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Abstract
The environmental conditions of the habitats in which organisms live may induce a variety of plastic adaptive responses for
numerous developmental, behavioural and morphological traits. One of the most relevant environmental features is the
amount of available food occurring in a certain habitat. In this study, we wanted to assess whether, during development of
vertebrates, diet quality may induce plastic responses at both behavioural and morphological levels. We tested whether diet
may affect the rate of aggressive interactions between fire salamander larvae (Salamandra salamandra) and changes of head
morphology during development. We collected 15 newborn larvae from five different localities, and we randomly assigned
them to three diets (small nourishing prey, big scant prey, mixed prey). For each larva we recorded the number of snap
attempts to a target larva 4 days after salamander collection, and after the 50 days of feeding treatment. We recorded and
analysed head shape development using a geometric morphometrics approach. Analyses showed a significant relationship
between diet and aggressiveness: larvae fed with small nourishing prey were significantly more aggressive. Diet had a
significant effect in determining the quantity of head morphology changes during larval development, but did not affect the
characteristics of the morphology; this means that all the larvae showed a similar shape modification, but those treated with
the more nourishing prey showed a more pronounced change. These results indicate that diet features may induce both
behavioural and morphological plastic responses. High-quality diets may be linked to competition for trophic resources,
increasing development rates and determining higher competitive ability.

Keywords: Phenotypic plasticity, geometric morphometrics, cannibalism, aggressiveness

Introduction

The availability and quality of the trophic resources
existing in a given environment are essential limiting
factors for numerous organisms. These limiting factors
lead to intense inter- and intra- specific competition to
gather the amount of food necessary for survival and
reproduction. In vertebrates and invertebrates, intras-
pecific competition is particularly strong amongst juve-
niles and larvae, respectively (Urban 2007).

One of the most common manifestations of
competition is aggressiveness (Arnott & Elwood
2008). Multiple studies have shown that aggressive
interactions between conspecifics affect not only
individual survivorship, but also the composition
of populations (Claessen et al. 2000; Ohlberger
et al. 2012). Aggressive intraspecific interactions
may occur in a wide range of contests, from

behavioural displays to deadly fights, and are
often linked to asymmetries occurring between
conspecifics (Arnott & Elwood 2008). Examples
of asymmetries among conspecifics include differ-
ences in internal status, and differences in asses-
sing the value of resources (Arnott & Elwood
2008). Differences in size, age, experience and
social status are a classical example of an asymme-
try between conspecifics that is linked to the indi-
viduals own value; such differences often affect the
outcome of intraspecific interactions (Arnott &
Elwood 2008).
Theory predicts that the aggressive effort increases

with the value of the resource, until costs do not
exceed the resource value (Arnott & Elwood 2008).
In environments where food resources are scarce, the
aggressive individuals may be more able to increase
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their food intake (Manenti et al. 2015); moreover,
smaller conspecifics may represent a major trophic
supply for the larger ones as smaller individuals can
be eaten by larger ones (Wissinger et al. 2010;
Hopkins et al. 2011). In this case, aggression can
grade into full-scale cannibalism and may have
important ecological implications at both population
and community levels (Delclos & Rudolf 2011;
Kishida et al. 2011).

Cannibalistic populations may be found in a wide
range of invertebrate and vertebrate taxa, and,
usually, cannibalism is reported for predator species
(Alabi et al. 2009; Ibanez & Keyl 2010; Kudo &
Shirai 2012). A recent study showed that voracious
predators cannibalise one another when enough size
difference between individuals occurs (Anderson
2016). Cannibalism is also frequent in fish (Smith
& Reay 1991). Fish living in an environment with
poor trophic resources may have cannibalistic popu-
lations, as in the case of the Arctic char Salvelinus
alpinus inhabiting Alpine lakes, which shows two
distinct morphs, i.e. invertebrate feeders and canni-
bal morphs (Florø-Larsen et al. 2016). The differ-
ences between the morphs include a significant
disparity in size at hatching (Florø-Larsen et al.
2016). Among amphibians, urodeles provide many
further examples. A well-known case is represented
by the salamanders of the genus Ambystoma (Wells
2007): individual larvae from cannibalistic popula-
tions show behavioural and morphological differ-
ences, being bigger and having proportionately
larger heads with respect to the non-cannibals.

The morphological distinctiveness of cannibals is
highly variable among species (Claessen et al. 2000).
Cannibals often have larger body and head size, and
these traits seem to be linked to cannibals’ success
during intraspecific interactions (Wildy et al. 1998;
Wakano 2004). Indeed, cannibalism may affect
population size structure (van Kooten et al. 2007),
just as a direct consequence of the trophic benefits
gained by cannibals, which are likely to follow higher
growth rates and reach larger size than non-
cannibals.

In amphibians, full-scale cannibalism cases have
been frequently observed in several salamander
families and genera (Pfennig et al. 1994; Denoël
et al. 2006; Buckley et al. 2007). The reasons for
cannibalism may lie in some shared traits: all sala-
manders are carnivorous both at adult and at larval
stages. Most species are generalist predators, usually
feeding on small invertebrates but able to prey on
anuran tadpoles, other salamander larvae and also
juvenile fish (e.g. Dicamptodon; Parker 1994); during
growth, larvae of most species show a dietary shift
towards larger prey and favouring aggressive

intraspecific interactions (Wells 2007). Whatever
the explanation, the frequency of cannibalism
among salamanders makes them particularly suitable
for investigating the ecological and evolutionary
meaning of this behaviour, and the fire salamander
(Salamandra salamandra) may provide a particularly
good study system.
This is a European widespread epigeous sala-

mander that usually breeds in streams and small
pools (Steinfartz et al. 2007; Manenti et al. 2009b),
but some populations are able to breed in different
kinds of subterranean environments where larvae
successfully complete their development (Manenti
et al. 2009a). In streams and pools, it is frequent to
find larvae of different ages. This fact leads to the
occurrence of strong asymmetries between conspe-
cifics in terms of both size and developmental stage
in the same habitat (Manenti et al. 2011; Romeo
et al. 2015). Larvae of S. salamandra often display
aggressive behaviours that are favoured in starva-
tion periods and under high conspecific density
(Manenti et al. 2015). The fact that hungry larvae
display more aggressive behaviours suggests that
the internal status of the starved larvae affects the
apparent resource value of the conspecifics: a hun-
gry larva would score a food resource more highly
than would a satiated one (Arnott & Elwood 2008).
Smaller fire salamander larvae may represent an
important food resource and may be easily attacked
by the largest ones. Indeed, the occurrence of full-
grade cannibalism has been often reported, espe-
cially in pools or streams where larval density was
high (Joly 1968). Cannibalism can thus play an
important role for Salamandra salamandra in food-
deprived habitats, allowing the first cohorts of lar-
vae to feed on later-arriving cohorts and reach
metamorphosis (Markman et al. 2009).
Cannibalism may help survival in environments
with limited resources, such as caves, where starva-
tion periods may be frequent and prolonged. At the
same time, at parity of starvation conditions, sala-
mander larvae that experienced diets of higher
quality are more aggressive than larvae that experi-
enced low-quality diets (Heuring et al. 2017).
Diet is predicted to affect multiple larval traits

during development because the trophic resources
available are strongly correlated to salamander larva
body condition (Heuring et al. 2017), behaviour
(Krause et al. 2011) and growth rates (Limongi
et al. 2015). In particular, the quality/composition
and size of the prey are likely to affect development
depending both on the nutrients levels made avail-
able for larval growth and on shape which, as
recorded in the case of cannibalistic individuals of
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Salvelinus and Ambystoma, may enlarge mouth
morphology.

In this study we evaluated the relationships
between the level of aggressive interactions and mor-
phological development of fire salamander larvae. In
particular, we investigated whether the diet, in terms
of composition and availability of prey, is able to
promote aggressive behaviour and to induce mor-
phological plasticity, by examining correlations
between diet, aggressive behaviour and head mor-
phology. When adaptive responses are driven by
variable environmental features, they are likely to
be highly plastic (Kasumovic et al. 2009), and we
hypothesise that diet may lead to both behavioural
and morphological plastic responses.

We performed laboratory experiments to answer
two questions: (1) Does prey size affect the mouth
and head morphology of predators? and (2) Does
prey quality affect the quality of predators’ competi-
tive response, such as aggressiveness?

Materials and methods

Larvae collection and rearing

We collected 15 larvae at developmental stage 1
(newborns: well-developed tail fin and the tip of the
fin bluntly rounded; Jusczcyk & Zakrzewski 1981)
from five epigean streams situated in the Italian
Prealps in Lombardy (NW Italy; around 45°48ʹN,
9°02ʹE). Larvae were individually maintained for
50 days at a mean temperature of 18°C, exposed to
the natural photoperiod, in containers of transparent
plastic with a size of 10 × 11 cm; containers were
perforated with perforations of 2 mm in diameter.
The containers were placed in six independent
water-filled blocks (40 × 50 cm, water depth:
5 cm). Larvae were randomly assigned to three diet
treatments, with two blocks per treatment. The diet
treatments were: “big but scant prey” diet, “small
but nourishing prey” diet and “mixed prey” diet.
The “big but scant prey” (hereafter “big”) diet was
composed by big prey with poor nutritional value
relative to size. Under this treatment, larvae were
fed ad libitum with slices of fresh chicken (nutritional
caloric power of 110 kcal/100 g) meat that were of
the same width as their closed mouth. The “small
but nourishing prey” (hereafter “small”) diet was
composed by small prey with high caloric power.
Under this treatment, fire salamander larvae were
fed ad libitum with Chironomus sp. larvae (nutritional
caloric power > 460 kcal/100 g) that were always
thinner than the width of their closed mouth. The
“mixed prey” (hereafter “mixed”) diet was com-
posed of both big prey with poor nutritional power

and small prey with high nutritional power, that
mimicked natural conditions of larval development
with smaller prey eaten in the early stages and larger
prey eaten in the late stages. Under this treatment,
salamander larvae were fed ad libitum with
Chironomus sp. larvae thinner than their mouth for
the first 25 days and with fresh chicken meat slices of
the same width as their mouth for the remaining
25 days. The sequence used in this treatment was
specifically developed to detect a possible effect of
the prey size changing after half of the larval
development.
Both at the beginning and at the end of the diet

treatments, we recorded the aggressiveness of the fire
salamander larvae and measured their head shape
and morphology.

Aggressiveness

To test aggressiveness, we recorded for each larva
(hereafter “focal larvae”) the number of snaps
attempted on a target larva (Manenti et al. 2015).
Tests started 4 days after salamander collection, and
were repeated after the 50 days of diet treatment.
Because when we collected the larvae we did not
know their level of satiety, we fed them on the collec-
tion day and then left them without food for 3 con-
secutive days before starting tests, as another study
found that satiety reduces aggressiveness (Manenti
et al. 2015). We collected eight additional newborn
larvae (average length: 33 mm) to be used as targets
(hereafter “target larvae”); we collected them from
two additional epigean streams, 3 km and > 28 km
from the nearest sampling site of test larvae, respec-
tively. To use the same length and developmental
stage of the target larvae at the beginning and end of
the 50-day test period, we collected eight additional
newborn larvae (average length: 34 mm) from two
artificial hypogean pools, at 390 m above sea level
(asl) and at 1100 m. asl, 7 km and > 30 km from the
nearest sampling site of test larvae, respectively. In the
second test period, prey larvae were obtained from
colder localities, and this allowed us to find, both at
the beginning and at the end of the treatment, target
larvae of similar length to the original target larvae
used at the beginning of focal larvae rearing. The
focal larvae and the target larvae were randomly
selected, until each focal larva was tested twice both
at the beginning and at the end of the rearing period.
During the behavioural tests, each larva was individu-
ally placed in a 13.5 × 18.3 cm box with and illumi-
nance intensity of 500 lux and was allowed to
acclimatise for 3 min. At the end of the acclimatisation
a target larva was placed in the arena and we per-
formed the behavioural tests for 7 min, counting the

324 R. Manenti et al.



number of snaps made by each focal larva toward the
target larva. All observations were performed by the
same observer. Due to the short duration of the trials
(less than 30 min including acclimatisation), none of
the larvae were physically injured by intraspecific
interactions. Behaviour of target larvae was recorded,
but as they never snapped in return and only a few
bites were observed, we did not take into considera-
tion for this study the target larvae’s responses.

Head shape

To record and analyse head-shape development, we
used a geometric morphometrics approach (Bookstein
1997; Dryden & Mardia 1998; Rohlf 2000).

We photographed the dorsal view of each focal
larva at the beginning and at the end of the diet
treatment. Photographs were taken with a Canon
PowerShot SX10 IS, after putting the larva in a
transparent plastic tank filled with water to a depth
of 3 cm (to hold the larvae horizontal), positioned
above a sheet of graph paper (used as an absolute
linear reference). On each photograph, after having
measured the snout-to-vent length (SVL), we digi-
tised nine homologous landmarks, four paired and
one unpaired (LM; Figure 1), and we used an out-
line of the head to place 16 symmetric and equally
spaced semi-landmarks (SLM; Figure 1). For all

these operations, we used TpsDig 2.16 software
(Rohlf 2010; available at http://life.bio.sunysb.edu/
morph/).

Statistical analyses

We analysed the relationship between diet treat-
ments and aggressiveness with a generalised linear
mixed model expressed by the formula:
aggressiveness ~ period*treatment + SVL + dSVL

+ (1|id)
where aggressiveness is represented by the number

of tentative snaps performed by the focal larvae,
period is the time of the test (beginning/end), treat-
ment corresponds to the diet condition (big, mixed,
small), SVL is the focal larvae size, and dSVL is the
size difference between focal and target larvae. We
performed the comparison among levels of the treat-
ment factor by setting a priori Helmert contrasts (big
vs mixed; big + mixed vs small). We included the
larval identity as a random factor acting on the
model intercept. Given that the dependent variable
(number of snaps) is count data including many
zeros and the distribution of the data appeared
over-dispersed (with the variance being more than
4 times the mean), we used zero-inflated models
with negative binomial error distribution (Zuur
et al. 2009), as implemented in the glmmADMB R

Figure 1. Position of the nine homologous landmarks (white dots) and of the outline used to model the head shape. Eight symmetric and
equally spaced semi-landmarks were taken along each side of the outline.
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package (Skaug et al. 2016). Significance was
assessed through a likelihood ratio test (Bolker
et al. 2008).

To explore the relationship between diet treatment
and head-shape development, we conducted a two-
step phenotypic trajectory analysis (Collyer & Adams
2013) of the head configurations (eight LM and 16
SLM) at the beginning and at the end of the diet
treatment: firstly, the whole set of configurations
were superimposed using a general Procrustes ana-
lysis to remove all non-shape information (Adams
et al. 2004); secondly, a principal component analy-
sis was performed on the new set of coordinates to
extract the correct dimensionality of the shape data;
finally, the vector representing the phenotypic trajec-
tory of each larva was computed as the vectorial
difference between the final and the starting step,
i.e. the final and the starting head shape (Adams &
Collyer 2009; Zuffi et al. 2017). Vector size
expresses the amount of phenotypic variation, while
vector angle expresses its direction (Adams &
Collyer 2009). We assessed the relationship between
these two components of the phenotypic change and
the diet treatments using a distance-based analysis of
variance (ANOVA; Adams & Collyer 2009) accord-
ing to the model formula D ~ Growth*Treatment,
where D is the pairwise distance matrices of the size
and the angle component of the phenotypic trajec-
tory, one at a time; growth is the relative increase in
size of the focal larva (SVLfinal – SVLstart)/SVLstart;
and treatment is the diet condition (with the same
contrasts used for aggressiveness models). We
assessed the significance of the effects through a
permutation test (9999 permutations). We per-
formed all analyses in R version 3.2 (R
Development Core Team 2016).

Results

We detected a significant relationship between
diet and aggressiveness (Table I); aggressiveness
changed from the pre-treatment to the post-treat-
ment period depending on the diet treatment.
The number of snaps given by the focal larvae
was similar among the three groups before the
diet treatment; at the end of the treatments, lar-
vae from the big and mixed groups did not show a
significant variation, while those from the “small”
group significantly increased their aggressiveness
(Figure 2).

All the diet treatments allowed larval growth.
Considering just the larval SVL, the rate of growth
was different between the treatments. In particular,
larvae treated with small but nourishing prey grew
more than larvae treated with big but scant prey

F = 3.95, P = 0.04). No differences were recorded
between “small” and “mixed” treatments.
Phenotypic trajectory analysis revealed a signifi-

cant effect of the diet on the size component of the
phenotypic vector, but not on its angular component
(Table II; Figure 3).
Notably, individuals from the “small” treatment

showed a larger size than the other treatments
(Figure 3). All the larvae showed a similar shape
modification, mainly loaded by the regions of the
eyes and nostrils: the eyes decreased in relative size
(the distance between anterior and posterior ver-
tices) and moved away from the head edge
(Figure 4(a)); at the same time, the inter-nostril dis-
tance decreased while the eye-to-nostril distance
increased (Figure 4(a)).

Discussion

Our results show that both larval aggressiveness and
morphological development varied depending on the
diet treatment that larvae experienced. We used a
small sample size because of logistic and regional
permission constraints. Further studies using more
individuals may allow the identification of processes
and elements that the relative power of our analyses
may have not detected. However, our approach
allowed us to delineate some general patterns.
First of all, considering the behavioural aspects,

larvae fed with small but nourishing prey became
more aggressive, while those fed with large but
scanter prey were much less aggressive after the
diet treatment than at the collection moment.
This could be a typical case of internal state

Table I. Relationship between feeding treatments and aggressive-
ness, results of the generalised linear mixed model (GLMM) ana-
lysis. For the significant factors, the statistics for the Helmert
contrasts are also shown (in this case the standardised coefficients,
z values, are reported instead of chi-square). SVL = Snout-to-Vent
lenght; dSVL = SVL growth during the treatment period; Time =
testing period (treatment beginning or ending); Treatment = size
of prey ate by larvae: small, big or mix; * indicates the two-way
interaction between two variables.

Variable
χ2

(z for contrasts) Df Pr(> Chisq)

SVL 1.78 1 0.182
dSVL 0.41 1 0.523
Time 2.67 1 0.103
Treatment 20.74 2 < 0.001

big vs small 0.46 1 0.649
big + mixed vs small 5.94 1 < 0.001

Time*SVL 1.65 1 0.199
Time*Treatment 22.30 2 < 0.001

time: (big vs mixed) −1.89 1 0.059
time: (big+ mixed vs small) −3.43 1 < 0.001
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affecting aggressiveness (Arnott & Elwood 2008).
Internal state, such as starving, may affect the
apparent value of a resource for the hungry indivi-
dual, which would value a food resource more than
would a satiated individual (Arnott & Elwood
2008). In S. salamandra, larvae experiencing longer
periods of starvation are much more likely to dis-
play aggressive behaviour (Manenti et al. 2015);
when resources are scarce, more importance is gen-
erally given to the potential food occurring, and
also conspecifics may be viewed as a potential
food supply. At the same time, it has been shown
that at the same level of starvation, the larvae of the

salamander Ambystoma annulatum that experienced
higher quality diets were more aggressive than lar-
vae that experienced lower quality nutritional diets
(Heuring et al. 2017). In the case of our experi-
ment, focal larvae may have seen target larvae both
as potential nutritional resources and as competi-
tors for resources such as territory and prey. The
higher aggressiveness levels showed by the larvae
that experienced the diet with higher nutritional
conditions may reflect a better internal condition
and a higher competition ability than larvae that
experienced lower nutritional levels. As all the lar-
vae of each treatment were fed ad libitum, the

Figure 2. Relationship between aggressiveness and diet treatment: dots represent mean number of attacks before and after treatment; bars
represent standard errors; dashed lines connect starting and ending points within each treatment.

Table II. Relationships between geometric morphometrics variables and the feeding treatments, results of the distance-based ANOVA
analyses for the components “size” and “angle” of the phenotypic change vector. Significant effects are in bold. For the significant
treatment, Helmert contrasts are shown.

Size df Pseudo-F R2 Pr(> F)

Growth 1 0.688 0.026 0.417
Treatment 2 7.561 0.563 0.016

Big vs mixed 1 0.064 0.002 0.813
Big+ mixed vs small 1 15.058 0.561 0.003

Growth*Treatment 2 1.528 0.114 0.283

Angle df Pseudo-F R2 Pr(> F)

Growth 1 0.725 0.050 0.596
Treatment 2 1.171 0.161 0.344
Growth*Treatment 2 1.745 0.240 0.107
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aggressiveness was not conditioned by the amount
of food eaten. However, the current information
acquired by our experiments does not allow us to
disentangle the relative role of size and the energy
content of prey items in fire salamander larva beha-
viour. Larvae under the “small” treatment could
have perceived only the small size of the prey and
not their content with a sensitivity to an overall

poor nutritional condition that is a factor generally
involving aggressiveness in salamander larvae
(Manenti et al. 2015).
In any case, the diet treatment based on insect prey

had a higher nutritional power with respect to the
caloric content of the diet treatment based on chicken
meat items. Insects are considered a rich food for many
organisms; the energy content of chironomid larvae is

Figure 4. Shape changes along the phenotypic vectors. (a) Since the angle of the trajectories does not vary among treatments, the overall
shape change is shown (grey = start; black = end). (b) The final shape is compared using the significant contrast between treatments: “small”
vs “big+ mixed” diet. The deformation grids highlight the areas undergoing the strongest change. Amplification factor: 1.

Figure 3. Bi-dimensional projection of the phenotypic trajectories across treatments: the chosen axes (Principal Component 1 and 4) best
show the relationship between the angle and size components of the vectors. The dashed line represents the overall direction.
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much higher than the energy content of the meat of
chickens or other vertebrates (Armitage et al. 2012).
Chicken nutritional power amounts only to 110 kcal/
100 g, while that of chironomids exceeds 460 kcal/
100 g. (Armitage et al. 2012; Payne et al. 2016). The
effects of diet composition on behaviour are heavily
debated in the scientific literature (Haagensen et al.
2014). Cases of diet composition affecting aggressive-
ness levels are reported in mammals such as dogs
(Kocis et al. 2015), vervets (Bramblett et al. 1981)
and humans (Haagensen et al. 2014), and even in
some fish (Winberg et al. 2001). The effect that we
detected on the fire salamander larvae confirms that
higher nutrition diet levels may contribute to increase
competitive interactions and aggressiveness. Based on
this result, we stress that further studies should inves-
tigate the relationships between diet quality and inter-
nal factors in stimulating aggressiveness.

While behaviour is generally viewed as a highly plastic
trait, especially during development, examples of mor-
phological phenotypic plasticity are rarer (Laubichler
2009). However, behavioural and morphological plasti-
city can act jointly to produce a unique functional phe-
notype, and the plasticity of the morphological traits
depends on which is considered the environment influ-
encing it (Bertossa 2011). Behavioural plasticity can
allow the expression of a wide range of responses along
the life span of a single individual, but behaviour is a trait
only acting in a specific moment (Bertossa 2011).
Morphological responses can be less prompt than beha-
vioural ones, but can have lasting consequences on the
fitness of individuals. Our results indicate that in fire
salamander the head morphology, at least during the
larval development monitored, did not show significant
variation in terms of shape. The larvae of all three diet
treatments tended to reach the same pre-metamorpho-
sismorphology, not depending on the dimensions of the
prey ingested during the rearing period. However, diet
treatments stimulated a plastic response in the amount
of phenotypic change: the size component of the phe-
notypic change was significantly higher in larvae fed
with small but nourishing prey than in larvae exposed
to a mixed diet or fed only with larger but less nutrient
prey. The development of the head shape was stronger
in larvae that ate smaller but more caloric prey.
Numerous biotic and abiotic elements have been
reported to affect the rates of development and growth
of amphibians (Rose 2005; Vaissi & Sharifi 2016).
Among the biotic factors, the quantity of available food
often plays a prominent role (Ogilvy et al. 2012).
Individuals that take in more high-quality food
resources are able to grow larger and more quickly,
and to increase their survival possibilities (Denoël &
Poncin 2001; Hawlena et al. 2011). Our results support
the idea that not only the amount of food ingested, but

also the diet (in terms of composition and quality) plays
a major role. Our findings show that fire salamander
larvae can respond adaptively to variation in the quality
of the resource that is available in aquatic environments.
In our study case, food typology likely affected a trait
(aggressiveness) that may play an adaptive role, espe-
cially in food-deprived environments.
Our results suggest that fire salamander larvae did

not show any tendency to develop specific cannibal
morphs as recorded in ambystomatid salamanders
(Wells 2007). Our analysis confirms that fire sala-
mander larvae are capable of plastic adaptive
responses depending on the environmental condi-
tions; among these conditions the nutritional level
of the available food is an important element to be
considered when studying intraspecific aggressive-
ness. Future studies, with contrasting treatments of
all combinations of small–large and high–low-energy
food items, could be developed to understand
whether prey size or energy content matters.
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