclase-bearing matrix, whereas the uppermost 3 m of the 

spinifex-textured layer consists of individual, randomly oriented, fine- to medium-grained amphibole 

pseudomorphs after spinifex clinopyroxene within a matrix of chlorite and amphibole. Neither olivine 

nor pseudomorphs after olivine are recognized in the spinifex layer. Relict clinopyroxenes are present 

only in the basal 10 m of the spinifex layer. They are the most strongly zoned pyroxenes of the Boston 

Creek Flow. Most grains and all grain margins are pseudomorphed by actinolite. Primary hornblende 

occurs in the basal spinifex-textured layer as rare, small, anhedral to subhedral, extensively altered grains 

of Mg-hastingsitic hornblende. The pseudomorphs of spinifex clinopyroxene in the uppermost 3 m of 

the spinifex-textured layer are stubbier and much smaller than those of the rest of the layer, and the rock 

appears to have a higher proportion of altered glass (now metamorphosed to chlorite) and solid pyroxene 

grains (now amphibole) than the bulk of the spinifex-textured layer. A few have cores of chlorite, 

perhaps after glass rather than pigeonite, because the chlorite of the cores is compositionally 

indistinguishable from chlorite in the matrix. Cr spinel within the spinifex-textured layer is also restricted 

to the uppermost 3 m in the form of small anhedral to subhedral grains of ferri-chromite rimmed by 

magnetite. Magnetite and Ti-bearing oxides occur throughout the spinifex-textured layer but are most 

common in the basal few metres of the layer. Many of the grains have tree- and bug-like shapes, and 

some display trellis-textured ilmenite lamellae. The matrix consists of variable assemblage of 

plagioclase, amphibole, hornblende, chlorite, epidote, carbonate, titanite, and opaques. Plagioclase 

occurs throughout all but the uppermost 3 m of the spinifex-textured layer. It occurs as fine-grained, 

rounded grains and subhedral, commonly twinned laths, variably altered to albite, epidote and 

amphibole. Grain size ranges from 0.1 to 1 mm and gradually decreases upwards. Patches of fine-grained 

chlorite intergrown with amphibole needles are possibly replacements of volcanic glass. Calcite is 

present throughout the spinifex-textured layer, both in the matrix and in association with clinopyroxene 

grains and their pseudomorphs. Calcite seems to have replaced clinopyroxene.  

 The rocks of the flow are enriched in iron (15–25% FeO), light-rare earth elements (LREE) and 

Nb–Ta relative to alumina, heavy-rare earths and Zr–Hf, and show heterogeneous magnesian contents 

(<2–30% MgO) (Stone et al., 1995b). Despite the fact the rocks composing the flow are LREE-enriched, 

the source of the flow had experienced long-term LREE depletion prior to eruption, as is evidenced by 

an average initial εNd of +2.6 (Stone et al., 1995a). This composition is very similar to the value of εNd 
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+2.2 that is the composition of De Paolo’s (1981) model upper mantle at 2.7 Ga. The iron enrichment in 

the flow is manifested mineralogically as major amounts of magnetite (Stone et al., 1995a). Magnetite 

is present as two principal petrographic types: (1) lamellae intergrown with ilmenite in coarse (up to 10 

mm in size), relict igneous grains (up to 20 modal%) in the interstitial areas between clinopyroxene 

grains within the clinopyroxene cumulate layer, spinifex-textured layer, and particularly the gabbro-

diorite layer; and (2) net-, mesh- and mat-like alteration aggregates (up to 15 modal%) in and about 

serpentine pseudomorphs of olivine, formed as a product of olivine hydration during serpentinization 

(e.g., Stone et al., 1987). Magnetite intergrown with ilmenite hosts disseminated chalcopyrite and pyrite 

grains (≤ 1%) which, in turn, host platinum-group minerals (PGM) (Stone et al., 1992, 1993). 

 The Fe-picrite in sample B-5 was collected by the geologist W.E. Stone in the peridotite unit and 

shows cumulate texture and the cumulus phase (likely olivine, 60 vol.%) is completely serpentinized. 

The intercumulus phases are clinopyroxene and brown amphibole. Clinopyroxene (20 vol.%) has 

poikilitic texture and is well preserved in some portions of the sample, whereas in other parts is partially 

to completely altered. Locally, euhedral Cr spinel included into the pyroxene is observed. The brown 

amphibole (7 vol.%) occurs (a) as an intercumulus phase, (b) at the margin of deeply altered 

clinopyroxene crystals and (c) as poikilitic crystals. The contacts between clinopyroxene and brown 

amphibole are not well defined because the altered rims of clinopyroxene. Accessory phases are euhedral 

spinel (included in olivine, clinopyroxene and brown amphibole) and secondary magnetite and 

serpentinization-related silicates (e.g. talc, chlorite, tremolite). 

 

Figure 12 - Photomicrographs of polished thin section (B5) displaying different textures between primary 

hydromagmatic amphiboles (Amph) and clinopyroxene oikocrysts (Cpx). 
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2.2.2 Theo’s Flow 

 

Figure 13 – In Figure are illustrate (A) the location of Munro Township in eastern Ontario, (B) the location of the 

Theo’s Flow area within Munro Township, and (C) the generalized outcrop geology of the main Theo’s Flow exposure 

(from Lentz et al., 2011). 

 

 Theo’s Flow is part of the Archean Abitibi greenstone belt, Ontario (Figure 13 A, B; Arndt, 

1975). Although the age of Theo’s Flow has not been determined, nearby komatiites date from ca. 2.7 

Ga (Shirey, 1997), and this is a reasonable approximation for the age of Theo’s Flow. Pyroclastics, 
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hyaloclastics, and pillow basalts (Condie, 1981) suggest both subaerial and shallow submarine settings 

for the volcanics in the area (Lentz et al., 2011). 

 Metamorphic alteration is predominantly greenschist facies, with amphibolite facies limited to 

areas near felsic plutons. Theo’s Flow lies in the N-central portion of Munro Township (Fig. 13 B), an 

area first mapped by Satterly (1951). It is part of the Lower Supergroup of the Abitibi greenstone belt.  

 This area is characterized by intrusive and extrusive mafic to ultramafic formations (Arndt, 1975; 

Johnstone, 1987), including world-famous komatiite exposures (e.g., Arndt et al., 1977; Arndt, 1977, 

2008). One of these, Fred’s Flow, is geographically adjacent to, and stratigraphically above Theo’s Flow. 

Another, Pyke’s Hill, is well known for spectacular examples of spinifex-textured komatiite. The type 

locality, and best outcrop, of Theo’s Flow is an upturned (~70°) section stretching east-west for ~500 m 

that is bounded stratigraphically underneath by an unrelated gabbro, above by the basaltic komatiite 

Fred’s Flow, to the east by a complex of thinner (5–25 m) pyroxenitic flows, and to the west by a fault. 

The relationships of the east and west boundaries make the orientation of the exposed cross section 

unclear, although Arndt (1975) reported that regional fabrics and flow features suggest that flow was 

east to west, implying the outcrop is along-flow. Metamorphic alteration was chlorite to prehnite-

pumpellyite grade (Arndt, 1975; Condie, 1981), causing serpentinization of olivine, chloritization of 

orthopyroxene, and alteration (e.g., pseudomorphic replacement) of plagioclase and minor phases. 

Augites are largely unaltered, and textural relationships are well preserved throughout the unit. Theo’s 

Flow can be divided into four distinct lithologic units: a thin basal peridotite (0–9 m), a thick pyroxenite 

unit (50–60 m), gabbro (35–40 m), and a hyaloclastic, brecciated top (8–10 m). Stone et al. (1995; 2003) 

described and analysed hydromagmatic amphibole from samples deriving from the upper part of the 

peridotitic unit at Munro Township.  

 The following sections are a detailed description of the Theo’s Flow sequence described in the 

studies of Arndt (1977), Stone et al. (1995; 2003) and Lentz et al. (2011). 

Peridotite (0–9 m Thick) 

 The true basal unit of Theo’s Flow is a serpentinized peridotite. In the field, the basal contact is 

not obvious, marked only by a subtle change in weathering color. The peridotite contains 

pseudomorphically replaced olivines (equant serpentine outlined by magnetite), large (up to 2 mm-wide) 

poikilitic pyroxenes enclosing replaced olivine, and minor amounts (1–2 vol%) of spinel with euhedral 

cores and Ti-rich rims. The abundance of olivine phenocrysts is low (~30 vol%) for a peridotite, although 

much of the groundmass serpentine and chlorite (55 vol%) may be replaced olivine. Pyroxene in the 

peridotite grades from orthopyroxene in the lower half (~14 vol%, pseudomorphically chloritized) to 

clinopyroxene (~10 vol%) in the upper portion of the peridotite. Brown amphibole is also present as 
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accessory phase (~5 vol%). The transition from peridotite to pyroxenite is characterized by alternating 

bands of orange (olivine-rich pyroxenite) and dark-gray (olivine-poor pyroxenite) weathering on the 

outcrop. Petrographically, the change is marked by a switch from intergrown augite and olivine to 

smaller augites with interstitial olivine. For several meters above the banded contact, ghostly subhedral 

pseudomorphs after olivine are present as a minor phase.  

Pyroxenite (50–60 m Thick) 

 The pyroxenite layer is remarkably consistent texturally. Clinopyroxene occurs as euhedral to 

subhedral twinned grains. Interstitial plagioclase has been largely replaced by prehnite, epidote, and 

chlorite, pseudomorphing the plagioclase. The original plagioclase grains are inferred, thus, to be long 

and thin in habit, arranged in radiating sprays (as is common in nakhlites; Treiman, 2005). There are 

also sporadic occurrences of spinel and sulfides (pyrite and chalcopyrite). Augite abundance varies but 

decreases on average up section, whereas plagioclase gradually increases in abundance. In the 

pyroxenites, abundances of interstitial groundmass vary widely, and without obvious trend, from 16 to 

30 vol%. Within the Theo’s Flow pyroxenite, average grain sizes are essentially uniform (on the order 

of ±50 μm), although maximum grain sizes increase systematically with stratigraphic height. The augite 

grains of the transitional gabbro show average grain size similar to the pyroxenite. As discussed by Lentz 

et al. (2011), the pyroxenite also exhibits significant grain clustering, suggesting settling of grains in 

clumps or chains, rather than as individuals. Plagioclase grain size is also fairly constant throughout the 

pyroxenite, averaging 50–100 μm in width. Spinel tends to be a fine-grained matrix phase in the 

pyroxenite, no longer euhedral, and its abundance varies from <1 vol.% to nearly 3 vol.%. 

Gabbro (35–40 m Thick) 

 The transition from pyroxenite to gabbro is difficult to recognize in the field because the 

transition is gradual and because plagioclase, the key marker of the gabbro, is extensively altered. The 

lower 15 m of the gabbro, the transitional gabbro, are petrographically distinct from the underlying 

pyroxenite and overlying gabbro proper. The change from pyroxenite to gabbro is marked by changes 

in size, shape, and abundance of plagioclase (i.e., its pseudomorphs). At the transition, the average width 

of plagioclase crystals increases sharply from around 50 μm in the uppermost pyroxenite to >150 μm in 

the transitional gabbro, which is larger than the cumulus augite grains. Plagioclase in the pyroxenite 

occurred as sprays of thin tablets, though in the gabbro, plagioclase formed tabular, equant (idiomorphic) 

grains. Likewise, the abundance of plagioclase increases from ~15–20 vol.% in the pyroxenite to 27 

vol% in the transitional gabbro. Augite remains euhedral in the transitional gabbro, and it is basically 

indistinguishable from augite in the pyroxenite. 

 The change from transitional gabbro to typical-texture gabbro is also abrupt and marked by a 

sharp increase in the proportion of plagioclase and then a discontinuous increase to 38 vol.%, marking 
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the start of a true gabbro. The gabbro has a typical subophitic texture, marked by intergrown euhedra of 

plagioclase and augite. Moving upward in the section, the abundance of plagioclase increases to 52 

vol.%, whereas that of augite decreases to 28 vol%. The uppermost portion of the gabbro has an ophitic 

texture, with plagioclase euhedra partially or completely enclosed by anhedral augite grains. Minor (<6 

vol%) iron oxides occur throughout, with a skeletal cuniform texture. The oxide grains are altered, so 

original compositions are unknown, but X-ray elemental maps show a correlated abundance of Fe and 

Ti. In some occurrences, the original titanomagnetite is adorned by a lattice of ilmenite exsolved from 

the magnetite. 

 The uppermost gabbro was capped by a very coarse, nearly pegmatitic, lithology, ~3 m in 

thickness, that modally is a pyroxenite: 45–55 vol% clinopyroxene, 24–26 vol% plagioclase. This is 

likely one of several small pegmatitic lenses that Arndt (1975) noted in the area. 

Hyaloclastite (8–10 m Thick) 

 The top layer of the flow is a rubbly, knobby breccia. Arndt (1975) described it in detail and 

called it a hyaloclastite, thereby implying an extrusive, submarine origin for Theo’s Flow. The 

preponderance of altered glass and the fragmental material suggest the material was indeed the product 

of lava-water interactions, consistent with the theory that much of the region was covered by a shallow 

sea at the time of Theo’s Flow formation (Condie, 1981; Lentz et al., 2011). Lentz et al. (2011) described 

samples that have both altered glass and crystalline fragments, sometimes juxtaposed, though the 

textures gradually become more crystalline with depth. However, even the crystalline areas exhibit 

quench textures from fine sprays to vermicular and fishbone growths of pyroxene. In the more glass-

rich samples, there are small phenocrysts (0.2–0.3 mm) of pyroxene and serpentinized olivine in minor 

amounts (~7 vol% total), some displaying skeletal structures with axial cavities. The authors did not find 

a layer beneath the hyaloclastic top of similar bulk composition to the breccia but of medium grain size 

from more gradual cooling, as described by Arndt (1975). Such a “roof layer” would be expected to 

form as heat radiated from the flow’s surface if a solidification front were advancing downward (Mangan 

and Marsh, 1992). Arndt (1975, 1977) mapped an “aphanitic pyroxenite” described as being 

immediately beneath the hyaloclastite, but of variable thickness. This layer could be the missing roof 

crust.  

 Samples T-2 and T-3 were collected by the geologist W.E. Stone into the peridotite layer, at 23 

m upsection of flow base and 25 m upsection of basal contact, respectively.  

 Sample T-2 shows partially preserved cumulus texture even if the major cumulus phase, olivine, 

is completely serpentinized, with formation of typical secondary magnetite. Clinopyroxene is the most 

abundant phase, ̴ 30 vol.%, with dimension of crystals ≤ 2 mm. The textural characteristics of pyroxene 
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as well as its relations with the other phases are not well preserved. Locally, the original poikilitic texture 

can be recognised. Brown amphibole (2 vol.%) occurs in the intercumulus domain inbetween the 

rounded serpentinized portions of the sample. It is usually altered and weakly pleochroic. The 

dimensions of the amphibole crystals are < 1 mm. Accessory phases are biotite (< 1 vol.%), associated 

to relict phases and to opaque minerals (magnetite and pyrrhotite). Magnetite is found in sub-millimetric 

aggregates as product of alteration or associated to biotite. Pyrrhotite occurs as blebs at the margin of 

relict pyroxenes, in the “intercumulus” portion of the sample. 

 Sample T-3 shows cumulate texture and moderate serpentinization of the primary phases. The 

cumulus “phase” (40-50 vol.%) is made up by rounded aggregates of alteration-related minerals 

(serpentine, chlorite, tremolite-actinolite and secondary magnetite). Clinopyroxene (30-40 vol.%) is 

present as relict crystals with dissolved boundary or as oikocrysts with rounded inclusions of olivine. 

Brown amphibole (3 vol.%) occurs at the rim of clinopyroxene in sub-millimetric crystals with exolution 

lamellae along the crystallographic planes and locally deeply altered. The accessory phases are 

magnetite, zoned Cr spinel (opaque with magnetite at the rim) and sulfides. The latter are presents in 

fine grained string between the serpentinized minerals and in the alteration product “groundmass”. 

 

Figure 14 – Thin section view (samples T2 and T3) of the relations between amphibole (Amph) and oikocrysts of 

clinopyroxene (Cpx). In T2 the primary cumulus phase is completely substituted by aggregates of secondary minerals 

(serpentine, chlorite, tremolite-actinolite and magnetite).   
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2.2.3 Ghost Range 

  

Figure 15 – Simplified geological setting of the Abitibi greenstone belt and (3) Ghost Range location (modified after 

Stone et al., 2005). 

  

 The Ghost Range occurs in the eastern part of the Abitibi, Ontario (Fig. 15), close to the 

Porcupine-Destor fault zone (Jensen and Langford, 1985). The Ghost Range was first mapped (Satterly, 

1952b, 1954; MacRae, 1969) as a 760 m thick layered ultramafic to mafic sill, made up by peridotite, 

clinopyroxenite and gabbro, which was subsequently folded into doubly plunging syncline. Jensen and 

Langford (1985) interpreted the Ghost Range as the basal sequence of the Stoughton – Roquemaure 

Group, part of the Lower Supergroup of the Abitibi greenstone belt, and as a complex composed of 

thick, flat-lying lava flows resting unconformably on folded calc-alkalic volcanic rocks of the Hunter 

Mine Group. The Ghost Range is a 10 km long ridge and the calc-alkalic rocks of the Hunter Mine 

Group are exposed on all sides of the ridge.  
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Figure 16 – Cross-section of the Ghost Range sequence (from Jensen and Langfron, 1985) 

 

 The sequence in the Ghost Range (Fig. 16), in ascending order / from bottom to top, are 

peridotite, clinopyroxenite, olive-green gabbro, a thin layer of cherty tuff and a dark green to black iron-

rich gabbro (Jensen and Langford, 1985). For the authors, peridotites have geochemical affinity with 

komatiitic peridotites, whereas the clinopyroxenites and olive-green gabbros have geochemical affinity 

with basaltic komatiites, Mg-rich tholeiites and calc-alkalic basalts. The upper dark green to black 

gabbros show geochemistry affinity with iron-rich tholeiitic basalt and tholeiitic andesite. MacRae 

(1969) interpreted the peridotite and pyroxenite to have resulted from olivine and pyroxene crystals 

settling in a magma chamber.  

 The peridotite is up to 140 m thick and its contact with lower calc-alkalic volcanic rocks is 

considered to be a vertical fault contact. Sheared peridotite rests against pillowed lavas of calc-alkalic 

basalts (Jensen and Langford, 1985).    

 The clinopyroxenite is described as 2 to 6 m thick intensely sheared over a width of few cm at 

its lower contact with the peridotite and as having a sharp contact with the overlying gabbro (MacRae, 

1969). For Jensen and Langford (1985), the lower contact does not show any sign of shearing but a 

gradational contact about 10 cm thick is observed. The upper contact between the pyroxenite and the 

gabbro is described with a slight decrease in grain size in the gabbro.  

 The gabbro above the pyroxenite is about 120 m-thick and shows geochemical composition from 

basaltic komatiite to Mg-rich tholeiitic basalt and, where the plagioclase is abundant, to calc-alkalic 

basalt (Jensen and Langford, 1985). The gabbro has a grain size of 2 to 3 mm and is composed of 40-

60% clinopyroxene, 40-60% plagioclase and accessory serpentine and magnetite pseudomorphic after 
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olivine. The calc-alkalic tuff is 10 cm to 3 m-thick and separates the olive-green gabbro from the dark 

green to black gabbros. 

 The gabbroic rocks which form the upper unit above the tuff are dark green to black iron-rich 

rocks, with diabasic textures. These rocks are described to contain 40-50& pyroxene, 30-40% 

plagioclase, 2-10% quartz and 4-8% titanium-rich magnetite (Jensen and Langford, 1985). The iron-rich 

parts form 20 to 50 m-thick layers and comprise numerous irregular zones of pegmatitic granophyre. 

Fine-grained 3 to 10 m-thick layers separate the iron-rich layers. These fine-grained rocks grade upward 

into coarse-grained rocks and some extend for 1.5 to 3 km which indicates that they may represent either 

flow or intrusive contacts (Jensen and Langford, 1985). The authors did not detect chilled margins and 

interpreted the iron-rich gabbros as massive tabular flows of iron-rich tholeiitic basalt. 

 The fine-grained layers were not observed in the gabbros below the tuffs. The peridotite and the 

pyroxenite, as well as the olive-green gabbro, were possibly derived from the same magma: this may 

have represented a komatiitic lava flow in which olivine and pyroxene crystals settled. After 

solidification the flow was overlain by tuff and additional flows of iron-rich tholeiitic basalt (Jensen and 

Langford, 1985). MacRae (1969) suggested that the gabbros at Ghost Range were derived from 

fractionation of olivine and clinopyroxene, as illustrated by Arndt (1975) for Theo’s Flow in which iron-

rich gabbro can form by olivine and clinopyroxene fractionation from tholeiitic picritic magma. For 

Jensen and Langford (1985), the different geochemical affinity of the lower units (peridotite, 

clinopyroxenite and olive-green gabbro) with respect to the upper gabbroic rocks suggests a different 

parental magma. If the lower rocks were derived from a komatiitic magma, the flow would have had to 

be about 400 m thick. 

 The sample GR 1 was collected by the geologist W.E. Stone from the basal zone of the peridotite 

unit and has poikilitic/cumulate texture with its main assemblage made up by olivine, clinopyroxene and 

orthopyroxene. Accessory phases are brown amphibole and phlogopite. Olivine (35 vol.%) occurs as 

rounded crystals included into oikocrystic clinopyroxene (27 vol.%), as intercumulus crystals of ≤1 mm 

in diameter with exolution lamellae of ilmenite, rounded spinel and inclusions of secondary magnetite. 

Only local domains of olivine cores are preserved from alteration. Round spinels and brown amphibole 

are locally present at the margin of the clinopyroxene. Orthopyroxene is well preserved and forms 

oikocrysts of 2-3 mm in diameter, with inclusions of spinel. The olivine included into the orthopyroxene 

results appears to be more preserved and the contacts between the two phases are sharp. Brown 

amphibole crystallizes at the margin of clinopyroxene or as oikocrysts with diameter < 1 mm. Locally 

amphibole shows inclusions of spinel. When in contact with clinopyroxene, brown amphibole shows 

well-defined margins or, locally, a smooth transition to pyroxene. 
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 Sample GR 2 is analogous to sample GR 1. It shows the same cumulate/poikilitic texture and the 

phases have the same characteristics of the sample GR 1. The only difference is a slight increase in the 

modal percentage of brown amphibole (7 vol.%) and decrease in that of clinopyroxene (25 vol.%). 

 

Figure 17 – Photomicrographs of polished thin sections (GR1, GR2) displaying varying textures between primary 

hydromagmatic amphiboles (Amph), relict olivine (Ol), clinopyroxene oikocrysts (Cpx), orthopyroxene (Opx) and 

brown mica (Phl). Thin sections (A) and (B) are from the sample GR1 whereas (C) and (D) show the textures of sample 

GR2.   
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2.3 Paleoproterozoic samples 

 

Figure 18 – Paleoproterozoic samples location and simplified geological setting of the Pechenga Complex and 

Nyasyukka dike complex. Samples locations (1) from Pilgüjarvi sill, (2) from Kammikivi sill and (3) from Nyasyukka 

dike complex (modified from Fiorentini et al., 2008).   

 

2.3.1 Pechenga Complex (Russia) 

 The Pechenga Complex is part of the Pechenga – Imandra/Varzuga – Ust'Ponoy supracrustal 

belt, which runs in the NW–SE direction across the north-eastern part of the Fennoscandian Shield. The 

Paleoproterozoic volcano-sedimentary succession in the so-called Pechenga Greenstone Belt is assigned 

to the Petsamo Supergroup, which is divided into the North Pechenga and South Pechenga Groups 

(Fiorentini et al., 2008). The North Pechenga Group (more than 10 km in thickness) comprises four 

cycles with each having a sedimentary lower and volcanic upper part. The group is divided into eight 

lithostratigraphic formations of which the two uppermost are called the Pilgüjarvi Sedimentary and 

Volcanic Formations. The Pilgüjarvi Sedimentary Formation is a tuffaceous sedimentary unit, which 

comprises sulfide- and graphite-rich greywackes and shales. The unit hosts numerous nickel sulfide ores 

of economic interest associated with differentiated gabbro–wehrlite intrusions and sills in its central, 
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thickest portion. The overlying Pilgüjarvi Volcanic Formation is made up of a thick pile of tholeiitic and 

ferropicritic lava flows. Ten kilometers NE of the margin of the Pechenga supracrustal belt, peridotites 

and olivine gabbros of the Nyasyukka dyke complex form a rather heterogeneous, but geochemically 

consistent, NNW-trending and steeply dipping dyke swarm in the Archaean granite–gneiss basement. 

For Pechenga, Sm–Nd isotope data gave an age of 1980±40 Ma with an initial ɛNd value of +1.4±0.4. 

Pb–Pb isotopic analyses yielded an age of 1988±39 Ma, with an estimated μ of 7.91 (μ=238U/204Pb), 

consistent with derivation from mantle with little ancient upper crustal contamination (Fiorentini et al., 

2008).  Smolkin et al. (2003) were obtained a baddeleyite age of 1941±3 Ma for the Nyasyukka dyke 

complex, that is consistent with the Sm-Nd isochron age of 1956±20 and an initial ɛNd value of +1.4±0.4 

reported by Hanski et al. (2014) report a Sm–Nd isochron age. 

 The magma type of these igneous bodies was termed ferropicrite because of its exceptionally 

high FeO content, which usually exceeds 14 wt.% (FeOtot), and high MgO content close to 15 wt.% in 

liquid composition (Hanski, 1992). Ferropicrites are also characterised by low Al2O3 and Al2O3/TiO2 

and relatively high TiO2, Zr and other incompatible elements. Ferropicrites are strongly enriched in the 

light rare-earth elements relative to heavy rare-earth elements (HREE) and have immobile trace element 

characteristics similar to those of within-plate transitional or alkali basalts (Hanski and Smolkin, 1995). 

Pilgujärvi Sedimentary Formation and age relationships 

 The Pilgujärvi Sedimentary Formation is the thickest sedimentary succession in the Pechenga 

Belt. It is the host unit to mafic-ultramafic intrusions containing the Pechenga sulphide Ni-Cu deposits. 

The formation is dominated by S- and Corg-bearing turbiditic greywacke-shale, ferropicritic and mafic 

tuffs intruded by numerous mafic and ultramafic sills. Skuf’in and Bayanova (2006) reported zircon and 

baddeleyite U/Pb ages of 1987 ± 5 Ma and 1980 ± 10 Ma, respectively, for the ore-bearing Pilgujärvi 

intrusion. On the basis of geochemistry and other isotopic signatures (Sm-Nd, Pb-Pb, Re-Os), this and 

other related intrusions can be regarded as co-genetic with the ferropicritic volcanism of the Pilgujärvi 

Sedimentary and Volcanic Formations (Hanski, 1992). This age range can also be considered as the 

depositional age of the Pilgujärvi Sedimentary Formation because the ferropicritic volcanism was pene-

contemporaneous with these sedimentary rocks. The Pilgujärvi Sedimentary Formation is intruded by a 

ferropicritic vent, named the Kaula Eruptive Centre (Melezhik et al.,1994b). In the Kotselvaara open pit, 

the eruption centre crops out as a ca. 100 × 50 m body comprising a fragment-supported breccia with a 

matrix of ferropicritic lapilli tuff, which passes gradually upwards through graded lapilli tuff into 

ferropicritic black shale. Among the breccia fragments there are angular clasts and blocks of C-rich, 

phosphorus-bearing, laminated limestone (4.3 wt% P2O5; Melezhik et al., 1994b). All limestone 

fragments are characterized by low 13Ccarb (from −8.7 to −7.7‰; Melezhik and Fallick, 1996). The 

phosphatic, low-13Ccarb limestones are known neither in the underlying formations of the North Pechenga 
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Group nor within the Pilgujärvi Sedimentary Formation hosting the eruptive breccia (Melezhik and 

Hanski, 2012). 

Pilgujärvi Volcanic Formation 

 The Pilgujärvi Volcanic Formation is the thickest volcanic unit of the North Pechenga Group. It 

is ̴3 km thick and is mafic in composition, containing pillowed and massive lava flows, hyaloclastites 

and pillow breccias deposited in a submarine setting. Minor rock types include ferropicritic flows and 

sills, felsic tuffs and fragmental deposits, and thin black shale and chert intercalations. The mafic rocks 

have a tholeiitic (T-)MORB-like affinity with flat chondrite-normalised REE patterns (Hanski et al., 

2014). Among the tholeiitic basalts, only the uppermost (southernmost) lavas (the Suppvara Formation 

of Skuf’in and Theart, 2005) are more enriched in incompatible trace elements and akin to E-MORBs. 

The felsic tuffs, occurring as thin intercalations in the thick mafic lava pile, form a distinct marker 

horizon at a level of 800–1000 m from the base of the Pilgujärvi Volcanic Formation (Zagorodny et al., 

1964; Predovskyet al., 1974). They were dated at   ̴1970 Ma by the bulk U-Pb zircon method by Hanski 

et al. (1990). The felsic tuffs occur in doublets and triplets separated by tholeiitic basalts within a 

stratigraphic interval of several tens of metres and extend several tens of kilometres along strike. 

Individual felsic units range in thickness from a few centimetres up to 13 metres and vary in lithology 

(Fiorentini et al., 2008). Most units show cyclic coarsening- or fining-upward development, with bases 

of massive lapilli tuff containing volcanic bombs. These gradually pass upwards through medium-

grained crystalloclastic tuffs to either thinly bedded and laminated or massive, obsidian-like deposits. 

Individual sequences are distinguished by erosional surfaces between the cycles, intense soft-sediment 

deformation, well-developed current bedding, and the presence of sedimentary dykes (Melezhik et al., 

1994). Geochemically, the felsic tuffs correspond to relatively iron-rich, A-type, peralkaline dacites to 

high-silica rhyolites (Hanski, 1992). The fragmental felsic rocks contain crystal clasts of resorbed quartz, 

plagioclase and K-feldspar, and rock fragments composed of vesicular, glassy shards, fine-grained, 

porphyritic felsic lava, holocrystalline basaltic lava, granophyre and importantly, granite and tonalitic 

gneiss. The gneiss fragments have undergone amphibolite facies metamorphism before incorporation 

into the felsic magma. The genesis of the rocks has been controversial with the proposed magmatic 

models including fractional crystallization (Hanski, 1992), silicate liquid immiscibility (Skuf’in, 1993), 

or a meteorite impact (Jones et al., 2003). Even though the bulk of the material seems to be of volcanic 

origin, as, for example, indicated by resorbed quartz phenocrysts, Negrutsa (1995) suggested a long-

distance transport by a submarine mass-flow and deposition of clastic material on a continental slope. 

The same conclusion was also drawn recently by Smolkin et al. (2011) based on their discovery of 

Archaean zircon grains in the felsic rocks. Melezhik et al. (1994b) suggested in situ eruption with major 
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eruption centre located in the Lake Luotna area where they documented a remnant of probable eruption 

centre. The inferred centre is represented by a ca. 13-m-thick succession of fel-sic tuffs containing 

abundant xenolithic fragments and blocks (up to1 m) of basaltic ferropicrites, ferro-basalts, 

ferroandesite, tholeiitic basalts, limestones, calcareous sandstones, and several 1–10-m-sized blocks of 

flow-folded rhyolite and soft-sediment deformed, thinly bedded rhyolitic tuffs. The rock assemblage 

was interpreted to represent hot and cold-lahar deposits (Melezhik et al., 1994). The zircon age of ca. 

1970 Ma that was reported by Hanski et al. (1990) for the felsic volcanic rocks of the Pilgujärvi Volcanic 

Formation (sampled in the Lake Ostrovnoe area) was based on conventional bulk TIMS analysis, but 

there was a limited amount of material available, permitting only one zircon fraction to be analysed 

without sufficient error estimation. Re-examination is warranted because the studied felsic volcanic 

rocks are known to contain exotic felsic gneiss xenoliths. Earlier Smolkin et al. (1993) reported the 

presence of two zircon populations in the felsic rocks in the Lake Ostrovnoe area, with one having a 

rounded morphology and an Archaean (ca. 2700 Ma) age, though actual isotopic data for this population 

were not documented. Recently, Smolkin et al. (2011) sampled another outcrop near Lake Ilya Souker 

and analysed separated zircon grains by SHRIMP. Most surprisingly, they obtained dates that are mostly 

Archaean, 2655 ± 10 Ma, and even the youngest grains gave dates not younger than 2311 ± 37 Ma. 

Given the deviating age results published in the three mentioned articles, it is important to ascertain the 

age of zircon in the felsic rocks of the Pilgujärvi Volcanic Formation. 

Pilgüjarvi layered intrusion 

 The thickness of the gabbro–wehrlite intrusion ranges between 5 and 250 m and locally attains 

540 m (Smolkin, 1977). The intrusion is generally concordant with respect to the primary bedding of the 

enclosing sedimentary rocks (Zak et al., 1982). Ultramafic rocks generally occupy the lower third of the 

intrusion stratigraphy, whereas gabbroic rocks form the upper part. Smolkin (1977) sub-divided the 

intrusion into seven zones, which are, from the base upwards: 1) the lower marginal zone (3–5m-thick), 

2) the wehrlite olivinite zone (60–190 m-thick), 3) the intermediate zone (10–30 m-thick), 4) the gabbro–

pyroxenite zone (110–175 m-thick), 5) the gabbro zone (40–110 m-thick), 6) the fine gabbro zone (25–

125 m-thick), and 7) the upper marginal zone (1–8 m-thick). The wehrlite–olivinite zone is not internally 

homogeneous: the lower and upper parts comprise pyroxenite–wehrlites with a 25–50 vol.%of olivine, 

whereas the middle horizon is made up of intercalated pyroxene olivinites (75–90 vol.% olivine) and 

wehrlites (50–75 vol.% olivine). The cumulus minerals in Zone 2 are olivine and chrome spinel, whereas 

intercumulus phases comprise clinopyroxene, amphibole, brown mica, plagioclase and ilmenite. 

Intercumulus phases generally form poikilitic crystals enclosing olivine grains. The olivine cumulates 

at the base of the Pilgüjarvi layered intrusion locally contain massive and disseminated nickel sulfide 

mineralization. 
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 The peridotite (sample Pilg 8 – 38) was collected by Fiorentini et al. (2008) from the wehrlite 

olivinite zone of the Pilgüjarvi layered intrusion. The sample shows poikilitic texture and the main 

assemblage is made up by olivine, clinopyroxene and brown amphibole. The major phase (60 vol%) is 

olivine that forms rounded relict crystals, ≤ 1.5 mm in diameter, serpentinized at the rims. The relict 

olivine shows inclusion of spinel whereas along the fractures are present secondary fine-grained 

magnetites. The contacts between olivine and the others main phases are not preserved, however the 

primary cumulus texture is recognisable. Clinopyroxene forms the intercumulus phase (18 vol%) with 

poikilitic texture and inclusions of spinel. Brown amphibole (10 vol%) is crystallised as intercumulus 

phase with poikilitic texture or at the margin of the clinopyroxene, with not evidences of substitution of 

this latter by amphibole. Amphibole is associated to sulphides and magnetite. Accessory phases are 

biotite (3-4 vol%), associated to the intercumulus phases, spinel (rounded crystals included into olivine 

and clinopyroxene), secondary magnetite (4 vol%), around relict olivine and in the fractures of the 

silicates, and sulphides. These are made up by pyrrhotite (2 vol%) with exolution of pentlandite (<1 

vol%). 

 

Figure 19 - Photomicrographs of polished thin sections (Pilg 8 - 38) illustrate the different textures between primary 

hydromagmatic amphiboles (Amph), relict olivine (Ol), clinopyroxene (Cpx) and brown mica (Phl). 

 

 The olivine-magnetite peridotite (sample 116-6) was collected by the geologist Earo Hanski from 

the (stratigraphically and geographically) middle part of the Pilgujärvi intrusion (a zone between the 

ultramafic and gabbroic parts of the intrusion). The peridotite shows cumulate texture, coarse-grained 

cumulus oxides (ilmenite) and olivine, the latter completely serpentinized. Olivine (50 vol%) is 

completely serpentinized but is recognisable the original texture of coarse-grained cumulus crystals. 

Clinopyroxene forms the intercumulus phase between the altered olivine and the ilmenite, associated to 

brown amphibole (3 vol.%). The latter crystallized in the peripheral portions of the clinopyroxene and 

only in one spot as intercumulus mono-phase. The contact between amphibole and pyroxene are sharp 
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where there are no evidences of alteration, otherwise the transition between the two phases is not clear. 

The other cumulus phase is made up by rounded ilmenite (40 vol.%). At the margin of ilmenite crystals 

fine-grained aggregates of pyrrhotite may be present. The accessory phases are biotite, associated to 

clinopyroxene and brown amphibole, and magnetite, as a product of serpentinization, along the fracture 

of silicates. 

 

 

Figure 20 - Photomicrographs of polished thin sections (116-6) displaying varying textural relationship between 

primary hydromagmatic amphiboles (Amph) and clinopyroxene (Cpx). The sample is constituted by cumulitic 

magnetite (Mgt) with ilmenite intergrowth. The olivine is completely substituted by alteration minerals (e.g. chlorite). 

 

 The olivine cumulate (sample 106-44) was collected by the geologist Earo Hanski from the 

ultramafic part of the Pilgujärvi intrusion. Olivine cumulate has poikilitic/cumulate texture and main 

assemblage of olivine, clinopyroxene and brown amphibole. Olivine is the most abundant phase (70 

vol%) and is present as rounded and “corroded” crystals (≤ 1 mm in diameter). In some spots olivine 

shows inclusions of spinel. Clinopyroxene (15 vol%) forms oikocrysts, associated to brown amphibole 

and phlogopite, and enveloping the relict olivine. Brown amphibole (10 vol%) makes up oikocrysts or 

aggregates at the margin of clinopyroxene. It is associated to phlogopite and sulphides and shows sharp 

contacts with pyroxene and frequent altered boundaries with olivine. The textural relations between 

clinopyroxene and amphibole suggest that the crystallization of amphibole is coeval or just follows the 

crystallization of pyroxene. Accessories phases are phlogopite (2 vol%), as sub-millimetric intercumulus 

lamellae, spinel, as inclusions into the relict olivine, sulphides (pyrrhotite, pentlandite and chalcopyrite), 

with networking texture, and secondary magnetite. 
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Figure 21 - Photomicrographs of polished thin sections (106-44) displaying varying textural relationship between 

primary hydromagmatic amphiboles (Amph), relict olivine (Ol) and brown mica (Phl). 

Kammikivi, Ortoaivi and Kotselvaara sills 

 The layered sills are generally 100 m-thick and hosted in sulfur-poor phyllites (Hanski, 1992). 

The lower portion of the sills generally comprises olivine–chrome spinel cumulate. The most abundant 

silicate intercumulus phases are clinopyroxene, amphibole and brown mica. Pyroxene and amphibole 

may occur as poikilitic grains but are generally prismatic or needle-like. Locally, densely disseminated 

sulfide mineralization occurs in a 3–5 m-thick horizon at the base of this interval. A 2.5 m-thick 

pyroxenite overlies the basal olivine–chrome spinel cumulate. The upper part of the pyroxenite is fine-

grained, with grain size varying between 0.05 and 0.6 mm. The grain size increases downwards to a 

typical range of 0.5–1.5 mm. With respect to its mineralogy and texture, the unit comprises 

clinopyroxene grains locally with skeletal interiors and brown amphibole fringes and less abundant 

euhedral olivines altered to serpentine. The chloritic groundmass contains dark brown amphibole 

needles and skeletal sphene pseudomorphs after magnetite (Hanski, 1992). The uppermost portions of 

the sills generally comprise gabbroic rocks, which generally display textures indicative of rapid cooling, 

including skeletal magnetite, needle-like dark brown amphiboles and cryptocrystalline groundmass 

material, probably after original glass. 

 The samples from Kammikivi sill (57a-HV-28 and 57b-HV-28) were collected by geologist 

Heikki Väyrynen in 1928. They come from the same location from the basal part of the Kammikivi sill 

and display cumulate/poikilitic texture and the main assemblage made up by olivine (65 vol%) and 

clinopyroxene (20 vol%). Olivine is partially resorbed and only the cores of the crystals are preserved. 

Clinopyroxene forms oikocrysts (5 mm to 1 cm in diameter) that envelop olivine and is associated to 

brown amphibole (5 vol%), phlogopite (< 1 vol%) and spinel. The latter is present as inclusions into 



 

 

47 

47 

pyroxene and amphibole. Brown amphibole forms oikocrysts or aggregates at the margins of 

clinopyroxene. As described before, amphibole contains inclusions of spinel and is associated to 

phlogopite. When amphibole is at the margin of clinopyroxene, the contacts between the two phases are 

generally sharp but locally with lobes, suggesting a substitution of pyroxene by amphibole. Accessory 

phases are phlogopite, and Cr spinel, ilmenite and magnetite. Phlogopite occurs as lamellae in the 

intercumulus domain, while spinel as inclusions into clinopyroxene and brown amphibole. Ilmenite 

forms aggregates in the portions of intercumulus of the sample, in some spots in the serpentinized 

portions of the olivine, while magnetite is present along the fractures of the silicates and in the 

serpentinized portions as well.    

 

Figure 22 - Photomicrographs of polished thin sections (57HV28) show different textures between primary 

hydromagmatic amphiboles (Amph), relict olivine (Ol), clinopyroxene oikocrysts (Cpx) and brown mica (Phl). 

Nyasyukka dyke complex 

On the NE side of the Paleoproterozoic Pechenga Complex, there is a group of mafic to ultramafic dikes, 

geochemically correlative to the Pechenga Complex, which have been assigned to the Nyasyukka dike 

complex. Currently the number of known dikes exceeds 40. They form a NNW-trending and steeply 

dipping swarm occurring within an area of 30 x 40 km2 and extending from the Luostari railway station 

to the coast of the Barents Sea (Smolkin et al., 2015). 

 There is also another dike swarm in the area, which is NNE oriented, thus forming an angle of 

45° with the Nyasyukka dike complex. These dikes are more evolved and composed of gabbro diabases 

and quartz gabbros (Smolkin, Borisova, 1995). The dike-forming process was affected by deep magma 

differentiation, which resulted in the concentration of dikes of different composition in different 

subswarms. Three parallel series are distinguished. The dikes of the western and eastern series are 

composed predominantly of olivine gabbro and vary in thickness from 30 to 130 meters and in length 

from 1 to 8 kilometers. The central series comprises dikes swarms that are 40–150, sometimes up to 200 
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meters thick and up to 22 km long, and are composed of plagioclase- and kaersutite-bearing peridotites. 

In addition to these dike systems, a plagioclase-bearing olivine pyroxenite stock is located at the southern 

termination of the eastern series. Peridotites of the Nyasyukka dyke complex are olivine cumulates with 

oikocrystic dark brown amphibole, plagioclase, and clinopyroxene. Peridotites are medium to coarse-

grained rocks with a massive or porphyritic-looking texture, the latter being caused by large poikilitic 

amphibole crystals. Locally, peridotites display a pegmatoid texture. The minor minerals include 

bronzite, biotite, magnetite, ilmenite, and apatite. Olivine gabbros are medium-grained, massive rocks 

having a wide variation in the relative proportions of the major minerals. Fiorentini et al. (2008) had 

collected four amphibole-bearing peridotites from the 150 m-thick central ultramafic dyke in the 

Nyasyukka area: one sample was collected from a pegmatoid pocket, whereas three samples were 

collected from the cumulate portions. In the cumulate portions of the intrusions, the rounded shapes, 

smaller size and embayed contacts of the olivine inclusions within poikilitic amphibole indicate olivine 

resorption to be important in amphibole formation. Decreasing temperature facilitated reaction of 

hydrous residual melt with olivine and pyroxene and production of the amphibole in the late magmatic 

stage. Olivine had crystallized before pyroxene, and plagioclase is xenomorphic with respect to the main 

mafic minerals. There is often an orthopyroxene-amphibole corona at the contact between olivine and 

plagioclase. Orthopyroxene is present in the Nyasyukka dikes but has not been found in the Pechenga 

rocks, suggesting a higher silica activity in the magma parental to the former rocks. Olivine and 

plagioclase typically coexist in the olivine gabbros of the Nyasyukka complex whereas the gabbroic 

rocks of the Pechenga intrusions commonly lack olivine or contain only a small amount of olivine. 

Volatiles were implicated in the petrogenesis and evolution of the Pechenga ferropicrites. On the basis 

of the Ti– and Nb–Ta-enriched nature of hydromagmatic amphiboles from the intrusions and lava flows, 

Fiorentini et al. (2008) argue that the source of volatiles in the Pechenga ferropicrites could be either a 

metasomatised subcontinental mantle or a volatile-bearing plume. Positive Nb–Ta/La anomalies in 

amphiboles from the intrusions rule out crustal contamination with granitoid crust as the main source of 

the volatiles. Local B–Cl enrichment suggests that some samples may have interacted with hydrothermal 

fluids. The range of in-situ δD values in hydromagmatic amphiboles is consistent with the presence of 

magmatic water. The lighter hydrogen isotopic composition and lower water contents of the primary 

igneous amphiboles from the lava flows compared to amphiboles from the intrusions indicate that the 

lava flows degassed upon emplacement. This is the first documentation of significant degassing in 

ultramafic magmas. 

 The samples N 2 and N 3 from the Nyasyukka dike complex derive from amphibole-bearing 

peridotites of the central dike series, emplaced into Archean granite. These samples were described in 
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the study by Fiorentini et al. (2008) and were made available by the collaboration with Centre for 

Exploration Targeting.  

 The peridotite in sample N 2 and N 3 is made up principally by olivine (25 to 30 vol.%) cumulate 

with brown amphibole (30-32 vol.%) oikocrysts and clinopyroxene (20-25 vol.%). Olivine occurs as 

rounded sub-euhedral crystals, locally with ameboid texture, included into oikocrystic amphibole. 

Locally, olivine shows inclusions of ilmenite and magnetite. Brown amphibole oikocrysts have intense 

pleochroism and show exolution lamellae of ilmenite along the crystallographic planes. Brown 

amphibole has inclusions of granular ilmenite and magnetite. Clinopyroxene occurs as small (>30 µm) 

relict crystals and, where preserved, the contacts with brown amphibole are sharp. Locally, 

clinopyroxene is enveloped by the amphibole oikocrysts. Biotite occurs as large crystals associated to 

brown amphibole. Only interstitial plagioclase (2 vol.%) is observed. The other accessory phases are 

ilmenite (3 vol.%), magnetite (5 vol.%) and sulphides (pyrrhotite and pentlandite, 5 vol.%).         

 

Figure 23 - Photomicrographs of polished thin sections (N2, N3) displaying varying textures between primary 

hydromagmatic amphiboles (Amph), olivine (Ol), and accessory spinel (spl). Thin sections (A) and (B) are from the 

sample N2 whereas (C) and (D) illustrate sample N3. 
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2.4 Phanerozoic samples 

2.4.1 Ross Orogen (Husky Ridge), Antarctica 

 The Ross-Delamerian Orogen, located in the Northern Victoria Land, Antarctica, is the result of 

the subduction of the Palaeo-Pacific oceanic plate beneath the continental margin of Gondwana during 

the Early Palaeozoic (e.g. Cooper & Tulloch, 1992; Münker & Crawford, 2000; Boger & Miller, 2004; 

Foster et al., 2005 – in Tiepolo & Tribuzio, 2008). The orogen is represented by a belt extending from 

southeastern Australia to the margin of the East Antarctic craton (e.g. Borg & DePaolo, 1991; Stump, 

1995; Rocchi et al., 1998). The Transantarctic Mountains, which extend across the entire Antarctic 

continent, represent the uplifted basement of the Ross Orogen (Stump, 1995). The oldest magmatic 

products with calc-alkaline affinity (found in southern Victoria Land) mark the onset of the subduction 

at about 540 Ma (Allibone & Wysoczanski, 2002). In northern Victoria Land (NVL), three major fault-

bounded tectonostratigraphic terranes of debated origin are identified from west to east: the Wilson, 

Bowers and Robertson Bay terranes. In particular, the Wilson terrane is considered as representing the 

active continental margin of Gondwana at the beginning of the Palaeozoic subduction. The subduction-

related magmatic products along this continental margin are known as the Granite Harbour Intrusive 

series (Gunn & Warren, 1962). The majority of magmatic products in NVL have ages clustering around 

500 Ma and are mostly granitoids with calcalkaline affinity (granites, granodiorites, tonalites and minor 

gabbro-diorites) and variable K2O enrichment (Di Vincenzo et al., 1997; Rocchi et al., 1998; Dallai et 

al., 2003). The magmatic products related to the early Cambrian stages of subduction are limited to 

sporadic deformed granitoids with rare mafic to ultramafic enclaves dating between 544 and 520 Ma 

(Black & Sheraton, 1990; Rocchi et al., 2004; Giacomini et al., 2007).  Peraluminous leucogranites and 

basic melts with shoshonitic affinity were intruded during a late orogenic phase, which probably post-

dated the subduction event, at about 480 Ma (Rocchi et al., 1998; Di Vincenzo & Rocchi, 1999). The 

rare mafic-ultramafic intrusive rocks of the orogeny are mostly scattered along the suture zone between 

the Wilson and Bowers terranes. Three main gabbroic sequences preserve their original intrusive 

features; namely, Niagara Icefall, Husky Ridge and Tiger Gabbro sequences. Only the Niagara Icefall 

has been dated (514 Ma) and characterized in its geochemical and petrological features which are 

compatible with a boninitic affinity (Tribuzio et al., 2007). The Husky Ridge is located in the middle of 

the Meander Glacier, c. 10 km north of Mt Murchison (Fig. 24). In the eastern sector of the ridge, a 50-

100 m-wide body of undeformed to weakly deformed amphibole-rich mafic intrusive rocks made of 

quartz diorites. 
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Figure 24 – Simplified geological map of the southern portion of the tectonic boundary between Wilson and Bowers 

Terranes, northern Victoria Land, showing the location of the Husky Ridge gabbroic sequences (from Tiepolo & 

Tribuzio, 2008). 

 

 Quartz diorites were emplaced in the mid-crust at about 516 Ma (Tiepolo & Tribuzio, 2008), in 

amphibolite-facies migmatitic gneisses, with overall features comparable with what observed in the 

Bregaglia intrusion in the Central Alps (Tiepolo et al., 2002 – see below).  The Husky Ridge quartz-
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diorites display two assemblages including high Mg-number mafic phases, involving clinopyroxene and 

magmatic brown and green amphibole, yet with markedly different trace element signatures. Such 

differences, involving REE, LILE and HFSE element fractionation, suggest equilibrium with two 

different parental magmas, one affine with sanukitic melts and the other derived from sanukite-like melts 

but crystallizing amphibole in deeper magma chambers (Tiepolo & Tribuzio, 2008).  

 The sample (TT329) from Husky Ridge is part of the collection by Tiepolo & Tribuzio (2008). 

In the quartz-diorite the main assemblage consists of brown amphibole (50-60 vol.%), green amphibole 

(20-25 vol.%), plagioclase (15 vol.%) and clinopyroxene (3-5 vol.%). The amphibole grains are 

characterized by brown core and greenish rims. The green amphibole is observed also as single crystals 

inbetween the plagioclase pockets. Clinopyroxene and biotite are included into brown amphibole. The 

accessory minerals are biotite, quartz, titanite and opaque phases (pyrite and ilmenite). 

 

2.4.2 Alpine Orogen (Adamello batholith and Valmasino-Bregaglia/Bergell pluton), Italy  

 Tiepolo et al. (2014) debated about the existing uncertainties regarding the origin of the 

Periadriatic magmatism, developed during the Alpine Orogeny from c. 44 to c. 31 Ma, and its 

relationships with tectonic evolution of the Alps.  

 

Figure 25 – Geological sketch of the Alpine belt with the location of Valmasino and Adamello intrusions (from Tiepolo 

et al., 2002). 
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 Particularly the tectonic processes responsible for mantle melting along the Alpine belt are still 

not well defined. Geochemical data indicate an origin from a suprasubduction mantle wedge (Kagami 

et al. 1991; Tiepolo et al. 2002, 2011), while the melting triggering mechanism could be a post-collision 

lithospheric extension (Laubsher 1983, 2010) or a slab break-off process (Davies & von Blanckenburg, 

1995). In analogy with what observed in other orogenic belts and because of negligible crustal 

contributions, the rare mafic-ultramafic rocks associated with the subduction-relaetd granitoid bodies 

may provide useful information about mantle sources and related petrogenetic processes. 

 The Adamello batholith and the Bregaglia pluton are not only the two largest Palaeogene 

intrusive bodies of the Alpine belt, but also the only two Periadriatic intrusions including mafic–

ultramafic rock sequences containing magmatic amphibole. U–Pb geochronology and Hf isotopic ratios 

on zircon from amphibole-rich mafic and ultramafic facies from both plutons by Tiepolo et al. (2014) 

contributed to build up a magmatic-tectonic framework in which the Adamello emplacement 

(characterized by a major crystallization event at c. 41 Ma and older age peaks at c. 50 and c. 45 Ma) 

predates the one of the Bregaglia pluton, taking place 10–15 Ma later.  Moreover, the two intrusions 

appear to be related to different sources linked to the evolution of the subduction process. The 

geochemical imprints of the Adamello batholith suggest a depleted mantle source activated by the 

subduction of the Ligurian–Piedmontese Basin, while the signatures of mafic-ultramafic rock facies in 

the younger Bregaglia pluton are compatible with melts derived from the activation of a different mantle 

sector which was metasomatized by the subduction of the Valais Basin. 

 The Adamello batholith is exposed over an area of about 700 km2 at the intersection of the 

Periadriatic Lineament with the Giudicarie Line and consists of multiple intrusive units ranging in age 

from about 42 Ma to about 29 Ma (Del Moro et al., 1983; Callegari & Brack, 2002; Tiepolo et al., 2011). 

The batholith is intruded into the upper continental crust of the Southern Alps and principally consists 

of tonalites, trondjhemites and granodiorites; mafic and ultramafic bodies are found locally, especially 

in the southernmost Re di Castello unit (Callegari & Dal Piaz, 1973; Ulmer et al., 1983; Blundy & 

Sparks, 1992). The mafic bodies are best exposed in the Val Fredda and Cornone di Blumone areas. The 

Val Fredda Complex consists of granodiorites, tonalites and quartz-diorites intruded by several mafic 

sheets of metre to decametre thickness (Blundy & Sparks, 1992). Two types of mafic sheet have been 

recognized in the Val Fredda Complex, specifically in the Mt. Cadino and Mt. Mattoni sequences. The 

Mt. Cadino mafic rocks range from hornblende gabbros to quartz-diorites and the Mt. Mattoni mafic 

rocks consist of hornblende-phyric, pyroxene-bearing gabbros (hereafter amph-gabbros) with 

subordinate hornblendite blocks or bands (Tiepolo et al., 2011).  
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 The Valmasino Bregaglia calc-alkaline intrusion is located in the south-eastern part of the central 

Alps and was dated at 31.3–31.9 Ma (Hansmann 1996). Hornblende-bearing tonalite and granodiorite 

are the main lithologies in the southern and northern areas respectively (Montrasio and Tromsdorff 

1983). The mafic rocks (hornblendites, amphibole-gabbros and diorites) crop out at the eastern border 

of the pluton (Tiepolo et al., 2002 and references therein).  

 The samples from Mt. Mattoni (MAT1, MAT2, MAT15) were collected by Tiepolo et al. (2002) 

and are hornblendites and the main assemblages consist of poikilitic amphiboles (75-80 vol.%) (Fig. 

26), olivine (15-20 vol. %) and clinopyroxene (5 vol.%). The amphibole grains are characterized by 

brown core and greenish rims. Green amphibole is observed also as single crystals interstitial to / 

inbetween the zoned poikilitic amphiboles. Olivine occurs as rounded inclusions into the poikilitic 

amphibole. Clinopyroxene occurs as partially replaced crystals at the core of the zoned amphiboles. The 

sample (VS9) from the Bregaglia intrusion was collected by Tiepolo et al. (2002) and is a hornblendite 

consisting of poikilitic amphibole (70 vol.%) (Fig. 27), clinopyroxene (15 vol.%) and olivine (7-10 

vol.%). Amphibole shows brown core and greenish rim. Clinopyroxene is resorbed and included into 

the zoned amphibole. Like clinopyroxene, olivine as well is enveloped into amphibole and partially 

resorbed. 

 

 

Figure 26 - Photomicrographs of polished thin section (MAT15) displaying varying textures between amphiboles 

(Amph), olivine (Ol) and clinopyroxene (Cpx). 
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Figure 27 - Photomicrographs of polished thin section (VS9) displaying varying textures between amphiboles (Amph), 

olivine (Ol) and clinopyroxene (Cpx).   

2.4.3 Continental arc, Japan  

 Cretaceous igneous rocks are widespread throughout the Inner Zone of southwest Japan (Sato et 

al., 2016). This zone represents a huge igneous belt that developed along the continental margin of East 

Asia before the Miocene opening of the Japan Sea (Takahashi, 1983) (Fig. 28). Early Cretaceous 

magmatism in southwest Japan is characterized by the intrusion of small volumes of high-Mg and 

adakitic magmas, and I-type granite magmas (Kamei et al., 2004). Throughout the Cretaceous granitic 

rocks, ultramafic to intermediate magmatism is recorded as small-scale hornblenditic, gabbroic and 

dioritic intrusions (Langone et al., 2009) which are found in three locations: Taku (Kunisaki Peninsula 

and Shikanoshima Island, Kyushu) in the southern part of Japan (Fig. 29), Ina Mountain / Zenifudo and 

Hitachi / Hase no Yatzu (central and northern Honshu – Fig. 28).  

 In all localities mafic and ultramafic rocks are closely associated with granitoids rocks, but only 

in the Shikanoshima island the relations between the two litologies are exposed. 

 Mineral chemistry (major and trace elements) and U/Pb geochronology data determined by 

Tiepolo et al. (2012) on the amphibole-rich porphyritic gabbrodiorite from Taku outcrops outlined a 

complex picture involving disequilibrium between the large brown amphiboles (and related 

clinopyroxene inclusions) and the assemblage in the fine-grained matrix. The coarse-grained brown 

amphibole and related clinopyroxene inclusions would represent xenocrysts inherited from 

hornblendites crystallized from a melt affine to continental arc basalts. The fine-grained amphibole-

bearing matrix crystallized from a parental liquid similar to sanukite-type, High Mg andesite (HMA) 

magmas derived from mantle melts affected by crustal processes and contaminated by crustal material. 

Analogies exist with amphibole-rich mafic intrusive rocks in other orogenic settings worldwide and 

specifically those occurring in the Alpine chain and in the Ross Orogen (Antarctica) described above.  
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Figure 28 - Geological Map of the Japanese Islands. Japanese part of the International Geological Map of Asia at a 

scale of 1:5,000,000 (IGMA5000) is based on this geological map data. 1: Quaternary sediments, 2: Neogene 

sedimentary rocks, 3: Paleogene sedimentary rocks and accretionary complex, 4: Cretaceous sedimentary rocks and 

accretionary complex, 5: Jurassic sedimentary rocks and accretionary complex, 6: Triassic sedimentary rocks, 7: 

Permian sedimentary rocks and accretionary complex, 8: Paleogene metamorphic rocks, 9: Cretaceous metamorphic 

rocks, 10: Jurassic metamorphic rocks, 11: Triassic metamorphic rocks, 12: Permian metamorphic rocks, 13: 

Quaternary volcanic rocks, 14: Neogene volcanic rocks, 15: Paleogene volcanic rocks, 16: Cretaceous volcanic rocks, 

17: Paleogene plutonic rocks, 18: Cretaceous plutonic rocks, 19: Jurassic plutonic rocks, 20: ultramafic rocks. (from 

Wakita, 2013). 
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 The mafic-ultramafic rock types located at Hase no Yatzu are represented by both porphyritic 

gabbrodiorite and hornblendite, whereas at Zenifudo hornblendites only are found (Langone et al, 2009). 

Like previously noted, the mafic rocks across the continental arc reveal a complicated geochronologic 

history with petrological features providing evidence of multiple components.  According to the 

preliminary investigations by Langone et al. (2009), the clinopyroxene inclusions hosted in amphiboles 

are relics of pre-existing ultramafic rocks (pyroxenites?) assimilated by the evolved melt crystallizing 

olivine/orthopyroxene/amphibole. Geochronology provides a younger age for the mafic rocks from Taku 

(c.a. 100 Ma) than for those from Hase No Yatsu (117 Ma), but the former contain inherited zircons 

from 110 up to 123 Ma. Given the clear interaction of the Taku mafic rocks with granitoids at 100 Ma, 

the authors supposed that all mafic rocks from the three areas might have been emplaced between 110-

120 Ma. On the other side, a significantly younger age at 70 Ma obtained for Zenifudo could be not 

related to emplacement of the ultramafic rock but related to a late stage injection of melt. 

 

Figure 29 – Simplified geological map of northern Kyushu showing the location of Taku area (from Tiepolo et al., 

2012). 
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 The sample (TK1B – Fig. 30a) from Taku Island (Kyushu Island) is selected from the collection 

by Tiepolo et al. (2012) and is a gabbrodiorite (whose main assemblage consists of brown amphibole 

(35 vol.%), green amphibole (20 vol.%), orthopyroxene (20 vol.%), clinopyroxene (10 vol.%), olivine 

(10 vol.%), plagioclase (4 vol.%) and accessory sulphides and Fe-oxides. Poikilitic amphibole typically 

displays brown core, with exolution lamellae of Fe-oxides, and green rim. Pyroxenes are partially 

resorbed: clinopyroxene has rounded habitus and is included into amphibole whereas orthopyroxene is 

associated to amphibole with sharp contacts and displays exolutions of Fe-oxides. Olivine occurs as 

rounded grains included into amphibole. Olivine is also observed at the rims of interstitial pockets of 

plagioclase. 

 The hornblendite (ZN5 – Fig. 30b) from Zenifudo (Honshu Island) was collected by Massimo 

Tiepolo and is characterized by a main assemblage comprising brown amphibole (25 vol.%), 

clinopyroxene (20 vol.%), olivine (18 vol.%), orthopyroxene (15 vol.%), green amphibole (15 vol.%) 

and plagioclase (10 vol.%). Accessories are biotite and Fe-oxides. Similarily to what observed in the 

samples from Taku Island, the poikilitic amphibole grains are characterized by brown cores and greenish 

rims, and amphibole shows exolution lamellae of Fe-oxides and inclusions of round olivine grains. Two 

types of clinopyroxene grains are observed: (1) rounded grains included within amphibole (<1 mm) and 

(2) grains partially resorbed or completely altered in serpentine. Orthopyroxene is observed as rounded 

grains that may include olivine. Plagioclase is present in the matrix enveloping the amphibole-

pyroxenes-olivine aggregates.  

 The main assemblage of the hornblendite (HSY3B), collected by Massimo Tiepolo, from Hase 

no Yatsu (Honshu Island) includes brown amphibole (35 vol.%), clinopyroxene (20 vol.%), olivine (10 

vol.%), orthopyroxene (10 vol.%), green amphibole (10 vol.%) and accessory biotite (7 vol.%) and Fe-

oxides (8 vol.%). Brown amphibole has poikilitic texture with exolution lamellae of Fe-oxides. Rounded 

olivine and pyroxenes grains occur as inclusions within the brown amphibole. 
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Figure 30 - Photomicrographs of polished thin sections (TK1B, ZN5) with amphiboles (Amph), olivine (Ol), and 

clinopyroxene (Cpx) forming differet textures. (a) Sample TK1B; (b) sample ZN5. 

2.4.4 Himalayan Orogen (Gangdese batholith), China 

 Ongoing research about Gangdese granitic magmatism (Tibetan sector of Himalayan orogen) is 

summarized in Ma et al., 2013a). These studies have been contributing to unravel mechanisms of crustal 

growth and the extent of mantle contribution along convergent margins.   

 The Gangdese batholith (also named as "Trans-Himalaian Batholith"; Wen et al., 2008) was 

emplaced within the Lhasa Block, in southern Tibet, from the Cretaceous to Eocene (Fig. 31a-b). The 

batholith has been regarded as a major constituent of the Andean-type convergent margin resulting from 

northward subduction of the Neo-Tethyan oceanic lithosphere under Asia. Late Cretaceous mafic–felsic 

magmatic rocks are widely distributed along the southern margin of the Gangdese region, in the southern 

part of the Lhasa Block (Ma et al., 2013a,b; Wen et al., 2008a,b; Zhang et al., 2010). The Gangdese 

batholith consists predominantly of granodiorites, granites and minor intermediate-mafic facies (diorites, 

gabbros), and was mainly generated between 198 and 43 Ma (Chu et al., 2006; Chung et al., 2003; Ji et 

al., 2009; Wen et al., 2008a,b). Minor mafic-ultramafic intrusions occur in the Milin County, on the 

eastern side of the Gangdese batholith (Ma et al., 2013b). The mafic magma intruded the Bala Formation 

metamorphic rocks (gneisses, amphibolite, marble and schist) as stocks or dykes, with no obvious chilled 

margins. 
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Figure 31 - Sketch maps of the Tibetan Plateau, the Lhasa Block (from Ma et al., 2013). (a) Inset with the outline of 

the Lhasa Block in the context of the Tibetan Plateau. (b) Sketch of the Lhasa Block; (c) and (d) geographic and age 

distribution of felsic, intermediate and mafic intrusions within the Gangdese batholith; (e) geological sketchmap of 

the Milin county with the localization of norites and hornblendites. 
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 The mafic intrusive rocks consist of massive norites and hornblendites with heterogeneous 

granular texture (Ma et al., 2013a,b). Trace element and Sr-Nd-Hf isotope signatures determined by Ma 

and coworkers for the Milin norites and hornblendites are compatible with mineral fractionation and 

accumulation fom a common parental magma during the early and late stages of the magma evolution. 

The parental magma may have generated by the interaction of upwelling asthenospheric and 

metasomatized lithospheric mantle. The samples (14JT50, 14JT51) from the Milin area were collected 

by geologist Lin Ma and are hornblendites generally composed of brown amphibole (50-60 vol.%), 

clinopyroxene (30 vol.%) and accessory brown mica and Fe-oxides. The amphibole grains show cores 

enriched in exolution lamellae of Fe-oxides. Clinopyroxene is a relict phase observed within or 

interstitial to the amphibole grains. 

 

Figure 32 - Photomicrographs of polished thin section (14JT50) with amphiboles (Amph), clinopyroxene (Cpx) and 

chlorite (Chl) defining different textures.  

2.4.5 Zagros Orogen (Sanandaj–Sirjan Zone; Aligoodarz pluton), Iran 

 The Zagros orogenic belt extends from the Turkish–Iranian border in the NW, to the Makran 

area in the SE. The orogenic belt is related to the long-standing convergence between Eurasia and 

Gondwana-derived continental fragments, and, in particular, it results from the collision between the 

Arabian and the Central Iranian microplates after the northeast-dipping subduction of the Neo Tethys 

oceanic lithosphere below Central Iran (e.g., Dewey et al., 1973; Sengör, 1984). From northeast to 

southwest, three parallel tectonic zones are distinguished (Agard et al., 2011; Alavi, 2004): (1) the 

Urumieh–Dokhtar magmatic arc (UDMA), (2) the Sanandaj–Sirjan Zone (SSZ), and (3) the Zagros 

folded-thrust belt (ZFTB) (Fig. 33a). The SSZ is of particular interest for this study. During the Mesozoic 

the SSZ acted as an active Andean-like margin in response to the subduction of the Neo Tethys ocean. 

The central sector of the SSZ is characterized by the presence of a series of arc-related calc-alkaline 
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granitoid complexes emplaced during the middle Jurassic. But Esna-Ashari et al. (2016) reported about 

the first evidence of ultramafic rocks related to such granitoid complexes, specifically in the Aligoodarz 

intrusive complex (Fig. 33b-c). 

 

 

Figure 33 - (a) simplified geological map of Iran with the location of the major intrusive and volcanic rocks in the 

Sanandaj–Sirjan Zone. (b) Simplified lithological map of the Aligoodarz intrusive complex. The star locates the 

ultramafic rocks. (c) Typical outcrop of the ultramafic rocks (from Esna-Ashari et al., 2016). 
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 The complex consists of dominant granodiorite, quartz-diorite and granite. The amphibole-

bearing ultramafic rock facies are represented by medium to coarse-grained pyroxenites and 

hornblendites, which occur in association with the northernmost lobe made of quartz-diorite. According 

to the authors, amphibole, although magmatic, is late and in disequilibrium with earlier boninite-related 

cumulate phases olivine, clino- and orthopyroxenes. The geochemical signatures of amphibole suggest 

its derivation from a liquid undergoing differentiation via a melt-rock reaction process. In the model by 

Esna-Ashari et al. (2016) the interaction between the ultramafic cumulates and the infiltrated melt might 

have generated a new liquid of calc-alkaline affinity and compositionally similar to high-Mg andesites 

and to the quartz-diorites hosting the ultramafic cumulates. The early, boninitic magma, highly depleted 

in incompatible elements, would be related to partial melting of a depleted mantle wedge in response to 

the onset of NeoTethys subduction, while the infiltrating calc-alkaline melt would represent the mature 

stage of arc magmatism postdating boninite.  

 The sample from the SSZ (AL89) was collected by Esna-Ashari et al. (2016) and represents the 

olivine-hornblende pyroxenite. This rock facies consists of brown amphibole (20-30 vol.%), 

orthopyroxene (15-20 vol.%), olivine (10-15 vol.%) and clinopyroxene (10 vol.%) with subordinated 

biotite (3-5 vol.%), spinel (3-5 vol.%) and sulphides (2-3 vol.%). Brown amphibole has poikilitic texture 

with abundant exolution lamellae of Fe-oxides close to inclusions of relict olivine and clinopyroxene. 

Orthopyroxene is observed as intergranular phase and shows reaction rims with amphibole. 

2.4.6 Sunda arc (Batu Hijau district, Sumbawa), Indonesia 

 The youngest (late Miocene) amphibole-bearing magmatic rock considered for this study comes 

from Batu Hijau, Sumbawa island, Indonesia, and is provided by Steve Garwin and Marco Fiorentini, 

University of Western Australia. Within the Sunda arc the Sumbawa island is in a pivotal position 

because it is located at a major structural discontinuity inducing variations in the tectonic and magmatic 

regimes across the volcanic arc (Fig. 34). As described by Fiorentini & Garwin (2010) and references 

therein, Sumbawa hosts an early Miocene-Holocene volcanic arc succession built up on oceanic crust 

near a continental margin (Sunda shelf) and recording a progressive change from calc-alkaline to 

shoshonitic character with time. Located in the SW part of the island, Batu Hijau is a mining district 

exploiting several Cu-Au porphyry deposits centered on diorite to tonalite/granodiorite stocks and dikes 

of late Miocene to Pliocene age (5.9-3.7 Ma; U-Pb zircon ages; in Garwin, 2002). The sequence is 

developed within a major arc-transverse oblique-slip fault zone which appears to have controlled 

magmatism, tectonics and sedimentation since Miocene. The Miocene low-K calc-alkaline magmatic 

suite is of particular interest as it is marked by a juvenile Nd signature (143Nd/144Nd = 0.5130) and by 
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whole-rock trace element and lead isotopic features suggestive of minimal involvement of sediment 

component in arc petrogenesis.  

 

Figure 34 - Simplified map showing the Indonesian archipelago, the Roo Rise, an oceanic plateau on the subducting 

Indian Ocean Plate, and the location of the Batu Hijau district on the island of Sumbawa (from Fiorentini & Garwin, 

2010). 

 

 

Figure 35 - Simplified geological sketch of the Batu Hijau area indicating sample (SRD02305) location (Fiorentini & 

Garwin, 2010). 
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 Preliminary geochemical characterization done by Fiorentini and Garwin (2010) on primary 

magmatic amphiboles revealed very low B and Li concentrations and hydrogen isotope signatures 

consistent with an original mantle origin. Such features would reflect involvement of fluids not entirely 

derived from dehydration of a subducting slab during the petrogenesis of the calc-alkaline melts. 

According to the authors, the B- and Li-poor fluids might at least be partially derived from dehydration 

of uprising asthenospheric mantle. Fig. 35 shows the position of the sampling sets by Fiorentini and 

Garwin (2010) in relation to a simplified geological scheme of the Batu Hijau mining area. 

 For the present study, the sample (SRD02305) was collected by Steve Garwin (2002) and is 

representative of the porphyritic hornblende tonalite facies consisting of plagioclase (60-50 vol.%), 

amphibole phenocrysts (15 vol.%) and quartz (15 vol.%) (Fig. 36). The sample was selected from one 

4.99 Ma old porphyritic tonalitic stock (Fig. 36). 

 

Figure 36 - Photomicrographs of polished thin section (SRD02305) displaying different textures between green 

amphibole (Amph) and plagioclase (Pl). 

2.4.7 Alkali amphibole megacrysts, USA 

 In alkalic basalts mantle-derived amphiboles of kaersutitic to pargasitic composition may be 

present as poikilitic grains, veins in peridotites and pyroxenites, and interstitial grains within inclusions 

of chromium-spinel peridotites, and as megacrysts. Occurrences of the vein and megacryst types have 

been reported from several sites in USA. These US amphibole types attracted attention since the 50s 

(e.g., Campbell & Schenk, 1950) and were studied to some depth between the 70s and 90s (e.g., Garcia 

et al., 1980 and references therein; Wilshire et al., 1980; Bell & Hoering, 1994). In particular, the past 

authors considered the origin of amphibole megacrysts as problematic: interpretations ranged from 

amphibole megacrysts as being either cogenetic with the host magma or completely unrelated, especially 
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on the basis of different isotopic signatures. Sr isotope signatures of the megacrysts are affine to MORB, 

while preliminary results of bulk hydrogen isotope and H2O content analyses by Bell and Hoering (1994) 

showed high potential for detecting preserved primary H and D/H signatures in such amphiboles.   

Therefore, amphibole megacrysts collected by Massimo Tiepolo were included in the sample batch for 

this study. The amphibole megacrysts come from two localities in the southwest USA considered in the 

works quoted above (see locations in Fig. 37).  

 

 

Figure 37 - Location of the amphibole megacrysts from Dish Hill, California, and Hoover Dam, Arizona. (Modified 

after Righter & Carmichael, 1993). 

 

 The first sample is from alkali olivine basalt dikes which crop out along the U.S. Highway 93 at 

Hoover Dam, northwest Arizona. The dikes were emplaced in fanglomerate deposits of Quaternary age 

(Campbell and Schenk, 1950) (Fig. 38). The dikes show conspicuous concentrations of kaersutite 

megacrysts (up to 10 cm long), as shown in the samples of Fig. 39.  
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Figure 38 – Simplified geological sketch of the camptonite dike of Hoover Dam, Arizona (USA). (From Campbell and 

Schenk, 1950).  
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Figure 39 - Map showing the locations of mantle xenoliths from Dish Hill, California (from Luffi et al., 2009). 

  

 

 The second sample is from the Dish Hill complex (Mojave Desert, California – see Fig. 40 for 

location and schematic geology). The complex consists of two volcanic cones, Dish Hill Crater and 

Siberia Crater, and is well known because of the abundance of mantle-derived xenoliths and megacrysts 

in the lavas. 

 

 

 
Figure 40 – Samples of alkali olivine basalt with amphibole megacrysts from Hoover Dam, Arizona. 
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 Such xenoliths were considered in a recent work, Luffi et al. (2009), for constraining a model of 

lithospheric mantle duplex beneath the central Mojave Desert by means of whole-rock chemistry, 

clinopyroxene trace element and Nd isotope data. The imbricated nature of the sub-Mojave lithosphere 

would be consequent to the low-angle subduction (underthrusting) of the Farallon plate beneath North 

America during the Laramide orogeny.  

 Xenoliths consist of spinel lherzolites, dunites and pyroxenites and may contain megacrysts of 

amphibole (with variable composition) and phlogopite, and phenocrysts of clinopyroxene, olivine, 

spinel, magnetite and apatite (Wilshire et al., 1971, 1972). 

 

 

Table 2.1 - Summary of the petrography and ages of the selected samples.

Locality Rock type Main Accessory Age

Sample name assemblage minerals

Australia Mt. Keith Pyroxenite pyroxene - brown amph olivine - sulphides 2.7 Ga

Agnew- MKD1 spinel

Wiluna GB

Mt. Clifford Pyroxenite olivine - pyroxene brown amph - Cr-spinel 2.7 Ga

85437 brown mica -magnetite

Canada Theo's Flow Peridotite clinopyroxene brown amph - Cr-spinel 2.7 Ga

Abitibi GB T-2 magnetite - sulphides

Boston Creek Peridotite olivine - clinopyroxene brown amph - Cr-spinel 2.7 Ga

B5 magnetite - talc

chlorite - tremolite

Ghost Range Peridotites olivine - clinopyroxene brown amph - brown mica 2.7 Ga

GR1-GR2 orthopyroxene Cr-spinel

Russia Pilgüjarvi sill Peridotites olivine - clinopyroxene brown amph - brown mica 1.98 Ga

Pechenga Pilg8-38; 106-44; magnetite - sulphides

Complex

116-6 Magnetite-peridotite magnetite - ilmenite clinopyroxene -sulphides 1.98 Ga

olivine brown amph - brown mica

Kammikivi sill Peridotite olivine - clinopyroxene brown amph - brown mica 1.98 Ga

57HV28 Cr-spinel - magnetite

Nyasyukka dike Peridotites olivine - brown amph brown mica - plagioclase 1.96 Ga

complex clinopyroxene magnetite - sulphides

N2; N3 ilmenite
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Continued Table 2.1

Antarctica Husky Ridge Qtz-diorite brown amph - green amph clinopyroxene 512 Ma

Ross Orogen TT329 plagioclase brown mica - qtz

titanite - sulphides

Italy Mt. Mattoni Hornblendites brown amph - olivine clinopyroxene 40 Ma

Alps Orogen MAT1; MAT2; green amph - magnetite

MAT15 sulphides

Alps Orogen Val Masino Hornblendite brown amph- clinopyroxene green amph - magnetite 30 Ma

VS9 olivine sulphides

Japan Taku Gabbrodiorite brown amph - green amph plagioclase - sulphides 120 Ma

Japan Arc TK1b clinopyroxene - orthopyroxene Fe-oxides

olivine

Zenifudo Hornblendite brown amph - clinopyroxene brown mica - Fe-oxides 76 Ma

ZN5 orthopyroxene - olivine

green amph - plagioclase

Hase no Yatsu Hornblendite brown amph - clinopyroxene brown mica - Fe-oxides 117 Ma

HSY3B orthopyroxene - olivine

green amph

Tibet Gangdese batholith Hornblendites brown amph - green amph brown mica - Fe-oxides 82 Ma

Himalayan Orogen 14JT50; 14JT51 clinopyroxene

Iran Sanandaj-Sirjan Zone; Olivine-hornblende brown amph - clinopyroxene brown mica - spinel 165 Ma

Zagros Orogen  Aligoodarz pluton Pyroxenite orthopyroxene - olivine sulphides

AL89

Indonesia Batu Hijau district Porphyritic hornblende plagioclase - brown amph Fe-oxides 4.9 Ma

Sunda arc Sumbawa  Tonalite qtz

USA Hoover Dam Alkali amphibole brown amphibole 2-3 Ma

megacrysts

Dish Hill Alkali amphibole brown amphibole 2-3 Ma

megacrysts
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Chapter 3 
 

Geochemical characterization of amphibole 

3.1 Methods 

 

Major elements analysis 

 In-situ major element concentrations in olivine, clinopyroxene and amphibole grains were 

analysed with a Jeol JXA - 8200 electron Super probe at Università degli Studi di Milano, Milan (Italy). 

The microprobe is equipped with WDS-wavelength-dispersive spectrometers, electron-dispersive 

spectrometer and a cathodoluminescence detector. Operating conditions included a beam size of 5 μm 

and current of 20 nA, with an accelerating voltage of 15 kV. All data were obtained using wavelength-

dispersive spectrometers and counting times of 20 s on peak and 20 s on background.  

 

Trace elements analysis 

 In-situ trace element concentrations of olivine, clinopyroxene and amphibole grains were 

determined by laser ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) at the 

Istituto di Geoscienze e Georisorse – Consiglio Nazionale delle Ricerche (IGG-CNR), Pavia (Italy). The 

instrument couples a 266 nm Nd:YAG laser microprobe (Brilliant, Quantel) to a quadrupole ICP-MS 

system (DRCe from PerkinElmer). NIST-SRM612 was used as an external standard, whereas 43Ca or 

29Si were adopted as internal standards, depending on the analysed mineral. In each analytical run the 

USGS reference sample BCR2 was analysed together with the unknowns for quality control. Precision 

and accuracy are better than 5% and 10%, respectively.  

 

Sample preparation for Secondary ion Mass Spectrometry analysis 

 The samples were prepared for in-situ secondary ions mass spectrometry (SIMS) analysis at the 

Università degli Studi di Milano and at the IGG-CNR of Pavia. The Precambrian amphibole grains most 

suitable for the analysis were selected on the polished thin sections and then drilled out in the form of a 

core of 2 mm-diameter. The cores were cleaned with acetone and embedded in indium mount. For the 

In mount preparation the procedure described by the SIMS laboratory of the University of Edinburgh 

was followed. The indium was placed in an Al-well in the middle of an Al-disk. Successively, the Al-



 

 

 

74 

74 

holder was transferred to the hot plate set at ~180 °C and the indium allowed to melt. The indium was 

pressed into the Al-well and was applied a sheet of Melinex to protect the indium surface by the steel 

block of the hydraulic press. This ensures that the steel block does not bond to the surface of the indium 

and produces a clean scratch free surface. The cores with selected amphiboles were gently pushed into 

the indium with the hydraulic press, using again the Melinex sheet to protect the samples into the indium.   

 

Secondary Ion Mass Spectrometry 

 The ion probe employs a focused primary ion beam, generated by an ion gun, which bombards 

the sample surface and sputters material of the domain to be analysed. While many of the matrix atoms 

are sputtered away as neutral particles, some are released as ions and ionized molecules. The secondary 

ion beam is extracted by using an accelerating voltage and an ion optical system followed by energy 

filtering which leads to a mass spectrometer for nominal mass (mass-to charge ratio) separation and 

finally to an ion counting unit. The SIMS primary beam produces ions from solid samples without prior 

vaporization. A basic SIMS instrument will, therefore, consist of a primary beam source (usually O2+, 

O-, Cs+, Ar+, Ga+ or neutrals) to supply the bombarding species, a mass analyser to isolate the ion of 

interest (quadrupole, magnetic sector, double focusing magnetic sector or time of flight) and an ion 

detection system to record the magnitude of the secondary ion signal (photographic plate, Faraday cup, 

electron multiplier or a CCD camera and image plate). 

 

Hydrogen and oxygen isotopic analytical method 

 Igneous amphiboles were analysed in-situ for δD and δ18O ratio with a CAMECA IMS 1270 E7 

ion microprobe at the Centre de Recherche Pétrographiques et Géochimiques-Centre National de la 

Recherche Scientifique CRPG-CNRS of Nancy (France). The stable isotopic compositions of low-mass 

(light) elements such as oxygen and hydrogen are normally reported as "delta" (δ) values in parts per 

thousand (denoted as ‰) enrichments or depletions relative to a standard of known composition. The δ 

values are calculated by: 

(in ‰) = (Rsample/Rstandard - 1) x 1000 

where "R" is the ratio of the heavy to light isotope in the sample or standard. For the element oxygen, 

the average terrestrial abundance ratio of the heavy to the light isotope is 1:500 (oxygen) and the ratio 

2H:1H is 1:6410. A positive d value means that the sample contains more of the heavy isotope than the 

standard; a negative d value means that the sample contains less of the heavy isotope than the standard. 

The spots for SIMS analysis were carried out on fresh amphibole grain surface, far from scratches. The 

following procedure is described in Deloule et al. (1991a). The D/H ratio of amphibole can thus be 
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measured in situ with a precision of ± 10‰. The samples were goldcoated. The negative primary oxygen 

beam, with intensity ranging from 2 to 5 nA, is focused to produce a beam 10 µm wide rastered over 25 

µm. Mass resolution at 1300 is sufficient for separating deuterium from hydrogen ions. No energy 

filtering is applied and the energy slit is kept wide open. Moisture is removed by baking the sample and 

ion probe at 120°C, and using a liquid nitrogen trap. The electron multiplier is used in the counting 

mode. The counting rates on the H peak range from 30,000 to 60,000 cps. Counting times of 3, 2 and 15 

seconds are used for H, H2 and D, respectively, and waiting time is 1.5 s.  

 Oxygen isotopes were analysed using the CRPG-CNRS Cameca 1270 at Nancy (France) as O- 

ions produced with a 133Cs+ primary beam at 10 kV and at 5 nA intensity. The spot size varied from 30 

to 50 μm with a depth of about 2 μm. The normal incidence electron flood gun was used to compensate 

for sample charging during analysis. Secondary negative ions were accelerated to 10 kV and analysed 

without energy filtering at a mass resolution (M/ΔM) of 5000. Oxygen isotopes were measured in 

multicollection mode on two off-axis Faraday cups (L’2 and H1). Secondary ion intensities ranged from 

3 to 8 x 106 cps on 18O and the typical acquisition time was 60 s per analysis. The standard use are the 

amphiboles Bamble, Kipawa, Seljas, Illimaussac and Bipa (Deloule et al., 1991b)  

 

Hydrogen, Fl and Cl concentrations analytical method 

The H, F and Cl concentration were measured with the ion probe Cameca IMS 4f, at the CNR-Istituto 

di Geoscienze e Georisorse (IGG)-Unità di Pavia, following the method described in Gentili et al. 

(2015). Analyses were carried out with a primary 16O- ion beam characterized by an acceleration voltage 

of -12.5kV and a current intensity of 5 nA. Spot diameter is 8-10 µm.  Prior the analysis the sample and 

the standard for H were cleaned, platinum-coated (about 40 nm) and placed in the sample chamber of 

the ion microprobe to be degassed for a few days to a vacuum of 2*10-9 torr. The analyses consisted in 

the acquisition of the signals of masses: 1H+, 19F+, 35Cl+, 37Cl+ and 30Si+.The reference samples used for 

the calibration of the instrument and for the conversion of ionic signals in concentration (ppm wt) were 

for H, the amphiboles: DL-5 (Ottolini et al., 1995) and LC, belonging to the laboratory-working curve 

for H in silicates (Ottolini et al., 1994). The standards used for F and Cl were kearsutites Soda Spring 

(KSS), belonging to the laboratory-working curve for F in silicates (Ottolini et al., 1994), and scapolite 

USNM R66001 (Ottolini and Le Févre, 2008), respectively. Analytical accuracy is estimated to be better 

than 10% for the concentration of H (conventionally quantified as H2O wt.%), 15% for F (ppm) and 20% 

for Cl (ppm). 
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3.2 Major, trace elements and isotope compositions of Archean and Early 

Proterozoic samples 

 The major and trace element compositions of the samples are reported in Appendix A and B, 

respectively.     

3.2.1 Agnew-Wiluna greenstone belt (Australia) 

 

Mount Keith (sample MKD1) 

  

 Amphibole has pargasitic composition, with Mg-number [Mg/(Mg+FeTOT)] about 0.80 mol (Fig. 

41). The TiO2 mean content is 2.60 ± 0.95 wt.% and alumina shows homogenous values (10.71 ± 0.19 

wt.%). Titanium has variable contents in comparison with Mg-number whereas Al2O3 does not show 

correlation with Mg-number. Calcium and FeOtot show average contents of 11.98 ± 0.27 wt.% and 7.41 

± 0.16 wt.%, respectively. The Na2O average value is 2.5 ± 0.07 wt.%, whereas the K2O values vary in 

the range 0.71–0.91 wt.% (Fig. 41; Tab. 1 Appendix A).  

 

Figure 41 – Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Mt Keith, Agnew-Wiluna GB, 

Australia. 
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 The chondrite-normalized REE patterns are hump-shaped and show slight depletion in LREE 

(LaN/SmN = 0.68 ± 0.21; LaN/YbN = 1.39 ± 0.39), with almost flat HREE (GdN/YbN = 1.83 ± 0.2) which 

are approximately 90 times the CI chondrite values (Fig. 42; Tab. 1 Appendix B). The Europium is 

depleted into amphiboles, with Eu/Eu* ratio around 0.55. The chondrite-normalized patterns of 

incompatible elements exhibit peculiar negative Li, Rb, B, Sr and Pb, and moderate negative Eu and Zr 

anomalies (Fig. 43). Conversely, the patterns show a marked positive anomaly for Ba. The Nb/Ta and 

Zr/Hf mean ratios are 17.43 and 24.75, respectively. About the LILE, as mentioned before Ba has 

positive anomaly (Rb/Ba = 0.02) and is 66 times the chondrite value. The Sr (49.11 ppm) and Rb (3.22 

ppm) mean values are 6.73 and 1.40 times the CI chondrite, respectively. The Cr contents are variable 

in the range 4566-8703 ppm, whereas Ni, Sc and V average values are 873 ± 38 ppm, 90 ± 11 ppm and 

681 ± 45 ppm, respectively (Tab. 1 Appendix B).  

 

Figure 42 – Chondrite-normalized REE pattern of amphibole from Mt. Keith, Agnew-Wiluna greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

Average value 
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Figure 43 - Chondrite-normalized incompatible pattern of amphibole from Mt. Keith, Agnew-Wiluna greenstone belt 

(C1 chondrite from McDonough & Sun, 1995). 

 

 In-situ ion probe measurements  reveal an average H2O contents of 0.81 ± 0.03 wt.% (Tab. 43 

Appendix B). The average contents of fluorine and chlorine are 333 ppm and 3926 ppm, respectively. 

Li and B mean values are 0.11 ± 0.04 ppm and 2.12 ppm, respectively (Tab. 43 Appendix B). The 

isotopes in-situ analyses by ion probe reveal for the δD and δ18O ratios mean values of -115.6 ± 6.7 ‰ 

and 5.0 ± 0.3 ‰, respectively (Tab. 47 Appendix B). 

  Spinel from Mt. Keith pyroxenite has homogeneous composition. Spinel is Cr-rich (Cr2O3 

= 32.5-33.2 wt.%), with variable titanium content (TiO2 = 0.77-1.34 wt.%). MgO contents differ from 

2.9 to 3.7 wt.%, whereas iron (FeOT) mean value is 49.7 wt.%. Al2O3 and MnO contents are in the range 

10.7-11.1 and 0.6-0.9 wt.%, respectively. 

 

Mount Clifford (sample 85437) 

 Amphibole has pargasitic composition and has Mg-number values in the range 0.75-0.78 mol. 

The TiO2 contents are variable in the range between 2.69 and 4.06 wt.%. Alumina values differ between 

8.45 and 11.1 wt.%. Titanium and Al2O3 do not show correlation with Mg-number. CaO and FeOtot 

have average values of 11.66 ± 0.28 wt.% and 8.79 ± 0.34 wt.%, respectively. The Na2O content is 

homogeneous in the range 2.6-3 wt.%, as well as the K2O which average value is 0.45 ± 0.07 wt.%. 

Sodium and potassium have moderate positive correlation with Mg-number (Fig. 44; Tab. 2 Appendix 

A).   

Average value 
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Figure 44 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole. 

  

 The chondrite-normalized REE patterns are hump-shaped and show slight enrichment in LREE 

compared to HREE (LaN/SmN = 0.79 ± 0.25; LaN/YbN = 1.31 ± 0.12) that are almost flat (GdN/YbN = 

1.53 ± 0.57) which are approximately 130-170 times the CI chondrite values (Fig. 45; Tab. 2 Appendix 

B). The europium value is characterized by a marked negative anomaly (Eu/Eu* = 0.42). The chondrite-

normalized incompatible patterns of amphibole exhibit peculiar negative Rb, B, Sr, Pb, Eu and Ti 

relative to the neighbouring elements (Fig. 46). The Nb/Ta and Zr/Hf ratios are 21.70 and 38.55, 

respectively. Barium has value roughly 32 times the CI chondritic and Rb/Ba ratio of 0.03. The Ni and 

V contents are homogeneous which mean values are 569 ± 29 ppm and 810 ± 39 ppm, respectively. 

However, Cr and Sc values are variable in the ranges 3686-5947 ppm and 31.38-81.79 ppm, respectively 

(Tab. 2 Appendix B). 
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Figure 45 - Chondrite-normalized REE pattern of amphibole from Mt. Clifford, Agnew-Wiluna greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

 

Figure 46 - Chondrite-normalized incompatible pattern of amphibole from Mt. Clifford, Agnew-Wiluna greenstone 

belt (C1 chondrite from McDonough & Sun, 1995). 
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 In-situ ion probe measurements reveal an average value for water of 0.73 ± 0.09 wt.% (Tab. 43 

Appendix B). The contents of fluorine and chlorine are 347 ± 80 ppm and 4421 ± 339 ppm, respectively. 

Li and B mean contents are 2.14 ± 0.40 ppm and 4.96 ± 1.08 ppm, respectively (Tab. 43 Appendix B). 

The ion probe isotopes analyses show a δD average value of -129.6 ± 11 ‰ and low δ18O average value 

of 2.5 ± 0.42 ‰ (Tab. 47 Appendix B). 

3.2.2 Abitibi greenstone belt (Canada) 

 

Theo’s Flow (sample T2) 

 Clinopyroxene shows moderate variability in its Mg-number values (0.8-0.85 mol), which is 

negatively correlated with TiO2 (0.27-0.47 wt.%) and Al2O3 (1.56-2.23 wt.%). The Cr2O3 contents (0.47-

1.12 wt.%) are positively correlated with Mg-number, whereas the Na2O content (0.29 wt.%) does not 

show correlation with Mg# (Fig. 47; Tab. 3 Appendix A). 

 

Figure 47 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Theo’s Flow, Abitibi greenstone 

belt. 
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 The chondrite-normalized REE patterns of clinopyroxene are characterized by a depletion in 

light REE (LREE) (LaN/SmN = 0.15; LaN/YbN = 0.28) relative to heavy REE (HREE) values that are 

almost flat (GdN/YbN = 1.38) at about 6-8 times C1 chondrite (Fig. 48; Tab. 3 Appendix B). The Eu/Eu* 

ratio has value of 0.95. The chondrite-normalized patterns of incompatibles exhibit depletion in Th, Nb, 

Pb and Zr (Fig. 49). The Ni and Cr values are in the range 325-381 ppm and 4658-6672 ppm, 

respectively. The Sc and V contents are 64.79 ppm and 192.72 ppm, respectively (Tab. 3 Appendix B). 

 

Figure 48 - Chondrite-normalized REE pattern of clinopyroxene from Theo’s Flow, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

 
Figure 49 - Chondrite-normalized incompatible pattern of clinopyroxene from Theo’s Flow, Abitibi greenstone belt 

(C1 chondrite from McDonough & Sun, 1995). 
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 Amphibole has pargasitic composition, with an average Mg-number of 0.77 mol. The TiO2 

contents are in the range between 2.75 and 3.15 wt.%, and alumina shows homogenous values (7-7.61 

wt.%). The Na2O content is generally between 1.32 and 3.05 wt.%, whereas the K2O values vary in the 

range 0.16–0.57 wt.% (Fig. 50; Tab. 4 Appendix A).  

 

Figure 50 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Theo’s Flow, Abitibi greenstone 

belt. 

 

 The chondrite-normalized REE patterns are hump-shaped and show slight depletion in LREE 

(LaN/SmN = 0.54; LaN/YbN = 1.03), with almost flat HREE (GdN/YbN = 1.2-1.6) which are 50 times the 

CI chondrite values (Fig. 51; Tab. 4 Appendix B). The Eu/Eu* ratio has value of 0.76 at about 50 times 

CI chondrite. Chondrite-normalized patterns of incompatible elements of amphibole display positively 

Nb-Ta and negative Eu, Ba (Rb/Ba = 0.12) and Sr anomalies. The Zr/Hf and Nb/Ta ratios are 47.37 and 

24.15, respectively (Fig. 52; Tab. 4 Appendix B). Titanium shows a slight depletion with value 26 times 

the chondrite value. About large ion lithophile elements (LILE), Cs, Rb and Sr have average contents of 

0.13 ppm, 0.45 ppm and 14.47 ppm, respectively. As previously mentioned, amphiboles is depleted in 

Ba with mean value of 3.68 ppm. Sc and V show positive anomalies with values around 7 times the CI 
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chondrite value. The average contents for Cr, Ni, Sc and V are 1202 ppm, 713 ppm, 40.14 ppm and 403 

ppm, respectively. The Co and Zn mean values are 68.91 ppm and 59.84 ppm, respectively (Tab. 4 

Appendix B). 

 

Figure 51 - Chondrite-normalized REE pattern of amphibole from Theo’s Flow, Abitibi greenstone belt (C1 chondrite 

from McDonough & Sun, 1995). 

 
Figure 52 - Chondrite-normalized incompatible pattern of amphibole from Theo’s Flow, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 
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 Li and B contents are measured by ion probe (Tab. 44 Appendix B) and show mean values of 

0.4 ppm and 4.81 ppm, respectively. In-situ ion probe measurements of the amphibole reveal an average 

H2O content of 1.06 ±0.08 wt.% (Tab. 44 Appendix B). The mean contents of fluorine and chlorine are 

10321 ppm and 2435 ppm, respectively (Tab. 44 Appendix B). The δD ratio of amphibole shows an 

average value of -101,5 ±10 ‰ (Tab. 48 Appendix B). Oxygen isotope analysis were not performed due 

to the lack of good spot positions on amphibole grains (Tab. 48 Appendix B). 

 Spinel has a wide compositional variation. At the core, spinel has chromite composition (Cr2O3 

= 49.5 wt.%; MgO = 6.1 wt.%), and exibits alumina and iron (FeOT) mean values of 8.1 wt.% and 34.6 

wt.%, respectively. TiO2 and MnO contents are in the range 1.12-1.43 and 0.19-0.26 wt.%, respectively. 

At the rims of chromite, spinels are enriched in titanium and manganese (TiO2 = 3.9-10.4 wt.%; MnO = 

1.6-2.9 wt.%), and are depleted in Cr2O3 (12.8-15.9 wt.%) and MgO (0.08 wt.%). The content of Al2O3 

is remarkably variable, ranging from 2.18 to 7.63 wt.%, whereas the FeOT mean value is 67.5 wt.%. 

 

Boston Creek flow (sample B-5) 

 Clinopyroxene has Mg-number values ranging between 0.81 and 0.83 mol. Mg-number shows 

negatively correlation with alumina (0.91-1.75 wt.%) and TiO2 contents (0.27-0.54 wt.%). 

Clinopyroxene exhibits a range of Cr2O3 (0.7-0.9 wt.%) without correlation with Mg-number (Fig. 53; 

Tab. 5 Appendix A). The clinopyroxene exhibits Ni and Cr contents in the range 461-490 ppm and 4372-

5775 ppm, respectively (Tab. 5 Appendix B). 
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Figure 53 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Boston Creek, Abitibi 

greenstone belt. 

 

 The chondrite-normalized REE patterns of clinopyroxene are hump-shaped and characterized by 

LREE slight enrichment (LaN/SmN = 0.41-0.76; LaN/YbN = 1.03) relative to HREE values that are almost 

flat (GdN/YbN = 1.48-8.87) (Fig. 54; Tab. 5 Appendix B). The chondrite-normalized patterns of 

incompatibles exhibit depletion in Nb, Ta, Pb and Zr (Fig. 55; Tab. 5 Appendix B). 
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Figure 54 - Chondrite-normalized REE pattern of clinopyroxene from Boston Creek, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

 
Figure 55 - Chondrite-normalized incompatible pattern of clinopyroxene from Boston Creek, Abitibi greenstone belt 

(C1 chondrite from McDonough & Sun, 1995). 

  

 Brown amphibole is Ti-pargasite in composition with Mg-number ranging between 0.63 and 

0.67 mol. No significant intra-grain zoning was observed. Amphibole is enriched in TiO2 (3.13-4.59 

wt.%) and Al2O3 contents vary from 11.47 to 12.86 wt.%. The Na2O mean content is 3.31 wt.%, whereas 

the K2O values vary in the range 0.36–0.44 wt.% (Fig. 56; Tab. 6 Appendix A).  
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Figure 56 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Boston Creek, Abitibi greenstone 

belt. 

  

 The chondrite-normalized REE patterns are characterized by a steady decrease from LREE to 

HREE (LaN/YbN = 0.9-1.7; GdN/YbN = 1.5-2.7) which are 4 times the CI chondrite values (Fig. 57; Tab. 

6 Appendix B). The incompatible element pattern reveals a depletion in Li, Rb (Rb/Ba = 0.01), U, B and 

Pb and enrichment in Nb-Ta (Fig. 58; Tab. 6 Appendix B). Amphibole exhibits slightly negative 

anomalies for Zr and Ti. Nb/Ta and Zr/Hf ratios are 18.41 and 32.81, respectively. Cs and Ba contents 

are 0.06 ppm and 265 ppm, respectively. Ni content is 558 ± 44 ppm and the average values for Cr, Sc 

and V are 25 ppm, 6.6 ppm and 232 ppm, respectively (Tab. 6 Appendix B).  
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Figure 57 - Chondrite-normalized REE pattern of amphibole from Boston Creek, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

 

 
Figure 58 - Chondrite-normalized incompatible pattern of amphibole from Boston Creek, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

  

 Li and B mean contents are 0.11 ppm and 3.21 ppm, respectively (Tab. 44 Appendix B). The 

H2O contents ranging between 1.02 and 1.35 wt.%. The average contents of fluorine and chlorine are 
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229 ppm and 1434 ppm, respectively. The δD ratio of amphibole shows an average value of -115.8 ± 

11.4 ‰, whereas the δ18O mean value is 3.7 ± 0.75 ‰ (Tab. 44 Appendix B). 

 Spinel has a wide compositional variation. At the core, spinel shows chromite composition 

(Cr2O3 = 38.8-43.5 wt.%) and has variable contents of magnesium (MgO = 0.4-3.8 wt.%). Chromite 

exhibits Al2O3 and FeOT mean values of 5.4 wt.% and 45.4 wt.%, respectively. TiO2 and MnO contents 

are in the range 1.9-2.6 and 1.2-4.3 wt.%, respectively. At the rims of chromite, spinels have magnetite 

composition, with FeOT contents between 86.5 and 91.2 wt.%. Titanium contents are in the range 0.4-1 

wt.% of TiO2 and MgO values are less than or equal to 0.06 wt.%. Cr2O3 and Al2O3 contents is 

remarkably variable in the ranges 0.03-0.3 and 7.63 wt.%, respectively. 

 

Ghost Range (samples GR-1 and GR-2) 

 Olivine has Fo contents of 83 mol, in both samples (GR-1 and GR-2). Olivine has contents of Cr 

between 71 and 126 ppm, and Ni values ranging between 1845 and 2060 ppm (Tab. 7-8 Appendix A 

and Tab. 7-8 Appendix B).  

 Clinopyroxene associated to brown amphibole is augitic in composition with a Mg-number of 

0.87 mol (Fig. 59; Tab. 9 Appendix A). The Al2O3 contents are variable and range from 1.01 to 2.52 

wt.%, the TiO2 contents are nearly 0.26 wt.%. The Na2O contents are homogeneous with mean value of 

0.37 wt.%.  
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Figure 59 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene Ghost Range, Abitibi greenstone 

belt. 

  

 The chondrite-normalized REE patterns are characterized by a slight depletion in LREE 

(LaN/SmN = 0.22-0.31; LaN/YbN = 0.23-0.33) relative to HREE (GdN/YbN = 1.17-1.74), which is nearly 

flat at about 5 times CI chondrite (Fig. 60; Tab. 9 Appendix B). The incompatible element patterns reveal 

positive anomalies in U, Ta, Eu (Eu/Eu* = 0.96) and Gd and depletion in Nb, Pb and Zr relative to the 

neighbouring elements (Fig. 61; Tab. 9 Appendix B). Cr contents are in the range 5539-8265 ppm 

whereas Ni values are homogeneous with average of 382 ppm. 
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Figure 60 - Chondrite-normalized REE pattern of clinopyroxene Ghost Range, Abitibi greenstone belt (C1 chondrite 

from McDonough & Sun, 1995). 

 

   

Figure 61 - Chondrite-normalized incompatible pattern of clinopyroxene Ghost Range, Abitibi greenstone belt (C1 

chondrite from McDonough & Sun, 1995). 

 

 Brown amphibole is pargasite in composition and has Mg-numbers of 0.80 mol. The amphibole 

has significantly variable TiO2 (2.67-5.1 wt.%) and Al2O3 (8-12.33 wt.%) contents. The Na2O and K2O 

contents ranging between 2.67-3.06 wt.% and 0.5–0.8 wt.%, respectively (Fig. 62; Tab. 10-11 Appendix 

A).  
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Figure 62 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole Ghost Range, Abitibi greenstone belt. 

  

 The chondrite-normalized REE patterns of amphibole are hump-shaped and characterized by 

LREE enrichment (LaN/SmN = 0.97; LaN/YbN = 1.52-2.15) over HREE (GdN/YbN = 1.46) which are 60-

100 times CI chondrite values (Fig. 63; Tab. 10-11 Appendix B). The REE-patterns also show a slightly 

depletion of Eu (Eu/Eu* = 0.70). Chondrite-normalized patterns of trace elements display distinctive 

negative Li, Rb (Rb/Ba = 0.04), Sr and Pb anomalies and positive Ba, Th, Nb-Ta (Nb/Ta = 16.78) and 

Zr-Hf (Zr/Hf = 31.71) anomalies (Fig. 64; Tab. 10-11 Appendix B). About the LILE, Ba has variables 

contents between 44.51 ppm and 122 ppm. The Cs mean value is 0.04 ppm. Brown amphibole shows 

high concentrations in Cr (8858-9568 ppm), Sc (84.55 ppm) and V (777 ppm) wich are 14 times the CI 

chondrite. The Ni contents are in the range 583-611 ppm. In-situ ion probe analyses (Tab. 44 Appendix 

B) reveal H2O contents ranging between 0.71 and 1.32 wt.%.  
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Figure 63 - Chondrite-normalized REE pattern of amphibole Ghost Range, Abitibi greenstone belt (C1 chondrite 

from McDonough & Sun, 1995). 

 
Figure 64 - Chondrite-normalized pattern of incompatible elements of amphibole Ghost Range, Abitibi greenstone 

belt (C1 chondrite from McDonough & Sun, 1995). 

 

 In amphibole of samples GR-1 and GR-2, Li contents are 1.22 ppm and 0.79 ppm, respectively 

(Tab. 44 Appendix B). Sample GR-1 is enriched in B (average value of 12.73 ppm), whereas in GR-2 
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the mean content is 1.81 ppm (Tab. 44 Appendix B). Samples from Ghost Range peridotite show high 

enrichment in fluorine (1930-4024 ppm) and chlorine (3650-4021 ppm) (Tab. 44 Appendix B). The δ D 

ratio of amphibole shows an average value of -197,6 ‰, for sample GR-1, and -236.3 ‰, for sample 

GR-2 (Tab. 48 Appendix B). The δ 18O ratio is in the range 3.8-4.2 ‰ (Tab. 48 Appendix B). 

 Spinel from Ghost Range has Cr2O3 contents in the range 29-39.9 wt.%, whereas the MgO 

contents are remarkably variable (4.45-8.8 wt.%). Spinel shows heterogeneous Al2O3 contents (6-14 

wt.%), that are negatively correlated with the TiO2 contents (1.2-5.7 wt.%). Spinel of sample GR-2 has 

Cr2O3 contents ranging between 30.5 and 36.3 wt.%, whereas Al2O3 values differ from 6.4 to 13 wt.%. 

The MgO and TiO2 contents are 5.78-8.13 wt.% and 3.7-8.1 wt.%. Spinel is Mn-poor (MnO = 0.22-0.35 

wt.%), and has variable FeOT contents (37.4-47.9 wt.%). 

 

3.2.3 Pechenga Complex (Russia) 

 

Pilgüjarvi sill (sample Pilg 8 38) 

 Olivine has Fo contents of 77 mol and has average values of Ni of 1257 ± 12.33 ppm, whereas 

Cr content is variable between 65 and 88 ppm (Tab. 12 Appendix A and Tab. 12 Appendix B).  

 Clinopyroxene is augite and has Mg-number value 0.83 mol (Fig. 65; Tab. 13 Appendix A). Mg-

number shows slightly negative correlation with alumina (2.24-3.54 wt.%) and TiO2 contents (0.93-1.57 

wt.%). Clinopyroxene exhibits a range of Cr2O3 (0.52-0.86 wt.%) with positive correlation with Mg-

number. The Na2O value is homogeneous (0.41 ± 0.09 wt.%) and does not show correlation with Mg-

number (Fig. 65; Tab. 13 Appendix A).  
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Figure 65 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Pilgüjarvi sill, Pechenga 

Complex. 

  

 The chondrite-normalized REE patterns of clinopyroxene are hump-shaped and characterized by 

LREE (LaN/SmN = 0.38) and to HREE (GdN/YbN = 4.46) depletion relative to MREE (LaN/YbN = 2.20) 

that are roughly 95 times the CI chondrite values (Fig. 66; Tab. 13 Appendix B). The chondrite-

normalized patterns of the incompatible elements display negative anomalies in U, Sr, Pb, Zr and Ti 

relative to the neighbouring elements. The Ni and Cr contents are 176 ppm and 3506 ppm, respectively 

(Fig. 67; Tab. 13 Appendix B). 
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Figure 66 - Chondrite-normalized REE pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

Figure 67 - Chondrite-normalized incompatible pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

 Brown amphibole is Ti-pargasite with Mg-number of 0.77 mol (Fig. 68; Tab. 14 Appendix A). 

No significant intra-grain zoning was observed. Amphibole is enriched in TiO2 (4.43-5.41 wt.%) and 

Al2O3 contents vary from 9.33 to 10.38 wt.%. The iron (FeOtot) has homogeneous content approximately 

7.73 ± 0.10 wt.%. The Na2O and K2O mean contents are 3.09 ± 0.06 wt.% and 0.77 ± 0.03 wt.%, 

respectively, and both show a positive correlation with Mg-number (Fig. 68; Tab. 14 Appendix A).  
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Figure 68 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Pilgüjarvi sill, Pechenga Complex. 

  

 The chondrite-normalized REE patterns are hump-shaped with LREE (LaN/SmN = 0.86 ± 0.21; 

LaN/YbN = 4.62 ± 0.81) and HREE (GdN/YbN = 2.9-4.3) depletion relative to MREE (at about 230 times 

C1 chondrite) (Fig. 69; Tab. 14 Appendix B). The incompatible element pattern reveals a strong 

depletion in Li, Rb, B, and Pb relative to the neighbouring elements and slightly negative anomalies in 

Zr and Ti (Fig. 70). The Nb/Ta and Zr/Hf ratios are 22.03 and 27.12, respectively. As mentioned before, 

amphibole is enriched in Ba (Rb/Ba = 0.01; Ba = 408 ± 10 ppm), whereas Sr show mean value of 398 ± 

62 ppm. Ni content is homogeneous with mean value of 384 ± 33 ppm. The amphibole is strongly 

enriched in Cr (2891 ppm), whereas Sc and V mean contents are 63 ppm and 517 ppm, respectively 

(Tab. 14 Appendix B). 
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Figure 69 - Chondrite-normalized REE pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 chondrite 

from McDonough & Sun, 1995). 

 

Figure 70 - Chondrite-normalized incompatible pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

  

 In-situ ion probe analyses (Tab. 45 Appendix B) reveal Li and B average contents of 0.11 ppm 

and 0.72 ppm, respectively. Brown amphibole has H2O mean content of 0.98 ± 0.2 wt. % (Tab. 45 
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Appendix B). The average contents of fluorine and chlorine are 4461 ppm and 937 ppm, respectively 

(Tab. 45 Appendix B). The δD of amphibole shows an average value of -121.2 ± 5.2 ‰ (Tab. 49 

Appendix B). The δ18O mean value is 4.5 ± 1.5 ‰ (Tab. 49 Appendix B). 

 Spinel has a wide compositional variation. The chromium contents of spinel are variable (Cr2O3 

= 16.2-27.3 wt.%), whereas alumina values are homogeneous (Al2O3 = 8-8.7 wt.%). Spinel shows 

strongly variable MgO contents (1.48-7.71 wt.%), and exhibits iron enrichment (FeOT = 46.5-58.9 

wt.%). Spinel is Ti-rich (TiO2 = 8.2-12.3 wt.%) and MnO contents are in the range 0.26-1.35 wt.%. 

 

Pilgüjarvi sill (sample 106-44) 

 Olivine has Fo contents slightly varying between 77 and 78 mol (Tab. 15 Appendix A). Olivine 

has variable contents of Cr between 66 and 186 ppm, and Ni values ranging between 1760 and 1973 

ppm (Tab. 15 Appendix B). 

 Clinopyroxene is augitic in composition and has Mg-number value of 0.84 mol (Fig. 71; Tab. 16 

Appendix A). Mg-number shows negatively correlation with alumina (1.9-5.3 wt.%) and TiO2 contents 

(1.2-2.41 wt.%). Clinopyroxene exhibits a range of Cr2O3 (0.65-0.94 wt.%) without correlation with Mg-

number. The Na2O average content is 0.43 ± 0.06 wt.% (Fig. 71; Tab. 16 Appendix A).  

 

Figure 71 – Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Pilgüjarvi sill, Pechenga 

Complex. 
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 The chondrite-normalized REE patterns of clinopyroxene are hump-shaped and characterized by 

LREE (LaN/SmN = 0.42) and to HREE (GdN/YbN = 4.01) depletion relative to MREE (LaN/YbN = 2.10) 

that are roughly 75 times the CI chondrite values (Fig. 72; Tab. 16 Appendix B). The chondrite-

normalized patterns of the incompatible elements display negative anomalies in Th, U, Nb and Pb 

relative to the neighbouring elements (Fig. 73). A slightly depletion is observed for Zr and Ti. Europium 

does not show any significant anomaly, with an Eu/Eu* mean ratio of 0.94. The Ni and Cr contents are 

250 ± 22 ppm and 4613 ± 396 ppm, respectively (Tab. 16 Appendix B). 

 

Figure 72 - Chondrite-normalized REE pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 
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Figure 73 - Chondrite-normalized incompatible pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

 Brown amphibole is pargasite with Mg-number of 0.76 mol (Fig. 74; Tab 17 Appendix A). No 

significant intra-grain zoning was observed. The titanium contents are homogeneous (5.02-5.92 wt.% 

TiO2) as the Al2O3 contents (11.59-12.64 wt.%). Mg-number does not show correlation with titanium 

and alumina. The CaO has mean value of 11.71 ± 0.10 wt.% and is positive correlated with Mg-number. 

The Na2O and K2O mean contents are 2.92 ± 0.20 wt.% and 0.58 ± 0.03 wt.%, respectively, and are not 

observed correlation with Mg-number. 
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Figure 74 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Pilgüjarvi sill, Pechenga Complex. 

  

 The chondrite-normalized REE patterns are characterized by a slightly depletion of LREE 

(LaN/SmN = 0.59 ± 0.21) and by a decrease from MREE to HREE (LaN/YbN = 3.29 ± 1.26; GdN/YbN = 

3.93 ± 1.31), which are approximately 103 times the CI chondritic (Fig. 75; Tab. 17 Appendix B). The 

europium does not show negative anomaly (Eu/Eu* = 1.05). The incompatible element pattern reveals 

depletion in Rb, U and Pb relative to the neighbouring elements (Fig. 76). Furthermore, there are 

distinguished a slightly negative anomalies in La and Zr. The Nb/Ta and Zr/Hf average ratios are 19.46 

and 26.48, respectively. About the LILE, the Rb/Ba ratio is 0.01 as highlighted by rubidium depletion 

(1.74-2.55 ppm) and barium enrichment (277-300 ppm). Sr shows homogeneous concentrations in the 

range 764-816 ppm. The Ni and Cr contents are variables in the ranges 472-660 ppm and 1061-4246 

ppm, respectively. On the contrary, the Sc and V show homogeneous values, which are 43 ± 8 ppm and 

467 ± 46 ppm, respectively (Tab. 17 Appendix B). 
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Figure 75 - Chondrite-normalized REE pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 chondrite 

from McDonough & Sun, 1995). 

 
Figure 76 - Chondrite-normalized incompatible pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

 In-situ ion probe analyses (Tab. 45 Appendix B) of pargasite have remarked H2O contents of 

1.12 wt.% and fluorine and chlorine contents of 3156 ppm and 766 ppm, respectively. Amphiboles 
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display variable contents for Li (0.5-1.1 ppm) and B (2.68-7.16 ppm) (Tab. 45 Appendix B). The δD 

ratio of amphibole shows an average value of -129.8 ± 8.4 ‰ (Tab. 49 Appendix B). Oxygen isotope 

analysis were not performed due to the lack of good spots on amphibole grains (Tab. 49 Appendix B).  

 Spinel has chromite composition, with chromium value of 41.14 wt.%. The TiO2 and Al2O3 

contents of chromite are 3.16 wt.% and 9.96 wt.%, respectively. The contents of MgO and MnO are 5.57 

wt.% and 0.24 wt.%, respectively. 

 

Pilgüjarvi sill (sample 116-6) 

 Clinopyroxene is augite and its Mg-number values range between 0.75 ± 0.02 mol (Fig. 77; Tab. 

18 Appendix A). Alumina (2.73-4.38 wt.%) and TiO2 contents (1.23-2.07 wt.%) are homogeneous. The 

Cr2O3 (0.01-0.02 wt.%) does not show correlation with Mg-number. The Na2O contents are 

homogeneous (0.36 ± 0.06 wt.%) and show negative correlation with Mg-number (Fig. 77).  

 

Figure 77 – Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Pilgüjarvi sill, Pechenga 

Complex. 
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 The chondrite-normalized REE patterns of clinopyroxene are hump-shaped, with LREE 

(LaN/SmN = 0.42) and HREE (GdN/YbN = 2.8-3.3) depletion relative to the MREE (LaN/YbN = 1.64; at 

about 25 times C1 chondrite) (Fig. 78 and 79; Tab. 18 Appendix B). Negative anomaly in Eu are not 

observed (Eu/Eu* = 0.90). The clinopyroxene of the magnetite-olivine have the lowest Ni (114 ± 6 ppm) 

and Cr (13 ± 5 ppm) contents of the clinopyroxene analysed from the Pechenga Complex (Tab. 18 

Appendix B). 

 

Figure 78 - Chondrite-normalized REE pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 
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Figure 79 - Chondrite-normalized incompatible pattern of clinopyroxene from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

 Brown amphibole is pargasite with Mg-number of 0.69 mol. No significant intra-grain zoning 

was observed (Fig. 80; Tab. 19 Appendix A). Amphibole has TiO2 average value of 5.25 ± 0.25 wt.% 

which show a negative correlation with Mg-number. The Al2O3 contents are homogeneous (11.35-12.13 

wt.%) as the iron values (FeOtot) which are in the range 10.70-11.22 wt.%. The Na2O mean content is 

3.09 ± 0.08 wt.%, whereas the K2O mean value is 0.93 ± 0.07 wt.% (Fig. 80; Tab. 19 Appendix A).  
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Figure 80 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Pilgüjarvi sill, Pechenga Complex. 

 

 The chondrite-normalized REE patterns are characterized by a steady decrease from LREE to 

HREE (LaN/YbN = 1.73; GdN/YbN = 2.93), which are about 90-100 times the CI chondrite (Fig. 81; Tab. 

19 Appendix B). Europium does not show anomalies (Eu/Eu* = 0.97). The incompatible element pattern 

reveals a depletion in Li, Rb, Sr, Pb and Zr relative to the neighbouring elements (Fig. 82; Tab. 19 

Appendix B). The Nb/Ta and Zr/Hf ratios are 22.96 and 31.33, respectively. The Rb/Ba ratio (0.02) 

confirms the depletion in Rb (5.74 ± 056 ppm) and the enrichment in Ba (380 ± 36 ppm). The amphiboles 

exhibit homogeneous values for Sc (115 ± 10 ppm) and V (835 ± 97 ppm) which are about 15-20 times 

the CI chondrite, whereas amphiboles are depleted in Cr (19 ± 5.70 ppm) relative to other amphiboles 

of Pechenga Complex. Ni contents are variable between 188 and 260 ppm (Tab. 19 Appendix B).  
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Figure 81 - Chondrite-normalized REE pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 chondrite 

from McDonough & Sun, 1995). 

 
Figure 82 - Chondrite-normalized incompatible pattern of amphibole from Pilgüjarvi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

  

 Brown amphibole has H2O contents ranging between 0.73 and 0.93 wt.% (Tab. 45 Appendix B). 

Amphibole has high B contents (mean value of 59.08 ± 14.57 ppm) and shows Li mean content of 1.09 
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± 0.72 ppm. The average contents of fluorine and chlorine are 2316 ± 201 ppm and 1392 ± 117 ppm, 

respectively (Tab. 45 Appendix B). The δD ratio of amphibole shows an average value of -104.3 ± 4.5 

‰, whereas the δ18O has high value of 6.4 ± 0.99 ‰ (Tab. 49 Appendix B).  

 

Kammikivi sill (57a-HV-28) 

 Olivine has Fo values of 80 mol and has contents of Cr between 140 and 253 ppm (Tab. 20 

Appendix A and Tab. 20 Appendix B). The Ni contents ranging between 2764 and 2892 ppm (Tab. 20 

Appendix B). 

 Clinopyroxene is augite with Mg-number value of 0.82 mol (Fig. 83; Tab. 21 Appendix A). Mg-

number shows negative correlation with alumina (0.91-1.75 wt.%) and TiO2 contents (0.27-0.54 wt.%). 

Clinopyroxene exhibits a range of Cr2O3 (0.7-0.9 wt.%) without correlation with Mg-number. The CaO 

contents are homogeneous (21.97 ± 0.18 wt.%). The Na2O (0.45 ± 0.05 wt.%) values display negative 

correlation with Mg-number.   

 

Figure 83 – Mg-number vs TiO2, Al2O3, Na2O and K2O contents of clinopyroxene from Kammikivi sill, Pechenga 

Complex. 
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 The chondrite-normalized REE patterns of clinopyroxene are hump-shaped and characterized by 

MREE enrichment (LaN/SmN = 0.39; LaN/YbN = 1.38) relative to LREE and HREE values (GdN/YbN = 

2.72) that are 40 times the CI chondrite (Fig. 84; Tab. 21 Appendix B). The europium does not show 

negative, or positive, anomalies (Eu/Eu* = 1.11). The chondrite-normalized patterns of the incompatible 

elements show negative anomalies in Nb, Pb and Zr (Fig. 85; Tab. 21 Appendix B). The Nb/Ta and 

Zr/Hf ratios are 4.45 and 18.99. The Ni values are in the range 373-435 ppm, whereas the Cr contents 

are variable (2282-5253 ppm). Sc and V average values are 83 ± 11 and 326 ± 39 ppm, respectively 

(Tab. 21 Appendix B). 

 

Figure 84 - Chondrite-normalized REE pattern of clinopyroxene from Kammikivi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 
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Figure 85 - Chondrite-normalized incompatible pattern of clinopyroxene from Kammikivi sill, Pechenga Complex 

(C1 chondrite from McDonough & Sun, 1995). 

 

 Brown amphibole is pargasite with Mg-number of 0.79 mol (Fig. 86; Tab. 22 Appendix A). 

Pargasite has TiO2 contents in the range 4.43-6.48 wt.% and Al2O3 values between 9.02 and 12.34 wt.%. 

Titanium and alumina show slightly negative correlation with Mg-number. The Na2O content is 

homogeneous with average value of 3.13 ± 0.12 wt.% as the K2O value which is 0.78 ± 0.12 wt.%. Na2O 

and K2O display positive correlation with Mg-number (Fig. 86; Tab. 22 Appendix A).  
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Figure 86 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Kammikivi sill, Pechenga 

Complex. 

 

 The chondrite-normalized REE patterns are hump-shaped with LREE (LaN/SmN = 0.85 ± 0.21; 

LaN/YbN = 5.08 ± 0.81) and HREE (GdN/YbN = 3.05-4.78) depletion relative to MREE (at about 230 

times C1 chondrite) (Fig. 87; Tab. 22 Appendix B). The incompatible element pattern reveals a strong 

depletion in Li, Rb, and Pb relative to the neighbouring elements and slightly negative anomalies in Zr 

and Ti (Fig. 88; Tab. 22 Appendix B). Positive anomalies are observed for Ba, Nb-Ta, Ce, Nd and Sm. 

The Nb/Ta and Zr/Hf ratios are 23.29 and 27.15, respectively. The europium does not show negative or 

positive anomalies (Eu/Eu* = 0.93). About LILE, Ba (421 ± 40 ppm) and Rb (3.43 ± 0.50 ppm) are 179 

and 1.6 times the CI chondrite, respectively. Amphiboles display variable contents for the transition 

metals (Ni = 671-815 ppm; Cr = 1287-4033 ppm; V = 490-598 ppm; Sc = 23-86 ppm) (Tab. 22 Appendix 

B).  
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Figure 87 - Chondrite-normalized REE pattern of amphibole from Kammikivi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 
Figure 88 - Chondrite-normalized incompatible pattern of amphibole from Kammikivi sill, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995). 

 

 Average H2O content of amphibole is 1.72 ± 0.09 wt.% and a fluorine high contents are observed 

(5788 ± 1700 ppm) (Tab. 45 Appendix B). The average content of chlorine is 858 ± 328 ppm. Amphibole 

has high B contents (mean value of 51.39 ± 18.83 ppm) and shows Li mean content of 0.27 ± 0.09 ppm. 
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The δD and δ18O ratios of amphibole show average values of -117.4 ± 46.3 ‰ and 4.3 ± 0.43 ‰ (Tab. 

49 Appendix B). 

 Spinel has a slightly compositional variation, showing strongly variable alumina contents (Al2O3 

= 3.96-12.52 wt.%). The others major elements contents are quite homogeneous: spinel is Ti- and Mn-

rich (TiO2 = 9.61-12 wt.%; MnO = 2.8-4.18 wt.%) and has chromium contents in the range 16.67-21.14 

wt.%. MgO values of spinel differ from 1.42 to 2.44 and the iron mean value is 53.8 wt.%. 

 

Nyasyukka dike complex (samples N-2 and N-3) 

 Trace trace element compositions of amphibole of sample N-3 are from Fiorentini et al. (2008).  

 Olivine has very low and variable Fo contents in the 2 samples between 61 and 72 mol (Tab. 23 

and 24 Appendix A) and its contents of Cr ranging between 40 and 92 ppm in sample (Tab. 23  Appendix 

B). Ni values ranging between 1651 and 1824 ppm. 

 Clinopyroxene has Mg-number values ranging between 0.77 and 0.80 mol. Mg-number shows 

positive correlation with Cr2O3 (0.06-0.7 wt.%) (Tab. 25 Appendix A). Clinopyroxene exhibits alumina 

(1.83-3.27 wt.%) and TiO2 contents (0.58-1.62 wt.%) without correlation with Mg-number (Tab 25 

Appendix A). The clinopyroxene grains were not analysed for trace elements due to the small size of the 

relict grains almost substitute by secondary phases. 

 Brown amphibole is pargasite in composition with Mg-number of 0.70 mol (Fig. 89; Tab. 26 and 

27 Appendix A). No significant intra-grain zoning was observed. The TiO2 (4.78-4.91 wt.%) and Al2O3 

(10.09-10.64 wt.%) contents are homogeneous and only alumina displays positive correlation with Mg-

number (Fig. 89; Tab. 26 and 27 Appendix A). The Na2O and K2O mean contents are 2.94 ± 0.13 wt.% 

and 0.76 ± 0.03 wt.%, respectively, and the sodium shows a positive correlation with Mg-number (Fig. 

89; Tab. 26 and 27 Appendix A).  
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Figure 89 - Mg-number vs TiO2, Al2O3, Na2O and K2O contents of amphibole from Nyasyukka dike complex, 

Pechenga Complex. 

 

 The trace elements data of amphibole of the sample N-3 are those from Fiorentini et al. (2008). 

The chondrite-normalized REE patterns are hump-shaped and show decrease from MREE to HREE 

(LaN/YbN = 0.64-1.78; GdN/YbN = 2.54-3.69), which are about 160 times the CI chondrite (Fig. 90; Tab. 

24 and 25 Appendix B). The LREE are depleted (LaN/SmN = 0.88-1.22) with no europium anomaly 

(Eu/Eu* = 0.98). The chondrite-normalized incompatible element patterns reveal depletion in Li, Rb, B 

and Pb relative to the neighbouring elements (Fig. 91; Tab. 24 and 25 Appendix B). Nb/Ta and Zr/Hf 

ratios are 20.20 and 28.30, respectively. Rb and Ba have homogeneous values of 3.70 ± 26 ppm and 

301-330 ppm, respectively. The Ni contents are variable between 412 and 507 ppm as the Cr that shows 

a wide range of 947-2130 ppm. On the contrary, the V and Sc contents are homogeneous in two restricted 

range of 535-562 ppm and 56-66 ppm, respectively (Tab. 24 and 25 Appendix B). 
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Figure 90 - Chondrite-normalized REE pattern of amphibole from Nyasyukka dike complex, Pechenga Complex (C1 

chondrite from McDonough & Sun, 1995); data from Fiorentini et al. (2008). 

  

 

Figure 91 - Chondrite-normalized incompatible pattern of amphibole from Nyasyukka dike complex, Pechenga 

Complex (C1 chondrite from McDonough & Sun, 1995). Data from Fiorentini et al. (2008).  
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 Analysed H2O in brown amphiboles ranges between 1.02 and 1.35 wt. % (Tab. 45 Appendix B). 

The same analysis technique is used for Li and B which contents are 3.89-6.02 ppm and 0.35-0.80 ppm, 

respectively (Tab. 45 Appendix B). Furthermore, the chlorine and fluorine contents are variables in the 

ranges 1098-1566 ppm and 873-1646 ppm, respectively (Tab. 45 Appendix B). The amphiboles from 

Nyasyukka complex show values for δD ratio between -108.7 ‰ and -99.5 ‰, whereas the δ18O ratio is 

in the range 3.0-5.0 ‰ (Tab. 49 Appendix B). 

 

3.3 Major, trace elements and isotope compositions of Phanerozoic 

samples 

 

 In the following section are reported the compositions of olivine, clinopyroxene and amphibole 

of Phanerozoic samples that were selected for SIMS analysis on amphibole. 

 

Antarctica (Ross Orogen): Husky Ridge (TT329) 

 Major and trace elements composition of sample TT329 are from Tiepolo and Tribuzio (2008).  

 Clinopyroxene associated to brown amphibole is augite with a Mg-number of 0.79 mol (Tab. 28 

Appendix A). The Al2O3 contents are variable and range from 0.69 to 5.96 wt.%, the TiO2 contents are 

nearly 0.30 wt.%. The Na2O contents are variable (0.27-0.93) wt.% (Tab. 28 Appendix A). The 

chondrite-normalized REE patterns (not shown) are bell-shaped with the maximum at the MREE at 

about 4 times the C1 chondrite values (Tab. 26 Appendix B). The LaN/SmN ratio ranges between 0.4 and 

0.5 and no Eu anomaly is observed. The incompatible element patterns reveal depletion in Ba, Nb, Pb 

and Ti relative to the nearby elements. Enrichments relative to the neighbouring elements in Th and U 

are observed. Cr contents are in the range 1130-2000 ppm (Tab. 26 Appendix B). 

 Brown amphibole is edenite and has Mg-number of 0.71 mol (Tab. 29 Appendix A). The 

amphibole has homogeneous TiO2 (mean value 1.51 wt.%) and Al2O3 (about 10.77 wt.%) contents. The 

Na2O and K2O contents are homogeneous with mean values of 1.53 wt.% and 0.38 wt.%, respectively 

(Tab. 29 Appendix A). The chondrite-normalized REE patterns vary from flat to slightly convex 

downward (LaN/SmN = 0.577; LaN/YbN = 1.04) with MREE at 20 times CI chondrite values (Fig. 92; 

Tab. 26 Appendix B). No Eu anomalies are observed (Eu/Eu* = 0.88). 



 

 

119 

119 

 
Figure 92- Chondrite-normalized REE pattern of amphibole from Husky Ridge, Ross Orogen (C1 chondrite from 

McDonough & Sun, 1995). 

 

 Chondrite-normalized pattern of trace elements display distinctive negative Th, Nb, Ta, Sr, Pb 

and Zr anomalies and positive U and La anomalies (Fig. 93; Tab. 26 Appendix B). About the LILE, Ba 

has homogeneous contents of 14.45 ± 1.25 ppm. The Cs mean value is 0.03 ppm. Brown amphibole 

shows high concentrations in Cr (mean value 582 ppm), Sc (63.05 ppm) and V (483 ppm). The Ni mean 

content is 412 ± 14.14 ppm (Tab. 26 Appendix B). 

 

 
Figure 93 - Chondrite-normalized incompatible pattern of amphibole from Husky Ridge, Ross Orogen (C1 chondrite 

from McDonough & Sun, 1995). 
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 The volatile contents of the amphibole (Tab. 46 Appendix B), as well as the hydrogen and oxygen 

isotopes analysis (Tab. 50 Appendix B) were carried out in this study. In-situ ion probe analyses reveal 

H2O contents ranging between 0.95 and 1.06 wt.% whereas Li and B mean contents of 6.49 ± 0.42 ppm 

and 4.24 ± 0.74 ppm, respectively (Tab. 46 Appendix B). Amphibole from Husky Ridge Qtz-diorite 

shows fluorine mean content of 959 ± 36 ppm and chlorine values ranging between 929 and 1020 ppm 

(Tab. 46 Appendix B). The δD ratio of amphibole shows an average value of -61.5 ± 7.3 ‰ and δ18O 

ratio is in the range 6.1-8.4 ‰ (Tab. 50 Appendix B). 

 

Iran (Zagros orogen): Sanandaj Sirjan Zone (AL89) 

 Major and trace elements data are from Esna-Ashari et al. (2016). 

 Olivine has very low and variable Fo contents between 71 and 84 mol (Tab. 30 Appendix A) and 

its contents of Cr ranging between 84 and 262 ppm (Tab. 27 Appendix B). Ni values ranging between 

1155 and 1457 ppm (Tab. 27 Appendix B). 

 Clinopyroxene has Mg-number mean value of 0.88 mol. Mg-number shows positive correlation 

with Cr2O3 (0.3-1.1 wt.%) (Tab. 31 Appendix A). Clinopyroxene exhibits alumina (0.5-2.6 wt.%) and 

TiO2 contents (0.07-0.25 wt.%) without correlation with Mg-number. The CaO contents are 

homogeneous (21.68 ± 1.3 wt.%). The Na2O (0.17 ± 0.05 wt.%) values display negative correlation with 

Mg-number (Tab. 31 Appendix A). The chondrite-normalized REE pattern of clinopyroxene vary from 

flat to slightly convex downward and depleted in LREE (LaN/SmN = 0.49; LaN/YbN = 0.45) and MREE 

that are 3 times the CI chondrite (Tab. 27 Appendix B). The HREE values (GdN/YbN = 1.22) are 4 times 

the CI values. The europium shows slightly negative anomaly (Eu/Eu* = 0.72). The chondrite-

normalized pattern of the incompatible elements shows negative anomalies in Nb, Pb and Zr, whereas 

positive anomalies are observed for Th, La-Ce and Nd-Sm (Tab. 27 Appendix B). The Ni values are in 

the range 137-151 ppm, whereas the Cr contents are variable (4534-6712 ppm). Sc and V average values 

are 74 ± 10 and 733 ± 119 ppm, respectively (Tab. 27 Appendix B). 

 Brown amphibole is pargasite with Mg-number of 0.83 mol (Tab. 32 Appendix A). No 

significant intra-grain zoning was observed. The TiO2 (2.75 ± 0.21 wt.%) and Al2O3 (11.1 ± 0.14 wt.%) 

contents are homogeneous. The Na2O and K2O mean contents are 2.17 ± 0.38 wt.% and 0.61 ± 0.02 

wt.%, respectively (Tab. 32 Appendix A). The chondrite-normalized REE pattern are hump-shaped in 

the LREE region (LaN/SmN = 1.18) and the europium show slightly negative anomalies (Eu/Eu* = 0.72) 

(Fig. 94; Tab. 27 Appendix B). About MREE and HREE the pattern is almost flat (LaN/YbN = 2.69; 

GdN/YbN = 1.35), which are about 26 times the CI chondrite (Fig. 94; Tab. 27 Appendix B). 
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Figure 94 - Chondrite-normalized REE pattern of amphibole from Sanandaj Sirjan Zone, Zagros Orogen, Iran (C1 

chondrite from McDonough & Sun, 1995). 

 

 The chondrite-normalized incompatible element pattern reveals negative anomalies in Rb, Pb 

and Zr (Fig. 95; Tab. 27 Appendix B). Nb/Ta and Zr/Hf ratios are 20 and 23.5, respectively. Rb has 

homogeneous mean values of 2.6 ± 0.6 ppm and whereas Ba is variable with mean value of 42 ± 22.6 

ppm (Tab. 27 Appendix B). The Ni contents are homogeneous (365 ± 16 ppm) whereas the Cr has high 

content (2950 ± 363 ppm). On the contrary, the V and Sc contents are homogeneous in two restricted 

range of 362-469 ppm and 64.5-70 ppm, respectively (Tab. 27 Appendix B). 
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Figure 95 - Chondrite-normalized incompatible pattern of amphibole from Sanandaj Sirjan Zone, Zagros Orogen, 

Iran (C1 chondrite from McDonough & Sun, 1995). 

 Ion probe analyses of brown amphiboles give H2O contents of 0.64-0.71 wt.% (Tab. 46 Appendix 

B). The same analysis technique is used for Li and B which contents are 4.82-5.80 ppm and 0.93-1.94 

ppm, respectively (Tab. 46 Appendix B). Furthermore, the chlorine and fluorine contents are variables 

in the ranges 429-579 ppm and 645-742 ppm, respectively (Tab. 46 Appendix B). About isotopic in-situ 

analysis, amphibole shows values for δD ratio between -94 and -110 ‰, whereas the δ18O ratio is in the 

range 5.7-6.9 ‰ (Tab. 50 Appendix B). 

 

Japan Arc: Taku (TK1B) 

 Olivine has very low Fo contents of 0.70 mol (Tab. 33 Appendix A) and its contents of Cr ranges 

between 5.03 and 8.19 ppm (Tab. 28 Appendix B). Ni values are between 326 and 426 ppm (Tab. 28 

Appendix B). 

 Clinopyroxene has augitic composition and Mg-number values ranging between 0.76 and 0.86 

mol (Tab. 34 Appendix A). Mg-number does not show correlation with alumina (2.04 ± 0.73 wt.%), 

TiO2 (0.27 ± 0.14 wt.%) and Cr2O3 (0.31 ± 0.19 wt.%) contents (Tab. 34 Appendix A). The Na2O 

contents are homogeneous (0.23 ± 0.07 wt.%) and show negative correlation with Mg-number. 

Clinopyroxene has Ni values in the range 1737-1868 ppm, whereas the Cr contents are variable (2777-

10909 ppm) (Tab. 28 Appendix B). Sc and V average values are 335-520 and 979-2313 ppm, 

respectively (Tab. 28 Appendix B). 
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 Brown amphibole is pargasite with Mg-number of 0.74 mol (Tab. 35 Appendix A). No 

significant intra-grain zoning was observed. The TiO2 (1.20-2.09 wt.%) and Al2O3 (11.24-12.66 wt.%) 

contents are homogeneous and only alumina displays positive correlation with Mg-number. The Na2O 

and K2O mean contents are 1.67 ± 0.15 wt.% and 0.69 ± 0.03 wt.%, respectively (Tab. 35 Appendix A). 

The chondrite-normalized REE pattern is hump-shaped and show decrease from MREE to HREE 

(LaN/YbN = 1.10; GdN/YbN = 1.76), which are about 20 times the CI chondrite (Fig. 96; Tab. 29 Appendix 

B). The LREE are depleted (LaN/SmN = 0.49) and the europium shows marginally negative anomaly 

(Eu/Eu* = 0.84). The chondrite-normalized incompatible element pattern reveals depletion in B, Rb, Pb 

and Zr relative to the neighbouring elements (Fig. 97; Tab. 29 Appendix B). Nb/Ta and Zr/Hf ratios are 

19.13 and 24.66, respectively. Rb and Ba have homogeneous values of 3.51 ± 0.33 ppm and 65.10 ± 

4.22 ppm, respectively. The Ni contents are high (136 ± 11.1 ppm) as the Cr that shows a mean 

concentrations of 1129 ± 167 ppm (Tab. 29 Appendix B). The V and Sc contents are homogeneous with 

mean values of 491 ± 54.8 ppm and 73.10 ± 3.41 ppm, respectively (Tab. 29 Appendix B).  

Brown amphibole has H2O contents between 1.04 and 1.22 wt.% (Tab. 46 Appendix B). The same 

analysis technique is used for Li and B which contents are 1.4-1.8 ppm and 1.21-1.54 ppm, respectively 

(Tab. 46 Appendix B). Furthermore, the chlorine and fluorine contents vary in the ranges 652-780 ppm 

and 501-542 ppm, respectively. The amphiboles were also analysed for hydrogen and oxygen isotopes 

and show values for δD ratio between -112 and -124 ‰, whereas the δ18O ratio is in the range 5.4-6.4 

‰ (Tab. 50 Appendix B). 

 

 
Figure 96 - Chondrite-normalized REE pattern of amphiboles from Taku, Zenifudo and Hase no Yatsu, Japan Arc 

(C1 chondrite from McDonough & Sun, 1995). 
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Figure 97 - Chondrite-normalized incompatible pattern of amphibole from Taku, Zenifudo and Hase no Yatsu, Japan 

Arc (C1 chondrite from McDonough & Sun, 1995). 

Japan Arc: Zenifudo (ZN5) 

 Olivine has very low and variable Fo contents of 0.76 mol (Tab. 36 Appendix A) and its contents 

of Cr are extremely variable ranging between 5.83 and 138.23 ppm (Tab. 30 Appendix B). Ni values 

ranging between 174 and 236 ppm (Tab. 30 Appendix B). 

 Clinopyroxene is augite (Mg-number 0.82-0.85 mol) (Tab. 37 Appendix A). Mg-number does 

not show correlation with alumina (2.75-4.02 wt.%), TiO2 (0.19 -0.67 wt.%) and Cr2O3 (0.27 ± 0.08 

wt.%) contents (Tab. 37 Appendix A). The Na2O contents are homogeneous with mean value of 0.23 ± 

0.06 wt.% (Tab. 37 Appendix A). The chondrite-normalized REE pattern of clinopyroxene are hump-

shaped, with LREE (LaN/SmN = 0.37-0.70) and HREE (GdN/YbN = 1.1-2.5) depletion relative to the 

MREE (LaN/YbN = 0.94-1.43; at about 8 times C1 chondrite) (Tab. 31 Appendix B). Negative anomaly 

in Eu are not observed (Eu/Eu* = 1.06). The chondrite-normalized pattern of the incompatible elements 

shows negative anomalies in Nb, Pb, Zr and Hf, whereas positive anomalies are observed for Th, U 

relative to the neighbouring elements (Tab 31 Appendix B). The Ni values are in the range 15.74-28.22 

ppm, whereas the Cr contents are extremely variable (693-2204 ppm). Sc and V average values are 84.02 

± 9.8 and 230 ± 42.4 ppm, respectively (Tab. 31 Appendix B). 

 Brown amphibole is pargasite with Mg-number of 0.73 mol (Tab. 38 Appendix A). No 

significant intra-grain zoning was observed. The TiO2 (2.18 ± 0.6 wt.%) and Al2O3 (12.33 ± 0.25 wt.%) 

contents are homogeneous and no correlation with Mg-number were observed. The Na2O and K2O mean 
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contents are 2.31 ± 0.09 wt.% and 0.66 ± 0.04 wt.%, respectively (Tab. 38 Appendix A). The chondrite-

normalized REE patterns are hump-shaped and show decrease from MREE to HREE (LaN/YbN = 0.90; 

GdN/YbN = 1.88), which are about 16 times the CI chondrite (Fig. 96; Tab. 32 Appendix B). The LREE 

are slightly enriched (LaN/SmN = 0.90) and the europium does not show negative or positive anomalies 

(Eu/Eu* = 1). The chondrite-normalized incompatible element pattern reveals negative anomalies in Li, 

Rb, B and Pb relative to the neighbouring elements (Fig. 97; Tab. 32 Appendix B). Nb/Ta and Zr/Hf 

ratios are 21.21 and 26.27, respectively. Rb and Ba have homogeneous values of 2.34 ± 0.33 ppm and 

130 ± 9.14 ppm, respectively (Tab. 32 Appendix B). The Ni contents are homogeneous with mean 

content of 59 ± 5.49 ppm whereas the Cr shows a range of 1279-1994 ppm. The contents of V and Sc 

are homogeneous in two restricted range of 379 ± 61.5 ppm and 64.1 ± 6 ppm, respectively (Tab. 32 

Appendix B). Brown amphiboles are analysed with ion probe for H2O contents that are almost 

homogeneous in the range 0.8 and 0.98 wt.% (Tab. 46 Appendix B). The same analysis technique is 

used for Li and B which contents are 0.8-1.6 ppm and 0.39-0.92 ppm, respectively (Tab. 46 Appendix 

B). Furthermore, the chlorine and fluorine contents are homogeneous in the ranges 531-672 ppm and 

344-406 ppm, respectively (Tab. 46 Appendix B). The isotopic analysis for hydrogen and oxygen have 

revealed exceptionally variable values for δD ratio between -29 and -84 ‰, whereas the δ18O ratio is in 

the range 5.5-6.7 ‰ (Tab. 50 Appendix B). 

 

Japan Arc: Hase no Yatsu (HSY3B) 

 Data from Langone et al. (2009). 

 Olivine has very low and variable Fo contents between 0.60 and 0.71 mol (Tab. 39 Appendix A) 

and its contents of Cr ranging between 3.46 and 12.61 ppm (Tab. 33 Appendix B). Ni values ranging 

between 163 and 246 ppm (Tab. 33 Appendix B). 

 Clinopyroxene associated to brown amphibole is augitic in composition with a Mg-number of 

0.83 mol (Tab. 40 Appendix A). The Al2O3 and Na2O contents are variable (1.19-2.91 wt.% and 0.11-

0.40, respectively), whereas the TiO2 mean content is nearly 0.35 wt.% (Tab. 40 Appendix A). The 

chondrite-normalized REE pattern is characterized by a depletion in LREE and HREE (LaN/SmN = 0.43; 

GdN/YbN = 2.80) relative to MREE (LaN/YbN = 1.54), which is at about 11 times CI chondrite and no Eu 

anomalies were observed (Eu/Eu* = 0.96) (Tab. 34 Appendix B). The incompatible element pattern 

reveals enrichment in Th, U, Nd and Sm relative to the neighbouring elements and negative anomalies 

were observed for Nb, Pb and Zr (Tab. 34 Appendix B). Cr contents are in the range 599-2204 ppm 

whereas Ni values are almost homogeneous with average content of 21.13 ± 4.16 ppm (Tab. 34 

Appendix B). 
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 Brown amphibole is pargasite with Mg-number of 0.70 mol (Tab. 41 Appendix A). About major 

elements composition no significant intra-grain zoning was observed. The TiO2 (1.24 ± 0.16 wt.%) and 

Al2O3 (13.42 ± 0.34 wt.%) contents are homogeneous and are not observed correlation with Mg-number 

(Tab. 41 Appendix A). The Na2O and K2O mean contents are 1.95 ± 0.10 wt.% and 1.29 ± 0.11 wt.%, 

respectively. The chondrite-normalized REE pattern is hump-shaped and show decrease from MREE to 

HREE (LaN/YbN = 3.02; GdN/YbN = 2.42), which are about 15 times the CI chondrite (Fig. 96; Tab. 35 

Appendix B). The LREE are depleted (LaN/SmN = 0.82) and the Eu does not show negative or positive 

anomalies (Eu/Eu* = 0.94). The chondrite-normalized incompatible element pattern reveals depletion 

in Li, Rb, Pb and Zr relative to the neighbouring elements (Fig. 97; Tab. 35 Appendix B). Positive 

anomalies are observed for Ba, Nb-Ta, Nd and Ti. Nb/Ta and Zr/Hf ratios are 19.0 and 26.6, respectively. 

About LILE, Rb and Ba have homogeneous values of 6.90 ± 0.46 ppm and 145 ± 13 ppm, respectively. 

The Ni contents are homogeneous with average concentration of 60.58 ± 3.12 ppm whereas the Cr shows 

a wide range of 243-740 ppm (Tab. 35 Appendix B). Furthermore, the V and Sc contents are 

heterogeneous in two ranges of 265-627 ppm and 59-118 ppm, respectively (Tab. 35 Appendix B). 

Brown amphiboles are analysed with ion probe for H2O contents that ranging between 0.8 and 0.86 wt. 

% (Tab. 46 Appendix B). The same analysis technique is used for Li and B which contents are 1.7-2.4 

ppm and 3.81-4.13 ppm, respectively (Tab. 46 Appendix B). Furthermore, the fluorine and chlorine 

contents are quite variables in the ranges 749-867 ppm and 321-443 ppm, respectively (Tab. 46 

Appendix B). The amphiboles of sample HSY3B show variable values for δD ratio between -51 and 

+31 ‰ and the highest δ18O ratio of the studied samples with values in the range 8.5-10.9 ‰ (Tab. 50 

Appendix B). 

 

Tibet: Himalayan Orogen (14JT50) 

 Clinopyroxene associated to brown amphibole is augite with a Mg-number of 0.82 mol (Tab. 42 

Appendix A). The Al2O3 contents are homogeneous in a range from 2.33 to 3.85 wt.% whereas the TiO2 

contents are quite variable (0.26-0.67 wt.%). The Na2O contents are homogeneous with an average value 

of 0.41 ± 0.11 wt.% (Tab. 42 Appendix A). The chondrite-normalized REE patterns are bell-shaped with 

the maximum at the MREE at about 11 times the C1 chondrite values (Tab. 36 Appendix B). The LREE 

and HREE (LaN/SmN = 0.42; GdN/YbN = 1.48) are depleted relative to MREE (LaN/YbN = 0.73) and no 

Eu anomalies were observed (Eu/Eu* = 0.96). The incompatible element pattern reveals depletion in Ba, 

Nb, Pb, Zr and Ti relative to the neighbouring elements (Tab. 36 Appendix B). Positive anomalies are 

observed in Th, U and La. The Cr and Ni contents are heterogeneous with average values of 507 ± 95.26 

ppm and 139 ± 20.45 ppm, respectively (Tab. 36 Appendix B). 
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 Brown amphibole is hornblende and has Mg-numbers of 0.76 mol (Tab. 43 Appendix A). The 

amphibole has homogeneous TiO2 (mean value 1.52 ± 0.20 wt.%) and Al2O3 (about 12.88 ± 0.66 wt.%) 

contents. The Na2O and K2O contents are homogeneous with mean values of 2.20 ± 0.14 wt.% and 0.31 

± 0.09 wt.%, respectively (Tab. 43 Appendix A). The chondrite-normalized REE pattern is hump-shaped 

with depleted LREE and HREE (LaN/SmN = 0.36; GdN/YbN = 1.73) relative to MREE (LaN/YbN = 0.78) 

at 20 times CI chondrite values (Fig. 98; Tab. 37 Appendix B). No Eu anomalies are observed (Eu/Eu* 

= 1.04).  

 

 
Figure 98 - Chondrite-normalized REE pattern of amphibole from Milin, Himalayan Orogen, China (C1 chondrite 

from McDonough & Sun, 1995). 

 

 Chondrite-normalized pattern of trace elements displays negative Rb, Th, Pb and Zr anomalies 

(Fig. 99; Tab. 37 Appendix B). About the LILE, Ba and Rb have homogeneous contents of 59.88 ± 3.49 

ppm and 1.85 ± 0.28 ppm, respectively. Brown amphibole shows relatively high concentrations in Cr 

(mean value 507 ± 95.2 ppm), Sc (65.77 ± 4.15 ppm) and V (509 ± 45.28 ppm). The Ni mean content is 

138 ± 20.44 ppm (Tab. 37 Appendix B).   
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Figure 99 - Chondrite-normalized incompatible pattern of amphibole from Milin, Himalayan Orogen, China (C1 

chondrite from McDonough & Sun, 1995). 

 

 In-situ ion probe analyses reveal homogeneous H2O contents ranging between 0.94 and 0.99 

wt.% (Tab. 46 Appendix B). Furthermore, in-situ analysis on amphibole have shown Li and B mean 

contents of 4.20 ± 1.43 ppm and 1.30 ± 0.60 ppm, respectively (Tab. 46 Appendix B). Amphibole also 

shows fluorine mean content of 1033 ± 47 ppm and chlorine values ranging between 460 and 610 ppm 

(Tab. 46 Appendix B). The δD ratio of amphibole shows an average value of -74.7 ± 8.5 ‰ and δ18O 

ratio is variable in the range 4.2-7.9 ‰ (Tab. 50 Appendix B). 

 

Italy: Alps Orogen (MAT15) 

 Data from Tiepolo et al. (2011). 

 Olivine has very low and variable Fo contents of 0.83 ± 0.09 mol (Tab. 44 Appendix A) and its 

contents of Cr ranging between 8.53 and 19.20 ppm (Tab. 38 Appendix B). Ni values ranging between 

832 and 1581 ppm (Tab. 38 Appendix B). 

 Clinopyroxene shows homogeneous Mg-number value (0.86 mol) whereas the TiO2 (0.28-0.58 

wt.%) and Al2O3 (2.42-3.46 wt.%) are quite variables (Tab. 45 Appendix A). The Cr2O3 contents (0.28 

wt.%) are positively correlated with Mg-number, whereas the Na2O content (0.26 wt.%) does not show 

correlation with Mg-number (Tab. 45 Appendix A). The chondrite-normalized REE pattern of 

clinopyroxene is characterized by a depletion in LREE (LaN/SmN = 0.35; LaN/YbN = 0.57) relative to 
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HREE values (GdN/YbN = 1.71) at about 5 times C1 chondrite (Tab. 38 Appendix B). The Eu/Eu* ratio 

has value of 1.04. The chondrite-normalized pattern of incompatibles exhibit negative anomalies in Th, 

U, Pb and Hf relative to the neighbouring elements (Tab. 38 Appendix B). The Cr values are in the range 

1670-2522 ppm. The Sc and V contents are 180 ppm and 231 ppm, respectively (Tab. 38 Appendix B). 

 Brown amphibole is pargasite with Mg-number of 0.77 mol (Tab. 46 Appendix A). No 

significant major elements intra-grain zoning was observed. The TiO2 (1.57 ± 0.10 wt.%) and Al2O3 

(12.75 ± 0.17 wt.%) contents are homogeneous and only alumina displays positive correlation with Mg-

number. The Na2O and K2O mean contents are 2.15 ± 0.08 wt.% and 0.32 ± 0.01 wt.%, respectively 

(Tab. 46 Appendix A). The chondrite-normalized REE patterns are hump-shaped and show almost flat 

pattern from MREE to HREE (LaN/YbN = 0.84; GdN/YbN = 1.13), which are about 20 times the CI 

chondrite (Fig. 100; Tab. 38 Appendix B). The LREE are depleted compared to the MREE (LaN/SmN = 

0.60) and the europium does not show negative or positive anomalies (Eu/Eu* = 1.14).  

 

 
Figure 100 - Chondrite-normalized REE pattern of amphibole from Mt. Mattoni, Adamello batholith (C1 chondrite 

from McDonough & Sun, 1995). 

 

 The chondrite-normalized incompatible element patterns reveal depletion in Li, Rb, B, Pb and 

Zr relative to the neighbouring elements (Fig. 101; Tab. 38 Appendix B). Nb/Ta and Zr/Hf ratios are 

14.29 and 20.15, respectively. Rb and Ba have homogeneous values of 1.10 ± 0.18 ppm and 49.90 ± 

6.58 ppm, respectively (Tab. 38 Appendix B). The Ni contents are homogeneous 243 ± 26.77 ppm as 

the Cr that shows a wide range of 2067-2515 ppm. The V contents are homogeneous (484-498 ppm) 

whereas the Sc has variable values in the range 99-132 ppm (Tab. 38 Appendix B). 
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Figure 101 - Chondrite-normalized incompatible pattern of amphibole from Mt. Mattoni, Adamello batholith (C1 

chondrite from McDonough & Sun, 1995). 

 

 The H2O contents measured with ion probe technique reveals for brown amphiboles a range 

between 0.79 and 0.82 wt. % (Tab. 46 Appendix B). The Li and B contents measured with ion probe are 

1.02 ± 0.10 ppm and 1.41 ± 0.99 ppm, respectively (Tab. 46 Appendix B). Furthermore, the chlorine 

and fluorine contents are variables in the ranges 397-499 ppm and 492-708 ppm, respectively (Tab. 46 

Appendix B). The isotopic analysis for hydrogen and oxygen reveal values for δD ratio between -66 and 

-80 ‰, whereas the δ18O ratio is in the range 4.2-6.4 ‰ (Tab. 50 Appendix B). 

 

Italy: Alps Orogen (VS9) 

 Data from Tiepolo et al. (2002). 

 Olivine has very low and variable Fo contents of 0.82 mol (Tab. 47 Appendix A). The Cr and Ni 

values are homogeneous with average concentrations of 3.35 ± 0.30 ppm and 358.97 ± 0.95 ppm, 

respectively (Tab. 39 Appendix B). 

 Clinopyroxene associated to brown amphibole is augitic in composition with a Mg-number of 

0.82 mol (Tab. 48 Appendix A). The Al2O3 contents are homogeneous in a range from 2.33 to 3.85 wt.% 

whereas the TiO2 contents are quite variable (0.26-0.67 wt.%). The Na2O contents are homogeneous with 

an average value of 0.41 ± 0.11 wt.% (Tab. 48 Appendix A). The chondrite-normalized REE patterns 

are well bell-shaped with the maximum at the MREE at about 11 times the C1 chondrite values (Tab. 
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39 Appendix B). The LREE and HREE (LaN/SmN = 0.42; GdN/YbN = 1.48) are depleted relative to MREE 

(LaN/YbN = 0.73) and no Eu anomalies were observed (Eu/Eu* = 0.96). The incompatible element pattern 

reveals depletion in Ba, Nb, Pb, Zr and Ti relative to the neighbouring elements (Tab. 39 Appendix B). 

The Cr and Ni contents are heterogeneous with average values of 507 ± 95.26 ppm and 139 ± 20.45 

ppm, respectively (Tab. 39 Appendix B).  

 Brown amphibole is pargasite in composition with Mg-number ranging from 0.67 to 0.73 mol 

(Tab. 49 Appendix A). No significant intra-grain zoning was observed. The TiO2 contents are 

homogeneous in the range 1.31-1.97 wt.% whereas Al2O3 values are variable (10.46-14.05 wt.%). The 

Na2O and K2O mean contents are 1.98 ± 0.33 wt.% and 0.48 ± 0.07 wt.%, respectively (Tab. 49 

Appendix A). The chondrite-normalized REE pattern varies from flat to slightly convex downward from 

MREE to HREE (LaN/YbN = 0.37; GdN/YbN = 1.30), which are about 20 times the CI chondrite (Fig. 

102; Tab. 39 Appendix B). The LREE are depleted (LaN/SmN = 0.27) and the europium shows marginally 

negative anomaly (Eu/Eu* = 0.86).  

 

 
Figure 102 - Chondrite-normalized REE pattern of amphibole from Val Masino, Bregaglia pluton (C1 chondrite from 

McDonough & Sun, 1995). 

 

 The chondrite-normalized incompatible element pattern reveals depletion in Li, Rb, B, Pb and 

Zr relative to the neighbouring elements (Fig. 103; Tab. 39 Appendix B). Nb/Ta and Zr/Hf ratios are 

17.90 and 21.30, respectively. Rb and Ba have homogeneous values of 2.58 ± 0.08 ppm and 41.09 ± 

5.78 ppm, respectively (Tab. 39 Appendix B). The Ni contents are also consistent with mean value of 

124 ± 4.44 ppm whereas the Cr have variable concentrations in a wide range of 258-526 ppm (Tab. 39 

Average value 



 

 

 

132 

132 

Appendix B). The same contents variability is observable for V (540-853 ppm) and Sc (74-145 ppm) 

(Tab. 39 Appendix B). 

 

Figure 103 - Chondrite-normalized incompatible pattern of amphibole Val Masino, Bregaglia pluton (C1 chondrite 

from McDonough & Sun, 1995). 

 

 Brown amphiboles of Bregaglia were not analysed for H2O, F and Cl contents. Nevertheless, 

amphiboles were analysed with ion probe for Li and B contents (Tab. 46 Appendix B). Li and B have 

variable concentrations (1.37-4.24 ppm and 0.33-3.51 ppm, respectively). Only oxygen isotopic analyses 

were carried out on amphibole from Bregaglia with the δ18O ratio in the range 4.0-6.2 ‰ (Tab. 50 

Appendix B). 

 

Sunda Arc: Batu Hijau (SRD02305) 

 Brown amphibole is hornblende with Mg-number of 0.72 mol (Tab. 50 Appendix A). No 

significant intra-grain zoning was observed. The TiO2 (1.28 ± 0.14 wt.%) and Al2O3 (6.75 ± 0.78 wt.%) 

contents are homogeneous (Tab. 50 Appendix A). The Na2O and K2O mean contents are1.38 ± 0.22 

wt.% and 0.18 ± 0.05 wt.%, respectively (Tab. 50 Appendix A). The chondrite-normalized REE pattern 

is hump-shaped and show marginally decrease from MREE to HREE (LaN/YbN = 0.47; GdN/YbN = 1.53), 

which are about 53 times the CI chondrite (Fig. 104; Tab. 40 Appendix B). The LREE are strongly 

depleted (LaN/SmN = 0.26) and Eu shows markedly negative anomaly (Eu/Eu* = 0.64).  
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Figure 104 - Chondrite-normalized REE pattern of amphibole from Batu Hijau, Sunda Arc, Indonesia (C1 chondrite 

from McDonough & Sun, 1995). 

 

 The chondrite-normalized incompatible element patterns reveal depletion in Li, Rb, B, Ta, Pb, 

Zr and Ti relative to the neighbouring elements (Fig. 105; Tab. 40 Appendix B). Positive anomalies are 

observed for Ba, Nb, Nd, Sm and Gd. Nb/Ta and Zr/Hf ratios are 39.30 and 22.40, respectively. Rb and 

Ba have homogeneous values of 0.33 ± 0.05 ppm and 36.89 ± 4.01 ppm, respectively (Tab. 40 Appendix 

B). The Ni contents are consistent with an average value of 61.22 ± 9.55 ppm as the Cr concentrations 

(28.33 ± 5.80 ppm) (Tab. 40 Appendix B). On the contrary, the amphibole is enriched in V (305 ± 31.76 

ppm) and Sc (114 ± 13.47 ppm) (Tab. 40 appendix B). 
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Figure 105 - Chondrite-normalized incompatible pattern of amphibole from Batu Hijau, Sunda Arc, Indonesia (C1 

chondrite from McDonough & Sun, 1995). 

 

 H2O contents in amphibole varies between 1.16 and 1.30 wt. % (Tab. 46 Appendix B). The same 

analysis technique is used for Li and B which contents are 0.90-1.60 ppm and 0.77-1.06 ppm, 

respectively (Tab. 46 Appendix B). Furthermore, the chlorine and fluorine contents are variables in the 

ranges 1301-1613 ppm and 1130-1509 ppm, respectively (Tab. 46 Appendix B). Amphiboles from Batu 

Hijau show δD ratio between -100 and -110 ‰, whereas the δ18O ratio is in the range 3.1-4.0 ‰ (Tab. 

50 Appendix B). 

 

Alkaline lavas from South west USA: Hoover Dam (MGT) 

 Brown amphibole is kaersutite with Mg-number ranging between 0.71 and 0.75 mol (Tab. 51 

Appendix A). No significant intra-grain zoning was observed. The TiO2 (5.70 ± 0.13 wt.%) and Al2O3 

(14.37 ± 0.15 wt.%) contents are homogeneous and only alumina displays positive correlation with Mg-

number. The Na2O and K2O mean contents are 2.42 ± 0.10 wt.% and 1.93 ± 0.03 wt.%, respectively 

(Tab. 51 Appendix A). The chondrite-normalized REE patterns are hump-shaped and show decrease 

from MREE to HREE (LaN/YbN = 3.53; GdN/YbN = 3.26), which are about 25 times the CI chondrite 

(Fig. 106; Tab. 41 Appendix B). The LREE are depleted (LaN/SmN = 0.76) with  no europium anomalies 

(Eu/Eu* = 1.06). The chondrite-normalized incompatible element patterns reveal depletion in Li, Rb, B, 

Th, U, La-Ce, Pb and Zr relative to the neighbouring elements (Fig. 107; Tab. 41 Appendix B). Nb/Ta 

and Zr/Hf ratios are 17.65 and 27.05, respectively (Tab. 41 Appendix B). Rb and Ba have homogeneous 
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values of 6.89 ± 0.64 ppm and 278.32 ± 8.13 ppm, respectively (Tab. 41 Appendix B). The Ni contents 

are variable between 108 and 366 ppm as the Cr that shows a wide range of 302-745 ppm. On the 

contrary, the V and Sc contents are homogeneous in two restricted range of 492 ± 36.21 ppm and 45.72 

± 2.34 ppm, respectively (Tab. 41 Appendix B).  

 

 

Figure 106 - Chondrite-normalized REE pattern of amphibole from Hoover Dam, Arizona (C1 chondrite from 

McDonough & Sun, 1995). 

 

 

Figure 107 - Chondrite-normalized incompatible pattern of amphibole Hoover Dam, Arizona (C1 chondrite from 

McDonough & Sun, 1995). 
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 The amphibole megacrysts from Hoover Dam were collected in a second time in respect the first 

sample selection and were not analysed by ion probe. The data of water, Cl and F contents as well as the 

hydrogen and oxygen isotopic values reported in the Discussion Chapter 4 are from literature (Boettcher 

and O’Neill, 1980).  

 

Alkaline lavas from South west USA: Dish Hill (DH) 

 Brown amphibole is kaersutite in composition with Mg-number in the range 0.56-0.65 mol (Tab. 

52 Appendix A). No significant intra-grain major elements compositional zoning was observed. The 

TiO2 (4.65-5.24 wt.%) and Al2O3 (14.11-14.77 wt.%) contents are homogeneous and were not observed 

correlation with Mg-number. The Na2O and K2O mean contents are 2.66 ± 0.10 wt.% and 1.63 ± 0.06 

wt.%, respectively (Tab. 52 Appendix A). The chondrite-normalized REE patterns are bell-shaped and 

show decrease from MREE to HREE (LaN/YbN = 3.51; GdN/YbN = 3.13), which are about 30 times the 

CI chondrite (Fig. 108; Tab. 42 Appendix B). The LREE are slightly depleted (LaN/SmN = 0.81) and the 

europium does not show negative or positive anomalies (Eu/Eu* = 1.09).  

 

 

Figure 108 - Chondrite-normalized REE pattern of amphibole from Dish Hill, California (C1 chondrite from 

McDonough & Sun, 1995). 

 

The chondrite-normalized incompatible element patterns reveals depletion in Li, Rb, B, Th, U, La-Ce 

and Pb relative to the neighbouring elements (Fig. 109; Tab. 42 Appendix B). Positive anomalies are 
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observed for Ba, Nb-Ta, Sr Nd and Ti. Nb/Ta and Zr/Hf ratios are 19.24 and 26.08, respectively. Rb and 

Ba have homogeneous values of 10.64 ± 0.49 ppm and 257 ± 21.37 ppm, respectively (Tab. 42 Appendix 

B). The Ni contents are variable between 5.65 and 11.77 ppm as the Cr that has a wide concentration 

between 3.41 ppm and 19.74 ppm (Tab. 42 Appendix B). Vanadium displays the same variability 

contents in the range 277-450 ppm whereas Sc contents are homogeneous (35.81 ± 4.18 ppm) (Tab. 42 

Appendix B).   

 

 

Figure 109 - Chondrite-normalized incompatible pattern of amphibole from Dish Hill, California (C1 chondrite from 

McDonough & Sun, 1995). 

 

 As described above for amphiboles from Hoover Dam, the samples from Dish Hill were not 

analysed for volatile contents as well as isotopic data. The values reported in the Chapter 4 are those 

from literature (Boettcher and O’Neill, 1980). 
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Chapter 4 
 

Discussion 

4.1 Amphibole stability in igneous environment 

  Amphibole crystallisation conditions are dependent mainly from water contents and chemical 

composition of the equilibrium melts. Experimental data on hydrous basaltic systems suggests that the 

maximum thermal stability of amphibole is about 1.100°C, thus supporting the formation of 

clinopyroxene before amphibole, which grows at the expense of the earlier-formed minerals 

(clinopyroxene and/or olivine; Foden and Green, 1992; Melekhova et al., 2013; Smith, 2014). Basalts, 

and in general subalkaline melts, typically have on the liquid line of descent spinel  olivine  

clinopyroxene  plagioclase (Sisson and Grove 1993). Amphibole is stabilised only at high water 

contents (>3 wt%; Sisson and Grove 1993; Smith et al., 2009). The evidence in all the studied rocks is 

that amphibole follows clinopyroxene in the crystallisation order and precedes plagioclase in the few 

samples in which this mineral is present. High H2O contents and rapid crystallisation in closed system 

conditions would improve amphibole, clinopyroxene and spinel crystallisation (Johnson et al., 1991; 

Stone et al., 2003; Müntener & Ulmer 2006). High water contents in basaltic melts have the effect of 

destabilising silicate minerals, and plagioclase in particular (Gaetani et al. 1993; Sisson and Grove 1993). 

Plagioclase is thus suppressed at high water contents (>3-4 wt.% H2O; Zimmer et al., 2010) and high 

pressure as a fuction of bulk-rock composition (0.8-1.5 GPa; Borghini et al., 2009; Falloon et al., 2008). 

The stability curve for amphibole is however subparallel to decompression pathways (Fig. 110, from 

Davidson et al., 2007). Crossing this boundary down-pressure will result in resorption, rather than 

precipitation. For this reason, a H2O-saturated magma from the mantle will precipitate amphibole as 

soon as it encounters the amphibole stability curve (1.5–2 GPa; Allen and Boettcher, 1983) but can also 

resorb amphibole at shallow depths.  
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Figure 110  - Amphibole crystallisation field, showing topology of phase boundaries for amphibole and for gabbro 

(cpx + pl ± olivine) and Curves 1–2 represent P-T paths of magma ascent. Dashed extensions represent possible 

heating during decompression crystallization (from Davidson et al., 2007). 

 

At depth, it is likely that differentiation of arc magmas is open-system and the geochemical 

signature of amphibole might reflect melting of basalts with residual amphibole, rather than simply 

amphibole crystallisation from an evolving melt (Davidson et al., 2007). Several studies on Phanerozoic 

amphiboles have demonstrated that amphibole fractionation is consistent with the high water contents 

that characterize primitive magmas at subduction zones (Fischer and Marty, 2005; Wallace, 2005). Thus, 

amphibole fractionation is cryptic, with the observed (typically gabbroic) silicate phase assemblage 

representing crystallisation in the shallow subvolcanic system, or remobilization of shallow cumulates 

(Dungan and Davidson, 2004), and having limited leverage on compositions. A significant role for 

amphibole is borne out by a survey of cumulate xenoliths found in arc lavas that are commonly 

amphibole bearing (Davidson et al., 2007). Arculus and Wills (1980) reported amphibole in cumulate 

nodules from along the arc in the Lesser Antilles, despite its rarity in erupted lavas. Amphibole-

magnetite–bearing cumulates are also important components of Alaskan-type ultramafic complexes. If 
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the Phanerozoic arc magmas can easily reach the range of H2O contents favorable for amphibole 

formation, this has not to be taken for granted for the Archean mantle-derived melts. Amphibole also 

occurs as megacrysts in alkali basalts. This phase, together with clinopyroxene, orthopyroxene, 

feldspars, garnet and other minerals, has been interpreted as high-pressure phenocrysts that was, at some 

stage, in equilibrium with basaltic melts (e.g., Irving 1974). However, many authors (e.g., Wilshire and 

Trask, 1971; Boettcher and O’Neil, 1980) proposed that the amphibole megacrysts at Dish Hill, 

California, resulted from fragmentation of peridotite that contains the amphibole-bearing veins. The 

amphibole megacrysts would not necessarily be in chemical equilibrium with the host basalt (Boettcher 

and O’Neil, 1980).  Many studies about amphibole megacrysts from composite mantle xenoliths of 

alkaline basalts from the Carpathian-Pannonian region have proven that the megacrysts represent 

cumulate phases formed during an early upwelling of basaltic magma, and which were brought to the 

surface by subsequent magma pulse (e.g. Demeny et al., 2005).       

 The Precambrian rocks considered in this thesis share many petrographic and textural similarities 

with hornblendites and amphibole-bearing pyroxenites from Phanerozoic orogenic settings. However 

chemical compositions of Precambrian amphiboles are more comparable with those characterising 

amphibole megacrysts from alkaline lavas (Fig. 111). A detailed petrologic study on the origin of 

amphibole in both Proterozoic and Archean rocks is thus mandatory. These similarities open to several 

possibilities about amphibole origin in the Archean and Proterozoic rocks. 
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Figure 111 - Mg-number versus TiO2 wt.% in the studied amphiboles. 

 

4.2 Amphibole geothermobarometry 

The Al-in-hornblende barometer of Hammerstrom and Zen (1986) is one of the most influential 

petrologic tools yet calibrated. Their barometer was immediately used to place granitic magmatism 

within a crustal framework (e.g., Ague and Brimhall 1988; Pickett and Saleeby 1993), and led to several 

new calibrations (e.g., Hollister et al. 1987; Johnson and Rutherford 1989a,b; Schmidt 1992; Anderson 

and Smith 1995). More recently Ridolfi and Renzulli (2011) have calibrated a hornblende-only 

barometer, and other models for volcanic systems, and Molina et al. (2015) have a new amphibole 

thermometer and saturation model. Ridolfi and Renzulli (2011) recognize that experimental error can 

limit model precision, and they show that amphibole compositions alone can be used to predict magmatic 

intensive variables. Because of the temperature (T°C)-sensitivity of Al-in-hornblende and the potential 

Alkali megacrysts 
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for re-equilibration, Blundy and Holland (1990) warned that without reliable thermal information, “the 

Al geobarometer is unlikely to be of much practical value”. Anderson and Smith (1995) responded with 

a T°C-sensitive barometer. But as they make clear, useful P estimates derive only from highly restricted 

circumstances, e.g., near-solidus, multiply saturated granitic systems (Hollister et al. 1987), where T < 

800 °C, and amphibole Fe/(Fe+Mg) < 0.65 (Anderson and Smith 1995), and where multiple saturated 

phases and contact metamorphic rocks allow for independent estimates of P (e.g., Hollister et al. 1987; 

Anderson 1996; Anderson et al. 2008; Barnes et al. 2012). Amphibole-based barometry is in fact fraught 

with very real and under-appreciated challenges. Aluminum contents of amphiboles are clearly more 

sensitive to T°C and Al2O3 contents of coexisting liquids than to P. Notwithstanding, amphibole-based 

barometry is of common use. The T°C-sensitivity is especially evident when AlT is compared to Si in 

amphibole, for which it mostly substitutes: except for a few high-AlT outliers, amphiboles crystallized 

in the P range of 0–2 kbar encompass the entire span of AlT-Si at 6–10 kbar. In contrast, when separated 

into T°C intervals, mean Si and AlT contents systematically decrease and increase, respectively, from 

650 to 1175°C. The challenges facing amphibole barometry can be further illustrated from a 

thermodynamic point of view. If a P-signal can be extracted, such should be driven by molar volume 

contrasts between competing amphibole components and coexisting liquids. For amphiboles, molar 

volume differences upon crystallisation are much smaller and less well differentiated. From such 

comparisons we might anticipate that pyroxene-based barometers should be nearly seven times more 

sensitive to P than their amphibole counterparts, although even the pyroxene-based barometers have 

standard errors of estimate (or SEE; or model root mean square errors) that are not small: ±0.7 kbar 

when multiple estimates are averaged, ±1.2–2.0 kbar for individual estimates (Putirka 2008). These 

results do not impugn careful barometric results on near-solidus granitic systems, where P estimates are 

tested against independent igneous and metamorphic equilibria (e.g., Hollister et al. 1987; Anderson and 

Smith 1995; Anderson 1996; Anderson et al. 2008). However, it remains quite unclear if P can be 

predicted from amphibole in systems exhibiting high thermodynamic variance – igneous systems 

saturated with just one or a few phases. Ridolfi and Renzulli (2011) argued that a stronger P signal could 

further be recovered by limiting calibrations to experiments that report small compositional errors and 

that yield amphibole compositions most similar to those found in nature. However, the Ridolfi and 

Renzulli (2011) data restrictions mean that <12% of current experimental data are used. This may reject 

possibly useful data, where compositional errors are not reported; there is value in performing 

calibrations on data that span a wider range of compositions compared to nature to minimize or eliminate 

model extrapolation. Recent studies have highlighted how calcic, igneous amphiboles are of special 

interest as their compositional diversity and common occurrence provide ample potential to investigate 

magmatic processes (Putirka 2016). But not all amphibole-based barometers lead to geologically useful 
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information: recent and new tests reaffirm prior studies (e.g., Erdman et al. 2014), indicating that 

amphibole barometers are generally unable to distinguish between experiments conducted at 1 atm and 

at higher pressures, except under highly restrictive conditions. The problem may relate to an intrinsic 

sensitivity of amphiboles to temperature and liquid composition, rather than pressure. The exceptional 

conditions are those identified by Anderson and Smith (1995): current amphibole barometers are more 

likely to be useful when T < 800 °C and Fe#Amp = FeAmp/(FeAmp+MgAmp) < 0.65. Such analysis reveals 

that amphiboles are vastly less complex than may be inferred from published catalogues of end-member 

components. And nearly all remaining compositional variation can be described with just four 

components: alumino-tschermakite, a Na-K-gedrite-like component, a ferri-ferrotschermakite-like 

component, and an as yet unrecognized component with 3 to 4 Al atoms per formula unit (apfu), 1 apfu 

each of Na and Ca, and <6 Si apfu, here termed aluminous kaersutite. None of these components, 

however, are significantly P-sensitive, leaving the Al-in-amphibole approach, with all its challenges, the 

best existing hope for an amphibole barometer. A new empirical barometer based on DAl successfully 

differentiates experimental amphiboles crystallized at 1 to 8 kbar, at least when multiple P estimates, 

from multiple amphibole compositions, are averaged. Without such averaging however, amphibole 

barometry is a less certain proposition, providing ±2 kbar precision on individual estimates for 

calibration data, and ±4 kbar at best for test data; independent checks on P are thus needed. Amphibole 

compositions, however, provide for very effective thermometers, here based on DTi, DNa, and amphibole 

compositions alone, with precisions of ±30 °C (Putirka 2016).  

To compare the pressure of crystallisation of the Precambrian amphibole with the P-T 

crystallisation conditions of the early cumulus phases, clinopyroxene and clinopyroxene-orthopyroxene 

geothermobarometers were applied. Using chemistry-structure coefficients reported in Nimis (1995), 

the P conditions of clinopyroxene formation can be calculated as a function of atomic fractions (Nimis 

and Ulmer, 1998). The cpx-opx geothermobarometer is that expressed in the study of Putirka (2008). 

The two-pyroxenes thermometer provides somewhat greater precision, but precision is further improved 

if the calibration data base is restricted to include only Mg-rich systems, in this case defined as those 

cpx-opx pairs where Mg-numbercpx>0.75. The barometer is based on the Mercier et al. (1984) approach 

and is also calibrated using only high Mg-number compositions, with P precision to ± 2.8 kbar and R2 = 

0.82 (Putirka, 2008). 

 The Al-in-amphibole geobarometer was used to constrain the pressure crystallisation conditions 

of the Precambrian amphiboles target of this study. In literature, the Al-in-amphibole geobarometer was 

developed starting from plutonic quartz-diorites, gabbros and granites. These systems are different from 
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the ultramafic and mafic systems of the rocks studied in this thesis. However, the error related to the 

system composition was considered and the geobarometer was used to compare the P crystallisation 

conditions between amphibole and clinopyroxene. The methods used are those developed by 

Hammarstrom and Zen (1986), Johnson and Rutherford (1989) and Schmidt (1992). The calculated P 

conditions reveal mean value for the Australian amphiboles from Mt. Keith of 5 ± 1 kbar. About the 

other Australian locality, Mount Clifford, the calculated P crystallisation conditions of amphiboles have 

a mean value of 4.26 ± 0.67 kbar. The T°C conditions calculated using the method of Putirka (2016) are 

903 ± 18.69 °C and 993 ± 6.56 °C for Mt. Keith and Mt. Clifford, respectively. The pressure conditions 

obtained are more controversial compared with those calculated with the Al-in-amphibole barometers 

(27.1 ± 0.11 kbar for Mt. Keith and 24.1 ± 0.36 kbar for Mt. Clifford). These high P values are unrealistic 

and could be the results of the alkali-poor compositions of the whole-rock used for the calculation. About 

the Canadian amphiboles, the calculated pressure conditions with Al-in-amph geobarometer for 

amphibole formation are 2.35 ± 0.56 kbar, 6.40 ± 0.83 kbar and 3.83 ± 0.43 for Theo’s Flow, Boston 

Creek and Ghost Range, respectively. The P-T conditions for the amphiboles calculated with the 

geothermobarometer by Putirka (2016) reveal mean T°C of 937 ± 20.61°C and P of 5.7 ± 0.95 kbar for 

Theo’s Flow, T°C of 961.4 ± 11.18 °C and P of 5.0 ± 1.27 kbar for Boston Creek, and T°C of 999.5 ± 

11.60 °C and P of -1.0 ± 0.56 kbar for Ghost Range. Furthermore, P conditions have been calculated for 

the clinopyroxene of Theo’s Flow (5.80 ± 0.58 kbar) and Boston Creek (-1.58 ± 0.62 kbar). The data of 

Boston Creek suggest contrasting P crystallisation conditions for amphibole and clinopyroxene whereas 

at Theo’s Flow the two phases are crystallised relatively deep in the crust. However, this is in 

disagreement with the flow structure of the hosting volcanic suite. For the komatiite rocks of the Ghost 

Range, the geothermobarometers reveal calculated P formation conditions for pyroxenes of 2.35 ± 0.97 

kbar (clinopyroxene barometer) and 2.4 ± 0.5 kbar for orthopyroxene-clinopyroxene geobarometer. As 

a matter of fact, the samples from Ghost Range are the only ones for which the two-pyroxenes 

geothermobarometer can be used. The differences between pressure conditions values determined for 

amphibole and pyroxenes are not so wide for the Ghost Range komatiite and, as in the other localities, 

indicate formation of the relevant minerals in a relatively deep level of the crust. About the Proterozoic 

Pechenga Complex, the calculated P conditions reveal mean values of 5.47 ± 0.76 kbar and 4.88 ± 0.72 

kbar for amphibole from the Pilgüjarvi and Kammikivi sills, respectively. On the contrary, the P-T 

conditions obtained with the method of Putirka (2016) are more indicative of crystallisation of 

amphiboles at the surface (-1.7 ± 0.74 kbar and 1017 ± 11.42 °C for the Pilgüjarvi sill; -2.0 ± 0.66 kbar 

and 1023.1 ± 11.83 °C). However, the calculated P conditions of clinopyroxene formation in the 

Pilgüjarvi sill are different, with P values in the range 3.91-0.03 kbar. This variability can be ascribed to 

the different nature of the suites. On the contrary, the Kammikivi sill shows P crystallisation conditions 
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for clinopyroxene of 3.58 ± 0.56 kbar. These values suggest that crystallisation conditions occur not near 

the surface but deep in the crust. 

 In Table 4.2.1 the calculated pressures and temperatures are summarised. 
      

Region Localities 

Sample ID 

Phase P (kbar) 

Al-in-amph 

geobarometer; 

Ridolfi and 

Renzulli (2011) 

P (kbar) 

Geobarometer 

(Putirka, 2016) 

T (°C) 

Geothermometer 

(Putirka, 2016) 

Australia – 

Agnew-

Wiluna GB 

Mt. Keith 

MKD1 

Amph 5.07 ± 0.73   

903 ± 18.69 

 Mt. Clifford 

85437 

Amph 4.26 ± 0.67  993 ± 6.56 

Canada – 

Abitibi GB 

Theo’s Flow 

T-2 

Amph 

 

Cpx 

2.35 ± 0.56 

 

5.7 ± 0.95 

 

5.80 ± 0.58 

937 ± 20.61 

 Boston Creek 

B-5 

Amph 

 

Cpx 

6.40 ± 0.83 

 

5.0 ± 1.27 

 

-1.58 ± 0.62 

961.4 ± 11.18 

 Ghost Range 

GR1; GR2 

Amph 

 

Cpx 

Opx-Cpx 

3.83 ± 0.43 

 

-1.0 ± 0.56 

 

2.35 ± 0.97 

2.4 ± 0.5 

999.5 ± 11.60 

Russia – 

Pechenga 

Complex 

Pilgüjarvi sill 

Pilg 8-38; 106-

44; 116-6 

Amph 

 

Cpx 

5.47 ± 0.76 

 

-1.7 ± 0.74 

 

3.91-0.03 

1017 ± 11.42 

 Kammikivi sill 

57HV28 

Amph 

 

Cpx 

4.88 ± 0.72 

 

-2.0 ± 0.66 

 

3.58 ± 0.56 

1023.1 ± 11.83 

 

      

  

GB: greenstone belt; Amph: amphibole; Cpx: clinopyroxene; Opx: orthopyroxene 



 

 

147 

147 

 

 In summary, the geobarometric calculation on Proterozoic rocks reveal large uncertainty on 

pressure estimates in agreement with the conclusion of Putirka (2016). However, all the Al-in amphibole 

geobarometric calculations reveal crystallisation pressures for amphibole >3 kbar, thus amphibole 

crystallisation might have occurred at depths >9.9 km (depth estimates using a geobarometric gradient 

of 3.3 km/1 kbar; Hagemann and Brown, 1996). The crystallisation of amphibole is unlikely to be related 

to the surficial emplacement of the host volcanic rocks. The calculated pressures obtained with the 

application of geobarometer by Putirka (2016) are in agreement with those calculated with Al-in 

amphibole for few localities. Thus, the estimate pressures are plausible. The samples with negative 

pressures suggest very low P crystallization conditions of amphibole. 

 

4.3 Is amphibole a reaction product between melt and clinopyroxene 

precursor? 

 Several studies have revealed that amphibole in primitive arc magmas starts crystallising at the 

expense of clinopyroxene precursors (Davidson et al., 2007; Erdmann et al., 2014; Smith et al., 2014). 

It is well documented that intermediate and more evolved (and hydrous) arc magmas are generated in 

“hot zones” which are partially molten domains in the lower crust where melts of different type and 

origin can be distinguished: (1) mantle melts undergoing fractional crystallisation and evolving towards 

residual H2O-rich compositions and (2) melts from the partial melting of pre-existing crustal rocks 

mixing with the mantle melts (Annen et al., 2006). All “hot zone” melts are H2O-rich, therefore they 

have low density and viscosity and can readily separate from their source and ascend rapidly. In the case 

of adiabatic ascent, the magma attains a super-liquidus state, because of the relative slopes of the adiabat 

and the liquidus. This leads to resorption of any entrained crystals or country rock xenoliths, while 

crystallisation begins only when the ascending magma intersects its H2O-saturated liquidus at shallow 

depths. This crystallisation mechanism takes place at shallow depths on timescales of decades or less 

and is run by decompression and degassing. Degassing and crystallisation at shallow depths lead to large 

increases in viscosity and stalling of the magma to form volcano-feeding magma chambers and shallow 

plutons (Annen et al., 2006). 

In this frame, amphibole crystallisation can be theoretically achieved from residual H2O-rich 

melts reacting with earlier-formed clinopyroxene mushes at different crustal levels. Melt segregation in 

hot zones affords mechanisms by which a largely crystal-free melt is separated from the early-formed 

clinopyroxene and reaction-replacement amphiboles. This does not exclude amphibole formation in low-

pressure conditions. Sobolev et al. (2016) have calculated the primary melt liquidus temperature for 
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Abitibi komatiites that is close to 1,530 °C ± 20 °C, for a pressure of 250 bar. This temperature is about 

60 °C lower than the temperature of anhydrous komatiite liquidus. The authors estimated the potential 

T of the mantle source considering an H2O content of 0.6 ± 0.1 wt% and they obtained a T of 1,730 ± 

50 °C. This value exceeds average estimates of the potential temperature for the Archaean non-arc 

basalts and the maximum estimates for Phanerozoic plumes for at least about 100 °C. This is consistent 

with a plume origin of Abitibi komatiites and a higher overall mantle temperature in the Archaean 

(Sobolev et al., 2016). 

Phenocryst formation is decoupled from this process, and as a result, fractionation of amphibole 

in arc magmas may be cryptic (Smith, 2014). As described in the study by Smith (2014), clinopyroxene 

has reasonably limited influence on residual melt SiO2, i.e., the melts participating in amphibole-forming 

melt–mush reactions are expected to be low SiO2 (basalt or basaltic andesite), with relatively low 

abundances of incompatible trace elements, albeit higher than the melt before clinopyroxene 

crystallisation. Furthermore, melts reacting with clinopyroxene need not be co-genetic: clinopyroxene 

may be formed as a cumulate from earlier magmas and progressively replaced with amphibole by later 

melts ascending through the cumulate pile. The lower thermal stability of amphibole means that these 

cumulates may be periodically re-melted by the addition of high-temperature (>1110 °C) primitive 

melts.  

 Two scenarios may be thus proposed for the crystallisation of Precambrian amphiboles in the 

studied rocks and will be investigated in the forthcoming sections: 

i) close-system - the parental liquid evolved in closed system becoming rich in water by 

fractional crystallisation of anhydrous phases until the stability of amphibole is reached. In 

this case amphibole and clinopyroxene lie on the same liquid line of descent and 

equilibrium between the two phases is expected;  

ii) open-system – H2O-rich residual melts percolated the cumulate pile reacting with 

clinopyroxene and inducing amphibole crystallisation.     

  

4.4 Amphibole-Clinopyroxene equilibrium 

 In order to assess if amphibole and clinopyroxene are on the same liquid line of descent, the 

amphibole-clinopyroxene equilibrium is the first constrain that has to be verified. There are several ways 

to check equilibrium between amphibole and clinopyroxene. Textural relationships between the two 

minerals (see sections 2.1 and 2.1) and distribution of major and trace elements are the most robust 
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proxies to evaluate equilibrium conditions. Among major elements, information on the equilibrium 

conditions can be gathered from the exchange coefficient amph/cpxKdFe/Mg and thus in turn from the ratio 

between the Mg-number [Mg/(Mg+Fetot)] of the two phases (Fig. 112). Data in the literature are scarce 

and limited to the experimental work of Müntener et al. (2001). The authors crystallised amphibole and 

clinopyroxene from a natural arc-magma composition at 1.2 GPa and found that at equilibrium the ratio 

of Mg-numberAMPH/Mg-numberCPX is 0.97. 

 

Figure 112 - Comparison of Mg-number of amphibole and clinopyroxene. The blue line is the equilibrium Mg-

numberAMPH/Mg-numberCPX after Müntener et al. (2001) 

 

 REE are also informative on equilibrium between amphibole and clinopyroxene. Because REE 

are incorporated in amphibole and clinopyroxene in equivalent sites with the same crystal chemical 

mechanism, Amph/CpxD for the REE at equilibrium should be close to unity and never exceeding 3-4 

(Zanetti et al., 1996). These two equilibrium constraints were tested on all the amphibole-clinopyroxene 

couples of the dataset. Note that the equilibrium conditions could not be evaluated for Australians 

samples because of absence of preserved clinopyroxene. 
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Abitibi Greenstone Belt 

 Amphiboles in the iron-picrite from Boston Creek are interstitial to olivine grains and occupys 

the same intercumulus domains of clinopyroxene with no apparent replacement textures, thus with no 

evidence for textural disequilibrium. However, the Mg-numberAMPH/Mg-numberCPX ratio is 0.78 and is 

much lower than the value of 0.97 reported by Müntener et al. (2001) for equilibrium conditions. The 

REE pattern of the Amph/CpxD (Fig. 113) reveals that at Boston Creek amphibole and clinopyroxene are 

not in equilibrium and a marked fractionation of the Amph/CpxDREE pattern with Amph/CpxDLREE at about 50 

and Amph/CpxDHREE at about 20 is observed. This suggests that the equilibrium melt of amphibole was 

significantly enriched in REE (and LREE in particular) relative to that in equilibrium with 

clinopyroxene. 

 

Figure 113 - Amph/CpxDREE pattern for the Precambrian samples. 

 

 In the Theo’s Flow rocks, the textural relationships between amphibole and clinopyroxene are 

not preserved and the ratio of Mg-numberAMPH/Mg-numberCPX is 0.93 that is very close to the equilibrium 

literature value of 0.97. The solid/solid partitioning of REE between amphibole and clinopyroxene 

however reveals values for LREE and HREE of 25 and 10, respectively, that are much higher than the 

equilibrium range. This trend is almost the same amph/cpxD pattern of Boston Creek except for a lesser 
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fractionation for MREE. According to mechanisms of solid/solid partitioning of REE, amphibole and 

clinopyroxene may have been originated by different melts.  

 At Ghost Range amphibole has poikilitic texture and shows sharp contact with pyroxenes. Only 

in few cases amphibole overgrows clinopyroxene. Amphiboles and clinopyroxenes show a Mg-

numberAMPH/Mg-numberCPX ratio of 0.92, not far from the equilibrium value from literature. The 

amphibole/clinopyroxene partitioning of REE displays overall values higher than the equilibrium range 

and enrichment in LREE (up to enrichment factor of 67) relative to HREE (up to an enrichment factor 

of 15). The melt in equilibrium with amphibole was more enriched in LREE and, to a lesser extent, in 

HREE compared to melt in equilibrium with clinopyroxene. 

Pechenga complex 

 In the Paleoproterozoic Pechenga Complex, amphibole of the Pilgüjarvi sill shows poikilitic to 

intercumulus textures with sharp contacts with clinopyroxene. However, in the magnetite-olivine 

peridotite amphibole overgrows clinopyroxene grains suggesting disequilibrium conditions (Fig. 20, 

section 2.1). Amphibole of the Kammikivi sill has poikilitic texture that in some spots shows 

replacement of the intercumulus clinopyroxene. The Mg-numberAMPH/Mg-numberCPX ratio in the 

Pilgüjarvi sill shows a mean value of 0.91 that is not far from the literature value of 0.97 at equilibrium 

conditions. The Mg-numberAMPH/Mg-numberCPX ratio in the Kammikivi sill is 0.96, thus very close to the 

0.97 equilibrium value from the literature. Results from major elements are however not supported by 

trace elements. The solid/solid Amph/CpxD show patterns with a slightly decrease from LREE (3.2) to HREE 

at 2.2 close to the equilibrium range, whereas amphibole and pyroxene of the magnetite-olivine 

peridotites have HREE partition coefficients at 4 with a significant enrichment in LREE (at about 15). 

For the amphibole and clinopyroxene of the Kammikivi sill, the Amph/CpxD REE values show a pattern 

decreasing from LREE (at about 7) to MREE and HREE (at about 4). This pattern is comparable with 

that of magnetite-olivine peridotite of Pilgüjarvi sill and suggests that amphibole and clinopyroxene 

crystallisation conditions are slightly shifted from those predicted at equilibrium.  

Summary  

 According to the above textural and chemical evidences, amphibole and clinopyroxene in most 

of the Precambrian samples considered, and especially the Archean ones, do not fulfil the conditions 

required for equilibrium. To summarize, the Canadian samples are those apparently most far from 

equilibrium whereas those from the Proterozoic Pechenga Complex (Pilgüjarvi and Kammikivi sills) are 

closer to equilibrium conditions. Amphibole crystallisation in most of the studied rocks seems to occur 

from a more differentiated melt, i.e. with lower Mg-number and enriched in REE (and in LREE over 
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HREE in particular). These evidences suggest that amphibole and clinopyroxene did not crystallise “on 

site” from the same melt. Two different scenarios can be envisaged: i) amphibole originated from the 

same parental melt of clinopyroxene (in this case the two minerals would be on the same liquid line of 

descent) but amphibole crystallised from a liquid much more differentiated that back migrated the 

cumulate pile and crystallised interstitial between early cumulus minerals; ii) amphibole crystallised 

from an exotic melt with no relations with the parental liquid of the early crystallised cumulus minerals. 

In the latter case, a new magmatic pulse from the mantle is required. 

4.5 Modelling of melt evolution 

 In order to assess if amphibole and clinopyroxene were derived from melts evolved from the 

same parent liquid the equilibrium melts were calculated and the possibility was evaluated for deriving 

one melt (amph) or the other (cpx) by fractional crystallisation of the cumulus minerals. The 

incompatible trace element composition of the melts in equilibrium with clinopyroxenes and amphiboles 

were calculated by applying Sol/LiqD for P-T-X conditions suitable for the studied rocks. The Cpx/LiqD used 

are those from Adam and Green (2006) for similar clinopyroxene composition whereas for amphibole 

the Amph/LiqD are from Tiepolo et al. (2007).  

Melt calculation 

 The N-MORB-normalized incompatible trace element patterns for the melt in equilibrium with 

clinopyroxene is reported in Fig. 114. The patterns of the tholeiites of Theo’s Flow and Ghost Range are 

characterized by a slight LREE/HREE fractionation (LaN/YbN = 3.79), nearly flat HREE (GdN/YbN = 

1.59) and negative anomalies in Zr and Hf (0.22 and 0.16 times the N-MORB values). Th and U 

concentrations are very high (40 times the N-MORB values). The N-MORB-normalized incompatible 

trace element patterns for the melts in equilibrium with amphibole are shown in Fig. 115 A and B. The 

patterns of the Canadians tholeiites of Theo’s Flow and Ghost Range are characterized by fractionation 

of LREE/HREE (LaN/YbN = 12.02 for Theo’s Flow; LaN/YbN = 14.46-16.64 for Ghost Range), slightly 

hump-shaped HREE (GdN/YbN = 1.48 for Theo’s Flow; GdN/YbN = 1.35-1.85 for Ghost Range). 

Negative anomalies are observed in Ba, Sr and, to a lesser extent, in Ti (0.47 and 0.96 times the N-

MORB value) for calculated amphibole-equilibrium melts from the two localities. Positive anomalies in 

115 B (173 and 1400 times the N-MORB value for Theo’s Flow and Ghost Range, respectively), Th and 

a slightly enrichment in Zr-Hf is observed for Ghost Range amphibole-equilibrium melt. The calculated 

melts for amphibole and clinopyroxene from Theo’s Flow (Fig. 116 A) do not show similarities in their 

respective positive or negative anomalies as well as in the level of incompatible trace element 

concentrations. In particular, the Sr and Ti negative anomalies characterising amphibole-equilibrium 
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melt are not observed in the melt in equilibrium with clinopyroxene. Furthermore, the negative Zr-Hf 

negative anomaly of clinopyroxene-equilibrium melt is not reflected by the pattern of melt in equilibrium 

with amphibole. The comparison of the N-MORB-normalized incompatible trace element patterns for 

the melts in equilibrium with clinopyroxene and amphibole from Ghost Range reveals significant 

differences. In particular the negative anomalies in Sr and Ti that characterise the amphibole-melt are 

not present in the melt in equilibrium with clinopyroxene. In addition, the pattern of clinopyroxene-

equilibrium melt shows a slightly Zr-Hf negative anomaly that is positive in the amphibole-equilibrium 

melt. 

 

Figure 114 - The N-MORB-normalized incompatible trace element patterns for the melt in equilibrium with 

clinopyroxene, from the Precambrian localities. N-MORB and Continental Crust values are from McDonough and 

Sun, 1995. Continental and Oceanic Arc Basalt values are from Kelemen et al., 2003.   

 

 The N-MORB-normalized pattern of the melt in equilibrium with clinopyroxene from Boston 

Creek is characterized by enrichments in LREE over HREE (LaN/YbN = 16.74), which are almost flat 

(GdN/YbN = 2.34). The incompatible element patterns reveal positive anomaly in Sr and high Th and U 

contents as well as negative anomalies in Zr-Hf (0.22 and 0.19 times the N-MORB concentrations). The 

N-MORB normalized trace elements patterns of the melt in equilibrium with amphibole from Boston 

Creek display enrichment in LREE over HREE (LaN/YbN = 45.01), which are almost flat (GdN/YbN = 
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1.99). The incompatible element pattern reveals slightly negative anomalies in Sr, Pb, Zr, Hf and Ti 

compared to the neighbour elements. Positive anomalies are observed for B and Th. The patterns of the 

melts in equilibrium with clinopyroxene and amphibole from Boston Creek are characterized by 

similarities in Zr-Hf negative anomalies as well as enrichment in B. However, the clinopyroxene-

equilibrium melt has REE at 0.5 times the N-MORB values whereas the melt in equilibrium with 

amphibole is at 3 times the N-MORB. The difference is highlighted by the incompatible element patterns 

that are 3-4 (clinopyroxene) and 70 (amphibole) times the N-MORB values. 

 

Figure 115 A, B - The N-MORB-normalized incompatible trace element patterns for the melts in equilibrium with 

(A) Canadian and (B) Russian amphiboles. 



 

 

155 

155 

  

The patterns of the melts in equilibrium with clinopyroxene from the Pilgüjarvi and Kammikivi sills are 

characterized by low HREE (0.20 times the N-MORB value; GdN/YbN = 4.05) marked LREE enrichment 

over HREE (LaN/YbN = 21.64), negative anomaly in Sr, slightly positive anomalies in Zr-Hf, and high 

Th and U concentrations (up to 84 N-MORB concentration; Fig. 114). The N-MORB normalized trace 

elements patterns of the melts in equilibrium with amphibole from Pechenga Complex are characterized 

by enrichment in LREE (LaN/YbN = 37.40-83.07 for the Pilgüjarvi sill; LaN/YbN = 57.75 for Kammikivi 

sill) that decrease to HREE (GdN/YbN = 2.59-3.47 for the Pilgüjarvi sill; GdN/YbN = 3.49 for Kammikivi 

sill) (Fig. 115 B). Despite the different locations of samples, the incompatible element patterns of the 

equilibrium melts with amphibole are characterized by comparable concentrations and have negative 

anomalies in U, Sr, Zr, Hf and Ti. Positive anomalies are observed for B (except one melt of Pilgüjarvi 

sill), Nb and Ta. Two patterns of the Pilgüjarvi sill reveal positive anomaly in Pb. Only one amphibole-

equilibrium melt (calculated starting from the amphibole of olivine-magnetite) has positive Th and U 

and negative Nb-Ta anomalies compared to the other melts. The normalized N-MORB patterns of melts 

in equilibrium with clinopyroxene and amphibole reveal comparable concentrations for all the 

considered incompatible trace elements (Fig. 116 B) 
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Figure 116 A, B - The N-MORB-normalized incompatible trace element patterns for the melts in equilibrium with 

(A) Canadian clinopyroxene-amphibole and (B) Russian clinopyroxene-amphibole. 
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Modelling  

 The first approach was to test if the melt in equilibrium with amphibole can be a melt circulating 

into the cumulate pile after the crystallisation of clinopyroxene and with only amphibole in equilibrium. 

A process of fractional crystallisation driven exclusively by amphibole was simulated by considering 

different residual melt fractions (F = 0.9 – 0.1) and starting from the composition of the melt in 

equilibrium with clinopyroxene (Fig. 117). The fractional crystallisation model is obtained by applying 

the formula:  

CL = C0 x F ^ (Amph/LD-1) 

 where CL is the composition of the liquid in equilibrium with amphibole at different residual melt 

fraction, C0 is the starting melt composition (namely the melt in equilibrium with clinopyroxene) and 

Amph/LD is the partition coefficient of amphibole (amph vol% x Amph/LDREE). In Figure 117 the REE 

chondritic-normalized patterns of calculated and amphibole-equilibrium melt compositions are reported.  

 For the Canadian Theo’s Flow, the model reveals similarities between analysed concentrations 

of REE in amphibole and calculated compositions for low fractions of residual melts (F = 0.2). However, 

the LREE in amphibole-equilibrium melt have lower concentrations (40 vs 70 times Cl chondritic value) 

compared to those in calculated melt. The modelled REE chondritic-normalized pattern of Boston Creek 

displays concentrations of MREE and HREE comparable with analysed amphibole for high 

crystallisation degree (F = 0.1). However, the LREE values of natural amphibole are, also in this case, 

lower (140 vs 400 times Cl) compared to the low fractions of residual melts of the model. For the Ghost 

Range, the calculated amphibole compositions at F = 0.1 have comparable concentrations with those of 

analysed amphiboles. In general, the concentrations of HREE observed in the crystallisation models 

show an enrichment in these elements for high fractionation degrees, whereas natural amphibole shows 

slight depletion in HREE for corresponding fractionation grade. However, these results are in agreement 

with textural observation of no evidences of clinopyroxene substitution by amphibole. At Pechenga 

Complex, the model yields comparable compositions for REE between calculated and analysed 

amphiboles. In two samples from Pilgüjarvi and Kammikivi sills, the modelled amphibole composition 

is in agreement with crystallisation at differentiation degrees F = 0.7 - 0.8 . For the other two samples 

from Pilgüjarvi sill, the amphiboles have compositions comparable with those of calculated amphiboles 

in early stages after clinopyroxene formation at F = 0.9 - 1. However, in the latter samples, LREE 

concentrations in natural amphiboles are depleted if compared to those predicted in the models. 
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Figure 117 – Model of fractional crystallisation driven by amphibole considering different residual melt fraction (F = 

0.9 – 0.1) and starting from the composition of the melt in equilibrium with clinopyroxene. 

 

 In summary the model shows that the melt in equilibrium with amphibole cannot be considered 

derived from that in equilibrium with clinopyroxene by the sole crystallisation of amphibole. The 
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mismatch in LREE between the analysed and the calculated compositions suggests a further component 

that amplifies the LREE enrichment in the melt in equilibrium with amphibole. Two possibilities can 

account for this LREE enrichment:  i) the fractional crystallisation of mineral phases much more LREE-

depleted than amphibole (such as olivine and orthopyroxene) or ii) a contribution of an exotic component 

rich in LREE. In order to address this point, a second model of fractional crystallisation was carried out 

by considering primitive bulk compositions from the same suites of the studied rocks and evolving the 

melt by crystallisation of all the early cumulus minerals (olivine, orthopyroxene and clinopyroxene). As 

starting melt composition, for each locality the bulk-rock trace element composition of the least 

differentiated rock (representative of a melt composition) found in the literature was considered. 

 The composition of the liquids in equilibrium with amphibole and clinopyroxene were then 

compared with the compositions calculated from the fractional crystallisation curves. The bulk-rock 

composition considered in the calculation for the different suites of studied samples are the following: 

the bulk-rock composition of Theo’s Flow is from Lentz et al. (2011) and Stone et al. (1995 and 1996); 

for the Boston Creek the whole-rock data are from Stone et al. (1995). Regarding Ghost Range, literature 

for whole-rock trace elements composition data are not available. Data used in the model are from Fan 

and Kerrich (1997) and Xie Qianli and Kerrich (1994) and derived from a tholeiitic sequence 

geologically coeval and coherent with that of the Ghost Range. Data of the bulk-rock composition for 

the Pechenga Complex suites used for the model are from Fiorentini et al. (2008 and 2011). The used 

Sol/LiqD for olivine are from Adam and Green (2006) and Lee et al. (2007), for clinopyroxene ad 

orthopyroxene from Adam and Green (2006) and for amphibole from Tiepolo et al. (2007).  

 Results reveal that amphibole-equilibrium melt compositions in the Precambrian samples are 

different from the modelled melt compositions (Fig. 118). The matching between computed and 

observed compositions for Theo’s Flow and Ghost Range suggests that amphibole crystallised during 

the late stages of melt differentiation (around 10-15 % of residual melt). This is in agreement with the 

textural evidences and is not far from the observed volume percentages of amphiboles in the rocks. 

However, at Ghost Range the amphibole-equilibrium melts still possess LREE concentrations 

considerably higher (460 times the Cl value) compared to those of the modelled melt fractionations (230 

times the Cl concentrations). The model for the iron-picrite of Boston Creek suggests that amphibole 

crystallisation occurred between 10 % and 20 % of residual melt, which is not in agreement with the 

modal percentages of amphibole in the rock. Also, in this case, LREE are more enriched in the 

amphibole-equilibrium melt than in the calculated one, thus suggesting an exotic input for LREE in the 

system. The mismatch between the model and the volume % of amphibole observed in the sample 

implies a fraction of melt that escaped the system. About the Pechenga Complex, the differentiation 
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model for REE shows that amphibole crystallisation should have occurred between 20 and 50 % of 

residual melt, based on the different suites. In particular, the crystallisation model shows that in the 

Kammikivi sill and in one sample from the Pilgüjarvi sill amphibole starts to crystallise at 20 - 30 % of 

residual melt. In the others two samples from Pilgüjarvi sill the model suggests that amphibole 

crystallisation starts at F = 0.5-0.6 of residual fraction of melt. 
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Figure 118 – Model of fractional crystallisation considering the bulk compositions of the studied rocks and evolving 

the melt by crystallisation of all the early cumulus minerals (ol + opx + cpx). The numbers from 0.1 to 1 are the 

fraction of residual melt (F) 

 

The crystallisation model shows that measured amphibole REE composition can be obtained in all 

localities, with the exception of Canada, by differentiation of the primary melt by fractional 

crystallisation of the early cumulus minerals (Ol + Opx + Cpx), thus implying that a completely external 
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melt is not required. For the Canadian localities, the model fails to reproduce the strong LREE 

enrichment, hence an exotic LREE component has to be supposed after the crystallisation of 

clinopyroxene, thus during the late stages of crystallisation. The models of fractional crystallisation for 

the samples from Pechenga Complex support the crystallisation of amphibole in closed-system 

conditions although the melt is slightly more evolved than that in equilibrium with clinopyroxene. In 

conclusion, amphibole crystallized from a melt likely evolved by fractional crystallisation from the 

primary melt but the disequilibrium between amphibole and clinopyroxene suggests that this melt was 

highly mobile in the cumulate pile, and likely amphibole crystallisation occurred during melt migration 

within the cumulate pile. 

 

4.6 The role of external components 

            As outlined in the previous section, several evidences suggest that parental melts of the studied 

samples underwent chemical differentiation before amphibole crystallisation. According to the 

fractional crystallisation model based on REE, amphibole has the same geochemical affinity of the bulk 

rock and likely crystallized for high degrees of melt differentiations.  

 Several examples suggesting the middle and lower crust as the dominant source of evolved 

magmas are described in the literature; e.g. the Deep Crustal Hot Zones (DCHZ; Annen et al., 2006) or 

Melting-Assimilation-Storage-Hybridization (MASH) zones (Hildreth and Moorbath, 1988). Various 

thermodynamic models have also demonstrated that the intrusion of mantle-derived primary magmas 

into the lower crust can produce large volumes of partial melt by heating and melting of the crust (e.g. 

Annen et al., 2006). Furthermore, H2O-rich intermediate to silicic residual melts are also generated by 

incomplete crystallization of newly arrived basalt in the hot zone, with some contribution from remelting 

of earlier intrusions (i.e., Petford and Gallagher, 2001; Annen et al., 2006; Solano et al., 2014). Jackson 

et al. (2003) and Solano et al. (2012, 2014) argued that the DCHZ is in a mush state for most of its 

lifetime, except when a new inflow of basaltic magma generates a transient magma chamber. Partial 

melt in the mush migrates upwards along grain boundaries, and accumulates near the top of the DCHZ, 

forming one or more high porosity layers. The melt fraction accumulates until it reaches the “solid-to-

liquid” transition, at which step the mush disaggregates yielding a mobile magma comprising melt and 

suspended crystals. Such melt-rich layer is unlikely to be stable, and the magma will ascend to higher 

crustal levels via dikes, faults or fractures to erupt directly, or form upper crustal magma chambers and 

plutons (i.e., Grosfils, 2007; Karlstrom et al., 2010). Jackson et al. (2003, 2005) also argued that the melt 

in the high porosity layer is chemically evolved, because it has equilibrated with solid at low 
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temperatures near the top of the DCHZ. Thus, the coupled processes of melt migration and chemical 

reaction through a temperature gradient give rise to evolved magma in DCHZ (Solano et al., 2012).  

4.6.1 Constrains from transition metals 

 The differentiation processes are also highlighted by the distribution of the transition metals. In 

the Theo’s Flow, Cr and Sc contents in clinopyroxene are 2.09 and 10.94 ppm, respectively, while in 

amphibole are 0.45 ppm for Cr and 6.78 ppm for Sc (Fig. 119 A). On the contrary, Ni, Co and Zn display 

higher contents for amphibole compared to those of clinopyroxene. These elements have a high 

compatibility for the high temperature mafic phases of subalkaline melts, e.g., olivine and 

clinopyroxene. Being amphibole a lower-temperature phase it is expected to be depleted in Ni, Zn and 

Co relative to clinopyroxene. Thus, amphibole and clinopyroxene do not follow the same liquid line of 

descendent. Clinopyroxene in the Boston Creek sample shows higher Cr and Sc contents compared to 

those of the associated amphibole and this is consistent with the late fractional crystallisation of 

amphibole relative to clinopyroxene, as expected. In the Ghost Range peridotites the Cr content of 

amphibole (3.34-3.61 ppm) is slightly higher that of clinopyroxene (2.09-3.12 ppm). A similar 

incongruity is also observed for other highly compatible elements such as Ni, V and Co, thus suggesting 

that the two minerals do not lie on the same liquid line of descent. Transition metals in particular suggest 

that the melt at the origin of amphibole assimilated mafic phases rich in transition metals such as olivine 

(rich in Ni and Co) and pyroxene (rich in Cr and V). For this reason, amphibole in the Ghost Range 

peridotites may be interpreted as a reaction product between olivine and clinopyroxene with an 

amphibole-forming liquid of exotic origin. 
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Figure 119 A, B – Transition metals contents are compared for clinopyroxene and amphibole in (A) Canadian and 

(B) Russian samples. 
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 In the Pilgüjarvi and Kammikivi sill, the transition metal distribution shows slightly higher Cr 

contents in clinopyroxene compared to amphibole (Fig. 119 B). The latter, however, has higher contents 

in V, Co, Ni and Zn. This supports the hypothesis that amphibole crystallisation is related to a melt/rock 

reaction process between a primary assemblage (likely olivine + magnetite/ilmenite + clinopyroxene) 

and a more evolved melt in equilibrium with amphibole that promoted the partial resorption of the 

primocrystic phases and thus the mobilisation of Ni (from olivine) and Cr (from pyroxene). 

4.6.2 Constrains from fluid-mobile elements 

 The origin of amphibole from the hydration of the cumulate pile (in particular of clinopyroxene) 

in response to the circulation of seawater-derived fluids cannot be also a priori excluded. Proxies for the 

magmatic vs. metamorphic origin of amphibole are fluid-mobile elements such as Cl, F, Ba, B and Sr 

but also some fluid-immobile elements such as Nb. Chlorine is expected to be high in seawater-derived 

fluids (about 20,000 ppm in seawater; e.g., Von Damm, 1990) and low in silicate melts (20 to 50 ppm 

in primitive magmas; Michael and Schilling, 1989). In contrast, F is relatively high in evolved silicate 

melts (commonly  ̴300 ppm; Michael and Schilling, 1989) and low in seawater-derived fluids (2 ppm in 

seawater; Faure, 1991). Chlorine incorporation into amphibole is dependent on its K, Fe2+, (IV)Al, and 

Mg contents (Oberti et al., 1993; Aranovich and Safonov 2018). However, when all amphibole 

compositions are considered there is no correlation between the abundances of these elements and that 

of Cl, suggesting that Cl in the fluid phases (silicate or aqueous based) was the dominant control on 

amphibole Cl contents. Nb is considered an immobile element, even under amphibolite facies 

metamorphic conditions (e.g., Weaver and Tarney, 1981) and for which amphibole may have a 

compatible behaviour (Tiepolo et al., 2000). The circulation of seawater-derived fluids in the cumulate 

pile is expected to give low Nb amphiboles. On the contrary, evolved hydrous silicate melts crystallise 

amphiboles that are enriched in Nb primarily for the highly incompatible behaviour of Nb in most of the 

high T°C phases. The Nb/La ratio in magmatic amphibole is expected to greatly exceed Nb/La in 

hydrothermal amphibole. Hence, both Nb abundances and Nb/La should be able to distinguish between 

magmatic and hydrothermal amphiboles (Coogan et al., 2001).  

 Primary arc melts (picrite and boninite) in sub-arc mantle xenoliths, and arc-related melt 

inclusions in general, are strongly enriched in Cl in comparison with MORB and possess high Cl/F ratio 

(Benard et al., 2017). Fluxed melting involving fluids with high Cl/F and derived from subducted 

serpentinite or altered crust can account for this sub-arc signature. Amphibole (and/or mica) in the deep 

mantle wedge near the slab is suggested to control the Cl/F signatures of metasomatic agents ascending 

to the sources of arc and back-arc magmas (Benard et al., 2017). The positive correlations between slab 

depth and F abundances in primitive arc melt inclusions possibly result from amphibole (and/or mica) 
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breakdown in the deep metasomatised mantle near the slab (Benard et al., 2017). During exsolution of 

a volatile phase from a magma, Cl preferentially partitions into the fluid over F leading to an increase of 

Cl/F. High Cl contents in melt inclusions from Gorgona komatiites were also attributed to assimilation 

of altered oceanic crustal rocks (Kamenetsky et al., 2003). In modern magmatic settings, chlorine 

assimilation occurs up to depths of 800 m below seafloor (Gillis et al., 2003). Gillis et al. (2003) observed 

that N-MORB glasses from the East Pacific Ridge (EPR) are enriched in Cl relative to expected values 

for the fractionation products of mantle-derived melts; feature that has been interpreted to be related to 

interaction with seawater-derived components. For the authors, assimilation was proposed to be the most 

likely explanation, at least for Cl, due to the large difference between enrichment seen at the fast-

spreading EPR and slow-spreading Mid Atlantic Ridge. Magmatic amphiboles from the upper gabbros 

at Hess Deep display similar chlorine enrichments as EPR glasses, thereby confirming that assimilation 

must be prevalent along the roof and margins of axial magma chambers. 

 The F and Cl contents of the Precambrian and Phanerozoic amphiboles were compared (Fig. 

120) to concentrations in amphiboles from gabbroic and ultra-mafic rocks of MORB and arc setting 

(Coogan et al., 2001; Gillis and Meyer, 2001; Benard et al., 2017). The Canadians tholeiites of Ghost 

Range are enriched in both F and Cl whereas the tholeiite at Theo’s Flow display amphiboles that are 

strongly F-enriched (up to 10321 ppm) and relatively depleted in Cl (2435 ppm). These high 

concentrations in halogens may reflect the strongly evolved nature (90-95 %) of the melt crystallizing 

amphibole which concentrates Cl and F due to their strongly incompatible behaviour with regard to the 

high-temperature mineral phases (Gillis and Mayer, 2001; Benard et al., 2017). Amphiboles in the Fe-

picrite of Boston Creek have Cl and F contents comparable with those of replacive amphiboles described 

by Coogan et al. (2001) for gabbroic rocks in MORB. However, the halogen concentrations are also 

comparable with those of Phanerozoic amphiboles of arc settings with a clear input of subducted 

material. The Australian Archean amphiboles, both from Mt. Clifford and Mt. Keith, have high Cl 

concentrations (up to 4421 ppm) and relatively low F contents (about 340 ppm). Data of Russian 

Proterozoic ferropicrites of Pilgüjarvi and Kammikivi sills confirm their F-enriched nature and the 

relatively low Cl values, whereas the amphiboles from Nyasyukka dike complex show relatively high 

concentrations in Cl (up to 1566 ppm) and F (1646 ppm). The generally higher concentrations in Cl and 

F relative to amphiboles from MORB and arc settings can be related to melt differentiation that has been 

shown to be consistent in the previous section. 
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Figure 120 - Fluorine and chlorine contents of the Precambrian and Phanerozoic amphiboles were compared to 

concentrations in amphiboles from gabbroic and ultra-mafic rocks of MORB and arc setting from literature. 

 

  More accurate information can be obtained from ratios of elements with similar compatibility. 

Nb-La and Cl-F couples have almost the same incompatibility during the crystallisation of ol-opx-cpx-

spl. Ratios between these elements are thus not expected to be significantly fractionated. In Fig. 121 the 

ratio Cl/F versus Nb/La of Precambrian and, for comparison, Phanerozoic amphiboles is reported.  The 

field labelled “amphiboles with complex origin”, that fall between the end-members, may form either 

from the interaction of exsolved magmatic fluids with igneous plagioclase and clinopyroxene or from 

seawater-derived fluids interacting with magmatic amphibole (Coogan et al., 2001).  
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Figure 121 - The ratio Cl/F versus Nb/La of Precambrian and Phanerozoic amphiboles is reported. The amphibole 

compositional fields are those from Coogan et al. (2001) for magmatic and hydrothermal amphiboles in a suite of 

gabbros from the Mid-Atlantic Ridge. 

  

 The Precambrian and Phanerozoic amphiboles do not fall in any of the reported fields. They have 

Nb/La ratios similar to the field of magmatic amphiboles whereas the Cl/F ratios are higher and 

comparable with those of hydrothermal amphiboles. Benard and co-authors (2017) suggest that F is 

compatible in amphibole at temperatures typical of the shallow mantle lithosphere and the slab-mantle 

interface. This result is in good agreement with the experimentally determined 0.7 < amph/melt DF < 1.85 

(Edgar and Pizzolato, 1995; Hauri et al., 2006; Van den Bleeken and Koga, 2015). These experiments 

cover a broad range of P–T conditions (0.5–2.5 GPa and 750–1200 °C) and mineral compositions, 

suggesting that the compatible behaviour of F is preserved over a wide range of conditions (Edgar and 

Pizzolato, 1995; Hauri et al., 2006; Van den Bleeken and Koga, 2015). Amphibole crystallisation is 

expected to deplete the residual melt in F respect to Cl. Benard et al. (2017) reported that amphibole 

crystallisation may deplete residual melt in F by a factor of about 100 relative to Cl.  The shift toward 

high F/Cl ratio, at constant Nb/La ratios, can be likely related to the F depletion induced in the melt by 

fractional crystallisation of amphibole. However, we cannot exclude that the high Cl/F ratios is a primary 

feature of the mantle sources. The boron contents in amphibole are another useful tracer for mineral-
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seawater interaction. Boron is a quintessentially crustal element with high concentrations in rocks of 

continental affinity and in rocks that interacted with the hydrosphere. Oceanic sediments and altered 

oceanic basalts and peridotites show very high B abundances (10–200 ppm), whereas the depleted 

mantle is characterised by very low B contents (<0.1 ppm; Leeman and Sisson, 1996; Marshall et al., 

2017). Enrichment of B may be attributed to interaction with hydrothermally altered material (Perfit et 

al., 1999). Where this contamination occurs is uncertain: it could result from fluid–melt interaction as 

magma is transported to the seafloor, interaction at seafloor during emplacement (Bourdon et al., 2000), 

or assimilation of hydrothermally altered roof rock and/or seawater-derived fluid into a magma chamber 

(Gillis et al., 2003; Fiorentini et al., 2008). In Fig. 122 Sr versus B concentrations are reported for 

Precambrian and Phanerozoic amphiboles. Compositions of amphiboles from oceanic gabbros are also 

reported as well as the data of seawater and vent fluids (Coogan et al., 2001). The Precambrian 

amphiboles are Sr-enriched and, generally, B-depleted. The data from literature for amphibole from 

gabbroic oceanic crust does not show any correlation in composition with Precambrian amphiboles, 

except for amphiboles from Canadian tholeiite of Ghost Range and Australian komatiites. At Ghost 

Range, the amphiboles have B contents comparable with those of replacive- and veins-amphiboles in 

gabbros altered by seawater interaction. Furthermore, the Australian amphiboles have B and Sr contents 

comparable with amphiboles in reaction blebs with vent fluids of modern gabbroic rocks. In summary, 

although amphiboles crystallised from differentiated melt, the B contents are generally low, thus 

suggesting that a contribution from seawater-derived fluid is unlikely. 
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Figure 122 – Sr versus B contents in amphiboles. The fields are those from Coogan et al. (2001). The stripped grey 

field and the grey square are the reported composition for vent fluids and seawater, respectively (Coogan et al., 2001).   

4.6.3 Constraints from δ18O and δD 

 In order to better evaluate the origin of amphibole and the role of hydrothermal fluids, additional 

information can be gathered from the hydrogen isotopic data and water contents (Fig. 123). H2O 

concentrations are comparable between the Precambrian and Phanerozoic amphiboles, with evidences 

of the incomplete occupancy of the O3O2- structural crystalline site of the amphibole. This is another 

evidence against a metamorphic origin. Furthermore, the range of δD values observed in Archean and 

Paleoproterozoic amphiboles is consistent with a magmatic origin for water. In particular, the δD vs. 

H2O diagram highlights the low hydrogen isotope values for both the Archean and Paleoproterozoic 

amphiboles (blue field) that are mostly close to the mantle δD range. This δD signature is thus in contrast 

with an origin of amphibole by hydration of the cumulate minerals by seawater or crustal derived fluids. 

Hydrogen isotopes, which are diagnostic and reliable indicators of external water source inputs, are 

generally pushed towards lighter values upon alteration processes (Kyser et al. 1986; Fiorentini et al., 

2012). Only the amphiboles from the Canadian tholeiite of Ghost Range show anomalous and extremely 

low hydrogen isotope values (-197.6 ± 16 ‰ and -236.3 ± 23.6 ‰). Exceptionally low δD values were 

previously reported for mantle xenoliths (Deloule et al.,1991) and melt inclusions from Koolau volcano 
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in the Hawaiian Islands (Hauri, 2002) and from Mariana arc system (Shaw et al., 2008). In all these 

cases the source of low δD values was ascribed to a significant recycled slab component (Eiler et al., 

1996; Hauri, 1996; Lassiter and Hauri, 1998). Based on studies of submarine glasses (Kyser and O'Neil, 

1984), melt inclusions from Hawaii (Hauri, 2002), as well as experimental hydrogen isotope 

fractionation studies (Pineau et al., 1998), degassing of H2O from silicate melts leads to low δD values 

and to a positive correlation with H2O contents when magma H2O contents are <2 wt.% (Shaw et al., 

2008). In particular, subduction-related dehydration results in a slab with low δD values and a mantle 

wedge with high δD values. The consequence is that a slab with low δD values can be subducted into 

the deeper mantle. If slab dehydration is particularly efficient, as inferred for example from low H2O/Ce 

ratios of plumes containing recycled lithosphere (Dixon et al., 2002), the residual water in the subducting 

slab would become extremely D-depleted (up to δD = -243 ‰ for 92 % water loss from a slab at δD = 

-50 ‰). The model proposed by Shaw et al. (2008) predicts that modern OIBs with recycled slab 

components should have low δD values, while OIBs containing recycled mantle wedge material should 

exhibit high δD values.  

 

Figure 123 – The hydrogen isotopic data and water contents of Precambrian and Phanerozoic amphiboles. The mantle 

field and seawater δD values are from Deloule et al. (1991) and Shaw et al. (2008), respectively. 
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 The range of δD values of the Precambrian amphiboles is between -99.5 ‰ and -129.8 ‰, that 

is slightly low compared to the mantle range. Fiorentini et al. (2008, 2012) proposed that the relatively 

heavy isotopic composition of hydromagmatic amphiboles from the cumulate portions of the komatiitic 

dunites of the Agnew-Wiluna greenstone belt is comparable to that of magmatic amphiboles from 

ferropicritic intrusions in the Pechenga Complex (Hanski and Smolkin, 1989) and komatiitic sills from 

the Munro Lake Sill in the Abitibi greenstone belt (MacRae 1969; Stone et al. 2003). The authors argued 

that the amphiboles formed upon crystallization of a hydrous ultramafic magma under sufficient 

confining pressures, so that volatiles were not completely exsolved. However, the minor dispersion of 

δD values (within the heavy isotopic magmatic range; Kyser and O’Neil 1984) in the amphiboles from 

the Mt. Keith suggests that these phases formed during incipient degassing of the melt, which 

crystallized in a subvolcanic environment (Rosengren et al. 2005; Fiorentini et al. 2007a, 2012). On the 

basis of experimental work by Deloule et al. (1991), it is possible to ascribe the minor δD dispersion to 

either H2O loss, which decreases D/H ratios and water contents, or H2 loss, which increases D/H ratios 

while slightly decreasing the water content. Both H2O loss and/or H2 loss occur during degassing. For 

Fiorentini et al. (2012), the nature of isotopic variation that is documented in the primary hydromagmatic 

amphibole grains from the Agnew-Wiluna greenstone belt intrusions is not associated with alteration, 

which would push δD toward much lighter values (Kyser et al. 1986). 

 For H2O, the H isotope fractionation between water and magma is positive (δD gas/melt > 0), 

such that the escaping gas would be enriched in D and the residual magma progressively depleted in D 

during degassing (Stone et al., 2005; Fiorentini et al., 2008). In the dehydration process, the δD values 

of the residual melt shift from an initial mantle value to more negative values. However, for reduced 

species (e.g. H2, H2S, HCl, etc.), the H isotope fractionation between gas and magma is negative (δD 

gas/melt < 0), such that escaped H gas would be isotopically lighter (i.e. with a lower δD value) and 

residual H2O isotopically heavier (i.e. with a higher δD).  

 The hypothesis of a crustal contribution in the origin of the amphiboles and its parental liquid 

was addressed also by means of the analysis of oxygen isotopes in amphiboles. The variability in oxygen 

isotope compositions observed in unaltered mantle-derived rocks (OIB, MORB and peridotite xenoliths) 

is fairly low and suggests that modern upper mantle has an average oxygen isotope composition δ18O of 

5.5 ± 0.5‰ (Byerly et al., 2017). The oxygen isotope composition of igneous amphiboles from primitive 

island arc lavas and from mantle peridotites is in the range δ18O = +4.9 ‰ to +5.8 ‰ (Demeny et al, 

2004, 2010; Vroon et al., 2001; Chazot et al., 1997) suggesting minor fractionation during crystallisation 

from mantle derived melts. Large-scale fractionation of oxygen isotopes is confined to processes that 
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occur at or near the Earth's surface; thus, changes from the average δ18O of mantle-derived rocks, either 

positively or negatively, are typically ascribed to the presence of recycled crustal material in the mantle 

source or interaction of mantle-derived melts with crustal material upon ascent (Byerly et al., 2017). In 

Fig. 124 the oxygen isotopic range for crustal material (δ18O = from 6 to 42 ‰) and seawater (δ18O = 0) 

are reported. It is also worth noting that pore-waters in the oceanic crust are initially low in δ18O (close 

to 0 ‰ near the sediment-water interface to -3 ‰ at depths of several hundred meters; Eiler, 2001, and 

references therein). Oxygen isotopic compositions of nominally anhydrous minerals (olivine and 

pyroxene) do not show systematic difference in hydrous and anhydrous lherzolites (Chazot et al., 1997). 

The same study showed that the oxygen isotopic composition of amphibole (δ18O = 5.3-5.6 ‰) is in 

equilibrium with the peridotitic minerals, thus suggesting that in the fluid and the mantle had the same 

oxygen isotopic composition. 

 

Figure 124 - Oxygen isotopes values for the Precambrian and Phanerozoic amphiboles. The data of Phanerozoic 

gabbros and metagabbros are from Gillis et al. (2001) and references therein. Seawater and MORB δ18O range are 

from Eiler (2001) and references therein. 
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 The δ18O values of the studied Precambrian amphiboles (see Chapter 3 for details) cover a wide 

range from 2.5 to 6.4 ‰. The higher value (6.4 ± 0.99 ‰) pertain to the olivine-magnetite peridotite 

from the Pilgüjarvi sill of the Pechenga Complex whereas the Canadian and Russian amphiboles have 

mean values of 3.9 ± 0.3 ‰ and 4.2 ± 0.9 ‰, respectively. The oxygen isotopic compositions of 

Australian amphiboles are 2.5 ± 0.42 ‰ and 5.0 ± 0.30‰ for Mt. Keith and Mt. Clifford, respectively. 

With the exception of the olivine-magnetite peridotite from the Pechenga Complex, the light oxygen 

isotopic signatures for Precambrian amphiboles exclude a crustal input which would shift the δ18O 

towards higher values. A small crustal contribution could be supposed for the amphibole of the olivine-

magnetite peridotite in the Pechenga Complex. Low δ18O values might be ascribed to the interaction of 

the amphiboles parental melts with seawater (δ18O = 0). Many studies have shown that submarine 

weathering and low temperature (T < 225 °C) hydrothermal alteration of the upper oceanic crust lead to 

an enrichment in δ18O in the bulk rock. On the contrary, higher temperature (T > 300 °C) seawater-rock 

interactions produce depletions in 18O in the lower crust and upper mantle sequences (e.g. Gregory and 

Taylor, 1981; Alt et al., 1986; Früh-Green et al., 2001). Fluid-mobile elements and hydrogen isotopes 

have already suggested that seawater apparently was not involved in the petrogenesis of the studied 

amphiboles. Notwithstanding, oxygen isotopes were correlated with the Cl and B seawater proxies as 

well as the Cl/F ratio.  As show in the Fig. 125 A and B, the δ18O isotopic signatures of amphiboles do 

not show any correlation with the seawater-enriched elements mentioned above. These evidences have 

two implications: i) they further confirm that seawater was not involved in petrogenesis of the studied 

amphiboles; ii) the low δ18O signature of most of the Archean and Paleoproterozoic amphiboles is likely 

a primary feature of the mantle source. 

 

 

 

 

 

 

 

 

 



 

 

175 

175 

 

Figure 125 A, B - Oxygen isotopic ratios are compared to (A) B contents and (B) F/Cl ratios for Archean, Early 

Proterozoic (Precambrian) and Phanerozoic amphiboles.  
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4.7 Water contents of primary melts 

The water contents in primary melts of the Archean and Paleoproterozoic samples can be estimated by 

applying amphibole/melt exchange coefficient for water. A mean value of amph/LXH2O = 0.3 has been 

assumed according to the experimental work of Tiepolo et al. (1999) and considering that this value is 

in agreement with the few data reported in the literature (e.g. Hauri et al., 2006). As previously 

mentioned, amphiboles are residual after a significant crystallisation of clinopyroxene and olivine. Thus, 

the primary melt had likely a different composition than the melt in equilibrium with amphibole. In order 

to estimate the composition in H2O of the parental liquid, the contribution of olivine and clinopyroxene 

has to be subtracted because their crystallisation leads to a concentration of the volatiles into the residual 

liquids. Olivine and clinopyroxene contribution have been subtracted according to their modal 

proportions in the rock (see Tab. 2.2 of Chapter 2).   

 In Fig. 126 the water contents calculated for the melts in equilibrium with amphiboles are 

reported. In Precambrian amphibole-forming melts the water contents are almost comparable to those 

of Phanerozoic age. The Precambrian melts have H2O contents in the range 2.44 - 4.17 wt. % that is 

consistent with the geobarometric results regarding conditions for amphibole crystallisation. 

 

Figure 126 – Calculated water contents in amphibole-equilibrium melts. The blue and the pink fields enveloping the 

histogram bars are the average water contents for the Precambrian and Phanerozoic amphibole-equilibrium melts, 

respectively. 
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 In Fig. 127 the calculated water contents in primary melts of Precambrian and Phanerozoic 

samples are reported together with the experimental data of water contents determined in melt inclusions 

hosted in olivines in the komatiites of the Belingwe Greenstone Belt (Zimbabwe; Asafov et al., 2018) 

and of the Abitibi Greenstone Belt (Sobolev et al., 2016). The water contents of primary melts in 

Canadian samples considered in this study are in the range between 0.11 and 0.38 wt.%. The Australian 

primary melts have water contents of 0.37 wt.% and 0.41 wt.% at Mt. Clifford and Mt. Keith, 

respectively. In the Pechenga Complex, the water contents calculated for primary melts are in the range 

0.13-0.37 wt.% for the Pilgüjarvi sill and 0.29 wt.% for the Kammikivi sill. The variability of the 

Pilgüjarvi sill primary melts is related to the low H2O concentration (0.13 wt.%) obtained for the 

magnetite-olivine peridotite while the other two samples have water contents in primary melts of 0.33 

wt.% and 0.37 wt.%. The calculated parental melts of the Nyasyukka dike complex have H2O values 

between 0.90 wt.% and 1.03 wt.%. If calculated values are compared with data from literature, the 

tholeiites of Abitibi Greenstone Belt, Theo’s Flow and Ghost Range, have H2O concentrations 

comparable to those in komatiites of Belingwe Greenstone Belt (0.2 wt.%) but lower than those proposed 

by Sobolev et al. (2016) for the komatiites of the Abitibi Greenstone Belt (0.6 wt.% estimated from of 

melt inclusion in olivine). Australian komatiites of Mt. Keith and Mt. Clifford as well as the Fe-picrites 

of Boston Creek (Abitibi Greenstone Belt) and in those of the Pilgüjarvi and Kammikivi sill have H2O 

contents in the range reported by the literature (0.2-0.6 wt.%; Asafov et al., 2018; Sobolev et al., 2016).     
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Figure 127 – Comparison between the calculated water contents for primary melts of Precambrian and Phanerozoic 

age. The water values for the Abitibi and Belingwe komatiites are from Sobolev et al. (2016) and Asafov et al. (2018), 

respectively. 

 

 

4.8 Chlorine and Fluorine contents of primary melts 

  The F and Cl contents in primary melts of the Archean and Paleoproterozoic samples were 

estimated by applying amphibole/melt exchange coefficients for F and Cl.  A mean value of amph/LDF = 

1.84 and amph/LDCl = 0.21 have been assumed according to the experimental work by Tiepolo and 

coworkers (unpublished) and considering that this value is in agreement with the few data reported in 

the literature (Dalou et al., 2014; Hauri et al., 2006; Van den Bleeken and Koga, 2015). As previously 

mentioned for the water content calculation, amphibole is residual after crystallization of clinopyroxene 

and olivine. In order to have the F and Cl parental liquid composition the contribution of olivine and 

clinopyroxene was subtracted according to their modal proportions in the rock. 

 In Fig. 128 A, B the calculated F (A) and Cl (B) contents in primary melts of Precambrian and 

Phanerozoic samples are reported. The F and Cl contents of primary melts in Canadian samples are 

extremely heterogeneous in the range 12.4-168.3 ppm and 347.9-1340.4, respectively. The lower end in 

the range of F contents was obtained for the Boston Creek Fe-picrite parental melt. The primary melts 
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of the Australian komatiites have Cl and F contents of 3858 and 28.32 ppm, respectively, at Mt. Clifford 

and, 2804 ppm and 27.15, respectively, at Mt. Keith. In the Pechenga Complex, the calculated primary 

liquids of Pilgüjarvi and Kammikivi sill show a twofold variation of F (157.3-242.5 ppm) and Cl 

contents (204.3-446.3 ppm). The parental liquid of the magnetite-olivine peridotite of the Pilgüjarvi sill 

has low F (37.7 ppm) and Cl contents (198.8 ppm). The calculated parental melts of the Nyasyukka dike 

complex show Cl enrichment (1829-2610 ppm) whereas fluorine values are in the range (165.9-313.1 

ppm), thus in the range of the other rocks of the Pechenga Complex.  

 The Australian komatiites show similar fluorine contents but extremely different Cl values if 

compared to those of parental melts of the Belingwe komatiites (Asafov et al., 2018). The Canadian 

tholeiites are generally F- and Cl-enriched compared to the Belingwe komatiites. Exception is made for 

the Cl contents of the Theo’s Flow tholeiite that are almost similar to those of African komatiites.  The 

Fe-picrites of Boston Creek (Abitibi Greenstone Belt) and those of the Pechenga Complex display higher 

F concentrations and relatively high Cl contents compared to those of the Belingwe komatiites but almost 

comparable concentrations with those of Phanerozoic arc-related amphiboles. Nevertheless, the primary 

melts of the Pilgüjarvi and Kammikivi sills have Cl values similar to those of the Belingwe komatiites. 

The parental liquid of the Nyasyukka dike complex is also comparable for Cl and F concentrations with 

that of Phanerozoic arc-related amphiboles.    
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Figure 128 A, B – (A) F and (B) Cl contents calculated for primary melts. The data for F and Cl compositions of 

parental melt of Belingwe komatiites are those from literature (Asafov et al., 2018). 
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4.9 Implications on the secular evolution of the Earth’s mantle 

 The calculated compositions of melts generated by mantle melting during Archean and 

Proterozoic times represent a unique chance to investigate differences with Phanerozoic mantle-derived 

melts and thus to identify possible secular variations in the mantle composition and melting processes. 

A direct comparison of absolute values between calculated melts and modern analogues can give only 

limited information because biased by the evolved and not primary nature of the melts in equilibrium 

with Precambrian amphiboles. More robust information from absolute values can be gathered only from 

the components or elements behaving as highly incompatible towards the early crystallising minerals, 

such as water or the other volatiles (F-Cl) and for which a back calculation of the primary melt 

composition is possible by subtracting the contribution of olivine and clinopyroxene. In all the other 

cases the most robust information on possible secular variations may be achieved from ratios between 

elements with a similar compatibility that are, consequently, not fractionated during the differentiation 

process. 

4.9.1 Inferences from incompatible trace element composition 

Although the melt in equilibrium with amphibole is not a primary melt, its incompatible trace 

element composition can give some information on the geochemical affinity of the parental liquid and, 

in turn, on the geodynamic setting and on the mantle sectors activated during Archean and Proterozoic. 

Olivine and clinopyroxene, which are early crystallising minerals relative to amphibole, are not expected 

to impart to the residual melts significant changes in the geochemical signature for the petrologically 

relevant elements. 

The reader would consider that there is no general consensus that komatiites were exclusively 

produced at plumes (e.g. Arndt et al., 1998, 2008; Sobolev et al., 2016). A subduction origin for 

komatiites has been also proposed based on the high-SiO2 komatiites (such as the 3.5-3.2 Ga-old South 

African komatiites in the Commondale, Nondweni and Barberton greenstone belts; Parman et al., 1997; 

Wilson and Versfeld, 1994; Wilson et al., 2003). These basaltic komatiites strongly resemble the 

composition of modern boninites (Cameron et al., 1979; Parman et al., 2001, 2003). Neither theory 

seems to satisfactorily explain all the observed compositions, suggesting perhaps that komatiites were 

produced in more than one tectonic setting, as basalts are today (Parman and Grove, 2005). Worth of 

mention are also studies (e.g., Asahara and Ohtani, 2001; Sobolev et al., 2016) proposing komatiites as 

the products of melting in hydrous plumes, which is a sort of hybrid hypothesis of the plume and 

subduction ideas. Such models try to reconcile the two sides of the debate by incorporating the evidence 

for relatively high magmatic H2O contents into the plume-melting process. Moreover, large interest of 

the scientific community, and also not a general consensus, is on the significance of the ferropicrites of 
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Archean age (e.g. Milidragovic et al., 2016). The widespread emplacement of ca. 2.7 Ga ferropicrites 

occurred synchronously with the emplacement of ubiquitous komatiites and Mg-tholeiites during the 

global Neoarchean mantle melting event (Condie, 1998, 2000; Rino et al., 2004; Stein and Hofmann, 

1994) that contributed significant volumes of juvenile material to continental crust (Condie et al., 2009; 

Hawkesworth et al., 2009; Milidragovic and Francis, 2014). The ubiquity of Archean ferropicrites is 

compatible with a model in which domains of Fe-rich peridotite and pyroxenite existed as ‘‘plums” 

(Sun, 1985) in a predominantly pyrolitic peridotite mantle (Milidragovic et al., 2016). The compositions 

of the Fe-rich domains appear to have been as diverse as the present-day upper mantle, yielding magmas 

that ranged in affinity from modern OIB to MORB. Milidragovic et al. (2016) argued that the Archean 

alkaline ferropicrites have fractionated trace element profiles, including the absence of HFSE anomalies 

relative to REE of similar compatibility, which broadly resemble the modern ‘‘alkaline” OIB, and in 

contrast with archetypal Archean komatiitic, tholeiitic, and calcalkaline magmas. Furthermore, they 

have relatively high Ni concentrations, which exceed the Ni contents of primary melts equilibrated with 

normal mantle peridotite (Herzberg, 2011), but are similar to those of the olivine tholeiites from Hawaii 

(Sobolev et al., 2005). The relative paucity of ferropicrites younger than ca. 2.7 Ga (Lightfoot et al., 

1993; Wooden et al., 1993; Hanski and Smolkin, 1995; Gibson et al., 2000; Ichiyama et al., 2006; 

Heinonen and Luttinen, 2008) may reflect a lower abundance of Fe-rich domains in the post-Archean 

terrestrial mantle. This observation suggests that most Fe-rich plumes were melted out during the 

Neoarchean melting event, which accompanied the peak in mantle potential temperatures (Korenaga, 

2008; Herzberg et al., 2010; Milidragovic et al., 2016). 

 The melts in equilibrium with amphiboles were calculated as previously described in the section 

4.4. The N-MORB normalized patterns of the incompatible element composition of the melt in 

equilibrium with amphibole were compared with the present-day composition of primary mantle-derived 

melts from different geodynamic settings: mid-ocean ridge basalt, MORB; ocean island basalt, OIB; 

island arc basalt, IAB. For the Abitibi Greenstone Belt, the N-MORB normalized incompatible trace 

element pattern (Figure 129) of the Theo’s Flow tholeiite and Ghost Range are completely different in 

terms of both overall values and element fractionation from both N-MORB and IAB. Calculated melts 

parallel the trace element pattern of modern OIB at generally higher values (approximately 5 times). 

Significant differences with OIB are the negative anomalies in Ti, Ba and Sr and the positive anomalies 

in Th. The melt in equilibrium with the Boston Creek amphibole with Fe-picrite affinity does not show 

anomalies in Ba and Sr and has a N-MORB normalized incompatible element pattern almost paralleling 

that of modern OIB. 
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Figure 129 - The N-MORB normalized incompatible trace element patterns for the calculated melts in equilibrium 

with amphibole, in the samples from Abitibi greenstone belt (Canada). The data of OIB and IAB compositions are 

from McDonough and Sun (1995) and Kelemen (2003), respectively.  

 

The N-MORB normalized incompatible trace element pattern of the melt in equilibrium with the 

Australian amphiboles of Mt. Keith and Mt. Clifford (Fig. 130) is different in terms of both overall 

values and element fractionation from both N-MORB and IAB. It parallels at slightly higher values the 

pattern of modern OIB and similarly to the melts from the Abitibi greenstone belt it shows positive Th-

U and negative Sr and Ti anomalies that are not observed in modern OIBs. A weak Nb-Ta negative 

anomaly is also observed: this is in agreement with the derivation of this melts from komatiites. As 

shown in Figure 130, Archean komatiites are characterised by negative Nb-Ta anomalies; thus, this 

feature appears to be preserved in spite of the residual character of the liquid.  
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Figure 130 - The N-MORB normalized incompatible trace element patterns for the calculated melts in equilibrium 

with amphibole, in the samples from Agnew-Wiluna greenstone belt (Australia). The data of OIB and IAB 

compositions are from McDonough and Sun (1995) and Kelemen (2003), respectively. 

 

 In the Pechenga Complex, the N-MORB normalized incompatible trace elements patterns of the 

melts in equilibrium with amphibole have strong affinity with modern OIB and show significant 

differences with both N-MORB and IAB (Fig. 131). Overall values of incompatible trace elements are 

higher than modern OIB but parallel the general trend. Exceptions are for Sr, Ti and, to a lesser extent, 

U, which show negative anomalies. A completely different behaviour is observed for the melt in 

equilibrium with amphibole in the olivine-magnetite peridotite of the Pilgüjarvi sill. Here the N-MORB 

normalized incompatible trace element patterns reveal a marked negative Nb and Ta anomaly similar to 

that observed in IAB but at significantly higher values for Nb and Ta. This signature is not representative 

of the primary melt; instead, it is likely related to the abundant crystallisation of Ti-bearing oxides for 

which Nb and Ta have a high compatibility (e.g. Xiong et al., 2011). 
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Figure 131 - The N-MORB normalized incompatible trace element patterns for the calculated melts in equilibrium 

with amphibole, in the samples from Pechenga Complex (Russia). The data of OIB and IAB compositions are from 

McDonough and Sun (1995) and Kelemen (2003), respectively. 

 

In general, all the melts in equilibrium with amphibole from Archean and Proterozoic rocks do 

not resemble present-day MORB or IAB. In particular, none of the calculated melts possesses the typical 

pronounced Nb-Ta negative anomaly of IAB. A weak Nb-Ta negative anomaly is shown only by the 

melts from the Agnew Wiluna greenstone belt (Australia) in agreement with their komatiitic affinity. 

Data seem to exclude a subduction contribution in the genesis of the parental liquids of the studied 

amphiboles. In order to evaluate the alkaline affinity of the calculated melt, the Nb/Y ratio (normalized 

to the primordial mantle; McDonough and Sun, 1995) has been used (Milidragovic et al., 2015; Saccani, 

2015). In the Figure 132 the Nb/Y ratios of the Precambrian amphibole-equilibrium melts are shown 

and, for comparison, those of Phanerozoic age (subduction-related zones and alkaline megacrysts). Nb 

is strongly enriched in alkaline basalts relative to tholeiitic basalts and Y is used as an element that does 

not participate in processes (therefore causing mantle heterogeneity) and that behaves as incompatible 

during partial melting and fractional crystallisation processes (Pearce, 1982). The relatively high Nb/Y 

ratios (Nb/YPM=5.24-6.36) confirm the alkaline affinity of the Fe-picrites from Abitibi Greenstone Belt 

and Pechenga Complex, except for the amphiboles of olivine-magnetite cumulate from the Pilgujarvi 

intrusion that have ratios suggesting a sub-alkaline signature. Furthermore, amphiboles from Archean 

tholeiites (from Abitibi Greenstone Belt) and komatiites (Agnew-Wiluna Greenstone Belt) have low 

Nb/YPM ratios suggesting a sub-alkaline affinity.  
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Figure 132 – Nb/Y ratio, normalised to the primordial mantle (McDonough and Sun, 1995), of the calculated 

amphibole-equilibrium melts. 

 

In the Figure 133, the Archean and Paleoproterozoic amphiboles follow a different trend 

compared to the Phanerozoic amphiboles from subduction-related zones and megacrysts. The latter 

show higher Nb/YPM ratios (Nb/YPM=7.59-12.21), thereby confirming the efficiency of the Nb/YPM ratio 

as a proxy for the alkalinity signature of the magma source. The amphiboles from subduction-related 

settings display a sub-alkaline ratio (Nb/YPM<3.01) that is comparable with those of Theo’s Flow 

tholeiite, Australian komatiites and the olivine-magnetite from Pechenga. 
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Figure 133 – Nb versus Nb/Y ratios normalized to primordial mantle (McDonough and Sun, 1995) of the Precambrian 

and Phanerozoic amphiboles. 

 

In summary all the studied amphiboles from Precambrian complexes are in equilibrium with 

melts that reflect the alkaline affinity of the primary melt, suggested for the origin of the different igneous 

complexes, and that possess incompatible trace element patterns that parallel the modern OIB signature 

at higher values. These overall higher incompatible trace element values with respect to present-day OIB 

can be easily interpreted as the result of melt differentiation prior the crystallisation of amphibole, as 

described in the section 4.4. Of not easy interpretation are the negative anomalies in Sr and Ti 

characterising almost all the computed melts. Such features are likely not related to an original signature 

of the mantle source but likely related to differentiation and possibly to the crystallisation of mineral 

phases with a high compatibility for Sr and Ti. Stone et al. (2003) argued that clinopyroxene concentrate 

Sr relative to LREE (Sobolev et al., 1996; Ivanov et al., 1997). A fractionation of Sr from LREE can 

also be operated by amphibole (Tiepolo et al., 2007). Hence, the depletion of Sr in the Precambrian 

amphiboles can be related to the relative incompatibility and compatibility, respectively, of these 

elements in clinopyroxene and possibly amphibole. Alternatively, given the presence of minor 

phlogopite in some of the studied samples and the high compatibility of both Ti and Sr in this mineral 
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(e.g., Smith et al., 2014), the crystallisation of small amount of phlogopite (also in association with 

clinopyroxene and amphibole) could be responsible of the observed depletion. 

 

4.9.2 Inferences from the Nb/Ta ratio and its bearing with the Nb-paradox   

 The geochemical elements niobium (Nb), tantalum (Ta), zirconium (Zr) and hafnium (Hf) 

display broadly similar ionic radius and charge. As a result, these elements tend to behave alike during 

a wide range of geological processes. However, during partial melting of the mantle and fractional 

crystallization of any derived magmas, the smaller dimensions of Ta and Hf relative to Nb and Zr lead 

to relative partition coefficient ratios between refractory sources (S) and liquids (L) - S/LDNb/S/LDTa and 

S/LDZr/S/LDHf - to be generally lower than unity (Tiepolo & Vannucci, 2014). Consequently, it has been 

postulated that during planet differentiation over time all silicate reservoirs would have been dispersed 

on a unique positive Nb/Ta and Zr/Hf array, which aligns along chondritic Nb/Ta and Zr/Hf values. 

However, this array is commonly displaced to significantly lower Nb/Ta values at chondritic Zr/Hf ratios 

(Münker et al., 2003). In other words, the Nb/Ta ratio is lower than predicted under the assumption that 

Earth originally accreted from asteroidal material ‘chondritic’ in composition. This geochemical 

anomaly is known as the “terrestrial Nb-Ta paradox”. A better understanding of its debated origin would 

underpin new knowledge on the differentiation of our planet and the evolution of its geochemical 

reservoirs. 

In order to account for the Nb-Ta paradox two opposite scenarios were proposed. The first is 

based on experimental evidence showing that at high pressure Nb displays a more siderophile behavior 

with respect to Ta, and especially to Zr and Hf (Wade & Wood, 2001). The inference is that Nb was 

partitioned from the primordial magma ocean into the core. Accordingly, the observed depleted Nb/Ta 

signature of the silicate Earth would have been imparted with core-mantle equilibration at 4.533 Ga 

(Kleine et al., 2002; Yin et al., 2002; Schoenberg et al., 2002). This hypothesis has been recently refined 

with the finding that Nb is also more chalcophile than Ta under moderately reducing conditions at low 

pressures (sub-GPa), compatible with conditions typical for small asteroidal bodies at the boundary 

between silicate mantle and metal- and sulfur-rich core domains (Münker et al., 2017). Accordingly, it 

is conceivable that the subchondritic Nb/Ta ratio of the Earth’s silicate mantle would have also been 

inherited during the main stages of planet accretion from the silicate portions of reduced asteroidal 

building blocks, which have relatively low Nb/Ta ratios in contrast to their cores. An alternative 

hypothesis is the presence of a hidden superchondritic Nb/Ta reservoir/s in the silicate Earth, which 

would counterbalance the commonly observed subchondritic Nb/Ta signature. Potential candidates were 
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identified in lower crustal granulites (Stepanov & Hermann, 2013), in the amphibole-rich lower crust 

(Tiepolo & Vannucci, 2014) and in the subcontinental lithospheric mantle (Pfänder et al., 2012). 

In order to address the Nb-Ta paradox, and in particular to verify a time-dependence the Nb/Ta 

depletion, the secular variation in Nb-Ta in the melt in equilibrium with selected amphiboles has been 

monitored. The calculation of the Nb/Ta ratio of the silicate melt in equilibrium with amphibole is biased 

by the selective incorporation of Nb and Ta as a function of its crystal chemistry. Variations in the 

partitioning of Nb relative to Ta between amphibole and melt can be described in terms of Mg# and Ti 

contents of amphibole (Tiepolo et al., 2000). According to each mean amphibole composition, we 

calculated the Amph/LDNb/Amph/LDTa ratio and we computed that of the equilibrium melt starting from the 

amphibole Nb/Ta ratio. Variations in amphibole composition and in turn of the amphibole structure do 

not significantly influence the Amph/LDZr/Amph/LDHf ratio (e.g. Tiepolo et al., 2001). We thus calculated the 

Zr/Hf ratios of the melt in equilibrium with amphibole by considering a constant mean Amph/LDZr/Amph/LDHf 

ratio of 0.6 (Tiepolo et al., 2007).  

 Most of the calculated Nb/Ta and Zr/Hf values  lies along an array with slightly lower slope (but 

within error) in relation to the known terrestrial one (Münker et al., 2003), intersecting the Zr/Hf 

chondritic value at the significantly subchondritic Nb/Ta value of 13 ± 1.6 (Fig. 134). The reason behind 

the slightly lower slope could reflect a shift in the Zr/Hf ratios related to the occurrence of pyroxene 

fractionation prior to amphibole, which is significant especially in Archean magmas. However, the 

striking aspect of our dataset is the fact that a significant number of calculated melts deviates from the 

main array, showing anomalously high Nb/Ta ratios even at chondritic Zr/Hf values. 
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Figure 134 - Variations of the Nb/Ta vs. Zr/Hf ratios in melts in equilibrium with amphibole. Compositional fields 

are from (Münker et al., 2003). The chondritic differentiation trend has been obtained translating the Earth 

differentiation trend to the chondritic Nb/Ta and Zr/Hf values of 19 and 34.3, respectively (Münker et al., 2003). 

Dashed lines represent different mixing proportions of the two differentiation trends. Numerical codes refer to: the 

2.7 Ga komatiites of Mt. Keith (1) and Mt. Clifford (2) in the Agnew-Wiluna greenstone belt (Australia); the 2.7 Ga 

tholeiites of the Theo’s Flow (3) and Ghost Range (4-5) and the 2.7 Ga Fe-picrite of Boston Creek (6) in the Abitibi 

greenstone belt (Canada); the 1.98 Ga Fe-picrites of the Kammikivi (7) sill, Pilgujarvi sill (8-9-10) and the 1.95 Ga Fe-

picrite of Nyasyukka Dike Complex (11) in the Pechenga Complex (Russia). Phanerozoic amphiboles are from: the 

165 Ma Aligoodarz igneous complex in the Sanandaj–Sirjan Zone (12) (Zagros Orogen); the 117 Ma Hase no Yatsu 

(13) and the 70 Ma Zenifudo intrusion (14) in Central Japan and the 116 Ma Kita-Taku pluton in SW Japan (15); the 

82 Ma hornblendite from Milin area in the Gangdese Batolith (16) (Himalayan orogen); the 30-42 Ma hornblendites 

from Mt. Mattoni (17) in the Adamello batholith and from the Bregaglia pluton (18) in the Alpine Orogen; the 5 Ma 

porphyritic tonalites from the Batu Hijau (19); the amphibole megacrysts from Hoover Dam (20) and Dish Hill (21) 

in the quaternary alkaline lavas in southwest USA; (22) Jeju Island, South Korea (Yang et al., 2012); (23) Rhön area, 

Germany (Mayer et al., 2014); (24) Charpatio-pannonian basin, Austria, Hungary, Slovakia and Romania (Demeny 

et al., 2005); (25) Massif central (Woodland et al., 2007); (26) Carpatho pannonian basin, Hungary (Dobosi et al., 

2003); (27) Canary Islands (Demeny et al., 2008); 3.2 Ga komatiite (A) from the Weltevreden greenstone belt (South 

Africa; Putchel et al., 2014). 
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 These melts lie on trends parallel to the differentiation trend of the silicate Earth, but variably 

shifted towards higher Nb/Ta values, in between the trend defined by a hypothetical chondritic reservoir 

(“Chondritic differentiation trend” in Fig. 134) and the array defined by the Nb/Ta subchondritic silicate 

Earth (“Earth differentiation trend” in Fig. 134). We argue that these samples are genuinely anomalous 

and do not simply divert vertically (i.e., along the y axis) from the silicate Earth differentiation trend, as 

is the case for some of the magmas emplaced in present-day arcs in which rutile is retained to play a 

petrogenetic role in the mantle source (Beier et al., 2017). In fact, a role of Ti-rich minerals during 

crystallization is negligible in the investigated samples, because all rocks are rutile-free and display 

petrographic evidence of accessory ilmenite postdating amphibole in the crystallization sequence. 

Furthermore, fractional crystallization cannot account for the observed Nb/Ta anomaly because neither 

olivine nor clinopyroxene incorporate significant amount of Nb and Ta. More importantly, it appears 

that anomalously Nb/Ta enriched melts are not restricted to any specific setting or geological time, but 

rather occur throughout the evolution of the planet in different environments.  

 The heterogeneity of the >2.7 Ga Earth’s mantle is well documented in the variable platinum 

group element (PGE) concentrations as well as in terms of hafnium, neodymium (Putchel et al., 2013; 

2014) and oxygen (Byerly et al., 2017) isotope systematics. The earliest documented evidence of an 

enriched Nb/Ta mantle source (with values up to 18.2; Putchel et al., 2013) occurs in the 3.27 Ga 

Weltevreden komatiite lavas (South Africa; Connolly et al., 2011), which also display anomalous 

oxygen isotope composition (Byerly et al., 2017). The source of the Weltevreden komatiites was likely 

a deep mantle domain, which crystallized from the primordial magma ocean at about 4.4 Ga (Putchel et 

al., 2013). This piece of evidence argues against the hypothesis that Nb was homogenously partitioned 

and sequestered from the primordial magma ocean into the core at 4.533 Ga (Kleine et al., 2002; Yin et 

al., 2002; Schoenberg et al., 2002). Alternatively, on the basis of recent experimental work it could be 

argued that the anomalously Nb/Ta enriched portions of the lower mantle – effectively the source regions 

of Archean komatiites (Campbell et al., 1992) - may reflect domains that survived equilibration with the 

core. Reactions involving garnet and perovskite would dissolve ferric iron and produce iron metal 

droplets (Okuchi, 1997; Frost et al., 2004), which would adhere to the deep mantle solid silicate 

assemblage and escape sequestration into the core, effectively concentrating siderophile and chalcophile 

elements, including niobium. 

 However, this hypothesis contradicts evidence from the secular evolution of the PGE 

concentration in komatiites, which indicates that in the early Archean these lavas were sourced from a 

highly PGE-depleted lower mantle reservoir that recorded equilibration with the core (Maier et al., 

2009). In fact, if the observed anomalous Nb/Ta signature reflected a perovskite-mediated preferential 

enrichment of the siderophile element Nb in lower mantle domains, an even more pronounced enriched 
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signature would be observed for the highly siderophile platinum group elements, which is not the case 

(Maier et al., 2009). An alternative hypothesis to explain the origin of the Nb/Ta enriched lower mantle 

domains that sourced the early Archean Weltevreden komatiites involves the presence of a non-

terrestrial component derived from the proto-solar nebula (Hashizume & Chaussidon, 2005). Timing of 

the inferred extra-terrestrial input could be bracketed between the time of core-mantle equilibration (~4.5 

Ga) and the time of isolation of the oldest recorded Nb/Ta enriched mantle domains (i.e., the source of 

the Weltevreden komatiites at ~4.4 Ga; Putchel et al., 2013). 

 The question arises as to what sort of process(-es) may have produced an anomalously enriched 

Nb/Ta signature in the lower mantle. A hint may lie in the fact that the anomalously enriched terrestrial 

samples appear to align along Nb/Ta-Zr/Hf trends that are consistent with a Moon affinity (Fig. 134; 

Münker et al., 2003). The Moon formed when Earth collided with a large extra-terrestrial body with 

chondritic Nb/Ta composition; the estimated timing of this giant impact is thought to have occurred ~95 

Ma after core-mantle equilibration (Jacobson et al., 2014). If the variably subchondritic to chondritic 

Nb/Ta signature of the Moon samples resulted from mixing between the impactor and the already Nb/Ta 

depleted silicate Earth upon collision (Münker et al., 2003), the newly discovered nearly chondritic  

signature of some terrestrial mantle domains may well reflect the scattered presence of non-homogenized 

fragments of the giant impactor, which partially mixed with proto-Earth mantle and did not escape the 

Earth system to form the Moon. 

 In summary, the observed anomalously enriched Nb/Ta signature that occurs in some of the 

investigated magmas spanning in space and time throughout the complex evolution of the planet has to 

be a primary feature of their mantle sources. These new data are inconsistent with the interpretation of 

a secular homogeneity of the subchondritic Nb/Ta signature of the silicate Earth. Conversely, the 

observed heterogeneous Nb/Ta signature of the Earth’s silicate mantle resulted from the complex 

assembly of non-homogeneous geochemical reservoirs over a protracted geological time. The tapping 

of anomalously enriched mantle domains throughout the entire evolution of the planet, since the early 

Archean through to the Phanerozoic, implies that some “early” moon-like deep mantle domains (the 

source of the early Archean komatiites) escaped complete equilibration with the subchondritic Earth’s 

mantle and reached the shallower source of the Phanerozoic melts. However, any inference on the 

abundance of these enriched domains in the Earth’s mantle is speculative due to the paucity of samples 

so far considered. 

4.9.3 Inferences from variations in water, fluorine and chlorine  

 Inferences on the secular variations in the volatile element composition of the mantle has been 

evaluated by comparing the calculated F, Cl and water concentrations in primary melts of Archean and 
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early Proterozoic amphiboles with those of modern primary MORB, IAB (Sobolev and Chaussidon, 

1996) and OIB magmas (Hauri, 2002). In the comparison the melts in equilibrium with amphibole 

megacrysts from alkaline lavas were also considered (Boettcher and O’Neill, 1980; Figure 135).   

 

 

Figure 135 - Comparison between the water contents of Precambrian primary melts and modern MORB, OIB, IAB 

(Sobolev and Chaussidon, 1996; Hauri, 2002) and alkali megacrysts (Boettcher and O’Neill, 1980). 

 

The H2O content of the Australian komatiites of the Agnew Wiluna Greenstone Belt is much 

higher than present-day MORB, much lower than IAB and closely resembles that of modern OIB. 

Tholeiites from the Abitibi Greenstone Belt show lower water contents than komatiites even 

approaching the values of modern N-MORB. H2O contents of Fe-picrites are highly variable and 

generally inbetween values of modern MORB and OIB. Only in the case of the Nyasyukka dike the H2O 

contents are more similar to those of melt in equilibrium with amphibole megacrysts of alkaline lavas 

and only slightly lower than the water contents of modern IAB. The calculated primary melts have an 

extreme heterogeneity in the F/Cl ratios (Fig. 136). Fe-picrites of the Pilgüjarvi and Kammikivi sill show 

F/Cl ratios comparable with those of modern IAB (Churikova et al., 2007) and also with those of alkali 

megacrysts from Hoover Dam (USA). Remarkably, the Fe-picrite of the Kammikivi sill has the highest 

F/Cl ratios. The Canadian Fe-picrite of Boston Creek shows, instead, very low F/Cl ratios which are 

comparable with those of the Australian komatiites. The Canadian tholeiites have F/Cl ratios similar to 
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those of magnetite-olivine peridotite from Pilgüjarvi sill and the ferropicrites of Nyasyukka dike 

complex. In summary, the Cl-enrichment of Archean komatiite primary melts is in agreement with the 

findings of Asafov et al. (2018) that estimated 290 ppm of Cl (and 32 ppm of F; F/Cl = 0.11) in the melt 

in equilibrium with Fo = 93.5 for the Belingwe komatiites.  

 

Figure 136 - Comparison between the F/Cl ratios of Precambrian primary melts and modern MORB, OIB, IAB 

(Sobolev and Chaussidon, 1996; Hauri, 2002) and alkali megacrysts (Boettcher and O’Neill, 1980). 

  

 In the interpretation of the above data and in particular those relative to the H2O contents, the 

reader has to consider that similar volatile contents in primary melts can be obtained from different 

mantle sources by varying the degree of partial melting. For example, for low degree of partial melting 

a H2O depleted mantle source can give the same water content in the melt as a more enriched mantle 

source undergoing higher degree of melting. In this frame the similar water contents of komatiites and 

modern OIB do not imply the same H2O content in the mantle sources. There is large consensus that 

komatiites were produced by relatively high degrees of melting given the higher thermal regime of the 

Earth during Archean times (e.g. Arndt et al., 1998; 2008). It follows that according to the data of this 

thesis the Archean mantle source of the komatiites had a much higher water content than that 

characterizing present day OIB. Sobolev et al. (2016) argued that the mantle transition zone at 410–660 
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km depth is a possible water source for primary melts of the Abitibi komatiites. Experimental studies 

have shown that the high-pressure polymorphs of olivine—wadsleyite and ringwoodite— can 

accommodate significant amounts of Cl, F and H2O (Roberge et al., 2015; Roberge et al., 2017; Asafov 

et al., 2018). Accordingly, the transitional zone peridotite could have exceptionally high ratios of H2O, 

F, (and possibly Cl) to LREE, Nb, K, Rb, B and Ba. The recent finding of H2O-rich ringwoodite in 

diamond provides evidence that transition-zone peridotite indeed contains at least 1 wt. % of H2O 

(Pearson et al., 2014). More difficult is to give conclusions about tholeiites. Their fractionated trace 

element pattern paralleling that of OIB suggests that the mantle source was relatively enriched, as that 

of present-day OIB. However, the low water content is much similar to that of melts produced by a 

depleted mantle (N-MORB). Different combinations of source mantle composition and degree of partial 

melting can account for these contrasting features. Because these tholeiites are associated with 

komatiites (e.g., Ghost Range; Jensen and Langfron, 1985) completely different mantle sources or 

melting processes are unlikely. The low water contents may thus reflect local heterogeneities of the 

mantle or different depths at which partial melting occurred. The water-depleted tholeiites could be 

accordingly originated from shallower, much water-depleted levels of the Archean mantle. In the case 

of Fe-picrites, given the similar incompatible trace element patterns (resembling that of modern OIB) 

but the different water contents, the observed variation can be reconciled only by supposing a large 

heterogeneity in the water composition of the mantle source. This is in agreement with the hypothesis 

of Milidragovic et al. (2016) that Archean ferropicrites were derived from domains of Fe-rich peridotite 

and pyroxenite in a predominantly pyrolitic peridotite mantle. Remarkably, water contents in alkaline 

melts similar to those of modern IAB suggest, in agreement with results on komatiites, that during 

Archean partial melting took place in a mantle much more water-rich than that feeding present-day OIB. 

 More in general, results of this work support the previous work of Sobolev et al. (2016) and 

Herzberg (2016) arguing that mantle ingassing during a ‘cool’ Hadean could describe the elevated 

volatile contents that have been modelled for and observed in some late-Archean komatiites. This 

ingassing might have introduced large-scale oxygen isotope heterogeneities in the Archean mantle that 

were homogenized or are no longer sampled by modern processes (Byerly et al., 2017). Puchtel et al. 

(2014) suggest that the source of the Weltevreden komatiites is the product of crystallization of a magma 

ocean at about 4.4 Ga followed by long term isolation from the convecting mantle prior to eruption. 

Byerly et al. (2018) argued that the low δ18O of the Weltevreden source could be the result of the same 

early Earth processes that created these mantle heterogeneities some with low δ18O. Impressive is the 

similar light oxygen isotope composition of the source of the Archean and early Proterozoic amph-

bearing rocks of this thesis and the Weltevreden komatiites.  Nevertheless, Maier et al. (2009) and 

Fiorentini et al. (2011) suggest that the concentration of PGE in the deep mantle progressively increased 
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throughout the Archean and that this was the consequence of slow descendent mixing of meteoritic Late 

Veneer during the period between the Late Heavy Bombardment (4.3-3.9 Ga) and 2.7 Ga. Moreover, 

Milidragovic and co-authors (2016) observed geochemical similarity between the late Archean 

subalkaline ferropicrites and differentiated basaltic (SNC and HED) meteorites. For the authors the 

source of Fe-rich enrichment in the Archean mantle may be the late meteoritic infall that followed the 

formation of the Earth’s core. 

4.9.4 Inferences from Sc/V and its bearing on mantle oxygen fugacity 

 Vanadium exists in four potential valence states in magmas, V2+, V3+, V4+ and V5+. In melts at 

terrestrial fO2s only V3+, V4+ and V5+ are likely to be present, the abundance of V4+ and V5+ is small, and 

the proportion of V3+ decreases substantially with increasing fO2 (Canil, 2002). The crystal structures of 

most liquidus phases in mafic and ultramafic magmas prefer to incorporate V3+, and for this reason 

experimentally measured crystal/liquidDV decreases with increasing fO2 (Canil, 2002). In this way, increased 

fO2 during melting or crystallization will decrease the overall compatibility of V. The low mobility of V 

during alteration and metamorphism favours the preservation of this redox memory even in rocks more 

than 3 Ga old (Canil, 2002). The behaviour of V and Sc during mantle melting is such that these elements 

are more similar to each other than to any other elements, as evidenced by their similar enrichments in 

continental crust, arc magmas and MORB relative to primitive mantle (Sun & McDonough, 1989; 

McDonough & Sun, 1995; Rudnick & Fountain, 1995). V and Sc are both mildly incompatible during 

the formation of MORB and arc lavas, and they are not mobile in fluids (Lee et al., 2005). However, the 

speciation and, thus, the partitioning of V are redox-sensitive, whereas those of Sc are not (Lee et al., 

2005). The use of Sc/V ratios rather than V alone helps to reduce the effects of magmatic differentiation 

processes that may dilute V and Sc concentrations, but not significantly modify their relative proportions 

(Lee et al., 2005). 

 The Sc and V concentrations in primary melts were calculated for Precambrian and Phanerozoic 

samples by applying amphibole/melt partition coefficient for Sc and V.  Mean values of amph/LDSc = 3.47 

and amph/LDV = 5.24 have been assumed according to the experimental work of Tiepolo (1999) and 

considering that these values are in agreement with the few data reported in the literature (Sisson, 1994). 

As previously described for H2O, F and Cl contents calculation, amphiboles are residual after 

crystallization of clinopyroxene and olivine. In order to have the Sc and V parental liquid composition, 

the contribution of olivine and clinopyroxene was subtracted according to their modal proportions in the 

rock. Fig. 137 reports the Sc/V ratios of calculated primary melts for Precambrian, Phanerozoic arc-

related and amphibole megacrysts from alkali lavas. 
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Figure 137 - the Sc/V ratios of calculated primary melts of Precambrian, Phanerozoic arc-related and amphibole 

megacrysts from alkali lavas. 

 

 

 The Archean and early Proterozoic calculated melts are characterized by relatively homogeneous 

Sc/V ratios, except for the Australian komatiite of Mt. Clifford and the Canadian Fe-picrite of Boston 

Creek that have exceptionally low Sc/V ratios (0.04-0.10 Sc/V). Sc/V ratios of Archean and early 

Proterozoic melts are almost comparable with those of amphibole megacrysts from alkali lavas (Sc/V = 

0.15), thus suggesting that the oxygen fugacity conditions of the mantle source in the Archean and early 

Proterozoic were similar to those of alkaline lavas during Phanerozoic. Noteworthy is that for similar 

geodynamic settings amphiboles of the present study do not show any significant variation in the oxygen 

fugacity conditions from Archean to Phanerozoic. The lower Sc/V ratios characterising Archean and 

early Proterozoic amphiboles with respect to Phanerozoic arc-related melts is a further evidence that in 

the Archean and early Proterozoic there is no evidence of a subduction-related component in the source 

of mafic melts (at least those having amphibole as a late crystallising mineral).  
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5. SUMMARY AND CONCLUSIONS  
 

 Planet Earth since its formation underwent a complex evolution that progressively changed its 

original composition. All the early differentiation events left an indelible mark on the Archean Earth’s 

mantle. However, our knowledge on the Archean mantle composition is still fragmentary arising a series 

of problems spanning from the effective chondritic composition of the Earth to how volatile elements 

were added to the Earth and how their deep cycle evolved through time giving origin to life. This thesis 

has explored the potential of a novel approach in deciphering the Archean mantle geochemical signature 

that consists in deriving the geochemical fingerprint of the Archean mantle from amphibole of Archean 

igneous ultramafic rocks. The project aimed to explore the suitability of amphibole to track secular 

changes in composition and oxidation state of the Archean mantle and in particular in the volatile 

content. 

The oldest samples found with igneous amphibole are Late Archean komatiites (c.a. 2.7 Ga) from 

the Agnew-Wiluna belt in Western Australia and from the Abitibi greenstone belt in Canada. Other 

Proterozoic amphibole-bearing ultramafic samples considered in the thesis derive from different units 

of the 1.9 Ga Pechenga Complex in Russia. The Archean and Early Proterozoic amphiboles have 

petrographic and textural features that closely resemble those of igneous cumulates (hornblendites) from 

Phanerozoic arc settings that were thus considered for comparison. Major and trace element composition 

of Archean and Early Proterozoic amphibole, especially from the Fe-picrites, is close to that of 

Phanerozoic amphibole megacrysts of alkaline lavas. For this reason, a series of amphibole megacrysts 

from southwest USA (Hoover Dam and Dish Hill) were also considered for comparison. 

In the Archean and Early Proterozoic samples at first the origin of amphibole was constrained. 

The geobarometric calculations reveal large uncertainty on crystallisation pressures. The Al-in 

amphibole geobarometric calculations reveal a crystallisation P for amphibole > 3 kbar (at depth > 9.9 

km, estimates using a geobarometric gradient of 3.3 km/1 kbar; Hagemann and Brown, 1996). For few 

localities, these P estimates are confirmed also by the application of the geobarometer of Putirka (2016), 

thus suggesting their reliability. Others localities yield negative pressure estimates pointing to very low 

P crystallization conditions of amphibole.  

In order to understand the significance of amphibole in rocks that should be virtually anhydrous, 

the equilibrium between amphibole and primary clinopyroxene was tested using a textural and 

geochemical approach based on the Fe-Mg and REE partitioning. The amph-bearing rock from the 

Abitibi Greenstone Belt are those in which amphibole is apparently most far from equilibrium with the 

associated clinopyroxene. In the amph-bearing rock from the Pechenga Complex (Pilgüjarvi and 



 

 

 

200 

200 

Kammikivi sills) amphibole and clinopyroxene are instead very close to equilibrium conditions. 

Amphibole crystallisation in most of the studied rocks seems to occur from a more differentiated melt, 

i.e. with low Mg-number and enriched in REE (LREE over HREE in particular). These evidences of 

disequilibrium between amphibole and clinopyroxene suggests that amphibole did not crystallised “on 

site” from the same melt of the clinopyroxene. Two different scenarios were proposed to explain this 

disequilibrium: i) amphibole and clinopyroxene have the same parental liquid that evolved in closed 

system becoming rich in water by fractional crystallisation of anhydrous phases until the stability of 

amphibole is reached. ii) H2O-rich melts have percolated the cumulate pile reacting with clinopyroxene 

and inducing amphibole crystallisation. 

 In order to constrain which of these hypotheses are the most reliable, a model of fractional 

crystallisation was carried out considering the bulk compositions of the studied rocks and evolving the 

melt by crystallisation of the early cumulus minerals (olivine, orthopyroxene and clinopyroxene). The 

crystallisation model shows that the measured amphibole REE composition can be obtained in all 

localities (with the exception for Canada samples) by differentiation of the primary melt by fractional 

crystallisation of the early cumulus minerals, thus implying that a completely external melt is not 

required. For the Canadian localities, the model fails to reproduce the strong LREE enrichment and a 

LREE exotic component may be taken into account. My conclusion is that amphibole in the Archean 

and Early Proterozoic rocks crystallized from a melt likely evolved by fractional crystallisation from the 

primary melt. The disequilibrium between amphibole and clinopyroxene highlights that amphibole 

crystallisation likely occurred during melt migration within the cumulate pile. Other evidences denote 

that fractional crystallisation is however not the only differentiation process recorded by amphibole. The 

distribution of the transition metals in amphibole and clinopyroxene supports the hypothesis that 

amphibole crystallisation follows a melt/rock reaction process between a primary assemblage (likely 

olivine + magnetite/ilmenite + clinopyroxene) and a melt (likely more evolved) that promoted the partial 

reabsorption of the primocrystic phases and induced the mobilisation of Ni (from olivine) and Cr (from 

pyroxene). 

 Another step towards the understanding of the significance of amphibole in rocks that should be 

virtually anhydrous is to constrain the origin of water. In particular, the origin of amphibole from the 

hydration of the cumulate pile (in particular of clinopyroxene) in response to the circulation of seawater-

derived fluids cannot be also a priori excluded. Proxies for this process are fluid-mobile elements such 

as Cl, F, Ba, B and Sr. The Archean and early Proterozoic amphiboles do not fall in any of the known 

magmatic and hydrothermal fields: they have Nb/La ratios falling in the magmatic amphiboles field 

whereas the Cl/F ratios are higher and comparable with those of hydrothermal amphiboles. The shift 
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toward high Cl/F ratio, at constant Nb/La ratios, can be however likely related to the F depletion induced 

in the melt by fractional crystallisation of amphibole itself. However, we cannot exclude that the high 

Cl/F ratios is a primary feature of the mantle sources. The Archean and early Proterozoic amphiboles 

are also Sr-enriched and, generally, B-depleted. All these features thus suggest that a contribution of 

seawater-derived fluid is unlikely. 

 The H2O concentrations in the Archean and early Proterozoic amphiboles are comparable to 

those of either subduction related or amphibole megacrysts of alkaline lavas. A common feature is also 

a not full occupancy of the O3O2- structural crystalline site of the amphibole, typical of all high 

temperature igneous amphiboles. To constrain the origin of water in amphibole the δD and δ18O were 

determined in situ by ion microprobe (e.g., SIMS technique). The range of δD values of the Archean 

and Paleoproterozoic amphiboles is between -99.5 ‰ and -129.8 ‰, that is slightly lower if compared 

to the mantle range but still consistent with a magmatic origin for water. This δD signature is thus also 

in contrast with an origin of amphibole by hydration of the cumulate minerals by seawater fluids, as 

proposed by their Cl/F ratios and Sr-B budgets. However, the hypothesis of a crustal contribution in the 

origin of the amphiboles, and in turn a non-mantellic origin of water, seems supported by the oxygen 

isotope signature of amphibole. All amphiboles show δ18O values lighter than those of the mantle with 

the sole exception of the olivine-magnetite peridotite from the Pechenga Complex (for which a small 

crustal input is thus not excluded). The light δ18O values of amphiboles in Archean and early Proterozoic 

rocks could be ascribed to the interaction of the amphibole parental melts with recycled altered oceanic 

materials, which are the most suitable input of seawater-like geochemical anomalies into the mantle 

during time. Nevertheless, this is unlikely because fluid-mobile elements and hydrogen isotopes have 

already suggested that seawater apparently was not involved in the petrogenesis of the studied 

amphiboles. Furthermore, oxygen isotope do not show any correlation with the seawater proxies (e.g., 

B, Cl). All these geochemical evidences pointed out that the light δ18O signature of most of the Archean 

and Paleoproterozoic amphiboles is likely a primary feature of the mantle source. 

 All studied amphiboles are in equilibrium with melts resembling the alkaline affinity of the 

primary melt that has been suggested in the literature for the different igneous complexes. The 

incompatible trace element pattern parallels at higher values that of modern OIB (with respect to MORB 

and IAB) even if display negative Sr and Ti anomalies. This higher overall incompatible trace element 

values with respect present day OIB can be easily interpreted as the result of melt differentiation prior 

the crystallisation of amphibole. Sr and Ti anomalies are likely related to the crystallisation of mineral 

phases with a high compatibility for Sr and Ti such as amphibole itself or phlogopite.  
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 A main conclusion of this thesis based on the comparison of the water content in primary melts 

from Archean-early Proterozoic amphiboles and present-day OIB, MORB and IAB is that the Archean 

mantle source of the komatiites had a much higher water content than that characterizing present day 

OIB. This is in agreement with the finding that the high-pressure polymorphs of olivine could have 

exceptionally high concentrations of H2O and F, (and possibly Cl) thus representing a good volatile-

reservoir in the deep mantle. Conclusions about tholeiites are more problematic. The fractionated trace 

element pattern of these melts, paralleling that of OIB, suggests that the mantle source was relatively 

enriched in incompatible elements even if the water content is low and similar to that of present-day N-

MORB. These contrasting features may reflect local heterogeneities of the mantle or different depths 

(shallower) at which partial melting has occurred. The early Proterozoic Fe-picrites yield an 

incompatible trace element patterns resembling that of modern OIB but with highly variable water 

contents suggesting a large heterogeneity in the water composition of the mantle source. Heterogeneity 

of the mantle through the Earth’s history was also observed for the Nb/Ta signature. Some of the 

calculated melts (since early Proterozoic) show an enriched Nb/Ta signature that is independent from 

space (geological setting) and time and that was interpreted as a primary feature of the different mantle 

sources. The observed heterogeneous Nb/Ta signature of the Earth’s mantle was interpreted as related 

to the addition of extra-terrestrial material after the mantle-core equilibration and prior 4.4 Ga and to a 

not complete equilibration of these domains during the Earth’s evolution. 

 I documented the occurrence in the Archean and Early Proterozoic of mantle domains producing 

melts with the trace element signature close to modern OIB but enriched in volatile components, 

especially in H2O.  This volatile element enrichment of the mantle was likely a deep signature and 

unrelated to subduction processes as known today. I also documented a Nb/Ta extra-terrestrial signature 

for some mantle domains and I do not exclude that these features are mutually related. Results of this 

thesis are fragmentary and still incomplete but suggests that the Earth’s mantle still possess domains that 

escaped a complete equilibration or with the core or with the rest of the mantlein case of an extra-

terrestrial origin and are thus records of the Early Earth history.   

 Amphibole, given its highly versatile structure, has been demonstrated to be a very important 

source of information about the equilibrium melts and in turn on mantle source. 
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Table 3 - Electron microprobe analyses of clinopyroxene of the  

               sample T-2 (Theo's Flow – Abitibi greenstone belt, Canada).

SiO2 53.40 53.35 54.02

TiO2 0.46 0.35 0.27

Al2O3 2.23 1.65 1.56

Cr2O3 0.47 0.96 1.12

Fe2O3 0.00 0.00 0.00

FeO 6.82 6.01 5.34

MnO 0.17 0.22 0.14

NiO 0.05 0.09 0.13

MgO 16.09 16.95 17.15

CaO 20.87 20.44 21.16

Na2O 0.30 0.27 0.29

K2O 0.00 0.00 0.00

Total 100.87 100.29 101.19

Si 1.950 1.953 1.956

Ti 0.013 0.010 0.007

Al 0.096 0.071 0.067

Cr 0.014 0.028 0.032

Fe
3+ 0.000 0.000 0.000

Fe
2+ 0.208 0.184 0.162

Mn 0.005 0.007 0.004

Ni 0.001 0.003 0.004

Mg 0.876 0.925 0.926

Ca 0.816 0.802 0.821

Na 0.021 0.019 0.021

K 0.000 0.000 0.000

Wollastonite 0.39 0.38 0.39

Enstatite 0.44 0.46 0.47

Ferrosilite 0.10 0.09 0.08

Pyroxmangite 0.00 0.00 0.00

Acmite 0.00 0.00 0.00

Jadeite 0.02 0.02 0.02

xMgonM1 0.75 0.78 0.80

xMgonM2 0.13 0.14 0.13

xMgFe(II+) 0.81 0.83 0.85

xMgFe(tot) 0.81 0.83 0.85

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Clinopyroxene
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Table 5 - Electron microprobe analyses of clinopyroxene of the sample B-5 (Boston Creek – Abitibi greenstone belt,

               Canada).

SiO2 52.60 52.73 53.54 53.65 53.82 54.06 53.91 53.64

TiO2 0.54 0.50 0.34 0.35 0.27 0.27 0.36 0.30

Al2O3 1.75 1.51 1.13 1.19 1.14 0.91 1.19 0.94

Cr2O3 0.76 0.75 0.71 0.90 0.81 0.74 0.87 0.72

Fe2O3 2.17 1.73 0.79 0.35 0.54 0.30 0.00 1.47

FeO 4.27 4.29 5.15 5.34 5.18 5.25 5.66 4.35

MnO 0.12 0.11 0.07 0.12 0.17 0.13 0.09 0.07

NiO 0.02 0.00 0.05 0.01 0.00 0.00 0.00 0.08

MgO 15.19 15.13 15.56 15.77 15.86 15.89 15.70 15.98

CaO 23.22 23.22 23.11 22.91 23.02 23.19 23.06 23.15

Na2O 0.46 0.51 0.37 0.33 0.32 0.32 0.31 0.38

K2O 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Total 101.10 100.49 100.82 100.93 101.14 101.06 101.15 101.08

Si 1.923 1.937 1.958 1.959 1.960 1.970 1.964 1.955

Ti 0.015 0.014 0.009 0.010 0.007 0.008 0.010 0.008

Al 0.075 0.065 0.049 0.051 0.049 0.039 0.051 0.040

Cr 0.022 0.022 0.020 0.026 0.024 0.021 0.025 0.021

Fe3+ 0.060 0.048 0.022 0.010 0.015 0.008 0.000 0.040

Fe2+ 0.131 0.132 0.157 0.163 0.158 0.160 0.172 0.133

Mn 0.004 0.003 0.002 0.004 0.005 0.004 0.003 0.002

Ni 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.002

Mg 0.828 0.828 0.848 0.858 0.861 0.863 0.853 0.868

Ca 0.910 0.914 0.906 0.896 0.898 0.905 0.900 0.904

Na 0.032 0.036 0.026 0.024 0.023 0.023 0.022 0.027

K 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Wollastonite 0.43 0.43 0.44 0.43 0.43 0.44 0.44 0.44

Enstatite 0.41 0.41 0.43 0.43 0.43 0.43 0.43 0.44

Ferrosilite 0.07 0.07 0.08 0.08 0.08 0.08 0.09 0.07

Pyroxmangite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acmite 0.03 0.04 0.02 0.01 0.02 0.01 0.00 0.03

Jadeite 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.00

xMgonM1 0.78 0.79 0.79 0.79 0.80 0.81 0.79 0.81

xMgonM2 0.05 0.04 0.06 0.06 0.06 0.06 0.06 0.06

xMgFe(II+) 0.86 0.86 0.84 0.84 0.85 0.84 0.83 0.87

xMgFe(tot) 0.81 0.82 0.83 0.83 0.83 0.84 0.83 0.83

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

 

Table 6 - Electron microprobe analyses of brown amphibole of the sample B-5 

               (Boston Creek – Abitibi greenstone belt, Canada).

SiO2 41.75 41.65 41.78 41.45 40.85 41.18 41.62

TiO2 3.83 3.51 3.13 3.74 3.68 3.98 3.49

Al2O3 11.47 11.64 11.56 11.97 12.26 12.26 11.58

Cr2O3 0.00 0.06 0.02 0.03 0.00 0.02 0.00

FeOtot 12.06 12.12 12.67 12.16 12.39 12.06 11.56

MnO 0.12 0.19 0.16 0.12 0.13 0.08 0.05

NiO 0.08 0.13 0.07 0.04 0.00 0.09 0.05

MgO 12.66 13.11 12.69 12.92 12.75 12.73 13.38

CaO 11.59 11.49 11.24 11.71 11.77 11.81 11.68

Na2O 3.27 3.26 3.41 3.47 3.10 3.29 3.33

K2O 0.38 0.36 0.42 0.43 0.38 0.42 0.43

Cl 0.14 0.14 0.14 0.14 0.14 0.14 0.14

O=Cl

Total 97.21 97.52 97.15 98.04 97.32 97.92 97.17

Si 6.216 6.186 6.238 6.133 6.091 6.097 6.190

Ti 0.429 0.392 0.352 0.416 0.413 0.443 0.390

Al 2.013 2.038 2.034 2.087 2.155 2.139 2.030

Cr 0.000 0.007 0.003 0.003 0.001 0.003 0.000

Fe
2+ 1.502 1.505 1.582 1.505 1.545 1.493 1.438

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.015 0.024 0.021 0.015 0.017 0.010 0.007

Ni 0.010 0.015 0.008 0.005 0.000 0.011 0.006

Mg 2.807 2.900 2.822 2.847 2.832 2.807 2.963

Ca 1.849 1.829 1.798 1.856 1.881 1.874 1.861

Na 0.944 0.939 0.987 0.995 0.896 0.944 0.960

K 0.072 0.069 0.080 0.082 0.072 0.079 0.082

cations 15.857 15.903 15.925 15.944 15.902 15.900 15.926

Mg/(Mg+FeTOT) 0.65 0.66 0.64 0.65 0.65 0.65 0.67

(Na+K)A 0.87 0.90 0.93 0.94 0.90 0.90 0.93

Amphibole



 

 

 

 

 

 

 

 

 

 

 

Continued Table 6

SiO2 41.02 40.21 40.70 40.98 41.09 39.77 40.85

TiO2 3.79 4.59 4.39 3.93 3.70 3.42 3.95

Al2O3 12.49 12.32 12.52 12.14 12.32 17.32 12.86

Cr2O3 0.00 0.00 0.01 0.00 0.02 0.00 0.04

FeOtot 12.00 11.99 12.52 12.21 12.24 12.23 12.10

MnO 0.14 0.09 0.08 0.12 0.13 0.13 0.15

NiO 0.07 0.09 0.10 0.00 0.03 0.03 0.11

MgO 12.82 12.53 12.38 12.45 12.61 11.68 12.39

CaO 11.79 11.78 11.43 11.65 11.80 11.05 11.49

Na2O 3.23 3.22 3.41 3.52 3.10 3.38 3.41

K2O 0.42 0.44 0.41 0.39 0.43 0.41 0.40

Cl 0.14 0.14 0.14 0.14 0.14 0.14 0.14

O=Cl

Total 97.76 97.27 97.95 97.39 97.46 99.42 97.75

Si 6.081 6.006 6.039 6.107 6.112 5.773 6.058

Ti 0.423 0.516 0.490 0.441 0.414 0.373 0.441

Al 2.182 2.169 2.189 2.132 2.160 2.963 2.248

Cr 0.000 0.000 0.001 0.000 0.002 0.000 0.004

Fe
2+ 1.488 1.498 1.553 1.522 1.523 1.485 1.501

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.017 0.012 0.011 0.015 0.017 0.016 0.019

Ni 0.008 0.011 0.012 0.000 0.003 0.003 0.013

Mg 2.830 2.787 2.736 2.763 2.794 2.525 2.737

Ca 1.873 1.885 1.817 1.860 1.881 1.719 1.826

Na 0.928 0.933 0.981 1.017 0.894 0.951 0.981

K 0.079 0.085 0.077 0.074 0.081 0.077 0.077

cations 15.909 15.902 15.906 15.932 15.880 15.886 15.903

Mg/(Mg+FeTOT) 0.66 0.65 0.64 0.64 0.65 0.63 0.65

(Na+K)A 0.91 0.90 0.91 0.95 0.88 0.89 0.90

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.
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Table 7 - Electron microprobe analyses of olivine of the sample GR-1 (Ghost Range – Abitibi greenstone belt, Canada).

SiO2 40.11 40.04 40.08 40.28 40.41 40.33 39.76 40.09 40.32

TiO2 0.02 0.05 0.01 0.02 0.01 0.02 0.09 0.00 0.00

Al2O3 0.01 0.04 0.00 0.02 0.00 0.05 0.05 0.00 0.01

Cr2O3 0.00 0.05 0.04 0.01 0.03 0.00 0.00 0.00 0.00

FeO 16.53 16.43 16.72 16.42 16.18 16.61 16.77 17.03 17.01

MnO 0.24 0.28 0.25 0.30 0.30 0.28 0.31 0.25 0.23

NiO 0.29 0.24 0.29 0.26 0.27 0.36 0.35 0.35 0.30

MgO 43.83 43.72 43.97 44.76 43.96 43.99 44.17 43.99 43.70

CaO 0.05 0.06 0.06 0.07 0.04 0.07 0.07 0.05 0.08

Na2O 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00

K2O 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.00

Total 101.10 100.92 101.43 102.15 101.19 101.75 101.58 101.78 101.66

Si 1.004 1.005 1.001 0.996 1.010 1.004 0.991 0.998 1.006

Ti 0.000 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.000

Al 0.000 0.001 0.000 0.001 0.000 0.002 0.001 0.000 0.000

Cr 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000

Fe
2+ 0.346 0.345 0.349 0.340 0.338 0.346 0.350 0.355 0.355

Mn 0.005 0.006 0.005 0.006 0.006 0.006 0.007 0.005 0.005

Ni 0.006 0.005 0.006 0.005 0.006 0.007 0.007 0.007 0.006

Mg 1.636 1.635 1.636 1.650 1.638 1.632 1.641 1.633 1.625

Ca 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.001 0.002

Na 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000

K 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000

Forsterite 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Fayalite 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.18 0.18

Tephroite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Monticellit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kirschstein 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Glaukocroit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ni-Olivine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

xMg 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82

xFe 0.17 0.17 0.18 0.17 0.17 0.17 0.17 0.18 0.18

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Olivine
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Continued Table 10

SiO2 44.38 45.07 44.69 45.07 45.03 45.03 43.83 44.83

TiO2 4.53 4.22 2.67 4.25 2.83 4.15 3.59 4.75

Al2O3 9.03 8.64 9.24 8.17 8.82 8.12 8.53 8.17

Cr2O3 1.42 1.52 1.43 1.49 1.50 1.45 1.53 0.90

FeOtot 6.79 6.98 7.39 6.93 7.39 7.00 7.28 7.38

MnO 0.07 0.06 0.10 0.09 0.11 0.07 0.08 0.10

NiO 0.04 0.08 0.08 0.06 0.06 0.12 0.06 0.14

MgO 16.02 16.47 16.47 16.38 16.15 16.23 15.82 16.19

CaO 11.38 11.45 11.89 11.34 11.65 11.40 11.60 11.56

Na2O 2.94 2.87 2.75 2.74 2.68 2.76 2.81 2.81

K2O 0.50 0.54 0.79 0.78 0.73 0.79 0.77 0.75

Cl 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40

O=Cl

Total 97.09 97.91 97.50 97.29 96.95 97.12 95.91 97.58

Si 6.452 6.501 6.498 6.546 6.571 6.557 6.488 6.510

Ti 0.495 0.458 0.292 0.464 0.311 0.455 0.400 0.519

Al 1.547 1.469 1.583 1.399 1.517 1.393 1.488 1.398

Cr 0.163 0.173 0.164 0.171 0.173 0.167 0.179 0.104

Fe
2+ 0.826 0.842 0.899 0.842 0.902 0.852 0.901 0.896

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.009 0.008 0.013 0.010 0.013 0.008 0.010 0.012

Ni 0.004 0.010 0.010 0.006 0.007 0.014 0.008 0.017

Mg 3.469 3.538 3.566 3.543 3.510 3.520 3.488 3.501

Ca 1.773 1.770 1.852 1.765 1.822 1.779 1.840 1.799

Na 0.829 0.803 0.775 0.772 0.758 0.779 0.807 0.791

K 0.092 0.099 0.146 0.145 0.135 0.147 0.146 0.138

cations 15.658 15.671 15.797 15.663 15.720 15.671 15.754 15.685

Mg/(Mg+FeTOT) 0.81 0.81 0.80 0.81 0.80 0.81 0.79 0.80

(Na+K)A 0.69 0.70 0.80 0.72 0.72 0.72 0.79 0.78

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole



 

 

 

 

Table 11  - Electron microprobe analyses of amphibole of the sample GR-2 (Ghost Range – Abitibi greenstone belt, Canada).

SiO2 44.35 44.02 43.46 43.86 43.31 42.31 45.06 44.69 45.11

TiO2 4.33 4.08 4.63 4.55 5.10 4.42 4.47 4.47 3.04

Al2O3 9.12 8.78 9.55 9.71 10.52 12.33 8.70 8.72 8.65

Cr2O3 1.46 1.51 1.02 1.04 0.16 0.37 1.53 1.47 1.27

FeOtot 6.73 6.78 6.81 6.74 7.53 7.84 7.02 7.08 6.95

MnO 0.07 0.05 0.13 0.04 0.11 0.10 0.11 0.05 0.04

NiO 0.02 0.04 0.03 0.05 0.04 0.09 0.08 0.07 0.13

MgO 16.13 16.01 15.89 16.15 15.63 15.39 15.99 16.40 16.54

CaO 11.18 11.26 11.72 11.59 11.57 11.29 11.39 11.27 11.41

Na2O 3.09 3.10 3.10 3.20 3.07 3.29 3.23 3.14 2.96

K2O 0.55 0.62 0.55 0.55 0.22 0.29 0.61 0.65 0.63

Cl 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

O=Cl

Total 97.03 96.26 96.89 97.48 97.26 97.71 98.20 98.00 96.74

Si 6.451 6.467 6.351 6.361 6.293 6.136 6.493 6.455 6.580

Ti 0.474 0.451 0.509 0.496 0.557 0.482 0.485 0.486 0.334

Al 1.564 1.520 1.645 1.660 1.802 2.107 1.478 1.484 1.487

Cr 0.168 0.175 0.118 0.119 0.018 0.042 0.174 0.168 0.147

Fe
2+ 0.819 0.833 0.832 0.817 0.915 0.951 0.846 0.855 0.848

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.009 0.006 0.016 0.005 0.014 0.012 0.014 0.006 0.005

Ni 0.002 0.005 0.003 0.006 0.004 0.010 0.009 0.008 0.016

Mg 3.494 3.503 3.458 3.488 3.382 3.324 3.432 3.528 3.593

Ca 1.742 1.773 1.835 1.801 1.801 1.754 1.759 1.744 1.783

Na 0.871 0.883 0.878 0.900 0.865 0.925 0.902 0.879 0.837

K 0.101 0.116 0.103 0.101 0.040 0.053 0.113 0.120 0.118

cations 15.696 15.734 15.750 15.754 15.692 15.796 15.704 15.733 15.747

Mg/(Mg+FeTOT) 0.81 0.81 0.81 0.81 0.79 0.78 0.80 0.80 0.81

(Na+K)A 0.72 0.77 0.82 0.80 0.71 0.80 0.77 0.79 0.75

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole
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Table 12 - Electron microprobe analyses of olivine of the sample Pilg 8 38 

                 (Pilgüjarvi sill – Pechenga Complex, Russia).

SiO2 38.79 39.11 38.91 38.99 39.74 39.28

TiO2 0.06 0.06 0.00 0.08 0.00 0.00

Al2O3 0.03 0.01 0.00 0.01 0.02 0.05

Cr2O3 0.00 0.00 0.04 0.03 0.01 0.03

FeO 20.12 20.16 20.99 20.79 20.46 21.26

MnO 0.37 0.20 0.32 0.26 0.21 0.21

NiO 0.10 0.19 0.09 0.04 0.11 0.15

MgO 41.78 41.97 40.53 41.51 40.81 41.18

CaO 0.20 0.16 0.18 0.12 0.16 0.17

Na2O 0.06 0.00 0.00 0.00 0.09 0.05

K2O 0.01 0.00 0.00 0.00 0.00 0.00

Total 101.52 101.86 101.07 101.83 101.61 102.38

Si 0.980 0.985 0.994 0.985 1.008 0.990

Ti 0.001 0.001 0.000 0.002 0.000 0.000

Al 0.001 0.000 0.000 0.000 0.001 0.002

Cr 0.000 0.000 0.001 0.001 0.000 0.001

Fe
2+ 0.425 0.425 0.448 0.439 0.434 0.448

Mn 0.008 0.004 0.007 0.006 0.004 0.004

Ni 0.002 0.004 0.002 0.001 0.002 0.003

Mg 1.574 1.576 1.543 1.563 1.542 1.546

Ca 0.005 0.004 0.005 0.003 0.004 0.005

Na 0.003 0.000 0.000 0.000 0.004 0.002

K 0.000 0.000 0.000 0.000 0.000 0.000

Forsterite 0.78 0.78 0.77 0.78 0.78 0.77

Fayalite 0.21 0.21 0.22 0.22 0.22 0.22

Tephroite 0.00 0.00 0.00 0.00 0.00 0.00

Monticellit 0.00 0.00 0.00 0.00 0.00 0.00

Kirschstein 0.00 0.00 0.00 0.00 0.00 0.00

Glaukocroit 0.00 0.00 0.00 0.00 0.00 0.00

Ni-Olivine 0.00 0.00 0.00 0.00 0.00 0.00

xMg 0.78 0.78 0.77 0.78 0.77 0.77

xFe 0.21 0.21 0.22 0.22 0.22 0.22

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Olivine



 

 

 

Table 13 - Electron microprobe analyses of clinopyroxene of the sample Pilg 8 38 

                 (Pilgüjarvi sill – Pechenga Complex, Russia).

SiO2 53.05 51.88 51.17 52.54 51.05

TiO2 1.06 0.93 1.34 1.24 1.57

Al2O3 2.24 2.31 3.54 2.39 3.49

Cr2O3 0.73 0.86 0.52 0.65 0.59

Fe2O3 0.00 1.16 0.69 0.21 0.00

FeO 5.68 4.63 5.29 5.49 5.68

MnO 0.08 0.12 0.15 0.17 0.06

NiO 0.01 0.00 0.00 0.01 0.00

MgO 15.98 16.00 14.96 15.73 14.75

CaO 22.01 21.99 22.17 22.16 22.00

Na2O 0.30 0.31 0.41 0.40 0.42

K2O 0.00 0.00 0.00 0.00 0.00

Total 101.14 100.18 100.24 100.98 99.62

Si 1.931 1.907 1.883 1.917 1.891

Ti 0.029 0.026 0.037 0.034 0.044

Al 0.096 0.100 0.154 0.103 0.152

Cr 0.021 0.025 0.015 0.019 0.017

Fe
3+ 0.000 0.032 0.019 0.006 0.000

Fe
2+ 0.173 0.142 0.163 0.168 0.176

Mn 0.003 0.004 0.005 0.005 0.002

Ni 0.000 0.000 0.000 0.000 0.000

Mg 0.867 0.877 0.821 0.855 0.814

Ca 0.859 0.866 0.874 0.866 0.873

Na 0.021 0.022 0.029 0.028 0.030

K 0.000 0.000 0.000 0.000 0.000

Wollastonite 0.41 0.40 0.40 0.41 0.40

Enstatite 0.43 0.44 0.41 0.43 0.41

Ferrosilite 0.09 0.07 0.08 0.08 0.09

Pyroxmangite 0.00 0.00 0.00 0.00 0.00

Acmite 0.00 0.02 0.02 0.01 0.00

Jadeite 0.02 0.00 0.01 0.02 0.03

xMgonM1 0.77 0.78 0.74 0.77 0.74

xMgonM2 0.10 0.09 0.08 0.08 0.08

xMgFe(II+) 0.83 0.86 0.83 0.84 0.82

xMgFe(tot) 0.83 0.83 0.82 0.83 0.82

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

 

Table 14 - Electron microprobe analyses of brown amphibole of the sample Pilg 8 38 

                 (Pilgüjarvi sill – Pechenga Complex, Russia).

SiO2 45.00 42.05 39.38 39.23 38.24

TiO2 3.32 4.99 5.25 5.57 5.40

Al2O3 8.31 10.64 12.25 12.57 12.57

Cr2O3 0.55 0.49 0.09 0.06 0.04

FeOtot 9.56 8.14 10.16 9.86 10.54

MnO 0.09 0.08 0.14 0.09 0.13

NiO 0.24 0.17 0.16 0.15 0.18

MgO 15.35 14.89 13.72 13.81 13.38

CaO 11.65 12.38 12.40 12.56 12.50

Na2O 3.14 3.01 2.84 2.76 2.78

K2O 0.38 0.70 0.73 0.73 0.74

Cl 0.00 0.00 0.00 0.00 0.00

O=Cl

Total 97.58 97.53 97.11 97.39 96.51

Si 6.583 6.169 5.878 5.831 5.769

Ti 0.366 0.550 0.589 0.623 0.613

Al 1.432 1.839 2.154 2.201 2.235

Cr 0.063 0.057 0.010 0.007 0.005

Fe
2+ 1.169 0.998 1.268 1.226 1.330

Fe
3+ 0.000 0.000 0.000 0.000 0.000

Mn 0.012 0.010 0.017 0.012 0.017

Ni 0.028 0.021 0.019 0.018 0.022

Mg 3.344 3.253 3.050 3.057 3.007

Ca 1.826 1.946 1.984 2.000 2.021

Na 0.891 0.855 0.823 0.797 0.813

K 0.070 0.131 0.138 0.138 0.143

cations 15.784 15.826 15.931 15.910 15.975

Mg/(Mg+FeTOT) 0.74 0.77 0.71 0.71 0.69

(Na+K)A 0.79 0.93 0.94 0.94 0.96

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Amphibole



 

 

 

Table 15 - Electron microprobe analyses of olivine of the Table 16 - Electron microprobe analyses of 

                 sample 106-44 (Pilgüjarvi sill – Pechenga                  clinopyroxene of the sample 106-44

                 Complex, Russia).                  (Pilgüjarvi sill – Pechenga Complex, Russia).

SiO2 39.14 38.91 38.75 SiO2 48.34 51.62 50.29

TiO2 0.03 0.07 0.06 TiO2 2.41 1.20 1.43

Al2O3 0.00 0.01 0.04 Al2O3 5.30 1.90 3.05

Cr2O3 0.05 0.06 0.05 Cr2O3 0.65 0.73 0.94

FeO 19.26 19.71 18.88 Fe2O3 1.43 0.60 1.71

MnO 0.27 0.31 0.23 FeO 4.22 4.66 4.03

NiO 0.24 0.36 0.20 MnO 0.11 0.13 0.02

MgO 40.90 41.11 41.33 NiO 0.08 0.06 0.08

CaO 0.25 0.22 0.27 MgO 13.92 15.75 15.11

Na2O 0.05 0.06 0.06 CaO 22.22 21.93 22.14

K2O 0.00 0.00 0.00 Na2O 0.49 0.38 0.43

Total 100.20 100.82 99.88 K2O 0.01 0.01 0.00

Total 99.17 98.97 99.23

Si 1.003 0.992 0.993

Ti 0.001 0.001 0.001 Si 1.804 1.920 1.871

Al 0.000 0.000 0.001 Ti 0.068 0.034 0.040

Cr 0.001 0.001 0.001 Al 0.233 0.083 0.134

Fe
2+ 0.413 0.420 0.405 Cr 0.019 0.022 0.028

Mn 0.006 0.007 0.005 Fe
3+ 0.040 0.017 0.048

Ni 0.005 0.007 0.004 Fe
2+ 0.132 0.145 0.125

Mg 1.562 1.562 1.579 Mn 0.003 0.004 0.001

Ca 0.007 0.006 0.008 Ni 0.002 0.002 0.002

Na 0.003 0.003 0.003 Mg 0.774 0.873 0.838

K 0.000 0.000 0.000 Ca 0.888 0.874 0.883

Na 0.035 0.027 0.031

Forsterite 0.78 0.78 0.79 K 0.000 0.001 0.000

Fayalite 0.21 0.21 0.20

Tephroite 0.00 0.00 0.00 Wollastonite 0.38 0.41 0.40

Monticellit 0.01 0.01 0.01 Enstatite 0.39 0.44 0.42

Kirschstein 0.00 0.00 0.00 Ferrosilite 0.07 0.07 0.06

Glaukocroit 0.00 0.00 0.00 Pyroxmangite 0.00 0.00 0.00

Ni-Olivine 0.00 0.00 0.00 Acmite 0.04 0.02 0.03

Jadeite 0.00 0.00 0.00

xMg 0.78 0.78 0.79

xFe 0.21 0.21 0.20 xMgonM1 0.71 0.79 0.76

xMgonM2 0.06 0.08 0.08

Note: Oxide values are in wt.%. xMgFe(II+) 0.86 0.86 0.87

All other values are calculated with normalization xMgFe(tot) 0.82 0.84 0.83

program Norm.

Note: Oxide values are in wt.%. All other values are 

calculated with normalization program Norm.

Olivine Clinopyroxene



 

 

 

Table 17 - Electron microprobe analyses of  brown amphibole of the sample 106-44 (Pilgüjarvi sill – Pechenga 

                 Complex, Russia).                

                 

SiO2 41.08 41.85 41.26 41.23 42.04 40.66 41.52

TiO2 5.78 5.42 5.92 5.88 5.02 5.65 5.70

Al2O3 12.30 11.95 12.28 11.96 11.59 12.63 12.64

Cr2O3 0.57 0.46 0.40 0.54 0.31 0.64 0.42

FeOtot 8.17 7.87 7.92 8.04 8.42 8.18 8.13

MnO 0.07 0.09 0.07 0.09 0.07 0.11 0.06

NiO 0.11 0.09 0.05 0.00 0.00 0.02 0.18

MgO 14.09 14.46 14.17 14.10 14.41 14.15 14.02

CaO 11.80 11.78 11.76 11.71 11.51 11.75 11.68

Na2O 3.10 2.78 3.10 3.05 2.55 2.88 2.99

K2O 0.58 0.56 0.56 0.54 0.65 0.58 0.58

Cl 0.08 0.08 0.08 0.08 0.08 0.08 0.08

O=Cl

Total 97.66 97.31 97.49 97.14 96.57 97.25 97.91

Si 6.008 6.113 6.029 6.050 6.188 5.969 6.040

Ti 0.636 0.595 0.651 0.649 0.556 0.624 0.624

Al 2.120 2.057 2.115 2.069 2.010 2.185 2.167

Cr 0.066 0.053 0.047 0.062 0.036 0.074 0.049

Fe
2+ 0.999 0.961 0.968 0.987 1.036 1.004 0.989

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.009 0.011 0.009 0.011 0.009 0.014 0.007

Ni 0.013 0.011 0.006 0.000 0.000 0.002 0.021

Mg 3.069 3.146 3.084 3.082 3.159 3.093 3.037

Ca 1.849 1.844 1.841 1.841 1.815 1.848 1.820

Na 0.879 0.787 0.878 0.868 0.728 0.820 0.843

K 0.109 0.104 0.104 0.102 0.122 0.109 0.107

cations 15.757 15.682 15.731 15.720 15.658 15.742 15.704

Mg/(Mg+FeTOT) 0.75 0.77 0.76 0.76 0.75 0.75 0.75

(Na+K)A 0.84 0.73 0.82 0.81 0.66 0.78 0.77

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Amphibole



 

 
 

Table 18 - Electron microprobe analyses of 

                 clinopyroxene of the sample 116-6

                 (Pilgüjarvi sill – Pechenga Complex,

                 Russia).

SiO2 51.42 49.23

TiO2 1.23 2.07

Al2O3 2.73 4.38

Cr2O3 0.02 0.01

Fe2O3 1.30 2.28

FeO 6.88 6.53

MnO 0.13 0.16

NiO 0.00 0.04

MgO 14.69 13.49

CaO 21.69 21.80

Na2O 0.35 0.43

K2O 0.00 0.01

Total 100.44 100.43

Si 1.900 1.830

Ti 0.034 0.058

Al 0.119 0.192

Cr 0.001 0.000

Fe
3+ 0.036 0.064

Fe
2+ 0.213 0.203

Mn 0.004 0.005

Ni 0.000 0.001

Mg 0.809 0.747

Ca 0.859 0.868

Na 0.025 0.031

K 0.000 0.001

Wollastonite 0.40 0.38

Enstatite 0.41 0.37

Ferrosilite 0.11 0.10

Pyroxmangite 0.00 0.00

Acmite 0.03 0.03

Jadeite 0.00 0.00

xMgonM1 0.72 0.67

xMgonM2 0.09 0.08

xMgFe(II+) 0.79 0.79

xMgFe(tot) 0.77 0.74

Note: Oxide values are in wt.%. 

All other values are calculated with 

normalization program Norm.

Clinopyroxene



 

 

 

Table 19 - Electron microprobe analyses of  brown amphibole of the sample 116-6 (Pilgüjarvi sill  

                 - Pechenga Complex, Russia).                

SiO2 41.35 42.28 40.69 41.71 42.40 41.74

TiO2 5.65 5.22 5.28 5.37 4.98 5.01

Al2O3 11.61 11.38 11.75 11.76 11.35 12.13

Cr2O3 0.04 0.05 0.09 0.01 0.03 0.00

FeOtot 11.22 10.70 10.93 10.95 10.80 10.77

MnO 0.01 0.07 0.02 0.10 0.07 0.09

NiO 0.02 0.00 0.00 0.11 0.00 0.00

MgO 13.21 13.34 13.21 13.42 13.52 13.30

CaO 11.67 11.65 11.59 11.56 11.46 11.24

Na2O 3.05 3.05 3.02 3.05 3.17 3.20

K2O 0.98 0.93 0.93 0.99 0.96 0.79

Cl 0.00 0.00 0.00 0.00 0.00 0.00

O=Cl

Total 98.80 98.68 97.51 99.03 98.75 98.27

Si 6.060 6.174 6.039 6.087 6.188 6.115

Ti 0.623 0.573 0.589 0.590 0.547 0.552

Al 2.005 1.959 2.055 2.023 1.952 2.094

Cr 0.004 0.006 0.011 0.001 0.004 0.000

Fe
2+ 1.375 1.307 1.357 1.336 1.318 1.319

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.002 0.009 0.003 0.012 0.009 0.011

Ni 0.002 0.000 0.000 0.013 0.000 0.000

Mg 2.883 2.901 2.920 2.917 2.939 2.902

Ca 1.833 1.823 1.843 1.808 1.792 1.764

Na 0.867 0.864 0.869 0.863 0.897 0.909

K 0.182 0.174 0.176 0.184 0.180 0.148

cations 15.837 15.789 15.861 15.835 15.825 15.814

Mg/(Mg+FeTOT) 0.68 0.69 0.68 0.69 0.69 0.69

(Na+K)A 0.88 0.86 0.89 0.86 0.87 0.82

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Amphibole



 

 

 

Table 20 - Electron microprobe analyses of olivine of the sample 57-HV-28 

                 (Kammikivi sill – Pechenga Complex, Russia).

SiO2 39.68 39.45 39.65 39.61 39.64

TiO2 0.00 0.08 0.11 0.01 0.06

Al2O3 0.03 0.03 0.04 0.04 0.04

Cr2O3 0.04 0.02 0.01 0.01 0.06

FeO 17.37 18.17 17.68 17.09 17.63

MnO 0.29 0.25 0.25 0.29 0.28

NiO 0.38 0.31 0.35 0.42 0.45

MgO 43.13 42.16 42.34 42.92 42.85

CaO 0.25 0.17 0.25 0.31 0.22

Na2O 0.02 0.02 0.03 0.01 0.05

K2O 0.00 0.01 0.00 0.00 0.02

Total 101.2 100.67 100.71 100.71 101.3

Si 0.9968 1.0005 1.0038 0.9996 0.9964

Ti 0.0001 0.0016 0.0020 0.0002 0.0011

Al 0.0008 0.0009 0.0013 0.0012 0.0010

Cr 0.0008 0.0003 0.0001 0.0002 0.0011

Fe
2+ 0.3649 0.3854 0.3743 0.3607 0.3706

Mn 0.0062 0.0053 0.0054 0.0062 0.0060

Ni 0.0077 0.0063 0.0071 0.0085 0.0091

Mg 1.6150 1.5937 1.5976 1.6144 1.6054

Ca 0.0068 0.0047 0.0068 0.0083 0.0061

Na 0.0008 0.0011 0.0014 0.0006 0.0025

K 0.0000 0.0002 0.0001 0.0000 0.0006

Forsterite 0.807 0.799 0.802 0.808 0.804

Fayalite 0.182 0.193 0.188 0.181 0.186

Tephroite 0.003 0.003 0.003 0.003 0.003

Monticellit 0.006 0.004 0.006 0.007 0.005

Kirschstein 0.001 0.001 0.001 0.002 0.001

Glaukocroit 0.000 0.000 0.000 0.000 0.000

Ni-Olivine 0.004 0.003 0.004 0.004 0.005

xMg 0.806 0.797 0.800 0.807 0.801

xFe 0.182 0.193 0.188 0.180 0.185

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Olivine



 

  

Table 21 - Electron microprobe analyses of clinopyroxene of the sample 57-HV-28 

                 (Kammikivi sill – Pechenga Complex, Russia).

SiO2 47.64 50.96 50.82 49.07 49.95

TiO2 2.97 1.71 1.69 2.40 1.83

Al2O3 6.47 3.88 3.79 5.24 4.05

Cr2O3 0.57 0.46 1.00 0.70 0.89

Fe2O3 1.10 0.10 0.22 0.74 1.23

FeO 4.64 5.48 5.13 5.06 4.26

MnO 0.12 0.15 0.12 0.09 0.07

NiO 0.03 0.07 0.08 0.05 0.08

MgO 13.59 15.24 15.01 14.17 14.83

CaO 21.94 21.67 22.06 22.02 22.14

Na2O 0.53 0.40 0.41 0.47 0.46

K2O 0.02 0.00 0.01 0.00 0.01

Total 99.62 100.12 100.34 100.01 99.80

Si 1.771 1.875 1.869 1.815 1.848

Ti 0.083 0.047 0.047 0.067 0.051

Al 0.284 0.168 0.164 0.229 0.177

Cr 0.017 0.014 0.029 0.020 0.026

Fe
3+ 0.031 0.003 0.006 0.021 0.034

Fe
2+ 0.144 0.169 0.158 0.157 0.132

Mn 0.004 0.005 0.004 0.003 0.002

Ni 0.001 0.002 0.002 0.001 0.002

Mg 0.753 0.836 0.823 0.781 0.818

Ca 0.874 0.854 0.869 0.873 0.877

Na 0.038 0.028 0.029 0.034 0.033

K 0.001 0.000 0.001 0.000 0.000

Wollastonite 0.36 0.39 0.39 0.38 0.39

Enstatite 0.38 0.42 0.41 0.39 0.41

Ferrosilite 0.07 0.08 0.08 0.08 0.07

Pyroxmangite 0.00 0.00 0.00 0.00 0.00

Acmite 0.03 0.00 0.01 0.02 0.03

Jadeite 0.01 0.03 0.02 0.01 0.00

xMgonM1 0.68 0.74 0.74 0.71 0.74

xMgonM2 0.07 0.09 0.08 0.08 0.08

xMgFe(II+) 0.84 0.83 0.84 0.83 0.86

xMgFe(tot) 0.81 0.83 0.83 0.82 0.83

Note: Oxide values are in wt.%. 

All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

Table 22 - Electron microprobe analyses of brown amphibole of the sample 57-HV-28

                 (Kammikivi sill – Pechenga Complex, Russia).

SiO2 42.18 42.70 43.79 43.57 42.90 44.56

TiO2 5.50 5.78 4.92 5.09 5.62 4.43

Al2O3 10.66 10.95 10.00 10.43 10.63 9.02

Cr2O3 0.47 0.32 0.21 0.22 0.10 0.41

FeOtot 7.40 7.83 7.02 7.39 7.43 7.02

MnO 0.06 0.10 0.10 0.11 0.09 0.11

NiO 0.05 0.16 0.06 0.12 0.14 0.11

MgO 15.30 15.21 15.74 15.43 15.46 16.16

CaO 11.63 11.53 11.54 11.42 11.52 11.20

Na2O 3.27 2.99 3.13 3.19 3.00 3.20

K2O 0.79 0.79 0.75 0.79 0.77 1.00

Cl 0.09 0.09 0.09 0.09 0.09 0.09

O=Cl

Total 97.31 98.36 97.25 97.76 97.65 97.22

Si 6.170 6.177 6.366 6.315 6.232 6.483

Ti 0.605 0.629 0.538 0.555 0.614 0.485

Al 1.838 1.867 1.713 1.782 1.820 1.547

Cr 0.054 0.037 0.024 0.025 0.011 0.047

Fe
2+ 0.905 0.947 0.853 0.896 0.903 0.854

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.007 0.012 0.012 0.013 0.011 0.014

Ni 0.006 0.019 0.007 0.013 0.016 0.013

Mg 3.333 3.277 3.408 3.331 3.345 3.502

Ca 1.823 1.787 1.797 1.774 1.793 1.746

Na 0.927 0.839 0.882 0.897 0.845 0.903

K 0.147 0.146 0.139 0.147 0.142 0.186

cations 15.816 15.735 15.738 15.748 15.732 15.779

Mg/(Mg+FeTOT) 0.79 0.78 0.80 0.79 0.79 0.80

(Na+K)A 0.90 0.77 0.82 0.82 0.78 0.83

Amphibole



 

 

 

 

 

 

 

 

Continued Table 22

SiO2 43.58 43.81 41.01 43.16 42.45 42.06

TiO2 5.02 5.13 6.48 5.22 5.32 5.85

Al2O3 9.58 9.69 12.34 10.20 10.49 10.83

Cr2O3 0.14 0.06 0.41 0.41 0.23 0.27

FeOtot 7.12 7.24 7.82 7.32 7.42 7.40

MnO 0.06 0.13 0.09 0.08 0.08 0.06

NiO 0.22 0.12 0.11 0.09 0.10 0.07

MgO 15.84 16.02 14.09 15.46 15.63 15.08

CaO 11.31 11.29 11.78 11.33 11.60 11.55

Na2O 3.27 3.27 2.90 3.11 3.05 3.12

K2O 0.85 0.85 0.45 0.81 0.75 0.72

Cl 0.09 0.09 0.09 0.09 0.09 0.09

O=Cl

Total 96.98 97.61 97.48 97.19 97.13 97.02

Si 6.368 6.359 5.989 6.297 6.210 6.161

Ti 0.552 0.560 0.712 0.573 0.585 0.645

Al 1.650 1.658 2.124 1.754 1.809 1.870

Cr 0.016 0.007 0.048 0.047 0.027 0.032

Fe
2+ 0.870 0.879 0.955 0.893 0.908 0.907

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.007 0.016 0.011 0.010 0.010 0.008

Ni 0.026 0.014 0.013 0.011 0.012 0.008

Mg 3.447 3.463 3.065 3.359 3.405 3.290

Ca 1.771 1.756 1.843 1.771 1.818 1.813

Na 0.926 0.920 0.821 0.880 0.865 0.886

K 0.158 0.157 0.085 0.151 0.140 0.134

cations 15.790 15.788 15.666 15.745 15.790 15.753

Mg/(Mg+FeTOT) 0.80 0.80 0.76 0.79 0.79 0.78

(Na+K)A 0.86 0.83 0.75 0.80 0.82 0.83

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole



 

 

 

 

 

Table 23 - Electron microprobe analyses of olivine of the sample N-2  (Nyasyukka dike complex – Pechenga Complex,

                 Russia).

SiO2 37.92 37.89 37.48 37.85 39.25 38.13 38.25 38.29

TiO2 0.07 0 0.07 0.03 0.03 0.02 0.03 0.04

Al2O3 0.02 0 0 0.01 0.02 0 0 0

Cr2O3 0 0 0 0 0 0 0.02 0

FeO 30.53 29.08 34.11 29.24 24.95 30.35 28.95 27.08

MnO 0.51 0.49 0.6 0.43 0.31 0.43 0.47 0.35

NiO 0.27 0.18 0.29 0.26 0.23 0.17 0.07 0.2

MgO 33.89 34.6 31.34 34.66 38.08 34.09 34.87 36.74

CaO 0.02 0.06 0.04 0.02 0.06 0.03 0.03 0.04

Na2O 0 0 0 0 0 0.03 0 0

K2O 0 0 0 0 0 0 0 0

Total 103.23 102.3 103.93 102.51 102.93 103.25 102.68 102.74

Si 0.992 0.994 0.990 0.991 1.003 0.995 0.998 0.988

Ti 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.001

Al 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe
2+ 0.668 0.638 0.754 0.640 0.533 0.663 0.632 0.585

Mn 0.011 0.011 0.013 0.010 0.007 0.010 0.010 0.008

Ni 0.006 0.004 0.006 0.006 0.005 0.004 0.001 0.004

Mg 1.321 1.352 1.234 1.352 1.450 1.326 1.356 1.413

Ca 0.001 0.002 0.001 0.001 0.002 0.001 0.001 0.001

Na 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000

K 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Forsterite 0.658 0.674 0.614 0.673 0.726 0.662 0.678 0.703

Fayalite 0.333 0.318 0.375 0.319 0.267 0.331 0.316 0.291

Tephroite 0.006 0.005 0.007 0.005 0.003 0.005 0.005 0.004

Monticellit 0 0.001 0.001 0 0.001 0.001 0.001 0.001

Kirschstein 0 0.001 0 0 0 0 0 0

Glaukocroit 0 0 0 0 0 0 0 0

Ni-Olivine 0.003 0.002 0.003 0.003 0.002 0.002 0.001 0.002

xMg 0.658 0.674 0.614 0.673 0.726 0.662 0.678 0.703

xFe 0.332 0.318 0.375 0.319 0.267 0.33 0.316 0.291

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Olivine
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Table 28 - Electron microprobe analyses of clinopyroxene of the sample TT329 (Husky Ridge – Antarctica). Data from

Tiepolo and Tribuzio(2008).

SiO2 52.13 51.38 53.74 53.71 53.85 53.99 55.03 54.37

TiO2 0.69 0.78 0.23 0.10 0.11 0.13 0.16 0.27

Al2O3 4.73 5.96 1.58 1.19 1.19 0.88 2.58 2.97

Cr2O3 0.04 0.09 0.11 0.17 0.04 0.10 0.10 0.24

Fe2O3 0.00 0.00 0.48 0.61 1.27 0.57 0.00 0.00

FeO 9.01 9.54 6.14 5.90 5.49 5.72 8.63 9.65

MnO 0.21 0.17 0.20 0.27 0.27 0.22 0.24 0.27

MgO 15.58 16.56 14.94 14.49 14.47 14.64 18.26 17.96

CaO 16.83 12.71 23.10 24.22 24.26 24.43 12.67 12.81

Na2O 0.70 0.93 0.39 0.27 0.40 0.29 0.31 0.43

K2O 0.21 0.20 0.03 0.01 0.00 0.00 0.12 0.24

Total 100.13 98.32 100.94 100.94 101.35 100.97 98.10 99.21

Si 1.916 1.911 1.966 1.971 1.968 1.978 2.053 2.010

Ti 0.019 0.022 0.006 0.003 0.003 0.004 0.005 0.008

Al 0.205 0.261 0.068 0.052 0.051 0.038 0.113 0.129

Cr 0.001 0.003 0.003 0.005 0.001 0.003 0.003 0.007

Fe
3+ 0.000 0.000 0.013 0.017 0.035 0.016 0.000 0.000

Fe
2+ 0.277 0.297 0.188 0.181 0.168 0.175 0.269 0.298

Mn 0.007 0.005 0.006 0.008 0.008 0.007 0.008 0.009

Mg 0.853 0.918 0.815 0.792 0.788 0.800 1.015 0.990

Ca 0.663 0.507 0.905 0.952 0.950 0.959 0.506 0.507

Na 0.050 0.067 0.028 0.019 0.028 0.021 0.022 0.031

K 0.010 0.010 0.001 0.001 0.000 0.000 0.006 0.011

Wollastonite 0.30 0.22 0.44 0.46 0.46 0.47 0.25 0.25

Enstatite 0.43 0.46 0.41 0.40 0.39 0.40 0.51 0.50

Ferrosilite 0.14 0.15 0.09 0.09 0.08 0.09 0.14 0.15

Pyroxmangite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acmite 0.00 0.00 0.01 0.02 0.03 0.02 0.00 0.00

Jadeite 0.06 0.08 0.02 0.00 0.00 0.01 0.03 0.04

xMgonM1 0.65 0.61 0.77 0.78 0.78 0.79 0.70 0.66

xMgonM2 0.21 0.31 0.05 0.02 0.01 0.01 0.36 0.34

xMgFe(II+) 0.76 0.76 0.81 0.81 0.82 0.82 0.79 0.77

xMgFe(tot) 0.76 0.76 0.80 0.80 0.80 0.81 0.79 0.77

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

Table 29 - Electron microprobe analyses of brown amphibole of the sample TT329 (Husky Ridge – Antarctica)

Data from Tiepolo and Tribuzio (2008).

SiO2 45.90 45.94 46.18 46.06 46.02 46.16 46.13

TiO2 1.54 1.55 1.57 1.42 1.52 1.57 1.43

Al2O3 10.42 10.81 10.90 10.94 10.72 10.73 10.88

Cr2O3 0.06 0.07 0.09 0.08 0.16 0.10 0.08

FeOtot 11.33 10.92 10.93 10.68 10.27 10.14 10.23

MnO 0.08 0.19 0.26 0.23 0.19 0.18 0.19

NiO

MgO 13.60 14.10 14.04 14.11 14.26 14.66 14.30

CaO 12.40 12.20 12.35 12.21 12.27 12.42 12.18

Na2O 1.46 1.63 1.41 1.68 1.54 1.45 1.59

K2O 0.46 0.32 0.32 0.25 0.43 0.45 0.47

Cl 0.07 0.07 0.07 0.07 0.07 0.07 0.07

O=Cl

Total 97.26 97.72 98.06 97.66 97.38 97.86 97.49

Si 6.706 6.664 6.672 6.675 6.683 6.667 6.688

Ti 0.169 0.169 0.171 0.155 0.167 0.170 0.156

Al 1.794 1.849 1.857 1.868 1.835 1.827 1.859

Cr 0.007 0.008 0.010 0.009 0.018 0.011 0.009

Fe
2+ 1.385 1.324 1.321 1.294 1.247 1.225 1.240

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.009 0.023 0.032 0.029 0.023 0.022 0.023

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mg 2.960 3.047 3.021 3.047 3.083 3.154 3.088

Ca 1.942 1.895 1.913 1.896 1.910 1.923 1.892

Na 0.414 0.459 0.396 0.472 0.434 0.405 0.447

K 0.086 0.059 0.059 0.046 0.080 0.083 0.088

cations 15.473 15.497 15.451 15.490 15.481 15.487 15.489

Mg/(Mg+FeTOT) 0.68 0.70 0.70 0.70 0.71 0.72 0.71

(Na+K)A 0.47 0.50 0.45 0.49 0.48 0.49 0.49

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole
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Table 31 - Electron microprobe analyses of clinopyroxene of the sample AL89 (Sanandaj Sirjan Zone - Iran). 

                 Data from Esna-Ashari et al. (2016). 

SiO2 53.80 53.50 54.10 53.40 53.70 54.70 54.80 52.80 52.90

TiO2 0.17 0.20 0.17 0.20 0.25 0.09 0.07 0.21 0.18

Al2O3 2.50 2.10 2.10 2.60 2.40 1.10 0.50 2.60 2.30

Cr2O3 1.08 0.82 0.73 0.98 1.10 0.36 0.30 0.78 0.79

Fe2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeO 4.10 4.20 4.60 4.60 3.70 3.60 3.30 4.00 3.90

MnO 0.13 0.10 0.17 0.16 0.12 0.13 0.12 0.09 0.11

NiO 0.05 0.00 0.00 0.02 0.08 0.00 0.00 0.03 0.06

MgO 17.60 17.80 18.40 18.10 16.30 16.80 17.10 16.30 16.00

CaO 20.80 20.90 20.00 20.10 22.40 22.90 23.80 22.10 22.20

Na2O 0.17 0.11 0.14 0.17 0.20 0.23 0.12 0.15 0.24

K2O - - - - - - - - -

Total 100.40 99.73 100.41 100.33 100.25 99.91 100.11 99.06 98.68

Si 1.954 1.954 1.960 1.938 1.961 1.998 1.997 1.949 1.962

Ti 0.005 0.006 0.005 0.006 0.007 0.003 0.002 0.006 0.005

Al 0.107 0.090 0.090 0.111 0.103 0.047 0.022 0.113 0.101

Cr 0.031 0.024 0.021 0.028 0.032 0.010 0.009 0.023 0.023

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe
2+ 0.125 0.128 0.139 0.140 0.113 0.110 0.101 0.124 0.121

Mn 0.004 0.003 0.005 0.005 0.004 0.004 0.004 0.003 0.004

Ni 0.002 0.000 0.000 0.001 0.002 0.000 0.000 0.001 0.002

Mg 0.953 0.969 0.994 0.979 0.887 0.915 0.929 0.897 0.884

Ca 0.809 0.818 0.776 0.782 0.877 0.896 0.929 0.874 0.882

Na 0.012 0.008 0.010 0.012 0.014 0.016 0.009 0.011 0.017

K - - - - - - - - -

Wollastonite 0.38 0.39 0.37 0.36 0.42 0.45 0.46 0.42 0.42

Enstatite 0.48 0.49 0.50 0.49 0.45 0.46 0.46 0.45 0.44

Ferrosilite 0.06 0.06 0.07 0.07 0.06 0.06 0.05 0.06 0.06

Pyroxmangite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acmite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jadeite 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02

xMgonM1 0.80 0.82 0.81 0.80 0.79 0.84 0.88 0.80 0.80

xMgonM2 0.16 0.15 0.18 0.18 0.09 0.07 0.05 0.10 0.09

xMgFe(II+) 0.88 0.88 0.88 0.88 0.89 0.89 0.90 0.88 0.88

xMgFe(tot) 0.88 0.88 0.88 0.88 0.89 0.89 0.90 0.88 0.88

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

Table 32 - Electron microprobe analyses 

                 of brown amphibole of the sample 

                 AL89 (Sanandaj Sirjan Zone - Iran). 

                 Data from Esna-Ashari et al. (2016). 

SiO2 44.90 44.30

TiO2 2.60 2.90

Al2O3 11.00 11.20

Cr2O3 0.58 0.63

FeOtot 5.96 6.08

MnO 0.05 0.10

NiO 0.07 0.09

MgO 17.10 16.50

CaO 11.30 11.40

Na2O 1.90 2.44

K2O 0.63 0.60

Cl 0.07 0.07

O=Cl

Total 96.09 96.24

Si 6.505 6.437

Ti 0.283 0.317

Al 1.878 1.918

Cr 0.066 0.072

Fe
2+ 0.722 0.739

Fe
3+ 0.000 0.000

Mn 0.006 0.012

Ni 0.008 0.011

Mg 3.690 3.571

Ca 1.754 1.775

Na 0.534 0.687

K 0.116 0.111

cations 15.564 15.650

Mg/(Mg+FeTOT) 0.84 0.83

(Na+K)A 0.56 0.65

Note: Oxide values are in wt.%. 

All other values are calculated with normalization

program Norm.

Amphibole



 

 

 

Table 33 - Electron microprobe analyses of olivine of the sample TK1B (Taku - Japan).

SiO2 38.09 37.15 37.03 37.54 37.32 37.14 37.26

TiO2 0.00 0.00 0.00 0.00 0.00 0.03 0.00

Al2O3 0.00 0.00 0.01 0.04 0.02 0.01 0.00

Cr2O3 0.06 0.04 0.00 0.00 0.01 0.19 0.00

FeO 26.32 30.68 31.19 27.82 27.68 29.32 28.51

MnO 0.33 0.55 0.46 0.39 0.38 0.43 0.45

NiO 0.05 0.08 0.06 0.09 0.03 0.03 0.12

MgO 37.02 33.22 32.49 34.98 35.76 34.19 34.70

CaO 0.03 0.02 0.02 0.02 0.02 0.02 0.01

Na2O 0.01 0.00 0.00 0.04 0.00 0.03 0.02

K2O 0.00 0.00 0.00 0.01 0.01 0.01 0.00

Total 101.91 101.74 101.26 100.93 101.23 101.40 101.07

Si 0.988 0.987 0.992 0.992 0.981 0.984 0.986

Ti 0.000 0.000 0.000 0.000 0.000 0.001 0.000

Al 0.000 0.000 0.000 0.001 0.001 0.000 0.000

Cr 0.001 0.001 0.000 0.000 0.000 0.004 0.000

Fe
2+ 0.571 0.682 0.699 0.615 0.608 0.649 0.631

Mn 0.007 0.012 0.010 0.009 0.009 0.010 0.010

Ni 0.001 0.002 0.001 0.002 0.001 0.001 0.003

Mg 1.431 1.316 1.297 1.378 1.400 1.350 1.369

Ca 0.001 0.001 0.001 0.001 0.001 0.001 0.000

Na 0.001 0.000 0.000 0.002 0.000 0.002 0.001

K 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Forsterite 0.71 0.65 0.65 0.69 0.69 0.67 0.68

Fayalite 0.28 0.34 0.35 0.31 0.30 0.32 0.31

Tephroite 0.00 0.01 0.01 0.00 0.00 0.01 0.01

Monticellit 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Kirschstein 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Glaukocroit 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ni-Olivine 0.00 0.00 0.00 0.00 0.00 0.00 0.00

xMg 0.71 0.65 0.65 0.69 0.69 0.67 0.68

xFe 0.28 0.34 0.35 0.31 0.30 0.32 0.31

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Olivine



 

 

 

Table 34 - Electron microprobe analyses of clinopyroxene of the sample TK1B (Taku - Japan).

SiO2 52.14 51.81 52.10 52.01 52.40 53.61

TiO2 0.34 0.45 0.29 0.39 0.52 0.10

Al2O3 3.10 3.09 2.38 2.59 2.65 1.02

Cr2O3 0.75 0.32 0.15 0.33 0.27 0.18

Fe2O3 0.00 0.32 0.19 0.17 0.00 0.00

FeO 6.35 5.48 7.09 6.39 5.19 6.85

MnO 0.20 0.13 0.15 0.22 0.14 0.23

NiO 0.02 0.00 0.00 0.03 0.08 0.04

MgO 15.40 15.22 15.35 15.43 15.33 15.26

CaO 21.46 22.01 21.10 21.70 22.75 22.13

Na2O 0.24 0.30 0.20 0.13 0.14 0.22

K2O 0.01 0.01 0.00 0.00 0.00 0.00

Total 100.01 99.14 99.00 99.39 99.47 99.64

Si 1.921 1.922 1.942 1.930 1.938 1.988

Ti 0.009 0.013 0.008 0.011 0.015 0.003

Al 0.135 0.135 0.105 0.113 0.116 0.045

Cr 0.022 0.009 0.004 0.010 0.008 0.005

Fe
3+ 0.000 0.009 0.005 0.005 0.000 0.000

Fe
2+ 0.196 0.170 0.221 0.198 0.161 0.212

Mn 0.006 0.004 0.005 0.007 0.004 0.007

Ni 0.001 0.000 0.000 0.001 0.002 0.001

Mg 0.846 0.841 0.853 0.853 0.845 0.844

Ca 0.847 0.875 0.843 0.863 0.902 0.879

Na 0.017 0.022 0.015 0.009 0.010 0.016

K 0.001 0.001 0.000 0.000 0.000 0.000

Wollastonite 0.39 0.40 0.40 0.40 0.43 0.44

Enstatite 0.42 0.42 0.43 0.43 0.42 0.42

Ferrosilite 0.10 0.09 0.11 0.10 0.08 0.11

Pyroxmangite 0.00 0.00 0.00 0.00 0.00 0.00

Acmite 0.00 0.01 0.01 0.01 0.00 0.00

Jadeite 0.02 0.01 0.01 0.01 0.01 0.02

xMgonM1 0.74 0.76 0.74 0.76 0.78 0.77

xMgonM2 0.11 0.08 0.11 0.10 0.07 0.08

xMgFe(II+) 0.81 0.83 0.79 0.81 0.84 0.80

xMgFe(tot) 0.81 0.83 0.79 0.81 0.84 0.80

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Clinopyroxene
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Table 41 - Electron microprobe analyses of brown amphibole of the sample HSY3b (Hase no Yatsu - Japan).

                 Data from Langone et al. (2009).

SiO2 43.82 43.53 42.43 42.90 42.76 41.58 42.94 43.62

TiO2 1.28 1.08 1.56 1.22 1.07 1.31 1.26 1.16

Al2O3 13.26 12.73 13.66 13.55 13.70 13.63 13.62 13.18

Cr2O3 0.14 0.10 0.11 0.07 0.11 0.03 0.06 0.02

FeOtot 10.88 11.54 9.45 10.63 10.51 9.81 10.29 11.25

MnO 0.15 0.16 0.08 0.12 0.09 0.10 0.07 0.14

NiO 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00

MgO 13.51 13.39 14.96 13.70 14.15 14.54 14.12 13.22

CaO 12.54 12.31 12.32 12.50 12.47 12.29 12.27 12.17

Na2O 1.80 1.88 2.08 1.90 2.03 2.03 2.04 1.86

K2O 1.11 1.14 1.41 1.36 1.31 1.30 1.37 1.29

Cl 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

O=Cl

Total 98.48 97.86 98.06 97.96 98.21 96.62 98.06 97.90

Si 6.363 6.386 6.182 6.278 6.241 6.163 6.265 6.383

Ti 0.139 0.119 0.171 0.134 0.117 0.146 0.139 0.128

Al 2.269 2.201 2.346 2.337 2.357 2.381 2.342 2.273

Cr 0.016 0.011 0.012 0.008 0.013 0.004 0.007 0.002

Fe
2+ 1.321 1.416 1.151 1.301 1.283 1.216 1.256 1.377

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.018 0.020 0.010 0.015 0.011 0.012 0.009 0.017

Ni 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

Mg 2.922 2.926 3.246 2.986 3.076 3.210 3.068 2.881

Ca 1.951 1.935 1.923 1.960 1.950 1.952 1.918 1.908

Na 0.507 0.535 0.588 0.539 0.574 0.583 0.577 0.528

K 0.205 0.213 0.262 0.254 0.244 0.246 0.255 0.241

cations 15.711 15.762 15.892 15.812 15.866 15.913 15.837 15.736

Mg/(Mg+FeTOT) 0.69 0.67 0.74 0.70 0.71 0.73 0.71 0.68

(Na+K)A 0.71 0.75 0.85 0.79 0.82 0.83 0.83 0.74

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole



 

 

 

 

Table 42 - Electron microprobe analyses of clinopyroxene of the sample 14JT50 (Milin - Tibet). 

SiO2 51.34 51.14 51.30 52.37 51.90 52.49 52.87 53.36 54.04

TiO2 0.67 0.50 0.39 0.27 0.40 0.45 0.45 0.32 0.14

Al2O3 3.85 3.09 3.79 3.78 3.65 3.72 3.21 2.33 1.50

Cr2O3 0.00 0.05 0.00 0.32 0.36 0.37 0.37 0.18 0.22

Fe2O3 2.78 2.36 2.93 2.04 1.04 0.93 0.00 0.00 0.00

FeO 3.55 3.71 3.51 4.25 4.79 4.92 5.67 4.95 5.69

MnO 0.21 0.20 0.09 0.23 0.18 0.19 0.17 0.06 0.21

NiO 0.00 0.07 0.00 0.08 0.01 0.00 0.05 0.02 0.09

MgO 14.78 14.73 14.84 14.85 14.51 14.66 14.88 15.38 14.17

CaO 22.79 23.19 22.50 23.12 23.61 22.81 23.35 23.67 24.18

Na2O 0.58 0.36 0.61 0.46 0.29 0.58 0.23 0.27 0.51

K2O 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02

Total 100.55 99.40 99.96 101.80 100.74 101.11 101.26 100.54 100.76

Si 1.881 1.898 1.888 1.896 1.901 1.911 1.925 1.949 1.981

Ti 0.019 0.014 0.011 0.007 0.011 0.012 0.012 0.009 0.004

Al 0.166 0.135 0.164 0.161 0.158 0.160 0.138 0.100 0.065

Cr 0.000 0.002 0.000 0.009 0.011 0.011 0.011 0.005 0.006

Fe
3+ 0.077 0.066 0.081 0.056 0.029 0.025 0.000 0.000 0.000

Fe
2+ 0.109 0.115 0.108 0.129 0.147 0.150 0.173 0.151 0.174

Mn 0.006 0.006 0.003 0.007 0.006 0.006 0.005 0.002 0.007

Ni 0.000 0.002 0.000 0.002 0.000 0.000 0.002 0.001 0.003

Mg 0.807 0.815 0.814 0.802 0.792 0.795 0.808 0.837 0.774

Ca 0.895 0.922 0.887 0.897 0.926 0.890 0.911 0.926 0.950

Na 0.041 0.026 0.043 0.033 0.021 0.041 0.017 0.019 0.036

K 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001

Wollastonite 0.40 0.42 0.39 0.40 0.42 0.41 0.42 0.44 0.47

Enstatite 0.40 0.41 0.41 0.40 0.40 0.40 0.41 0.42 0.39

Ferrosilite 0.05 0.06 0.05 0.06 0.07 0.08 0.09 0.08 0.09

Pyroxmangite 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Acmite 0.04 0.03 0.04 0.03 0.02 0.03 0.00 0.00 0.00

Jadeite 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.04

xMgonM1 0.76 0.77 0.76 0.75 0.75 0.74 0.75 0.79 0.77

xMgonM2 0.05 0.04 0.06 0.05 0.04 0.05 0.06 0.05 0.01

xMgFe(II+) 0.88 0.88 0.88 0.86 0.84 0.84 0.82 0.85 0.82

xMgFe(tot) 0.81 0.82 0.81 0.81 0.82 0.82 0.82 0.85 0.82

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Clinopyroxene



 

 

 

Table 43 - Electron microprobe analyses of brown amphibole of the sample 14JT50 (Milin - Tibet). 

SiO2 43.89 44.77 42.82 44.09 42.57 43.55 44.08 43.87 44.13

TiO2 1.49 1.50 1.85 1.44 1.49 1.31 1.29 1.65 1.52

Al2O3 12.56 13.27 13.10 12.46 13.44 12.67 11.66 13.85 12.99

Cr2O3 0.12 0.13 0.27 0.28 0.08 0.08 0.11 0.05 0.07

FeOtot 10.63 10.11 10.09 9.78 10.45 10.20 10.40 10.12 9.40

MnO 0.07 0.18 0.20 0.03 0.18 0.10 0.09 0.18 0.16

NiO 0.06 0.00 0.00 0.06 0.05 0.01 0.02 0.00 0.02

MgO 18.53 18.68 18.31 18.29 18.59 18.60 18.64 18.20 18.53

CaO 12.52 12.36 12.45 12.55 12.42 12.41 12.44 12.56 12.58

Na2O 2.09 2.14 1.98 2.13 2.10 2.16 2.12 2.14 2.07

K2O 0.20 0.21 0.24 0.22 0.23 0.21 0.22 0.33 0.23

Cl 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

O=Cl

Total 102.15 103.35 101.32 101.33 101.60 101.29 101.07 102.95 101.70

Si 6.136 6.155 6.035 6.189 5.994 6.130 6.223 6.070 6.158

Ti 0.157 0.155 0.196 0.152 0.158 0.138 0.137 0.171 0.160

Al 2.069 2.150 2.176 2.061 2.230 2.102 1.940 2.259 2.136

Cr 0.013 0.015 0.031 0.031 0.009 0.009 0.012 0.005 0.007

Fe
2+ 1.243 1.162 1.189 1.148 1.231 1.201 1.228 1.171 1.097

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.008 0.021 0.024 0.003 0.022 0.011 0.011 0.022 0.019

Ni 0.007 0.000 0.000 0.007 0.006 0.001 0.003 0.000 0.002

Mg 3.858 3.825 3.843 3.824 3.898 3.899 3.919 3.750 3.851

Ca 1.875 1.821 1.880 1.888 1.874 1.872 1.882 1.862 1.881

Na 0.566 0.570 0.541 0.580 0.573 0.589 0.580 0.574 0.560

K 0.035 0.036 0.043 0.039 0.040 0.038 0.040 0.058 0.040

cations 15.967 15.911 15.958 15.922 16.035 15.990 15.974 15.943 15.911

Mg/(Mg+FeTOT) 0.76 0.77 0.76 0.77 0.76 0.76 0.76 0.76 0.78

(Na+K)A 0.60 0.61 0.58 0.62 0.61 0.63 0.62 0.63 0.60

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole



 

 

 

Table 44 - Electron microprobe analyses of olivine of the sample MAT15 

(Adamello - Italy). Data from Tiepolo et al. (2011)

SiO2 39.58 39.07 39.83 38.78 39.73

TiO2 0.00 0.01 0.00 0.01 0.00

Al2O3 0.00 0.00 0.02 0.02 0.00

Cr2O3 0.01 0.00 0.03 0.00 0.00

FeO 16.54 16.59 16.63 16.55 16.74

MnO 0.29 0.34 0.29 0.30 0.31

NiO 0.12 0.11 0.16 0.15 0.12

MgO 43.64 44.06 44.33 44.06 44.29

CaO 0.02 0.02 0.04 0.02 0.01

Na2O 0.00 0.00 0.01 0.00 0.00

K2O 0.00 0.01 0.00 0.01 0.01

Total 100.21 100.21 101.35 99.91 101.22

Si 0.993 0.980 0.992 0.991 0.991

Ti 0.000 0.000 0.000 0.000 0.000

Al 0.001 0.001 0.000 0.001 0.001

Cr 0.001 0.000 0.000 0.000 0.000

Fe
2+

0.347 0.350 0.350 0.303 0.334

Mn 0.006 0.006 0.007 0.005 0.006

Ni 0.003 0.003 0.002 0.004 0.002

Mg 1.648 1.659 1.649 1.696 1.664

Ca 0.001 0.001 0.000 0.001 0.001

Na 0.001 0.000 0.000 0.000 0.001

K 0.000 0.000 0.000 0.000 0.000

Forsterite 0.82 0.82 0.82 0.84 0.83

Fayalite 0.17 0.17 0.17 0.15 0.17

Tephroite 0.00 0.00 0.00 0.00 0.00

Monticellit 0.00 0.00 0.00 0.00 0.00

Kirschstein 0.00 0.00 0.00 0.00 0.00

Glaukocroit 0.00 0.00 0.00 0.00 0.00

Ni-Olivine 0.00 0.00 0.00 0.00 0.00

xMg 0.82 0.82 0.82 0.84 0.83

xFe 0.17 0.17 0.17 0.15 0.17

Note: Oxide values are in wt.%. All other values are calculated with 

normalization program Norm.

Olivine



 

 

 

Table 45 - Electron microprobe analyses of clinopyroxene of the sample MAT15 

(Adamello - Italy). Data from Tiepolo et al. (2011)

SiO2 53.21 52.11 52.56 53.46 50.84

TiO2 0.28 0.58 0.80 0.32 0.40

Al2O3 2.42 3.46 2.47 2.09 4.12

Cr2O3 0.23 0.34 0.27 0.19 0.92

Fe2O3 0.48 0.91 0.03 0.38 1.18

FeO 3.74 3.48 4.01 3.95 4.01

MnO 0.13 0.12 0.14 0.13 0.15

NiO 0.01 0.00 0.01 0.02 0.01

MgO 15.14 15.04 14.97 15.25 14.68

CaO 24.83 25.07 25.34 24.67 22.69

Na2O 0.26 0.06 0.05 0.28 0.37

K2O 0.00 0.01 0.01 0.01 0.01

Total 100.73 101.18 100.66 100.75 99.38

Si 1.940 1.895 1.922 1.949 1.883

Ti 0.008 0.016 0.022 0.009 0.011

Al 0.104 0.148 0.107 0.090 0.180

Cr 0.007 0.010 0.008 0.006 0.027

Fe
3+

0.013 0.025 0.001 0.011 0.033

Fe
2+

0.114 0.106 0.123 0.120 0.124

Mn 0.004 0.004 0.004 0.004 0.005

Ni 0.000 0.000 0.000 0.001 0.000

Mg 0.823 0.815 0.816 0.829 0.810

Ca 0.970 0.977 0.993 0.963 0.900

Na 0.018 0.004 0.004 0.020 0.027

K 0.000 0.001 0.001 0.001 0.001

Wollastonite 0.46 0.44 0.47 0.46 0.40

Enstatite 0.41 0.41 0.41 0.42 0.41

Ferrosilite 0.06 0.05 0.06 0.06 0.06

Pyroxmangite 0.00 0.00 0.00 0.00 0.00

Acmite 0.01 0.01 0.00 0.01 0.03

Jadeite 0.01 0.00 0.00 0.01 0.00

xMgonM1 0.82 0.80 0.82 0.82 0.75

xMgonM2 0.01 0.01 0.00 0.01 0.06

xMgFe(II+) 0.88 0.89 0.87 0.87 0.87

xMgFe(tot) 0.87 0.86 0.87 0.86 0.84

Note: Oxide values are in wt.%. All other values are calculated with 

normalization program Norm.

Clinopyroxene
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Table 47 - Electron microprobe analyses  Table 48 - Electron microprobe analyses  of clinopyroxene of the  

of olivine of the sample VS 9  sample VS 9 (Adamello - Italy). Data from Tiepolo et al. (2002).

(Adamello - Italy). Data from Tiepolo 

et al. (2002).

SiO2 51.38 52.21 51.15 52.35

TiO2 0.64 0.55 0.56 0.37

SiO2 40.05 40.11 Al2O3 4.39 3.55 2.51 2.84

TiO2 0.08 0.02 Cr2O3 0.00 0.00 0.00 0.00

Al2O3 0.07 0.06 Fe2O3 2.56 0.54 1.33 1.48

Cr2O3 0.00 0.00 FeO 3.46 4.69 3.49 3.82

FeO 16.31 15.64 MnO 0.26 0.14 0.25 0.26

MnO 0.53 0.56 MgO 14.62 14.94 14.59 15.48

MgO 44.30 44.95 CaO 23.46 23.44 24.12 22.88

CaO 0.05 0.02 Na2O 0.45 0.31 0.20 0.38

Na2O 0.00 0.11 K2O 0.03 0.00 0.03 0.06

K2O 0.03 0.02 Total 101.25 100.36 98.23 99.92

Total 101.42 101.49

Si 1.870 1.912 1.918 1.923

Si 0.998 0.994 Ti 0.018 0.015 0.016 0.010

Ti 0.002 0.000 Al 0.188 0.153 0.111 0.123

Al 0.002 0.002 Cr 0.000 0.000 0.000 0.000

Cr 0.000 0.000 Fe
3+ 0.070 0.015 0.038 0.041

Fe
2+ 0.340 0.324 Fe

2+ 0.105 0.144 0.109 0.117

Mn 0.011 0.012 Mn 0.008 0.004 0.008 0.008

Mg 1.645 1.661 Mg 0.793 0.815 0.815 0.848

Ca 0.001 0.001 Ca 0.915 0.920 0.969 0.900

Na 0.000 0.005 Na 0.032 0.022 0.015 0.027

K 0.001 0.001 K 0.001 0.000 0.001 0.003

Forsterite 0.82 0.83 Wollastonite 0.40 0.42 0.45 0.42

Fayalite 0.17 0.16 Enstatite 0.40 0.41 0.41 0.42

Tephroite 0.01 0.01 Ferrosilite 0.05 0.07 0.06 0.06

Monticellit 0.00 0.00 Pyroxmangite 0.00 0.00 0.00 0.00

Kirschstein 0.00 0.00 Acmite 0.03 0.02 0.02 0.03

Glaukocroit 0.00 0.00 Jadeite 0.00 0.01 0.00 0.00

Ni-Olivine 0.00 0.00

xMgonM1 0.75 0.77 0.81 0.79

xMg 0.82 0.83 xMgonM2 0.04 0.05 0.01 0.05

xFe 0.17 0.16 xMgFe(II+) 0.88 0.85 0.88 0.88

xMgFe(tot) 0.82 0.84 0.85 0.84

Note: Oxide values are in wt.%. 

All other values are calculated with Note: Oxide values are in wt.%. All other values are calculated 

normalization program Norm. with normalization program Norm.

Olivine

Clinopyroxene



 

 

 

Table 49 - Electron microprobe analyses  of clinopyroxene of the  sample VS 9 (Adamello - Italy). Data from Tiepolo et al. 

(2002).

SiO2 47.31 45.99 42.35 42.68 43.62 43.32 42.88 42.27

TiO2 0.97 1.31 1.93 1.97 1.78 1.89 1.75 1.58

Al2O3 9.67 10.46 14.05 13.92 13.43 13.33 13.19 12.67

Cr2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FeOtot 10.53 10.80 11.38 11.21 10.05 9.98 10.08 9.59

MnO 0.15 0.17 0.16 0.14 0.12 0.16 0.19 0.16

NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MgO 15.58 14.97 13.30 13.39 14.70 15.12 14.60 14.97

CaO 12.81 12.74 12.39 12.37 12.01 11.76 12.28 12.33

Na2O 1.43 1.50 2.13 2.08 2.24 2.27 2.10 2.09

K2O 0.43 0.45 0.47 0.49 0.42 0.48 0.65 0.44

Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

O=Cl

Total 98.88 98.39 98.16 98.25 98.37 98.31 97.72 96.10

Si 6.771 6.640 6.183 6.215 6.295 6.260 6.256 6.261

Ti 0.104 0.142 0.212 0.216 0.193 0.205 0.192 0.176

Al 1.631 1.780 2.417 2.389 2.284 2.270 2.268 2.212

Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe
2+ 1.260 1.304 1.389 1.365 1.213 1.206 1.230 1.188

Fe
3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mn 0.018 0.021 0.020 0.017 0.015 0.020 0.023 0.020

Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mg 3.321 3.219 2.892 2.904 3.160 3.254 3.172 3.302

Ca 1.964 1.971 1.938 1.930 1.857 1.821 1.920 1.957

Na 0.397 0.420 0.603 0.587 0.627 0.636 0.594 0.600

K 0.079 0.083 0.088 0.091 0.077 0.088 0.121 0.083

cations 15.546 15.579 15.742 15.714 15.721 15.761 15.776 15.799

Mg/(Mg+FeTOT) 0.72 0.71 0.68 0.68 0.72 0.73 0.72 0.74

(Na+K)A 0.48 0.50 0.69 0.68 0.70 0.72 0.71 0.68

Note: Oxide values are in wt.%. All other values are calculated with normalization program Norm.

Amphibole
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Appendix B - Tables of trace element compositions and isotopic ratios of 

the samples.  

 

Table 1 - LA-ICP-MS analyses of brown amphibole of the sample MKD1 (Mt. Keith – 

               Agnew-Wiluna greenstone belt, Western Australia).

Sc 72.82 91.90 86.78 107.25 82.21 88.67 101.55

Ti 18932.81 22625.98 27446.77 26776.62 21158.29 28954.99 24721.46

V 651.43 664.29 667.70 774.52 633.99 685.75 686.56

Cr 8703.27 7224.60 6308.69 8305.01 7501.56 4566.98 6876.28

Co 51.56 49.68 52.41 54.97 50.77 54.86 53.71

Ni 880.73 835.50 846.28 887.38 826.09 930.44 905.99

Zn 45.44 44.22 46.33 45.45 44.54 44.88 38.68

Rb 4.44 3.15 2.53 3.27 3.15 2.90 3.13

Sr 35.43 47.64 54.09 54.29 43.57 53.57 55.17

Y 78.63 105.06 123.55 113.09 88.08 152.30 118.63

Zr 237.19 155.68 129.88 133.97 136.90 161.93 189.12

Nb 21.65 16.21 14.21 15.82 15.10 14.58 16.13

Cs <0,0069 0.01 <0,0073 0.01 0.03 0.02 0.02

Ba 158.03 155.67 155.54 163.86 138.69 153.10 159.94

La 22.79 16.33 14.85 15.13 15.74 17.18 18.49

Ce 72.16 56.11 52.91 53.08 53.14 61.08 62.21

Pr 10.64 9.18 9.35 9.17 8.63 10.93 10.21

Nd 50.61 50.90 54.99 52.58 46.71 65.38 56.98

Sm 12.99 15.45 18.04 16.76 13.98 22.59 18.74

Eu 2.84 3.08 3.63 3.42 2.77 4.13 3.62

Gd 13.07 18.50 22.42 20.89 15.72 27.73 22.05

Tb 2.11 3.12 4.03 3.46 2.58 4.83 3.82

Dy 13.59 19.88 24.11 21.19 15.91 29.60 22.56

Ho 2.89 4.04 5.10 4.27 3.47 5.99 4.47

Er 8.08 10.54 12.44 10.88 8.91 14.40 11.60

Tm 1.11 1.38 1.57 1.38 1.12 1.79 1.56

Yb 7.07 8.09 8.95 8.86 7.62 11.49 8.80

Lu 0.88 1.09 1.09 1.15 0.93 1.37 1.19

Hf 9.04 6.68 5.62 5.67 5.44 7.11 6.69

Ta 1.30 0.93 0.88 0.87 0.84 0.80 0.92

Pb 1.08 0.74 0.64 1.03 1.06 1.11 1.15

Th 0.50 0.23 0.31 0.29 0.60 0.33 0.69

U 0.10 0.05 0.06 0.05 0.24 0.06 0.21

Nb/Y 0.28 0.15 0.12 0.14 0.17 0.10 0.14

Nb/Ta 16.71 17.39 16.24 18.23 18.08 18.27 17.53

Zr/Hf 26.24 23.31 23.11 23.63 25.17 22.77 28.27

Note: values are in ppm. 

Amphibole



 

 

 
 

Table 2 - LA-ICP-MS analyses of brown amphibole of the sample

               85437 (Mt. Clifford – Agnew-Wiluna greenstone belt, 

               Western Australia).

Sc 81.79 31.38 56.20 34.85

Ti 19224.58 21974.87 22922.83 23928.63

V 753.54 808.34 837.83 838.32

Cr 5097.17 5947.71 3709.53 3686.48

Co 53.49 56.01 57.31 57.78

Ni 533.47 562.56 604.86 576.42

Zn 97.29 93.77 96.61 92.09

Rb 2.24 2.14 2.03 2.17

Sr 14.64 12.40 12.47 15.01

Y 116.22 141.20 294.62 94.79

Zr 471.89 626.16 587.56 822.52

Nb 21.74 31.19 61.18 17.30

Cs 0.36 0.06 0.10 0.07

Ba 66.40 70.74 87.21 76.64

La 19.65 29.56 37.34 18.93

Ce 58.43 89.73 154.96 54.10

Pr 8.71 12.47 29.12 8.27

Nd 44.32 60.21 165.92 42.75

Sm 15.14 18.43 54.70 13.72

Eu 2.81 3.35 5.22 3.24

Gd 17.98 21.05 57.02 15.95

Tb 3.39 4.09 10.42 2.87

Dy 20.94 25.65 61.20 17.72

Ho 4.53 5.52 11.80 3.76

Er 12.11 15.49 29.10 9.73

Tm 1.69 2.17 3.46 1.39

Yb 11.68 13.99 19.13 9.72

Lu 1.42 1.83 2.37 1.19

Hf 11.12 16.18 16.06 21.71

Ta 1.09 1.33 2.73 0.91

Pb 1.26 1.33 0.87 1.44

Th 2.62 2.59 0.39 2.74

U 0.15 0.15 0.09 0.21

Nb/Y 0.19 0.22 0.21 0.18

Nb/Ta 19.89 23.54 22.41 19.05

Zr/Hf 42.44 38.70 36.59 37.89

Note: values are in ppm. 

Amphibole



 

 

 

Table 3 - LA-ICP-MS analyses of clinopyroxene of the  

               sample T-2 (Theo's Flow – Abitibi greenstone belt, Canada).

Sc 55.28 81.70 59.64 56.49 56.31 88.42 55.69

Ti 1580.89 2887.93 1663.42 1496.28 1446.36 2652.65 1444.70

V 160.78 282.32 183.39 159.91 155.01 282.40 153.21

Cr 4658.53 6104.45 6326.99 5548.76 6525.08 6672.63 5972.12

Co 45.40 46.11 46.02 43.52 47.86 45.61 45.03

Ni 343.13 325.20 371.19 350.72 381.30 342.59 360.60

Zn 39.55 46.36 27.54 34.72 40.35 58.02 31.46

Rb 0.03 0.02 0.10 0.03 0.03 0.16 0.02

Sr 12.53 14.86 12.47 12.41 11.28 16.49 12.21

Y 4.94 9.85 6.44 4.42 4.93 10.16 4.34

Zr 3.10 9.40 2.99 2.67 2.67 8.74 2.84

Nb 0.01 0.03 0.05 0.01 -- 0.04 --

Cs 0.01 0.01 0.08 0.01 0.01 0.01 0.01

Ba 0.09 0.02 0.08 0.04 0.05 0.13 0.03

La 0.23 0.33 0.10 0.23 0.16 0.39 0.20

Ce 1.03 1.59 0.86 1.00 0.92 1.79 0.82

Pr 0.24 0.29 0.28 0.18 0.19 0.45 0.21

Nd 1.17 3.34 1.32 1.45 1.15 2.65 1.52

Sm 0.51 1.45 1.42 0.54 1.06 1.35 0.73

Eu 0.29 0.41 0.38 0.23 0.24 0.55 0.20

Gd 0.80 2.10 1.52 0.51 0.41 1.55 0.77

Tb 0.16 0.37 0.22 0.16 0.14 0.29 0.15

Dy 0.94 2.22 2.04 1.01 0.96 2.09 0.71

Ho 0.18 0.44 0.16 0.22 0.16 0.45 0.26

Er 0.42 1.03 0.24 0.58 0.46 1.04 0.52

Tm 0.10 0.15 0.14 0.05 0.09 0.12 0.07

Yb 0.56 0.80 0.18 0.29 0.33 0.98 0.54

Lu 0.05 0.12 0.06 0.09 0.06 0.19 0.06

Hf 0.16 0.80 0.30 0.08 0.05 0.60 0.22

Ta 0.01 0.01 0.03 0.01 -- 0.01 0.01

Pb 0.11 0.04 0.21 0.15 0.03 0.25 0.38

Th 0.01 0.01 -- 0.01 0.01 0.01 --

U -- 0.01 -- -- 0.01 0.01 --

Note: values are in ppm. 

Clinopyroxene



 

 

 

Table 4 - LA-ICP-MS analyses of amphibole of the  

               sample T-2 (Theo's Flow – Abitibi greenstone belt, Canada).

Sc 52.66 57.75 31.45 50.57 18.97 29.04 40.51

Ti 11943.37 11784.43 11474.67 13005.37 11122.84 12151.11 9541.00

V 409.39 423.65 390.17 438.78 367.58 414.69 378.74

Cr 670.85 1270.68 400.30 580.11 1644.91 3310.13 534.94

Co 65.09 78.41 71.47 76.27 63.21 70.02 57.90

Ni 792.35 775.06 734.53 929.76 609.99 626.01 520.69

Zn 56.01 68.24 74.74 68.30 37.62 48.69 65.30

Rb 0.31 0.73 0.35 0.41 0.45 0.55 0.38

Sr 10.29 10.76 12.80 11.99 11.26 13.45 30.75

Y 69.66 63.31 77.43 77.42 59.14 72.50 30.69

Zr 171.83 283.87 450.97 438.82 204.90 162.98 140.74

Nb 27.84 31.72 29.78 34.84 21.70 29.79 11.42

Cs 0.05 0.04 0.04 0.10 0,044 0,038 0.13

Ba 3.83 3.11 3.62 4.24 3.22 4.52 3.22

La 11.71 6.59 9.39 8.68 9.90 14.88 4.88

Ce 42.09 26.00 36.70 33.85 36.30 60.49 18.39

Pr 6.98 4.97 7.24 5.67 6.92 10.17 3.23

Nd 40.06 27.66 32.63 33.28 36.06 56.08 16.23

Sm 11.59 10.11 13.71 9.01 8.70 17.08 4.42

Eu 3.43 2.81 2.70 3.19 2.23 3.36 2.48

Gd 13.33 10.95 12.08 11.62 12.79 20.06 6.86

Tb 2.51 1.60 2.72 2.86 2.54 2.75 1.10

Dy 15.37 13.56 17.02 15.55 15.96 16.87 6.45

Ho 2.23 2.76 3.51 2.90 2.31 2.86 1.29

Er 6.66 4.99 7.88 7.25 5.69 8.57 3.47

Tm 0.89 0.68 1.02 1.21 1.02 1.15 0.50

Yb 6.90 7.26 7.28 7.92 5.34 5.97 3.62

Lu 0.56 1.06 0.68 1.11 0.62 0.77 0.59

Hf 3.21 5.56 9.47 13.99 3.87 3.90 3.76

Ta 0.88 1.12 1.37 1.43 1.09 1.35 0.51

Pb 0.23 0,172 0.26 0.19 0.31 1.75 0.51

Th 0.18 0.20 0.36 0.15 0.14 0.51 0.27

U 0.03 0.06 0.13 0.09 0.03 0.17 0.01

Nb/Y 0.40 0.50 0.38 0.45 0.37 0.41 0.37

Nb/Ta 31.64 28.32 21.74 24.36 19.91 22.07 22.48

Zr/Hf 53.53 51.06 47.62 31.37 52.95 41.79 37.43

Note: values are in ppm. 

Amphibole



 

 

 

Table 5 - LA-ICP-MS analyses of clinopyroxene of the sample B-5 (Boston Creek – Abitibi 

               greenstone belt, Canada).

Sc 85.83 72.81 72.96 72.92 71.91 80.84 81.41

Ti 3352.41 1817.09 1915.42 1865.50 1776.55 2272.76 2115.69

V 190.11 121.22 130.84 119.79 121.44 140.25 136.03

Cr 4820.50 4372.89 5468.48 5070.29 4794.27 4991.39 5775.25

Co 51.05 53.02 49.93 49.03 48.72 47.68 51.04

Ni 461.72 490.29 481.98 473.97 489.78 470.87 490.77

Zn 34.79 30.81 29.16 31.20 26.14 35.96 29.59

Rb 0.09 0.06 0.05 <0.046 <0.027 0.08 0.07

Sr 67.24 49.69 51.06 49.61 50.02 59.18 51.93

Y 5.87 2.92 2.97 2.90 2.82 3.54 3.51

Zr 9.11 2.77 3.12 2.92 2.75 5.05 3.88

Nb 0.02 0.02 0.08 0.02 0.03 0.03 0.03

Cs 0.01 0.02 0.01 0.04 0.02 0.01 0.02

Ba 0.03 0.40 0.43 0.50 0.09 0.04 0.03

La 1.35 0.66 0.79 0.66 0.48 0.83 0.75

Ce 5.04 2.09 2.10 2.17 1.99 3.14 2.53

Pr 0.79 0.33 0.45 0.40 0.39 0.58 0.40

Nd 4.88 2.33 2.29 2.14 2.30 3.27 2.23

Sm 1.60 0.54 0.75 0.97 0.60 1.25 0.42

Eu 0.49 0.25 0.29 0.27 0.19 0.41 0.29

Gd 2.02 0.85 0.75 0.60 0.79 1.17 0.58

Tb 0.21 0.15 0.17 0.16 0.12 0.18 0.16

Dy 1.64 0.64 0.96 0.62 0.89 0.95 0.38

Ho 0.22 0.15 0.14 0.15 0.13 0.19 0.14

Er 0.79 0.36 0.39 0.35 0.17 0.50 0.26

Tm 0.08 0.04 0.05 0.08 0.03 0.06 0.07

Yb 0.55 0.34 0.34 0.33 0.23 0.44 0.46

Lu 0.10 0.04 0.06 0.04 0.06 0.07 0.04

Hf 0.37 0.22 0.17 0.14 0.20 0.11 0.10

Ta 0.01 0.02 0.02 0.01 0.01 -- 0.03

Pb 0.08 0.07 0.14 0.26 0.34 0.61 0.09

Th 0.03 0.04 0.02 0.02 0.02 0.03 0.02

U 0.03 0.02 -- 0.02 0.02 0.02 0.03

Note: values are in ppm. 

Clinopyroxene
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Table 7 - LA-ICP-MS analyses of olivine of 

               the sample GR-1 (Ghost Range – 

               Abitibi greenstone belt, Canada).

Sc 8.76 8.20 6.38

Ti 99.43 146.86 73.35

V 7.29 6.96 4.41

Cr 90.84 100.84 121.20

Co 197.93 191.99 198.19

Ni 2050.84 1966.04 2060.95

Zn 139.94 120.45 105.92

Sr 0.03 0.06 --

Y 0.34 0.38 0.10

Zr 0.18 0.42 0.09

Note: values are in ppm. 

Olivine

Table 8 - LA-ICP-MS analyses of olivine of the sample GR-2 (Ghost Range – Abitibi 

               greenstone belt, Canada).

Sc 5.45 6.78 6.44 6.55 7.23 7.20 6.39

Ti 138.43 126.99 93.75 63.06 79.17 54.12 76.67

V 5.12 5.52 4.78 5.10 6.40 6.10 4.99

Cr 71.88 99.44 93.26 120.79 83.75 126.13 89.85

Co 199.10 193.06 193.63 196.95 199.75 195.53 191.33

Ni 1969.01 1845.24 1894.93 1883.78 1934.37 1859.51 1872.29

Zn 119.91 120.99 117.00 124.82 123.30 125.59 111.47

Sr -- 0.06 0.06 -- -- -- --

Y 0.45 0.35 0.09 0.14 0.15 0.39 0.38

Zr 0.36 0.07 -- 0.04 -- 0.09 0.09

Note: values are in ppm. 

Olivine
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Table 10  - LA-ICP-MS analyses of brown amphibole of the sample GR-1

                  (Ghost Range – Abitibi greenstone belt, Canada).

Sc 100.80 106.81 101.60 103.73 54.28 44.52

Ti 19739.33 21423.86 20072.66 19431.14 24643.30 24661.30

V 845.94 822.73 817.01 843.52 750.17 733.22

Cr 9331.74 9273.94 9337.76 9376.76 7148.29 8677.55

Co 57.04 54.27 51.66 55.28 55.21 58.48

Ni 614.47 572.62 589.32 569.48 563.60 590.29

Zn 47.04 60.54 61.85 54.77 36.89 36.82

Rb 2.35 2.68 2.84 2.98 2.61 2.60

Sr 22.53 21.22 23.62 23.94 23.87 26.17

Y 133.05 146.65 140.84 124.23 60.28 46.06

Zr 704.83 628.96 697.79 732.47 1011.30 890.15

Nb 21.05 28.87 29.88 19.35 35.06 41.60

Cs 0.02 -- 0.09 0.09 -- 0.04

Ba 47.88 52.09 50.28 61.15 26.33 29.33

La 22.74 28.46 26.87 25.07 27.00 23.84

Ce 83.45 97.10 92.25 84.28 79.12 70.71

Pr 12.75 14.22 14.32 13.35 10.26 9.15

Nd 69.04 75.80 74.33 63.57 44.52 39.28

Sm 17.55 22.75 21.31 16.47 9.18 8.26

Eu 3.91 4.86 4.06 4.07 3.80 2.91

Gd 21.14 24.13 21.93 17.91 7.80 6.30

Tb 3.15 4.22 3.71 3.22 1.42 1.11

Dy 22.47 28.18 22.70 20.05 9.83 7.10

Ho 4.54 5.54 5.21 4.29 2.39 1.86

Er 14.27 17.24 13.97 14.46 6.97 5.25

Tm 1.91 2.03 1.91 1.92 1.18 0.94

Yb 14.03 16.59 12.27 13.06 7.97 6.24

Lu 1.62 1.52 1.33 1.39 1.16 0.76

Hf 23.44 19.21 19.63 22.57 30.06 25.63

Ta 1.27 1.54 2.07 1.30 1.59 2.08

Pb 1.70 2.22 1.71 1.74 1.08 1.01

Th 2.82 3.79 3.24 2.48 3.16 2.57

U 0.29 0.51 0.27 0.29 0.28 0.31

Nb/Y 0.16 0.20 0.21 0.16 0.58 0.90

Nb/Ta 16.54 18.75 14.43 14.94 22.09 20.03

Zr/Hf 30.07 32.74 35.55 32.45 33.64 34.73

Note: values are in ppm. 

Amphibole



 

 

 
 

Table 11  - LA-ICP-MS analyses of amphibole of the sample GR-2 

                  (Ghost Range – Abitibi greenstone belt, Canada).

Sc 88.58 89.12 76.42 85.44 84.71 78.55

Ti 24034.34 24361.19 23147.20 23479.76 24206.82 23683.64

V 773.35 763.98 734.56 720.61 751.55 769.21

Cr 9589.77 9429.52 8812.74 9703.70 9644.15 10225.96

Co 58.38 56.61 55.06 57.22 58.53 58.15

Ni 617.24 615.25 619.36 614.28 614.08 586.80

Zn 36.77 33.75 39.08 41.15 40.02 37.04

Rb 2.00 1.68 1.31 2.44 2.09 3.06

Sr 19.42 22.53 27.24 14.50 14.71 15.02

Y 110.49 142.87 149.34 92.81 95.25 69.60

Zr 708.77 745.49 904.45 611.99 811.92 567.39

Nb 47.38 44.85 38.01 39.94 36.95 39.90

Cs 0.04 0.03 -- 0.01 -- --

Ba 131.41 134.59 123.98 136.24 124.52 84.58

La 26.58 25.13 20.90 31.17 31.08 29.25

Ce 90.92 93.48 78.68 84.80 87.17 81.66

Pr 14.29 16.35 14.11 11.07 11.45 10.92

Nd 66.91 89.90 79.68 45.51 48.89 44.77

Sm 18.19 26.21 26.80 11.89 15.11 12.46

Eu 4.21 6.21 6.12 2.46 2.52 2.75

Gd 17.36 27.17 28.12 13.21 13.97 11.73

Tb 3.41 4.36 4.69 2.49 2.54 2.13

Dy 19.71 28.40 28.44 15.50 17.40 11.81

Ho 4.01 5.58 5.40 3.26 3.63 2.68

Er 11.21 13.26 14.89 8.54 9.06 6.74

Tm 1.52 1.79 1.98 1.10 1.25 1.06

Yb 9.95 10.63 11.22 7.36 7.55 6.20

Lu 1.09 1.28 1.37 0.78 0.99 0.80

Hf 27.35 32.77 32.15 16.28 21.87 13.49

Ta 3.67 3.77 2.97 2.16 1.76 1.40

Pb 0.56 0.73 0.72 0.34 0.65 0.74

Th 1.64 1.04 0.56 0.61 1.02 2.16

U 0.02 0.06 0.03 0.10 0.03 0.12

Nb/Y 0.43 0.31 0.25 0.43 0.39 0.57

Nb/Ta 12.91 11.90 12.80 18.49 21.01 28.48

Zr/Hf 25.91 22.75 28.13 37.59 37.12 42.06

Note: values are in ppm. 

Amphibole



 

 

 

 

Table 12 - LA-ICP-MS analyses of olivine of the Table 13 - LA-ICP-MS analyses of clinopyroxene 

                 sample Pilg 8 38 (Pilgüjarvi sill –                   of the sample Pilg 8 38 (Pilgüjarvi sill

                 Pechenga Complex. Russia).                  – Pechenga Complex. Russia).

Sc 3.62 3.93 3.02 5.19 Sc 95.82

Ti 203.96 184.96 236.40 173.53 Ti 10662.84

V 4.73 4.65 5.88 5.47 V 282.99

Cr 65.74 66.67 88.12 79.05 Cr 3506.47

Co 194.67 191.70 195.93 193.95 Co 33.59

Ni 1264.80 1238.97 1264.71 1260.41 Ni 176.79

Zn 220.00 205.97 186.86 186.58 Zn 32.28

Sr 0.01 0.05 0.04 0.04 Rb 0.02

Y 0.39 0.51 0.35 0.46 Sr 82.43

Zr 0.24 0.16 0.36 0.11 Y 44.94

Zr 131.56

Nb 0.65

Cs --

Ba 0.14

La 8.61

Ce 34.64

Pr 6.78

Nd 42.39

Sm 14.07

Eu 4.26

Gd 14.63

Tb 2.15

Dy 11.75

Ho 2.09

Er 4.63

Tm 0.53

Yb 2.71

Lu 0.32

Hf 6.23

Ta 0.11

Pb 0.21

Th 0.07

U 0.01

Note: values are in ppm. 

Olivine Clinopyroxene



 

 

 

Table 14 - LA-ICP-MS analyses of amphibole of the sample 

                 Pilg 8 38 (Pilgüjarvi sill – Pechenga Complex, Russia).

Sc 58.86 69.65 63.18 56.68 52.92 77.11

Ti 29933.59 31558.12 35519.10 31219.04 29323.97 31399.33

V 505.29 520.83 624.18 515.70 463.48 470.30

Cr 3629.75 3204.75 3486.14 2840.61 2125.38 2059.88

Co 54.38 61.60 63.75 54.35 53.66 56.25

Ni 357.19 405.33 436.87 389.27 353.86 359.96

Zn 66.99 63.53 88.13 87.66 71.75 72.02

Rb 3.52 4.28 5.06 3.86 3.84 3.72

Sr 353.10 397.60 339.20 352.10 474.36 476.06

Y 103.58 123.42 90.01 93.04 93.23 105.85

Zr 358.29 351.39 394.43 369.61 272.88 311.92

Nb 86.09 86.43 93.23 90.66 73.05 70.64

Cs -- 0.07 0.07 0.02 -- 0.01

Ba 420.20 413.57 410.79 388.55 406.07 409.95

La 48.32 45.23 51.29 45.58 32.36 34.34

Ce 156.56 155.44 165.58 143.05 112.79 122.54

Pr 25.14 26.20 24.09 22.76 19.20 21.92

Nd 127.11 147.33 121.98 115.95 110.28 120.89

Sm 32.37 36.54 28.02 30.69 31.44 35.09

Eu 8.44 11.12 8.29 8.47 9.64 10.48

Gd 29.65 37.38 23.09 27.52 28.57 32.96

Tb 4.51 6.41 3.47 4.04 4.30 5.28

Dy 25.29 31.36 18.57 22.75 23.05 26.91

Ho 4.38 5.24 3.82 4.15 3.98 4.70

Er 10.10 11.54 7.91 8.76 8.98 10.41

Tm 1.10 1.33 1.29 1.00 1.06 1.07

Yb 6.59 7.11 6.38 5.68 5.92 6.29

Lu 0.74 0.81 0.84 0.63 0.61 0.67

Hf 12.79 13.72 13.39 12.85 10.85 12.30

Ta 4.08 3.73 4.18 4.13 3.38 3.20

Pb 2.95 2.76 3.36 4.80 2.43 2.37

Th 0.29 0.27 0.30 0.31 0.20 0.22

U 0.09 0.09 -- 0.06 0.04 0.05

Nb/Y 0.83 0.70 1.04 0.97 0.78 0.67

Nb/Ta 21.10 23.17 22.30 21.95 21.61 22.08

Zr/Hf 28.01 25.61 29.46 28.76 25.15 25.36

Note: values are in ppm. 

Amphibole
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Table 17 - LA-ICP-MS analyses of amphibole of the sample 

                 106-44 (Pilgüjarvi sill – Pechenga Complex. Russia).                

Sc 46.72 41.54 43.50 30.51 53.44

Ti 30477.51 30370.63 31499.53 30980.21 32813.41

V 422.82 453.90 437.46 478.33 540.52

Cr 1061.42 1851.94 2702.99 3061.43 4246.57

Co 51.61 52.56 52.61 54.19 53.70

Ni 472.26 496.27 483.42 504.63 660.75

Zn 45.51 42.37 43.92 73.13 41.31

Rb 1.74 2.39 2.55 2.25 2.18

Sr 816.11 790.86 808.40 764.33 771.63

Y 65.53 66.98 68.97 55.26 64.93

Zr 171.44 189.47 204.01 181.96 227.50

Nb 51.79 54.60 48.30 52.07 55.57

Cs -- 0.01 -- -- --

Ba 277.85 294.79 300.50 278.56 282.06

La 17.47 19.97 19.40 18.43 26.44

Ce 62.98 74.26 70.49 67.68 91.25

Pr 12.38 13.22 12.98 11.86 15.90

Nd 69.88 75.34 75.74 67.26 80.71

Sm 21.48 23.30 23.32 19.34 21.88

Eu 7.14 6.96 7.50 7.39 7.38

Gd 22.77 20.36 20.33 19.88 18.38

Tb 2.97 3.38 3.15 2.59 3.02

Dy 15.92 15.76 17.19 13.61 15.38

Ho 3.14 2.99 3.09 2.25 2.66

Er 6.90 6.67 6.39 5.64 6.96

Tm 0.76 0.82 0.81 0.63 0.69

Yb 4.26 4.91 4.75 3.51 3.98

Lu 0.43 0.57 0.59 0.42 0.49

Hf 7.12 7.32 7.51 6.55 8.29

Ta 2.53 2.91 2.71 2.61 2.72

Pb 0.47 0.39 0.40 0.79 0.70

Th 0.13 0.18 0.30 0.11 0.20

U 0.02 0.05 0.06 0.01 0.03

Nb/Y 0.79 0.82 0.70 0.94 0.86

Nb/Ta 20.47 18.76 17.82 19.95 20.43

Zr/Hf 24.08 25.88 27.17 27.78 27.44

Note: values are in ppm. 
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Table 22 - LA-ICP-MS analyses of brown amphibole of the sample 57-HV-28 (Kammikivi sill

                  – Pechenga Complex, Russia).

Sc 58.50 48.04 53.26 62.43 86.20 75.50 77.16 23.13

Ti 30524.73 31299.99 29610.83 29826.76 35685.33 30915.02 32049.27 31437.35

V 535.16 558.02 499.83 598.66 578.91 490.14 551.96 542.25

Cr 3656.04 1819.84 1988.25 3474.21 4033.79 2758.32 1287.82 1648.34

Co 48.12 52.58 50.30 59.27 54.33 53.94 47.76 52.08

Ni 671.92 715.57 694.75 815.50 804.07 680.37 742.65 705.25

Zn 39.22 42.82 63.34 47.02 38.42 48.45 38.34 48.27

Rb 2.81 3.58 3.16 3.81 3.99 2.66 3.52 3.88

Sr 297.47 278.72 274.64 292.23 336.08 320.10 270.04 196.22

Y 114.69 106.96 97.84 70.57 107.37 85.05 159.23 58.06

Zr 302.20 360.64 270.04 266.83 302.91 222.20 387.04 426.75

Nb 73.13 83.13 87.73 75.24 63.96 61.15 88.06 97.46

Cs 0.08 -- 0.13 0.18 0.10 0.19 -- --

Ba 421.66 454.90 391.98 392.09 429.50 356.99 486.41 437.74

La 45.40 54.71 36.35 30.13 45.24 26.93 64.33 47.50

Ce 153.94 173.76 120.27 100.75 138.67 94.55 205.45 139.97

Pr 25.53 25.86 20.32 16.84 24.53 16.32 35.42 19.25

Nd 131.61 142.90 112.76 73.46 137.68 90.55 178.75 87.16

Sm 36.88 33.23 34.18 18.92 33.48 24.77 54.11 22.90

Eu 9.99 10.07 8.47 8.00 8.75 7.25 13.89 8.26

Gd 26.99 35.40 30.32 19.48 33.22 20.78 46.96 15.16

Tb 5.56 4.37 4.17 2.53 3.99 3.93 7.56 3.35

Dy 25.08 29.22 21.43 17.40 23.42 21.23 39.88 14.81

Ho 4.78 4.81 4.01 3.51 4.70 3.27 8.30 3.18

Er 10.36 9.80 7.80 6.89 9.51 8.77 17.91 6.22

Tm 1.64 1.37 0.83 0.84 0.78 1.03 2.29 0.95

Yb 5.93 6.11 5.98 4.11 6.12 5.25 10.19 4.10

Lu 0.92 0.82 0.61 0.68 0.83 0.69 1.32 0.63

Hf 11.48 12.00 10.91 10.22 11.50 8.09 14.19 15.13

Ta 2.97 3.57 3.94 3.47 3.04 2.75 3.52 3.79

Pb 0.34 -- 0.26 0.39 0.71 1.02 0.47 0.36

Th 0.20 0.39 0.25 0.33 0.46 0.20 0.30 0.48

U 0.09 -- -- -- -- 0.08 -- 0.08

Nb/Y 0.64 0.78 0.90 1.07 0.60 0.72 0.55 1.68

Nb/Ta 24.62 23.29 22.27 21.68 21.04 22.24 25.02 25.72

Zr/Hf 26.32 30.05 24.75 26.11 26.34 27.47 27.28 28.21

Note: values are in ppm. 

Amphibole
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Table 25 - LA-ICP-MS analyses of amphibole of the sample N-3  (Nyasyukka dike complex – 

                 Pechenga Complex, Russia). From Fiorentini et al. (2008)

Sc 69.11 70.62 66.07 65.40 62.52 64.44 68.37 65.80 64.90

Ti -- -- -- -- -- -- -- -- --

V 571.10 578.93 562.43 551.03 558.73 550.40 571.27 557.75 558.14

Cr 1049.37 1003.00 804.67 1094.27 907.83 985.10 1107.45 877.06 697.45

Co 59.52 58.74 56.52 58.06 57.68 56.34 58.60 58.22 55.93

Ni 421.10 418.34 403.28 422.10 413.71 403.60 419.92 409.35 403.00

Zn -- -- -- -- -- -- -- -- --

Rb 3.68 3.67 3.73 3.75 3.59 3.65 3.96 3.61 3.67

Sr 457.10 479.19 468.08 518.47 586.14 517.13 553.72 585.18 564.68

Y 37.90 43.12 41.65 46.68 56.87 51.13 49.53 57.09 58.79

Zr 276.46 280.42 271.03 245.32 223.78 238.44 251.26 245.95 235.47

Nb 57.68 58.98 57.37 58.51 56.79 57.48 56.58 57.05 54.35

Cs -- -- -- -- -- -- -- -- --

Ba 317.00 325.53 326.63 329.84 318.68 304.86 353.92 363.75 337.59

La 36.41 35.47 35.35 31.97 25.72 29.70 32.20 30.18 27.64

Ce 104.75 105.49 104.87 101.39 88.82 97.12 101.61 100.08 93.92

Pr 15.03 16.25 16.11 15.96 14.93 16.22 17.02 17.61 16.49

Nd 62.46 67.45 68.62 74.79 73.55 78.32 78.41 86.78 82.12

Sm 12.77 13.53 13.41 15.15 18.59 17.74 16.86 18.99 19.13

Eu 3.59 4.03 4.06 4.43 5.24 5.20 4.83 5.81 5.67

Gd 10.15 11.25 11.17 12.55 14.89 14.31 14.18 16.99 16.66

Tb 1.40 1.66 1.68 1.82 2.17 2.07 1.89 2.28 2.34

Dy 8.17 9.52 8.80 10.31 12.05 11.68 11.90 13.13 14.00

Ho 1.51 1.75 1.63 1.90 2.38 2.10 2.01 2.45 2.50

Er 3.90 4.50 4.21 4.76 4.98 4.82 4.90 6.42 5.94

Tm 0.50 0.57 0.56 0.68 0.71 0.55 0.61 0.69 0.74

Yb 3.19 3.65 3.47 3.71 4.16 4.10 4.41 4.05 4.03

Lu 0.50 0.49 0.47 0.50 0.58 0.48 0.49 0.57 0.60

Hf 8.96 9.70 8.96 8.45 7.23 8.34 8.46 8.85 8.79

Ta 3.26 3.31 3.10 2.92 2.70 2.90 2.96 2.83 3.13

Pb -- -- -- -- -- -- -- -- --

Th 0.30 0.27 0.28 0.26 0.19 0.22 0.24 0.25 0.27

U 0.05 0.05 0.04 0.04 0.04 0.04 -- 0.04 0.04

Nb/Y 1.52 1.37 1.38 1.25 1.00 1.12 1.14 1.00 0.92

Nb/Ta 17.69 17.82 18.51 20.04 21.03 19.82 19.11 20.16 17.36

Zr/Hf 30.85 28.91 30.25 29.03 30.95 28.59 29.70 27.79 26.79

Note: values are in ppm. 

Amphibole



 

 

 

Table 26 - LA-ICP-MS analyses of clinopyroxene and amphibole of the sample TT329 

                 (Husky Ridge – Antarctica). Data from Tiepolo and Tribuzio(2008).

Sc 91.30 81.30 Sc 65.00 61.10

Ti 1038.00 999.00 Ti 9479.00 9339.00

V 214.40 217.20 V 505.00 460.00

Cr 1992.00 1128.00 Cr 573.00 591.00

Co 48.10 48.30 Co 61.30 58.80

Ni -- -- Ni 422.00 402.00

Zn -- -- Zn 70.50 77.50

Rb 0.06 0.13 Rb 1.37 1.41

Sr 24.90 25.50 Sr 57.30 43.30

Y 3.46 4.34 Y 16.70 17.40

Zr 6.15 8.76 Zr 14.80 13.60

Nb 0.04 0.06 Nb 1.28 1.69

Cs -- -- Cs 0.02 0.04

Ba 0.68 0.74 Ba 15.33 13.56

La 0.50 0.44 La 2.20 3.17

Ce 1.69 1.41 Ce 7.98 9.02

Pr 0.30 0.32 Pr 1.26 1.56

Nd 2.05 2.02 Nd 8.05 7.40

Sm 0.59 0.59 Sm 2.88 2.96

Eu 0.20 0.20 Eu 0.84 0.87

Gd 0.81 0.91 Gd 2.82 3.07

Tb 0.12 0.18 Tb 0.50 0.62

Dy 0.89 0.95 Dy 3.16 3.74

Ho 0.17 0.23 Ho 0.79 0.81

Er 0.41 0.61 Er 1.73 1.95

Tm 0.07 0.07 Tm 0.27 0.22

Yb 0.38 0.53 Yb 1.69 1.86

Lu 0.06 0.07 Lu 0.23 0.23

Hf 0.41 0.46 Hf 0.93 0.95

Ta 0.00 0.00 Ta 0.08 0.09

Pb 0.78 0.74 Pb 3.70 3.82

Th 0.14 0.15 Th 0.11 0.11

U 0.05 0.08 U 0.18 0.12

Nb/Y 0.08 0.10

Nb/Ta 15.80 19.44

Zr/Hf 15.90 14.32

Note: values are in ppm. 

Clinopyroxene Amphibole
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Table 29 - LA-ICP-MS analyses of amphibole of the sample TK1B (Taku - Japan).

Sc 74.50 76.84 71.82 74.46 67.88

Ti 10874.56 10175.96 8326.33 9962.82 9176.39

V 549.35 542.15 423.68 490.07 452.33

Cr 1360.77 907.78 1097.11 1078.20 1202.41

Co 62.43 70.91 63.34 56.49 64.15

Ni 133.02 150.82 131.30 122.79 144.51

Zn 100.29 108.87 99.86 89.34 85.94

Rb 3.50 3.56 3.89 2.97 3.65

Sr 153.00 142.09 129.44 140.67 146.44

Y 27.21 29.24 28.38 29.88 25.58

Zr 35.16 42.81 53.27 39.49 35.62

Nb 3.80 4.28 6.60 4.66 3.80

Cs 0.01 -- -- 0.01 0.01

Ba 63.29 68.10 70.97 61.53 61.65

La 3.22 4.38 5.27 3.73 3.52

Ce 12.38 14.99 19.19 13.63 12.51

Pr 2.15 2.51 3.07 2.38 2.20

Nd 13.33 15.61 17.26 14.17 13.29

Sm 4.93 5.52 5.54 4.93 4.59

Eu 1.45 1.50 1.48 1.45 1.41

Gd 5.49 5.74 5.31 5.73 4.62

Tb 0.97 0.85 0.93 0.95 0.88

Dy 5.63 5.70 5.50 5.80 5.07

Ho 1.13 1.32 1.08 1.23 0.94

Er 2.71 2.86 2.88 3.09 2.47

Tm 0.36 0.36 0.40 0.40 0.35

Yb 2.21 2.71 2.71 2.78 2.25

Lu 0.34 0.34 0.29 0.31 0.32

Hf 1.59 1.55 2.20 1.52 1.53

Ta 0.21 0.22 0.33 0.22 0.23

Pb 1.30 2.08 0.75 1.07 1.76

Th 0.09 0.43 0.15 0.19 0.26

U 0.08 0.27 0.03 0.11 0.23

Nb/Y 0.14 0.15 0.23 0.16 0.15

Nb/Ta 18.18 19.72 19.82 21.09 16.81

Zr/Hf 22.16 27.71 24.21 25.95 23.30

Note: values are in ppm. 
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Table 35 - LA-ICP-MS analyses of amphibole of the sample HSY3b (Hase no Yatsu - 

                         Japan). Data from Langone et al. (2009).

Sc 82.99 72.81 59.19 63.50 65.71 81.73 118.31

Ti 17916.79 13484.63 6890.15 7358.66 6215.23 14416.87 18518.98

V 606.27 511.80 265.36 270.79 273.05 566.64 627.70

Cr 380.86 490.79 454.30 538.28 652.29 253.85 593.08

Co 51.54 49.42 44.92 42.80 51.45 44.72 50.89

Ni 58.56 66.25 60.21 60.50 56.71 62.80 59.07

Zn 74.86 76.57 48.74 60.18 72.58 64.09 88.94

Rb 7.18 7.23 7.12 7.37 6.47 6.11 6.85

Sr 364.11 425.07 354.66 350.84 307.06 406.53 417.52

Y 21.95 21.49 20.48 21.10 19.88 20.49 20.12

Zr 36.30 41.51 60.50 54.86 71.14 31.20 28.29

Nb 7.76 7.71 14.18 12.51 14.14 6.08 4.36

Cs 0.50 0.06 0.11 0.12 0.04 0.28 0.12

Ba 140.83 160.21 122.38 143.40 138.79 155.20 155.52

La 7.21 6.80 9.85 9.57 10.94 6.14 4.36

Ce 21.80 24.66 34.44 32.95 39.16 22.28 15.63

Pr 3.84 4.21 5.48 5.36 5.48 3.50 2.93

Nd 20.00 22.19 26.32 25.37 26.24 19.20 16.30

Sm 6.64 6.14 5.63 6.86 6.51 5.51 4.78

Eu 1.86 1.78 1.65 1.73 1.56 1.93 1.74

Gd 4.70 5.73 4.79 5.48 4.80 5.37 6.07

Tb 0.92 0.75 0.73 0.77 0.72 0.89 0.88

Dy 3.95 4.87 3.87 4.34 4.60 3.90 5.00

Ho 0.83 0.83 0.96 0.88 0.89 0.67 0.79

Er 2.02 3.12 2.00 1.78 1.65 2.37 2.63

Tm 0.43 0.26 0.39 0.30 0.33 0.24 0.22

Yb 1.68 1.34 2.02 1.93 2.14 1.78 1.71

Lu 0.30 0.27 0.34 0.23 0.29 0.21 0.22

Hf 1.61 1.80 2.41 1.49 2.08 1.18 0.89

Ta 0.31 0.46 0.73 0.68 0.83 0.25 0.32

Pb 2.32 2.31 2.58 2.34 2.31 3.46 1.59

Th 1.09 0.68 0.50 0.50 0.42 0.36 0.23

U 0.52 0.25 0.28 0.24 0.17 0.22 0.14

Nb/Y 0.35 0.36 0.69 0.59 0.71 0.30 0.22

Nb/Ta 25.11 16.65 19.50 18.42 16.95 24.82 13.84

Zr/Hf 22.55 23.06 25.10 36.82 34.20 26.44 31.79

Note: values are in ppm. 

Amphibole



 

 

 

Table 36  - LA-ICP-MS analyses of clinopyroxene of the sample 

                  14JT50 (Milin - Tibet). 

Sc 96.27 93.57 90.14 97.99 93.41

Ti 2096.56 1958.62 2135.90 1902.09 1725.95

V 277.57 258.83 283.73 275.83 255.33

Cr 332.12 294.37 286.50 299.61 262.00

Co 40.91 38.26 41.51 42.77 43.83

Ni 96.38 89.78 91.33 96.39 92.62

Zn 62.66 61.80 51.17 53.07 54.80

Rb 0.22 0.22 0.04 0.05 0.11

Sr 42.72 43.46 44.60 47.78 45.83

Y 12.79 12.20 8.73 11.08 10.66

Zr 24.07 24.47 21.70 24.39 24.16

Nb 0.02 0.01 0.04 -- --

Cs -- 0.03 0.02 0.01 0.01

Ba 0.73 0.75 0.56 0.43 0.34

La 1.47 1.39 0.97 1.25 1.08

Ce 5.42 5.10 4.05 4.92 4.37

Pr 0.99 0.91 0.74 0.95 0.83

Nd 6.26 6.61 4.57 5.20 5.04

Sm 2.04 2.09 1.54 1.92 1.55

Eu 0.67 0.68 0.58 0.55 0.63

Gd 2.32 2.35 2.09 1.76 1.99

Tb 0.41 0.39 0.33 0.36 0.34

Dy 2.79 2.49 1.78 2.20 2.47

Ho 0.52 0.49 0.39 0.48 0.43

Er 1.30 1.37 0.92 1.25 1.23

Tm 0.19 0.14 0.13 0.17 0.14

Yb 1.38 1.33 0.82 1.36 0.99

Lu 0.16 0.14 0.09 0.15 0.11

Hf 1.06 1.08 1.15 1.09 1.04

Ta -- -- -- -- --

Pb 0.17 0.15 0.18 0.18 0.18

Th 0.10 0.09 0.09 0.09 0.14

U 0.01 0.02 0.01 -- 0.04

Note: values are in ppm. 

Clinopyroxene



 

 

 

Table 37  - LA-ICP-MS analyses of amphibole of the sample  14JT50 (Milin - Tibet).

Sc 62.30 63.32 65.93 63.98 65.32 73.82

Ti 9450.93 9670.68 10381.76 10084.61 10433.16 7540.72

V 504.56 517.94 544.43 532.14 537.20 422.00

Cr 464.06 521.66 444.82 462.61 455.41 693.58

Co 61.99 61.44 60.76 63.28 61.37 53.99

Ni 125.97 128.92 139.38 131.43 127.27 179.30

Zn 72.53 78.16 88.48 90.31 97.16 88.57

Rb 1.63 1.46 2.19 1.94 1.81 2.11

Sr 285.59 281.74 299.62 304.32 303.94 256.82

Y 16.18 17.17 17.95 17.43 17.47 17.88

Zr 16.79 16.17 17.87 17.36 16.96 18.85

Nb 1.05 0.88 1.14 1.06 1.12 0.91

Cs -- 0.01 -- -- -- 0.02

Ba 56.65 56.78 64.29 62.71 62.02 56.88

La 1.58 1.73 1.95 1.81 1.68 1.81

Ce 5.93 5.98 6.83 6.50 6.22 6.60

Pr 1.19 1.26 1.41 1.30 1.15 1.25

Nd 8.31 7.52 8.86 8.73 8.80 9.28

Sm 3.07 2.86 3.24 3.31 3.04 3.07

Eu 1.06 1.11 1.06 1.12 1.17 1.02

Gd 3.14 3.13 3.57 3.10 3.24 3.50

Tb 0.54 0.57 0.56 0.63 0.58 0.61

Dy 3.58 3.49 3.64 3.66 3.35 3.82

Ho 0.69 0.80 0.70 0.69 0.68 0.77

Er 1.83 1.81 1.78 1.73 1.98 1.82

Tm 0.26 0.27 0.25 0.24 0.23 0.24

Yb 1.54 1.41 1.66 1.40 1.75 1.61

Lu 0.22 0.19 0.19 0.19 0.17 0.20

Hf 0.75 0.85 0.70 0.85 0.85 0.90

Ta 0.03 0.04 0.04 0.04 0.04 0.04

Pb 1.07 0.97 0.98 0.87 1.00 0.79

Th 0.07 0.06 0.10 0.06 0.07 0.07

U 0.03 0.02 0.02 0.01 0.03 0.02

Nb/Y 0.06 0.05 0.06 0.06 0.06 0.05

Nb/Ta 30.23 22.61 31.47 29.06 25.75 25.31

Zr/Hf 22.42 19.09 25.68 20.47 20.00 21.06

Note: values are in ppm. 

Amphibole
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Table 39 - LA-ICP-MS analyses  of olivine, clinopyroxene and amphibole of the  sample VS 9 (Adamello - Italy). 

                 Data from Tiepolo et al. (2002).

Sc 2.92 2.40 Sc 117.58 133.23 Sc 94.09 74.85

Ti 33.10 46.23 Ti 2204.36 2712.10 Ti 11684.52 10164.85

V 0.19 0.26 V 247.46 324.19 V 650.90 540.45

Cr 3.56 3.14 Cr 644.51 850.93 Cr 324.48 258.27

Co 226.35 222.53 Co 28.44 30.52 Co 58.81 54.57

Ni 358.29 359.64 Ni 45.56 55.56 Ni 127.14 120.85

Zn 212.76 190.78 Zn 35.74 38.34 Zn 83.92 57.38

Sr 0.03 0.05 Rb 0.20 0.13 Rb 2.64 2.52

Y 0.02 -- Sr 18.16 17.56 Sr 120.96 109.67

Zr 0.04 -- Y 10.02 12.33 Y 29.72 27.67

Zr 11.52 12.59 Zr 29.79 27.57

Nb 0.05 0.06 Nb 2.08 1.67

Cs -- 0.02 Cs 0.01 0.02

Ba 0.74 0.55 Ba 45.18 37.00

La 0.78 0.77 La 1.69 1.46

Ce 2.25 2.63 Ce 7.45 6.12

Pr 0.46 0.47 Pr 1.37 1.27

Nd 2.80 3.58 Nd 10.24 9.12

Sm 1.50 1.48 Sm 3.57 3.81

Eu 0.36 0.58 Eu 1.20 1.13

Gd 1.16 1.87 Gd 5.13 4.04

Tb 0.28 0.35 Tb 0.88 0.79

Dy 2.39 2.54 Dy 5.97 5.10

Ho 0.50 0.48 Ho 1.27 1.23

Er 0.64 1.38 Er 3.26 2.95

Tm 0.12 0.15 Tm 0.39 0.49

Yb 0.97 1.49 Yb 3.32 2.52

Lu 0.08 0.14 Lu 0.34 0.33

Hf 0.32 0.48 Hf 1.31 1.01

Ta 0.02 0.01 Ta 0.13 0.09

Pb 0.12 0.17 Pb 0.38 0.78

Th 0.15 0.10 Th 0.06 0.03

U 0.02 0.02 U 0.05 0.03

Nb/Y 0.07 0.06

Nb/Ta 16.25 19.15

Zr/Hf 22.74 27.30

Note: values are in ppm. 

Clinopyroxene AmphiboleOlivine



 

 

 

Table 40 - LA-ICP-MS analyses of brown amphibole of the sample SRD02305 (Batu Hijau - Indonesia). 

Sc 118.19 96.29 102.01 117.84 107.45 127.87 133.17

Ti 7969.05 7676.50 7148.68 7358.56 6664.44 7984.62 8181.44

V 307.55 288.34 287.56 292.64 266.22 348.27 349.06

Cr 27.01 16.71 30.36 30.85 26.97 34.84 31.58

Co 65.03 62.79 62.83 63.20 61.95 62.55 64.21

Ni 59.90 49.79 58.87 58.67 55.59 71.27 77.73

Zn 170.63 174.98 199.77 194.17 191.56 178.48 183.57

Rb 0.40 0.35 0.34 0.23 0.30 0.39 0.33

Sr 60.78 56.16 43.97 52.36 44.70 56.05 56.68

Y 67.27 64.06 83.85 79.65 64.93 91.41 94.44

Zr 45.30 47.00 56.40 50.36 44.72 46.26 48.47

Nb 2.87 2.87 2.80 2.97 2.85 2.75 2.55

Cs -- -- -- 0.02 0.06 -- --

Ba 42.20 37.65 37.61 34.38 29.45 39.03 37.95

La 4.71 4.66 5.93 5.04 4.64 4.60 4.51

Ce 22.12 21.91 28.44 24.69 23.40 20.77 21.74

Pr 4.44 4.76 6.05 5.01 4.67 4.67 4.73

Nd 28.57 28.26 38.15 35.40 32.50 34.75 34.84

Sm 10.90 11.17 12.17 12.79 9.37 12.98 12.50

Eu 2.24 2.49 2.90 2.75 2.38 2.73 3.07

Gd 10.67 11.00 14.43 13.34 11.38 16.31 16.55

Tb 1.97 1.89 2.14 2.54 1.94 2.76 2.86

Dy 12.88 11.34 15.19 14.30 12.81 17.18 17.08

Ho 2.66 2.20 3.20 3.04 2.64 3.42 3.64

Er 6.79 6.34 7.57 7.51 6.44 8.82 9.84

Tm 0.97 0.97 1.30 1.14 0.91 1.22 1.19

Yb 6.67 6.22 7.33 7.67 5.53 8.17 8.86

Lu 0.95 0.83 1.26 1.10 0.89 1.14 0.96

Hf 1.83 1.96 2.26 2.57 2.71 2.21 1.99

Ta 0.10 0.07 0.08 0.10 0.05 0.02 0.05

Pb 0.48 0.24 0.22 0.35 0.30 0.37 0.31

Th 0.04 0.05 0.07 0.08 0.03 0.04 0.05

U 0.01 0.02 -- -- 0.03 -- --

Nb/Y 0.04 0.04 0.03 0.04 0.04 0.03 0.03

Nb/Ta 27.86 41.00 33.73 29.41 53.77 114.58 50.00

Zr/Hf 24.75 23.98 24.96 19.60 16.50 20.93 24.36

Note: values are in ppm. 
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Table 47 - δD and δ18
O for amphiboles from Agnew-Wiluna greenstone belt (Western Australia).

δD ‰ error Average rsd δ18
O ‰ error Average rsd

-103.7 0.000008 -115.6 6.7 5.4 0.09 5.0 0.3

-120.5 0.000032 5.1 0.08

-113.6 0.000001 4.6 0.11

-117.6 0.000005 5.1 0.06

-122.7 0.000003 4.9 0.12

-135.1 0.000002 -129.6 9.9 2.5 0.09 2.5 0.3

-134.2 0.000002 2.1 0.07

-134.5 0.000003 2.2 0.12

-114.7 0.000002 2.0 0.08

3.0 0.10

2.9 0.09

Table 48 - δD and δ18
O for amphiboles from Abitibi greenstone belt (Canada).

δD ‰ error Average rsd δ18
O ‰ error Average rsd

-103.8 0.0000023 -101.5 10.0

-117.6 0.0000029

-104.3 0.0000060

-91.8 0.0000073

-90.1 0.0000026

-121.3 0.0000019 -115.8 12.8 3.1 0.11 3.7 0.7

-111.6 0.0000018 3.2 0.16

-100.2 0.0000050 5.0 0.14

-130.0 0.0000048 3.4 0.08

3.8 0.12

-189.5 0.0000027 -197.6 16.0 4.2 0.11 4.2 0.3

-193.6 0.0000250 3.8 0.09

-177.4 0.0000096 4.5 0.11

-202.2 0.0000036 3.9 0.12

-225.3 0.0000034 4.6 0.12

-219.5 0.0000034 -236.3 23.6 4.0 0.09 3.8 1.0

-202.5 0.0000013 2.5 0.14

-210.3 0.0000020 3.8 0.12

-210.8 0.0000066 4.8 0.09

-245.8 0.0000018

-280.5 0.0000017

-230.6 0.0000029

-290.6 0.0000023

Theo's Flow - sample T-2

Boston Creek - sample B-5

Ghost Range - sample GR-1

Ghost Range - sample GR-2

Mt. Keith - sample MKD1

Mt. Clifford - sample 85437



 

 

 

Table 49 - δD and δ18
O for amphiboles from Pechenga complex (Russia).

δD ‰ error Average rsd δ18
O ‰ error Average rsd

-116.39 0.000011 -121.2 4.5 4.3 0.12 4.5 1.3

-125.03 0.000002 1.9 0.18

-118.38 0.000001 5.6 0.11

-125.14 0.000001 5.2 0.11

5.2 0.09

-124.03 0.000001 -129.8 6.8

-129.47 0.000002

-135.87 0.000002

-100.5 0.000002 -104.3 4.5 7.5 0.14 6.4 1.1

-106.14 0.000001 6.1 0.10

-100.89 0.000002 5.6 0.13

-109.86 0.000002

-144.8 0.000002 -117.4 40.1 3.9 0.09 4.3 0.4

-145.58 0.000002 4.5 0.11

-119.12 0.000007 4.9 0.10

-60.227 0.000004 4.0 0.09

-97.478 0.000052 -99.5 4.3 3.9 0.12 3.0 1.0

-103.63 0.000001 2.2 0.10

-92.107 0.000004 1.9 0.08

-102.92 0.000002 2.3 0.10

-101.43 0.000001 4.5 0.86

-112.87 0.000001 -108.7 3.4 4.7 0.09 5.0 0.2

-108.11 0.000001 5.2 0.14

-112.22 0.000001 5.2 0.13

-104.5 0.000002 5.1 0.11

-105.69 0.000001

Nyasyukka dike complex - 

sample N-3

Pilgüjarvi sill - sample Pilg 8 

38

Pilgüjarvi sill - sample 106-

44

Pilgüjarvi sill - sample 116-6

Kammikivi sill - 57-HV-28

Nyasyukka dike complex - 

sample N-2



 

 

 

Table 50 - δD and δ18
O for amphiboles from acr and collisional setting of Phanerozoic age.

δD ‰ error Average rsd δ18
O ‰ error Average rsd

-61.5 0.000001 -61.5 7.3 8.4 0.10 7.0 0.8

-56.7 0.000004 6.9 0.12

-52.4 0.000002 8.0 0.12

-74.2 0.000001 6.4 0.10

-62.7 0.000002 6.4 0.12

6.1 0.12

-109.7 0.000001 -104.6 5.7 6.9 0.15 6.2 0.4

-94.0 0.000004 6.7 0.14

-109.5 0.000001 6.2 0.09

-103.8 0.000001 5.7 0.15

-106.0 0.000002 6.4 0.10

5.7 0.10

-120.2 0.000001 -125.8 15.6 6.4 0.13 6.4 0.6

-115.7 0.000002 5.4 0.14

-112.5 0.000002 6.0 0.16

-124.5 0.000002 6.2 0.12

-156.0 0.000006 7.2 0.10

7.2 0.13

-28.5 0.000001 -8.6 77.4 5.5 0.12 6.0 0.4

-83.9 0.000005 5.6 0.10

123.8 0.000002 6.3 0.10

26.1 0.000012 6.3 0.11

-80.3 0.000002 6.7 0.14

5.8 0.14

13.1 0.000002 0.2 27.4 8.6 0.11 9.6 0.8

7.2 0.000032 9.5 0.09

31.2 0.000001 10.9 0.12

0.3 0.000002 10.2 0.10

-50.7 0.000002 9.6 0.08

8.5 0.09

9.1 0.11

-82.3 0.000002 -74.7 8.50 7.2 0.11 6.4 1.1

-68.7 0.000001 7.1 0.10

-65.6 0.000002 6.7 0.09

-87.3 0.000001 5.3 0.11

-69.6 0.000001 7.9 0.13

4.2 0.23

Husky Ridge (Antarctica) - 

sample TT329

Sanandaj Sirjan Zone (Iran) - 

sample AL89

Taku (Japan) - sample TK1B

Zenifudo (Japan) - sample 

ZN5

Hase no Yatsu (Japan) - 

sample HSY3B

Milin (Tibet) - sample 

14JT50



 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continued Table 50

-68.2 0.000005 -72.5 4.69 4.2 0.12 5.2 0.8

-74.3 0.000001 4.3 0.09

-66.4 0.000004 6.4 0.26

-79.5 0.000001 6.4 0.12

-73.9 0.000004 5.1 0.09

4.6 0.11

-109.3 0.000016 -105.2 3.74 4.0 0.12 3.6 0.3

-104.3 0.000009 3.4 0.09

-109.7 0.000006 3.6 0.11

-102.1 0.000003 3.1 0.11

-100.5 0.000007 3.8 0.09

3.9 0.11

4.1 0.09 4.8 0.6

4.7 0.10

5.3 0.11

4.6 0.12

6.2 0.10

4.9 0.10

4.0 0.11

Bregaglia (Italy-Swiss) - 

sample VS9

Batu Hijau (Indonesia) - 

sample SRD02305

Adamello (Italy) - sample 

MAT15



 

 

Appendix C – Modelling and melts calculated 

 

 

Table 1 - solid/liquid partition coefficients used in calculations

Amph/L
D

Cpx/L
D

Opx/L
D

Ol/L
D

Li 0.14 0.14

B 0.01 0.17

Ba 0.37 0.00015

Rb 0.09 0.00008

Th 0.03 0.007

U 0.03 0.006

Nb 0.34 0.005

Ta 0.32 0.021

La 0.18 0.07 0.0006 0.0000088

Ce 0.3 0.12 0.0017 0.001

Sr 0.62 0.111

Pb 0.12

Nd 0.64 0.27 0.004 0.003

Zr 0.45 0.2

Hf 0.76 0.42

Sm 1.06 0.42 0.0011 0.002

Eu 0.96

Gd 1.32 0.418 0.0546 0.0013

Ti 2.9 0.46

Dy 1.42 0 0.0038

Y 1.39 0.51

Yb 1.16 0.47 0.077 0.0267

Sc 3.47

V 5.24

F 1.84

Cl 0.21

H2O 0.3

Note: 
Amph/L

D are from Tiepolo et al. (unpublished, 1999, 2007), 
Cpx/L

D, 
Opx/L

D and 
Ol/L

D are frome Adam and Green (2006).
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Table 7  - Model of fractional crystallisation for Canadian clinopyroxene-equilibrium melt with the amphibole as the only forming-mineral.

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 14.23 15.80 14.74 16.32 13.28 13.27 7.63 47.98 37.62 22.75 14.21 11.75 8.12 5.05

0.9 15.80 17.54 16.35 18.07 14.69 14.68 8.45 53.21 41.66 25.10 15.61 12.87 8.88 5.54

0.8 17.77 19.71 18.35 20.25 16.45 16.43 9.46 59.73 46.71 28.03 17.34 14.26 9.83 6.15

0.7 20.29 22.50 20.92 23.04 18.70 18.67 10.77 68.10 53.17 31.76 19.54 16.01 11.02 6.92

0.6 23.65 26.21 24.33 26.75 21.68 21.64 12.49 79.23 61.74 36.69 22.43 18.31 12.58 7.93

0.5 28.36 31.40 29.10 31.92 25.83 25.76 14.90 94.76 73.68 43.52 26.40 21.44 14.71 9.31

0.4 35.40 39.17 36.22 39.62 32.01 31.90 18.48 117.98 91.49 53.62 32.23 26.03 17.82 11.34

0.3 47.13 52.10 48.02 52.34 42.19 42.01 24.39 156.49 120.94 70.20 41.69 33.41 22.80 14.63

0.2 70.54 77.86 71.47 77.51 62.28 61.94 36.08 233.03 179.21 102.60 59.90 47.50 32.29 20.93

0.1 140.55 154.75 141.06 151.63 121.19 120.28 70.43 460.28 351.05 196.29 111.31 86.70 58.53 38.63

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 11.93 12.09 11.14 9.18 11.44 12.57 7.82 17.94 10.26 11.45 9.59 11.39 9.44 8.18

0.9 13.24 13.40 12.32 10.12 12.59 13.82 8.61 19.90 11.38 12.66 10.57 12.54 10.37 9.02

0.8 14.87 15.04 13.79 11.28 14.01 15.36 9.59 22.36 12.77 14.17 11.78 13.95 11.54 10.05

0.7 16.97 17.14 15.66 12.77 15.82 17.33 10.85 25.51 14.55 16.10 13.34 15.75 13.01 11.36

0.6 19.76 19.93 18.15 14.73 18.19 19.91 12.50 29.70 16.92 18.65 15.38 18.11 14.95 13.09

0.5 23.65 23.82 21.60 17.43 21.47 23.46 14.78 35.56 20.23 22.20 18.21 21.37 17.61 15.47

0.4 29.48 29.64 26.73 21.44 26.29 28.68 18.14 44.33 25.17 27.47 22.39 26.17 21.54 18.99

0.3 39.17 39.28 35.19 27.98 34.13 37.17 23.62 58.89 33.35 36.16 29.22 33.98 27.90 24.74

0.2 58.45 58.42 51.83 40.72 49.32 53.55 34.29 87.89 49.60 53.27 42.53 49.10 40.20 35.91

0.1 115.89 115.15 100.49 77.36 92.51 99.96 64.83 174.25 97.78 103.28 80.80 92.10 75.05 67.89

Note: values are in ppm.

Theo's Flow - sample T-2 Boston Creek - sample B-5

Ghost Range - sample GR-1 Ghost Range - sample GR-2

Table 8 - Model of fractional crystallisation for Russian clinopyroxene-equilibrium melt with the amphibole as the only forming-mineral.

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 524.07 478.56 271.88 227.74 178.03 109.52 35.51 446.91 391.11 231.85 175.73 143.03 86.36 31.69

0.9 581.20 531.90 302.50 250.23 195.08 119.88 38.97 495.63 435.04 258.32 193.09 156.73 94.53 34.79

0.8 652.47 598.33 340.48 278.02 216.07 132.63 43.25 556.40 489.75 291.15 214.53 173.60 104.59 38.60

0.7 743.88 683.42 388.90 313.27 242.63 148.73 48.67 634.36 559.82 333.00 241.73 194.93 117.28 43.44

0.6 865.46 796.36 452.83 359.55 277.36 169.76 55.77 738.03 652.83 388.25 277.45 222.84 133.87 49.78

0.5 1035.15 953.67 541.32 423.21 324.92 198.50 65.53 882.74 782.37 464.73 326.56 261.05 156.53 58.49

0.4 1288.75 1188.16 672.26 516.64 394.36 240.39 79.82 1099.00 975.47 577.89 398.66 316.84 189.56 71.24

0.3 1709.46 1575.94 886.82 668.17 506.22 307.69 102.93 1457.77 1294.78 763.28 515.59 406.72 242.63 91.87

0.2 2545.54 2343.22 1306.12 960.09 719.76 435.71 147.30 2170.75 1926.58 1125.56 740.84 578.28 343.59 131.48

0.1 5027.96 4605.47 2517.97 1784.15 1313.66 789.74 271.85 4287.67 3789.33 2172.52 1376.73 1055.44 622.76 242.64

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 159.01 135.99 94.74 62.75 50.71 32.30 14.46 299.87 260.00 185.34 126.72 98.88 59.74 32.37

0.9 176.58 150.96 105.05 69.49 56.11 35.73 16.01 332.88 288.43 205.25 140.01 109.11 65.89 35.75

0.8 198.53 169.65 117.92 77.88 62.83 40.00 17.94 374.09 323.91 230.03 156.53 121.79 73.51 39.94

0.7 226.72 193.65 134.42 88.63 71.43 45.45 20.40 427.02 369.44 261.77 177.63 137.97 83.22 45.29

0.6 264.29 225.61 156.36 102.89 82.83 52.68 23.68 497.49 430.02 303.90 205.55 159.34 96.03 52.37

0.5 316.83 270.29 186.97 122.76 98.68 62.73 28.23 596.01 514.61 362.56 244.29 188.92 113.75 62.19

0.4 395.57 337.19 232.72 152.36 122.26 77.67 35.02 743.52 641.12 449.97 301.77 232.70 139.95 76.73

0.3 526.60 448.42 308.58 201.30 161.17 102.29 46.23 988.80 851.14 594.47 396.28 304.43 182.83 100.62

0.2 788.18 670.18 459.28 298.08 237.90 150.81 68.37 1477.80 1268.98 880.20 581.78 444.58 266.47 147.42

0.1 1570.47 1332.02 906.42 583.16 462.93 292.85 133.48 2937.22 2511.70 1721.79 1121.59 849.40 507.34 283.23

Note: values are in ppm.

Pilgüjarvi sill - sample Pilg 8 38 Pilgüjarvi sill - sample 106-44

Pilgüjarvi sill - sample 116-6 Kammikivi sill - 57-HV-28



 

 

 
 

 

 

 

 

 

 

 

Table 9 - Model of fractional crystallisation for Canadian bulk-rock melt.

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 14.23 15.80 14.74 16.32 8.70 8.08 7.45 47.98 37.62 22.75 14.21 19.79 13.76 10.09

0.9 15.77 17.47 16.30 18.04 9.50 8.81 8.10 53.21 41.66 25.19 15.73 21.74 15.11 11.17

0.8 17.68 19.54 18.23 20.18 10.48 9.71 8.90 59.74 46.70 28.23 17.64 24.16 16.77 12.51

0.7 20.13 22.19 20.70 22.91 11.72 10.84 9.91 68.11 53.15 32.12 20.07 27.22 18.88 14.23

0.6 23.39 25.70 23.97 26.54 13.34 12.31 11.21 79.25 61.72 37.29 23.30 31.25 21.65 16.50

0.5 27.93 30.58 28.51 31.57 15.53 14.31 12.97 94.79 73.65 44.49 27.80 36.78 25.44 19.67

0.4 34.70 37.82 35.26 39.04 18.72 17.21 15.51 118.03 91.43 55.21 34.51 44.91 31.01 24.38

0.3 45.91 49.75 46.36 51.34 23.82 21.83 19.53 156.59 120.83 72.93 45.60 58.09 40.02 32.15

0.2 68.10 73.21 68.18 75.53 33.44 30.51 27.02 233.22 179.00 107.97 67.53 83.49 57.33 47.50

0.1 133.66 141.69 131.86 146.12 59.71 54.07 47.08 460.81 350.45 211.18 132.14 155.20 106.01 92.57

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 11.93 12.09 11.14 9.18 13.28 13.64 20.25 17.94 10.26 11.45 9.59 13.28 13.64 20.25

0.9 13.22 15.20 12.32 10.15 14.32 14.91 22.05 19.88 13.19 12.67 10.61 14.53 14.93 22.08

0.8 14.83 19.07 13.80 11.37 15.60 16.48 24.26 22.31 16.83 14.19 11.88 16.07 16.52 24.32

0.7 16.90 24.01 15.68 12.92 17.17 18.46 27.04 25.42 21.47 16.13 13.51 18.01 18.54 27.15

0.6 19.64 30.54 18.17 14.97 19.20 21.05 30.64 29.56 27.61 18.71 15.66 20.55 21.16 30.81

0.5 23.47 39.60 21.64 17.83 21.90 24.57 35.52 35.33 36.13 22.29 18.66 24.02 24.76 35.80

0.4 29.18 53.03 26.80 22.08 25.72 29.70 42.57 43.95 48.78 27.62 23.13 29.06 30.00 43.01

0.3 38.64 75.13 35.30 29.09 31.66 37.92 53.76 58.23 69.60 36.41 30.49 37.17 38.42 54.48

0.2 57.41 118.58 52.05 42.91 42.43 53.50 74.69 86.56 110.58 53.75 45.03 52.58 54.45 76.04

0.1 112.94 245.54 101.10 83.36 69.98 96.39 131.06 170.51 230.55 104.63 87.67 95.11 98.85 134.44

Note: values are in ppm.

Boston Creek - sample B-5

Ghost Range - sample GR-1 Ghost Range - sample GR-2

Theo's Flow - sample T-2

Table 10 - Model of fractional crystallisation for Russian bulk-rock melt.

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 524.07 478.56 347.04 227.74 31.79 19.86 10.34 446.91 391.11 277.63 175.73 31.79 19.86 10.34

0.9 581.34 532.02 384.41 252.28 34.97 21.83 11.34 496.11 435.68 307.91 194.91 35.12 21.93 11.39

0.8 652.79 598.63 430.97 282.86 38.90 24.26 12.56 557.55 491.29 345.68 218.84 39.27 24.50 12.69

0.7 744.48 683.96 490.61 322.04 43.90 27.35 14.12 636.45 562.64 394.13 249.55 44.56 27.78 14.34

0.6 866.45 797.27 569.80 374.07 50.47 31.41 16.15 741.53 657.55 458.57 290.39 51.56 32.12 16.52

0.5 1036.76 955.14 680.11 446.55 59.53 37.00 18.94 888.41 790.06 548.52 347.40 61.27 38.14 19.53

0.4 1291.40 1190.59 844.59 554.64 72.85 45.20 23.02 1108.35 988.17 682.96 432.64 75.68 47.06 23.97

0.3 1714.08 1580.16 1116.66 733.47 94.51 58.52 29.60 1474.08 1316.98 906.00 574.07 99.37 61.69 31.22

0.2 2554.75 2351.63 1655.20 1087.54 136.40 84.21 42.17 2203.28 1970.88 1349.33 855.28 145.86 90.37 45.29

0.1 5054.00 4629.12 3243.78 2132.47 255.41 156.89 77.27 4379.89 3914.60 2665.89 1690.82 281.13 173.54 85.57

La Ce Nd Sm Gd Dy Yb La Ce Nd Sm Gd Dy Yb

1 157.73 135.99 94.74 62.75 31.79 19.86 10.34 299.87 260.00 185.34 126.72 31.79 19.86 10.34

0.9 174.94 152.45 104.91 69.49 34.80 21.72 11.32 332.65 288.05 205.31 140.38 34.97 21.83 11.34

0.8 196.40 172.94 117.57 77.88 38.50 24.00 12.53 373.54 323.01 230.19 157.40 38.91 24.27 12.57

0.7 223.93 199.18 133.79 88.64 43.18 26.89 14.06 426.02 367.81 262.05 179.21 43.92 27.37 14.12

0.6 260.55 234.00 155.32 102.91 49.29 30.65 16.06 495.83 427.30 304.37 208.17 50.50 31.43 16.16

0.5 311.66 282.48 185.29 122.78 57.64 35.78 18.80 593.31 510.20 363.31 248.52 59.57 37.03 18.96

0.4 388.06 354.71 229.95 152.40 69.80 43.24 22.79 739.07 633.85 451.21 308.70 72.92 45.25 23.04

0.3 514.81 474.11 303.77 201.37 89.36 55.21 29.20 981.02 838.49 596.62 408.28 94.64 58.61 29.64

0.2 766.76 710.24 449.74 298.22 126.56 77.91 41.43 1462.27 1243.81 884.46 605.45 136.66 84.38 42.26

0.1 1515.01 1405.96 879.59 583.56 229.45 140.36 75.32 2893.17 2440.75 1733.73 1187.44 256.09 157.33 77.49

Note: values are in ppm.

Pilgüjarvi sill - sample Pilg 8 38 Pilgüjarvi sill - sample 106-44

Pilgüjarvi sill - sample 116-6 Kammikivi sill - 57-HV-28
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